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Abstract

Three Fingered Jack: Productively Addressing Platform Diversity

by

David Bradley Sheffield

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kurt W. Keutzer, Chair

Moore’s Law has given the application designer a large palette of potential computa-
tional substrates. The application designer can potential map his or her application onto
specialized task-specific accelerators for either energy or performance benefits; however, the
design space for task-specific accelerators is large. At one extreme is the conventional mi-
croprocessor, easy to program but relatively low-performance and energy inefficient. At the
other extreme is custom, fixed-function hardware crafted solely for a given task. Studies
have reported energy-efficiency gains using fixed-function hardware from 2× to 100× over
programmable solutions. If we wish to evaluate this design space we need prototypes for the
elements of it; however, constructing functional prototypes for each hardware substrate is a
daunting prospect. This is because each implementation target requires a radically different
set of programming and design tools.

To address the challenges of mapping applications across a broad range of targets, this
thesis presents Three Fingered Jack. Three Fingered Jack is a highly productive approach
to generating applications that run on multicore CPUs or data-parallel processors. Three
Fingered Jack also integrates a high-level hardware synthesis engine that has the ability to
generate custom hardware implementations.

Three Fingered Jack applies dependence analysis and reordering transformations to a
restricted set of Python loop nests to uncover parallelism. By exploiting data parallelism,
Three Fingered Jack allows the programmer to use the same Python source to target all
three supported platforms. It exploits this parallelism on CPUs and vector-thread processors
by generating multithreaded code with short-vector instructions. The high-level hardware
synthesis engine uses the parallelism found by the system to both exploit memory-level
parallelism and automatically generate multiple parallel processing engines.

On a 3.4 GHz Intel i7-2600 CPU, Three Fingered Jack generated software solutions that
obtained performance between 0.97-113.3× of hand-written C++ across four kernels and
two applications. Over four kernels, Three Fingered Jacks high-level synthesis results are
between 1.5-12.1× faster than an optimized soft-core CPU on a Zynq XC7Z020 FPGA.
When evaluated in a 45nm ASIC technology, the results of Three Fingered Jacks high-level
synthesis system is 3.6× more efficient than an optimized scalar processor on the key kernels
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used in automatic speech recognition. On the same speech recognition kernels, the hardware
results are 2.4× more energy efficient than a highly optimized data-parallel processor.
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Chapter 1

Introduction

VLSI scaling enabled massively increased integration capabilities on single chip micro-
processors for nearly 30 years. As first observed by Moore [106], the number of transistors
on a monolithic silicon die doubles approximately every 18 months. For the first 20 years
following Moore’s observation, increased integration capabilities were used to improve single-
threaded performance on both desktop and workstation computers. During this period, the
supply voltage and channel length of transistors used in CMOS VLSI chips scaled according
to Denard’s classic predictions [48]. In the classic (long-channel devices) CMOS scaling
regime, each new process technology node reduced the minimum lithography dimensions
by approximately 30% and also allowed for supply voltage scaling. Not only did each new
technology node allow for more integration, but new chips consumed the same amount of
power as did the previous generation due to supply voltage scaling. In this period, transis-
tor budgets were dedicated to larger cache memories and other micro-architectural features
designed to increase performance. Increased single-threaded performance enabled existing
software to scale its performance with enhancements in VLSI technology. Stated simply,
no changes in programming methodology were required to extract performance from new
microprocessors. As an example of the significant performance improvements delivered dur-
ing this era, consider two instruction-set compatible processors from Intel: the 486 and the
Pentium4.

Released in 1989, the Intel 486 ran at 20 MHz and retired a maximum of one instruction
per cycle. In contrast, when released in 2000, the Pentium4 ran at 1.5 GHz and retired
up to three instructions per cycle [68]. In slightly more than a decade, clock frequencies
increased 75× and instruction issue width increased by another factor of 3×. While clock
scaling and instruction issue are correlated only with measured single-threaded performance,
Intel was able to potentially unlock a 225× increase in performance during this period.
Unfortunately, changes in semiconductor physics associated with deep-submicron processes
have limited the applicability of aggressive clock scaling in the period after the early 2000s.
In contrast to the era of classical CMOS scaling, supply voltage scaling was no longer possible
due to the exponential dependence of leakage current on threshold voltage. Furthermore,
the delay relationship between wires and logic changed [69, 132]. Wires had historically
been fast while logic was slow. This enabled global signals to span an entire chip in a
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single clock cycle. In the deep-submicron area, logic became proportionally faster than
wires. This prevented global single-cycle on chip communication. The clock rates of Intel’s
flagship desktop microprocessors reflect the issues associated with deep-submicron processes.
Specifically, the clock rate of Intel’s flagship processors have been stagnated since 2004 at
approximately 3.8 GHz.

While power and wiring issues have complicated computer design in the deep submicron
era, CMOS scaling still provides ever increasing transistor budgets every 18 months. To
increase performance without increasing clock frequencies, major microprocessor companies
have turned to parallel processors by adding multiple processors cores to a monolithic silicon
die. By harnessing multiple processors, software can be integer factors faster than the
single-threaded equivalent; however, a move to parallel processing implies a radical shift
in software engineering methodology. To effectively use parallel processors, legacy software
must be rewritten to take advantage of additional processors.

While multicore processors with short-vector extensions have the potential for signifi-
cant performance improvements in many common applications, writing parallel software has
historically been a challenge. It has been plagued with both fundamental and engineering
challenges. Traditional efficient algorithms often display little parallelism and require new
approaches to find algorithms that can effectively exploit parallel resources. Compounding
the parallel programming implementation challenge is the diverse nature of parallel program-
ming models. These models are diverse and often reflect underlying differences in parallel
hardware platforms. For example, a cluster of workstations often requires a message-passing
programming model to obtain high-performance. This is because processors communicate
by sending messages over a network. In contrast, the shared-memory programming model
assumes processors communicate directly through a global shared pool of memory. These
differences in hardware and programming models make portable parallel programming chal-
lenging. Furthermore, exploiting data-parallelism with short-vector units often requires
reimplementing data-structures in order to satisfy strict memory alignment rules. When
compounded with other issues associated with parallel computing such as scalability, load
imbalance, and concurrency bugs, parallel computing has struggled to succeed outside the
academic research and high-performance computing communities.

Even with the challenges of parallel programming, we must embrace it because multicore
processors now span the gamut from high-end servers to smartphones and tablets. Writing
parallel software is the only way to unlock high-performance on these devices. However, even
with the performance benefits of multicore processors for some applications, software alone
may be unable to deliver a high-performance solution that is both high-performance and
energy-efficient. In these situations, algorithms must be moved from the software-domain
into a more specialized task-specific accelerator in order to achieve the desired goals.

1.1 The Diversity of Potential Platforms

As shown in Figure 1.1, the design space for specialized task-specific accelerators is
large. At one extreme is the conventional microprocessor, easy to program but relatively low-
performance and energy inefficient. At the other extreme is custom, fixed-function hardware
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Figure 1.1: The design space of hardware accelerators: Performance and energy-efficiency,
for a given task, increases from left to right while programability decreases. Figure adapted
from Fisher [54]

crafted solely for a given task. To illustrate the potential efficiency gains made possible by
fixed function hardware, Brodersen [26] reported 4 orders of magnitude in energy-efficiency
between programmable microprocessors and dedicated hardware solutions. Other studies
have reported energy-efficiency gains using fixed-function hardware from 2× to 100× over
programmable solutions. The energy-efficiency improvement depends on the characteristics
of the underlying algorithm being accelerated with fixed-function hardware (the number of
DRAM memory accesses and memory access pattern) and the hardware design-style (full-
custom versus high-level hardware synthesis).

If we wish to evaluate this design space we need prototypes for the elements of it; how-
ever, constructing functional prototypes for each hardware substrate is a daunting prospect.
This is because each implementation target requires a radically different set of programming
and design tools. For example, implementing an application on a data parallel processor
requires a complete rewrite in languages such as OpenCL or CUDA. Likewise, designing
custom hardware requires describing the micro-architecture of an accelerator in a high-level
hardware description language such as SystemC. After prototyping potential accelerator
micro-architectures in SystemC, the design is manually converted into a lower-level hard-
ware description language such as Verilog or VHDL. A two-tiered approach to hardware
system design is used to productively explore many potential designs in SystemC. As Sys-
temC is effectively a C++ class library, designers can use C++ abstractions to model
micro-architectural components that quickly evaluate architectures. However, the flexibility
afforded by SystemC comes at a cost. There are currently no efficient ways of converting a
SystemC design into a efficient hardware implementation. Instead, a designer must manu-
ally convert software abstractions used in a SystemC model into implementable hardware
primitives. As the translation process from simulation description to hardware description
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is done manually, it provides ample opportunity for the introduction of hardware bugs and
errors.

Hardware design also introduces new challenges due to the large number of complex
tools required. To design an application-specific integrated circuit (ASIC) using a standard-
cell based approach, several tools are needed. Modern ASIC design uses logic synthesis to
convert a behavioral description of an integrated circuit into a netlist of gates and memories.
The gates and memories are then mapped onto a planar silicon die using a place-and-route
tool. Finally, a logic simulator is required to verify that the design functions properly at
each level of implementation. Not only is the full tool suite complex, the design tools and
chip fabrication process are also very expensive, making hardware design accessible only to
universities and corporations with significant financial resources.

The challenges of selecting a hardware platform for delivering an application are further
complicated by differences of price-point and market demands. For example, a low volume
product would be unlikely to afford the large engineering costs associated with designing
custom hardware, but a high-volume device would be able to support the development of
an accelerator for a popular application. However, even if the market size can support the
costs of custom hardware design, the best way to deliver a given application capability is
not always clear. For example, an application undergoing rapid algorithmic development
might not be mature enough to support a custom hardware implementation. Algorithmic
improvements to the application may dominate any performance improvements gained by
a custom hardware implementation.

1.2 The Delivery of an Application on Diverse Plat-

forms

To make these issues concrete, consider an application that provides automatic speech
recognition (ASR) services on a mobile client. As speech is a natural and efficient way for
humans to interact with a mobile device, it has emerged as an exciting application on many
mobile devices. As of 2013, the dominant way of providing ASR services is to send raw
audio to a cloud-based service for analysis. This approach is used in mobile systems such as
Apple’s Siri. However, this is not the only way of providing ASR on a mobile device. Other
ways of providing mobile speech recognition include:

1. Performing speech recognition entirely in software on the general-purpose application
processor

2. Performing speech recognition on an specialized programmable platform, such as an
embedded graphics processing unit

3. Performing speech recognition using a customized fixed-function processing engine

4. Performing parts of speech recognition on the general-purpose processor, graphics
processor, and custom hardware
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Given differences in target market, time-to-market concerns, mobile client-configuration,
client-computing profile, and power or energy concerns, there is no single winner for all mo-
bile system configurations. Moreover, these concerns and constraints are rapidly changing:
the right solution for this product generation may be suboptimal for the next one. As a
result, system designers require the capability to explore this entire design space of general-
purpose microprocessor-based solutions, specialized programmable solutions, and fixed-function
hardware accelerators. Constructive exploration by manually crafting a point-solution for
each solution type however, is too time consuming and expensive.

Given the challenges of parallel programming and hardware design, even building a
single design point can be challenging. As a consequence, researchers are unable to fully
explore the solution design space. The complexities of the target market, time-to market
concerns, and power or energy concerns only compound these difficulties. To address the
challenges of mapping applications across a broad range of targets, this thesis presents
Three Fingered Jack. In this disseration, we consider mapping appliactions to general-
purpose programmable processors, specialized programmable processors, and fixed-function
hardware. Three Fingered Jack builds upon the ideas of Selective, Embedded, Just-in-Time
Specialization (SEJITS) [32, 78, 31, 81] and extends those ideas to target a diverse range of
potential platforms.

Three Fingered Jack (TFJ) targets this range with a single input description. It does
so by supporting a restricted subset of loops in the Python programming language. Re-
ordering transformations [6] are used to automatically extract data-parallelism. Once data-
parallelism has been extracted, TFJ is able to exploit the parallelism on programmable
platforms by mapping execution to multiple processors and vector units. TFJ integrates
into a standard Python 2.7 installation, allowing the use of a wide variety of existing Python
libraries, such as OpenCV or MatPlotLib. TFJ also includes a high-level hardware synthe-
sis back-end that is able to map parallelism found with reordering transforms into efficient
hardware solutions that use multiple customized processing engines (PEs).

The current TFJ implementation targets Intel x86 desktops, ARM mobile platforms,
vector-thread processors [86], and automatic hardware generation. We generate software
solutions that are 35-100% as efficient as hand-tuned C++ libraries. Our automatically
generated hardware solutions are up to 3.6× more energy-efficient than a highly-optimized
microprocessor and 2.4× more efficient than an efficient vector-thread processor.

1.3 Thesis Contributions

This work makes the following contributions:

1. Proposal a tool flow that enables a programmer to describe key applications kernels
from a high-level description and then generate highly efficient software and hardware
solutions from that description. To that end, this thesis research contributes two key
software artifacts:

(a) Design and implementation of an automatically parallelizing and vectorizing pro-
gramming toolchain for a subset of the Python programming language. Our ap-
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proach enables efficient parallel execution on several parallel architectures. Sup-
ported architectures include ARM system-on-a-chips used in mobile phones, Intel
x86 processors used in desktops and laptops, and specialized data parallel proces-
sors built at the University of California Berkeley and the Massachusetts Institute
of Technology. Our tool fully supports both just-in-time compilation at runtime
and offline static compilation for computer systems that cannot support a full
Python installation.

(b) Design and implementation of tools to generate custom hardware from the same
parallelizable subset of Python used for software solutions. Our hardware gener-
ation system uses the dependence analysis performed by our software fronted to
generate hardware solutions with multiple parallel processing engines. In addi-
tion, our approach to automatic hardware generations includes robust support for
memory operations. Our flow generates processing engines that can tolerate mul-
tiple outstanding memory requests to memory structures with non-deterministic
memory latencies. We evaluate our hardware solutions on both FPGAs and
ASICs. Our ASIC solutions are prototyped through synthesis of virtual ASIC
prototypes using a modern 45nm cell library.

2. Demonstratation of the effectiveness of our approach to hardware and software code-
sign by an in-depth case study in large vocabulary continuous speech recognition. We
are able to productively explore different implementations across all three target plat-
forms supported by TFJ. By using TFJ, we show our approach can automatically
generate software solutions that are performance competitive with manually coded
implementations with significantly less source code. We also show our automatically
generated hardware is significantly more efficient than software-only solutions running
on both conventional and vector microprocessors. Specifically, our results show an
energy savings of 3.6× over that of a conventional mobile processor and 2.4× over
that of a highly-optimized vector processor.

1.4 Thesis Outline

The structure of this thesis follows this outline:

• Chapter 2 provides the requisite background required to understand this thesis and a
discussion of related work.

• Chapter 3 describes the subset of the Python language TFJ supports. It then describes
the design and implementation of the compilation techniques used in TFJ and provides
an evaluation of TFJ on several small benchmark applications.

• Chapter 5 describes the approaches used by TFJ to automatically generate hardware
from a high-level Python description. It also evaluates TFJ’s hardware backend on a
small number of benchmark applications.
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• Chapter 6 uses automatic speech recognition as an in-depth case study of TFJ’s hard-
ware and software solutions with an emerging application.

• Chapter 7 concludes by providing a summary and discussion of the contributions of
this thesis.
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Chapter 2

Background and Motivation

This chapter explores the background necessary to understand the motivation behind
solutions presented in this dissertation. We begin in Section 2.1 by describing the trend to-
wards an ever increasing number of potential implementation platforms and the challenges
of manual hardware and software design approaches. We examine the reasons for the explo-
sion of implementation platforms by summarizing current hardware and software trends in
Section 2.2. Our solution to address the explosion of potential implementation platforms,
Three Fingered Jack, is presented in Section 2.3, while related work is addressed in Section
2.4. The rest of this thesis explores the design, implementation, and evaluation of Three
Fingered Jack.

2.1 Explosion of Potential Implementation Platforms

Within the last decade, the trajectory of mainstream computer architecture has radically
departed from the traditional uniprocessor workstation. Instead of exclusively deploying
applications on a uniprocessor desktop or workstation, compelling applications can now be
delivered on devices with a variety of different form factors and computational capabilities.

Many parallel computer architectures and accelerators have been proposed to solve per-
formance scalability and energy efficiency issues associated with traditional approaches to
designing high-performance uniprocessor systems. The wide variety of parallel processing so-
lutions available on both the desktop and mobile client reflect a broad spectrum of technical
and economic constraints facing modern computer systems. On the technical side, possible
constraints include peak performance, software compatability with previous product gener-
ations, and the performance scalability of existing parallel software. Economic constraints
are often closely coupled with technical challenges. For example, a more expensive parallel
processor can afford more execution resources and therefore achieve higher performance.

The challenge becomes even more difficult as some applications naturally fit a specific
form factor. As an example of an application best mapped to a specific form factor, consider
speech recognition on a smartphone. Smartphones have limited area for a keyboard, and
as a result, users are required to interact with the mobile device using either a very small
keyboard or through a touch screen based interface. Both approaches are far inferior to a
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traditional keyboard and mouse found on a desktop or laptop computer. Speech recognition
has emerged as a natural way to interact with a mobile device without a full-sized keyboard.
Moving speech recognition to a mobile device presents several new challenges. First, as
speech recognition is a computationally demanding application [2], it has been historically
limited to the workstation.

Moore’s Law comes to our aid here as contemporary mobile devices often have compu-
tational capabilities to similar to those of a ten-year old desktop. As shown in Figure 2.3,
a modern processor tablet processor is faster than a high performance desktop from the
mid-2000s on industry standard benchmarks. The dramatic increase in computation power
available on mobile devices has unlocked the ability to perform software-only speech recog-
nition solution is possible on a modern device. Battery life on a mobile device, however,
would suffer from continuous use of a software-only speech recognizer. Therefore, special-
ized hardware may be required to improve the energy efficiency of the the speech recognition
computation and increase battery life. To best support a compelling application, the design
space of potential implementation platforms continues to grow. As a result of the combina-
tion of technical, form factor, and economic constraints, system solutions now span a full
gamut of potential system platforms.

While the explosion of potential platforms provides effective solutions for the high perfor-
mance implementation of compelling applications, it does little to help improve programmer
productivity. Modern implementation platforms differ wildly in programming models and
middleware, resulting in low developer productivity and challenging program portability.
As shown in Figure 2.1, manually implementing high performance applications first requires
the programmer to uncover parallelism that can be executed on his or her target platform.
After completing this arduous task, the programmer must massage his or her implemen-
tation to fit the data and thread-level parallelism programming constructs on the chosen
platform.

Source code portability between data-parallel processors is difficult due to differences in
hardware intrinsics and often requires complete rewrites for a new platform. Requiring the
programmer to manually find and exploit parallelism severely limits developer productivity
and application portability when developing high-performance software. If performance or
energy concerns require a custom hardware implementation, the development challenge be-
comes even larger. Attempting a hardware implementation likely requires several iterations
of prototyping. A high-level prototype usually starts with a behavioral system simulator
written in a modeling language such as SystemC [96] and uses a software implementation
of the application or kernel as a functional reference. After verifying correctness of the
high-level prototype, a manual reimplementation of the design is required to map it into
a hardware description language such as Verilog. The complexity of the hardware design
process is reflected in ever increasing ASIC development costs [64].

As the initial development of software on a new platform routinely takes weeks to months,
alternative system platforms and algorithmic approaches are rarely explored. Constructing
parallel software in a low-level language such as C++ with threading libraries and data-
parallel primitives is far too unproductive and error-prone. Case studies show sequential
C++ programming is 2 to 5× less productive than languages such as Python [118, 71].
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Moving between parallel platforms, for example from an ARM CPU to x86 CPU, often
requires extensive re-engineering due to differences in the data-parallel primitives (Neon
vs SSE). Finally, parallel programs are rarely performance portable due to differences in
data-parallel hardware, memory hierarchy, and core count. Hardware design presents even
larger challenges to developer productivity. In summary, parallel computing needs tools
that address the portability, performance, and programming challenges of modern systems.
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Figure 2.1: Each target hardware platform has its own development environment – manual design-space exploration is time
consuming and error-prone
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2.2 Trends in Hardware and Software

The technical reasons behind the explosion of potential implementation platforms can
be observed by taking an in depth look into the trends driving both hardware and software.

Time

Program
=
Instructions

Program
∗ Cycles

Instruction
∗ Time
Cycle

(2.1)

As shown in Figure 2.2, changes in semiconductor physics associated with deep-submicron
processes have limited the applicability of aggressive clock scaling in the period after the
early 2000s. However, while semiconductor device physics has limited clock scaling, Moore’s
Law still enables transistor doubling every two years. The new challenge becomes how to
increase computer performance without the ability to scale the processor clock frequency.

The “Iron Law” of computer performance [52] (Equation 2.1) states: to increase com-
puter performance without clock cycle improvement ( T ime

Cycle
), either the number of executed

instructions per program or the number of cycles per instruction must decrease. The com-
puter industry chose to increase performance by increasing the number of instructions exe-
cuted per cycle. However, in contrast to previous approaches of increasing instruction-level
parallelism, performance was gained by the addition of multiple processors on a monolithic
silicon die.
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Figure 2.2: Processor clock scaling trends for 40 years of Intel CPUs. Figure adapted from
Bryan Catanzaro’s thesis [30].

Adding multiple processors to a single monolithic die presents several challenges. First,
software must change to exploit parallel processors [13]. Software changes are also required
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for other forms of parallelism added to modern processors, such as the AVX extensions added
to modern Intel processors. In contrast, both frequency scaling and hardware approaches to
increasing instruction-level parallelism are transparent to the software developer. Developing
high-performance software on parallel machines now requires the application developer to be
intimately familiar with the nuances of his or her parallel platform to extract performance.

The challenges of parallel software development are further compounded by the appear-
ance of the “memory wall” [144]. The performance of logic and DRAM semiconductor
processes improve at different rates. This has resulted in a large gap in performance be-
tween logic processes and DRAM processes. On modern microprocessors, load and store
operations to DRAM can take upwards of 200 clock cycles. In constrast, even traditionally
expensive operations, such as a double-precision multiply-accumulate require only a handful
of cycles to execute.

Architectural techniques, such as deep cache hierarchies, can improve memory subsystem
performance in programs with temporal locality; however, the programmer is often required
to reformulate his or her program to take full advantage of the on-chip caches. Adding
multiple processors on a monolithic silicon die only increases the challenges of the memory
wall due to the increased DRAM memory bandwidth demands of multiple processors. The
programmer must now find parallelism in his or her program to take advantage of multiple
processors but be aware of locality in his or her program to realize an application speed-up.

2.2.1 Mobile hardware

While limited clock scaling has forced high-end computers to go parallel for increased
performance, single-threaded performance has continued to improve on mobile and portable
devices. As shown in figure 2.3, the tablet-oriented ARM Cortex A15 has 27% better single-
threaded performance on the industry standard SPEC CPU2006 benchmarks than does a
high-end desktop from the mid-2000s. Given that mobile devices now have performance
characteristics similar to desktops from the mid-2000s, many applications traditionally lim-
ited to the desktop or workstation can be implemented in software on mobile systems. For
example, large vocabulary speech recognition has traditionally been performed on a work-
station; however, it is now possible to perform speech recognition entirely in software on a
mobile device.

While CPUs in mobile devices have become ever more capable, mobile system-on-a-chips
(SoC) include a multitude of specialized accelerators due to both performance and energy-
efficiency concerns. As shown in Figure 2.4, approximately 20% of the die area is dedicated
to user programmable ARM Cortex-A9 processors. A large fraction of the die area is ded-
icated to either fixed-function logic or specialized processors for image, video, audio, and
graphics processing. The specialized processors often have limited programmability and
are not directly exposed to the end user. Instead, most of the specialized capabilities of a
mobile SoC are exposed through library calls. For example, to use the video decoding sub-
system of a SoC, the SoC vendor provides a specialized video decoding library for its custom
hardware. An ongoing challenge in mobile SoC design is the interplay between increased
programmability of the specialized accelerators and processors and energy-efficiency.
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Figure 2.3: Contemporary mobile devices have performance similar to high-end desktop
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Figure 2.4: Nvidia Tegra2 SoC: 49 mm2 in 45 nm technology. Approximately 20% of the
die dedicated to dual-core ARM Cortex-A9 application processor. Figure from AnandTech
[9].
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Reusing specialized accelerators for tasks other than the ones for which they were de-
signed also remains a challenge. For example, reusing the image processor on an SoC for a
closely related task, such as computer vision, is just beginning to be addressed in commercial
products [113]. As part of this thesis, we construct tools that can efficiently map applica-
tion code to vector-thread processors that are similar in many ways to the more specialized
programmable accelerators found on mobile SoCs. We also design and implement a high-
level hardware synthesis flow in this thesis that could be used to construct fixed-function
accelerators similar to those found on a mobile SoC.

2.2.2 Software

Software development has also changed; however, these changes have not been brought
about by performance concerns. Instead, many changes to software development method-
ologies have occurred in order to support the rapid development of web-based services.
Languages such as Python are favored in this domain due to support of high-level program-
ming constructs, meta-programming capabilities, and rich libraries. While languages such as
Python are not designed to support high-performance parallel software development, many
of the features that make them attractive to web-developers also make them interesting
substrates for productive, high-performance parallel software development.

In particular, languages such as Python allow the programmer to develop domain-specific
embedded language extentions to simplify common programming tasks. Domain-specific
embedded languages keep the syntax of the host language but allow the programmer to re-
fine the programmaing language semantics for a domain-specific subset of the language. In
Python, these capabilities are exposed in several different ways. Python includes a “decora-
tor” syntax to mark functions as components of a domain specific language. The decorator
intercepts execution and provides the developer with access to the abstract syntax tree and
the ability to introspect variables. Web developers use these capabilities for database queries
or generation of dynamic HTML for webpages. These features can also be used to generate
high-performance domain specific parallel programming environments [30, 82]. This the-
sis builds a high-performance parallel programming environment using advanced automatic
parallelizing algorithms within a domain-specific language embedded in Python.

2.3 Our Solution: Three Fingered Jack

In this thesis, we address the issues of portability, performance, and productivity using
Three Fingered Jack (TFJ), an auto-parallelizing and vectorizing embedded domain-specific
language (EDSL), for Python loop-nests. In our system, the programmer selects dense loop-
nests in Python using the “decorator” syntax that redirects the Python run-time to our
compiler. Because our compiler is restricted to loop-nests, we can apply aggressive paral-
lelizing compiler algorithms to them in order to automatically generate high-performance
parallel software and hardware implementations.

With our approach, portability is guaranteed, as all code is valid Python and can always
be executed in the interpreter. If a loop-nest cannot be compiled for parallel execution (for
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example, a branch in the inner-loop), we can still compile a large subset of Python for scalar
execution on the host CPU. Code that cannot be compiled for efficient execution remains
valid Python and will be executed in the Python interpreter. The results in Chapter 4
exemplify the cross-platform performance benefits of our system across several kernels and
two complete applications. Finally, programmer productivity is enhanced by our system
as the user is allowed to write his or her application in Python and selectively accelerate
specific computations or generate custom hardware. This approach enables one source
representation to target both CPUs and generate custom hardware.

Our work is inspired by the Selective Embedded Just-in-time Specialization (SEJITS)
methodology that uses EDSLs to help mainstream programmers target Nvidia GPUs and
multiprocessor CPUs [32]. We extend the SEJITS ideas with algorithms from parallelizing
compilers to target loop-nests. While the parallelization algorithms used in this thesis are
built on historical parallelizing compiler algorithms [5], as originally presented they were
not designed for just-in-time use, cache-based chip multiprocessors, or hardware generation
through high-level hardware synthesis techniques. The challenges of adapting and extend-
ing these algorithms for productive, portable, parallel software development is detailed in
Chapter 3, while hardware synthesis is addressed in Chapter 5. We use Three Fingered Jack
to explore software and hardware solutions for mobile speech recognition in Chapter 6.

2.4 Related Work

As the work in this dissertation spans both software and hardware design, we separately
address the two categories in Section 2.4.1 and 2.4.2, respectively.

2.4.1 Software

There are several other projects working to accelerate productivity languages for non-
expert programmers. The work presented in this thesis, Three Fingered Jack, builds upon
the ideas of Selective, Embedded, Just-in-Time Specialization (SEJITS) [32, 78, 31, 81]. The
SEJITS approach promotes building tools that optimize a domain specific subset of a host
language. We use Python as the host language as it has a rich set of libraries and interfaces
that make optimizing a subset of the host language possible. Other projects attempting to
provide high-performance abstractions for efficiency programmers have also chosen Python
for the same reasons [123, 31, 81] .

Other projects that enable productivity programmers to write high performance parallel
applications in Python have used data-parallel primitives as the basis for extracting paral-
lelism. For example, both Copperhead [31] and Parakeet [123] use data-parallel primitives.
In contrast, we use reordering algorithms to extract parallelism on multicore processors with
vector-units. We assert that loops are easier to understand for the majority of programmers
than functional programming primitives such as map and reduce. The removal of the reduce
primitive from the core syntax of Python3 supports our assertion that for-loops are more
readable for most programmers [136].
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Garg [57] also chose loops as his basis for extracting parallelism from Python programs
in order to map execution to a graphics processor. He used dependence analysis to extract
parallelism that unlocks performance on his hardware target. More interestingly, he com-
puted the set of operands needed to be transfered between the disjoint host memory and
graphics processor using the polyhedra dictated by the dependence analysis. In contrast,
we use reordering transforms as a basis for addressing the diversity challenge presented by
the explosion of potentional implementation platforms. Specifically, using a single Python
source with parallelism extracted by reordering transforms, we map to multicore processors
and data-parallel accelerators, then generate custom hardware.

There have been several attempts to compile subsets of Python into sequential C [1]
or LLVM [8]; however, these approaches are not sufficient as they do not automatically
extract parallelism. NumPy and SciPy provide data structures and routines for common
mathematical operations such as vector and matrix operations. Expressiveness is limited to
the operators supported by Numpy or SciPy. Addressing the parallel programming challenge
with libraries is efficient; however, it only works when high-performance libraries exist. In
contrast, our approach enables a developer to obtain within 2× hand-tuned parallel software
within a matter of minutes using Python.

2.4.2 Hardware

The hardware generation work presented in this thesis addresses two different research
areas: high-level hardware synthesis and hardware/software codesign. In this Section, we
first present work on hardware/software codesign and then address related work in high-level
hardware synthesis.

Hardware/Software Codesign Tools

There has been much research into methodologies and algorithms for hardware/soft-
ware codesign. At the highest level, the hardware/software codesign problem addresses
system design constraints by jointly optimizing both hardware and software concurrently
[46]. More concretely, hardware/software codesign usually involves implementing applica-
tions described at high-level into software and hardware components. This process can be
performed either manually using a specialized design methodology [64] or with automated
tools [46]. Sophisticated design and verification flows also become possible using hardware/-
software codesign schemes. For example, the correctness of hardware implementations of
signal processing algorithms have been verified with a known-good software implementation
in MATLAB [91]. The closely related hardware/software cosynthesis problem [65] generates
specialized hardware and any software required to orchestrate data movement between a
general-purpose processor and specialized accelerator using an automated toolflow. While
there has been much research in this area, tools and methodolgies for the hardware/soft-
ware codesign of embedded digital signal processing applications have proved most successful
[135, 77].

In the broadest sense, Three Fingered Jack is a hardware/software codesign tool as
it allows a designer to implement applications described as Python loop nests into both
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hardware and software implementations. In contrast to previous work in hardware/software
codesign, the work presented in this disseration is less focused on embedded applications
running on resource constrained processors. While Three Fingered Jack does have the ability
to automatically generate hardware, we support a dynamically typed modern programming
language, Python. As described in Chapter 3, Three Fingered Jack’s software optimization
and machine code generation occur at run-time. Only hardware generation occurs offline.
This is in constrast to the strictly static approaches traditionally used in hardware/software
codesign.

Generation of Hardware from a High-Level Description

The theory of dependence and loop optimizations originated in the field of optimiz-
ing FORTRAN compilers for high-performance computing in the 70s and 80s. Since then,
several works have attempted to integrate these ideas into traditional high-level synthesis
systems. Weinhardt [141] used dependence analysis on FPGA designs to enhance perfor-
mance by executing independent iterations of a loop-nest through a heavily pipelined cir-
cuit. Dependence analysis enabled temporal multiplexing of a single data path to increase
throughput. Work on the DEFACTO system [50] used dependence analysis in a similar
fashion. In contrast, we use dependence analysis to generate parallel processing elements.

Within the reconfigurable computing research community, there have been many at-
tempts to make FPGA design more productive using high-level programming languages [29]
instead of using a traditional register transfer language. These approaches are all broadly
categorized as high-level hardware synthesis. Approaches using imperative programming
languages include C, C++ and C# [130]. More recently, the xPilot project from UCLA
[40] was commericalized as AutoESL and acquired by Xilinx [39]. Modern approaches to
building hardware using functional programming techniques include two projects based on
Haskell: Lava [24] and Bluespec [112].

The wide variety of high-level synthesis approaches span a wide gamut of source lan-
guages and programming paradigms; however, we have been unable to find an existing
high-level synthesis system designed to enable design space exploration beyond two plat-
forms. In general, the high-level synthesis systems previously mentioned use a subset of
the host language to generate reasonably efficient hardware. If the source language used
for hardware generation is executed on the host CPU, high performance results are not
guaranteed as the programming paradigm required for efficient hardware generation is not
necessarily the same as that required for use of high performance software on a conventional
CPU. More importantly these approaches do not readily enable mapping applications to
other hardware platforms such as multiprocessor systems. In contrast, the work in this
disseration uses a single source representation that can generate efficient custom hardware
or map code to a wide variety of programmable accelerators.

Recent work on Irregular Code Energy Reducers [12] provides a system for compiling
existing irregular C code to specialized processing units. This tool uses a combination of
compiler frameworks including LLVM. There are three main differences among our work and
the earlier work. First, we target dense loop-nests and optimize for performance by gener-
ating parallel processing units, while the ICERs exclusively focus on energy and irregular
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serial code. Second, our high-level starting point is Python and our focus is programmer pro-
ductivity. Finally, Irregular Code Energy Reducers are not designed for high-performance.
Energy savings come from lower power consumption instead of reduced program execution
time.

FCUDA [116] is a high-level hardware synthesis flow that maps the NVIDIA CUDA pro-
gramming language to FPGAs. CUDA is an explicitly parallel language and requires the
programmer to find parallelism. In contrast, we extract parallelism from Python, a sequen-
tial language. While FCUDA allows the designer to explore trade-offs between FPGA and
Nvidia GPU implementations, it does little to help the developer explore other potential
targets, such as multicore CPUs. OpenCL for FPGAs [129] also uses a GPU program-
ming language to target FPGA platforms; however, OpenCL for FPGAs is not necessarily
performance-portable with regards to existing GPU OpenCL implementations. In particu-
lar, high performance FPGA OpenCL applications need to be structured such that kernels
can be cascaded in a pipelined fashion that avoid communication through off-chip memory.

2.5 Summary

This chapter has outlined the hardware and software challenges facing system designers
today. We have introduced our solution, Three Fingered Jack, to help developers address
portability, performance, and productivity, all from a single Python source representation.
The details of how Three Fingered Jack enables these capabilities are detailed in the follow-
ing chapters.
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Chapter 3

Three Fingered Jack: Software
Approaches

In this chapter, we describe the design and implementation of the major components
of Three Fingered Jack. This includes describing the subset of the Python language sup-
ported by our tool and the rational behind its selection. We describe our front-end interface
with Python, dependence and reordering engine, machine code generator, and run-time
environment. This chapter concludes with a performance evaluation of TFJ using several
benchmarks and small applications. We evaluate TFJ on both mobile (ARM) and desktop
(x86) platforms.

While we reuse many of the components described in this chapter for high-level hardware
synthesis, a detailed description of hardware approaches is deferred to Chapter 5.

3.1 Dependence Analysis and Reordering Transforms

Exploiting data dependence is the key to TFJ’s performance as it gives constraints on
the possible ordering of statements in a program. Both the underlying hardware of the
target platform and the order in which statements are executed can have a profound impact
on performance. Bernstein’s conditions for parallel execution [19] give a formal definition
of dependence. Stated simply, dependence occurs between two statements, SA and SB, if
both statements access the same memory location (or register), and at least one of the
statements stores a value to memory. As shown in Figure 3.1, there are three different types
of dependences in real programs. The types of hazards found in parallelization of software
are identical to the class of hazards found in pipelined processor micro-architectures [67].
Details of the three types of dependence are described below:

1. Read-after-write (RAW) – A read-after-write hazard connotates true dependence be-
tween an operand producer (write) and operand consumer (read). RAW hazards
represent dataflow dependences in the source program. An example RAW hazard is
presented in Figure 3.1a.
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S1: Arr[0] = Arr[2] * Arr[3] 
 
S2: Arr[4] = Arr[0] + Arr[5]  

(a) Read-after-write hazard for memory lo-
cation Arr[0]

S1: Arr[9] = Arr[0] * Arr[3] 
 
S2: Arr[0] = Arr[7] + Arr[6]  

(b) Write-after-read hazard for memory lo-
cation Arr[0]

S1: Arr[0] = Arr[9] * Arr[3] 
 
S2: Arr[0] = Arr[7] + Arr[6]  

(c) Write-after-write hazard for memory lo-
cation Arr[0]

Figure 3.1: The three types of dependence hazards

2. Write-after-read (WAR) – A write-after-write hazard connotates antidependence be-
tween an operand producer and an operand consumer. In the case of an antidepen-
dence, interchanging the source and sink statements will introduce RAW hazard. An
example of a WAR hazard is shown in Figure 3.1b.

3. Write-after-write (WAW) – A write-after-write hazard connotates output dependence.
A WAW hazard is caused by ordering of writes to the same memory location. Figure
3.1c shows an example of a WAW hazard.

So far, we have described dependencies in general terms. For the work in this dissertation,
we focus on the acceleration of loop-nests. We must therefore use formalisms to describe
and distinguish dependences found in loop-nests. These formalisms allow us to introduce
algorithmic tests for loop dependence. In turn, results from dependence analysis allows our
tools to increase application performance by automatically extracting parallelism.

3.1.1 Theory of Loop Dependence

The formal definition of loop dependence builds upon the earlier description of Bern-
stein’s Conditions. However, loop dependence adds three additional conditions:

1. If a pair of iteration vectors, IVJ and IVK exists for statements SA and SB such that
IVJ == IVK or IVJ < IVK

2. Both SA and SB access the same memory location

3. Either statement SA or SB write to memory

Many techniques exist for automatically detecting loop dependence [6, 3, 114]; however,
before describing these techniques we must first introduce additional terminology: iteration
numbers, iteration vectors, and an iteration space. Iteration numbers describe the value
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for i in range(0,3):
Y[i] = 2*Y[i]

Figure 3.2: Iteration number example: the index variable i assumes iteration values 0,1,and
2.

of an index variable for a given loop iteration. For example, in the loop shown in Figure
3.2, the index variable i assumes iteration numbers 0, 1, and 2. As loops are often nested,
iteration vectors extend the idea of iteration numbers to nested loops The elements within
an iteration vector capture iteration numbers for each loop in the next; therefore, the length
of an iteration vector is equal to the number of loops in a given loop nest. The entries of
the iteration vector proceed from the outermost loop index variable to the innermost loop
index variable for a nest of loops. As the definition of loop dependence requires an ordering
of the iteration vectors, we sort the iteration vectors lexicographically. Finally, the iteration
space is the set of all possible iteration vectors.

3.1.2 Analyzing Loop Dependence

The problem of automatic dependence analysis attempts to find iteration vectors (IVα
and IVβ) for a pair of statements (SA and SB) such that the following conditions hold:

1. The iteration vector IVα is less-than or equal to IVβ.

2. The value of each subscript of statements SA and SB are equal when evaluated with
iteration vectors IVα and IVβ. We consider only subscripts that are an affine function
of the loop index variables.

When both conditions hold, a dependence exists between SA and SB. The second condition
dictates that SA and SB access the same memory location during the course of loop execu-
tion. The first condition implies that SA executes before SB. Stated another way, SA is the
source for the sink statement SB. If either condition does not hold, a dependence does not
exist between the two statements, and they can be executed in any arbitrary order.

As an example of dependence analysis, consider the loop-nest shown in Figure 3.3. In
this example, we are searching for a pair of three entry (one entry for each loop) iteration
vectors such the subscripts of the statement are equal. More precisely, in this example we
are attempting to find iteration vectors such that all of the following conditions are satisfied:

• The first left and right subscripts are equal: iIVα + 2 == iIVβ

• The second left and right subscripts are equal: jIVα − 1 == jIVβ + 2

• The third left and right subscripts are equal: kIVα == kIVβ

Testing for integer solutions to these equations is equivalent to solving linear Diophan-
tine equations [6]. As solving Diophantine equations is an NP-Complete problem [59], one
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I Loop:   for i in range(0, 10): 
J Loop:     for j in range(0,20): 
K Loop:      for k in range(0,30): 
                     Y[i+2][j-1][k] = 2*Y[i][j+2][k]  

Figure 3.3: A loop-nest used as our example for dependence testing. In this example, analysis
attempts to determine if a dependence occurs between the left-hand and right-hand sides
of the statement.

potential way of solving the Diophantine equations found in dependence analysis is to model
the problem using integer linear programming. For the example shown in Figure 3.3, testing
for dependence can performed by first formulating the problem as in integer program, shown
in Equation 3.1, and then checking if the integer program has any solutions.

min ∅
s.t. (iIVα + 2)− iIVβ = 0

(jIVα − 1)−
(
jIVβ + 2

)
= 0

kIVα − kIVβ = 0
iIVα ∈ {0, 10}
iIVβ ∈ {0, 10}
jIVα ∈ {0, 20}
jIVβ ∈ {0, 20}
kIVα ∈ {0, 30}
kIVβ ∈ {0, 30}

(3.1)

While using integer linear programming is one possible way of performing dependence
analysis, it is not often used in practice. As a polynomial-time solution is not guaranteed to
integer programming problems, modern compiler frameworks use conservative dependence
testing heuristics to reduce compile time. Conservative heuristics can report the presence
of a dependence when none exists; however, a conservative heuristic will never report a
lack of dependence when one exists. TFJ uses Banerjee’s Test [17] as a conservative testing
heuristic of subscripted variables. We do this because it is both fast and accurate for common
numerical kernels.

Banerjee’s Test relaxes dependence analysis by testing for potential hyperplane inter-
section using real numbers instead of integers. The Banerjee Test is conservative because
it considers intersections for real-valued indices. In Python (and many other programming
languages), arrays are indexed using integer values. Using a floating-point value as an array
index is a syntax error. However, the conservatism in Banerjee’s Test makes it very fast in
practice as it involves evaluating a handful of simple arithmetic expressions for each sub-
script in a loop-nest. As a result, it is suitable for implementation in a dynamic, just-in-time
compiler. More exact tests, such as the Omega test [119], that search for integer valued so-
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lutions also exist; however, they are both sophisticated and based on integer programming.
We believe using Banerjee’s Test as the core of our reordering engine is reasonable as it is
a good balance between subscript testing accuracy and computational complexity.

Dependence analysis is used to generate a dependence graph [89]. The vertices in a
dependence graph are the statements in a loop-nest while the edges reflect dependence
relationships between statements. Edges are annotated with the type of dependence (true,
output, or anti) and the level of loop nesting where the dependence occurs.

3.1.3 Reordering Transforms

After computing dependence information to generate a dependence graph, we are free
to perform any number of loop reordering transformations. Reordering transformations
change the order in which a loop-nest executes; however, they respect all dependences
in order to preserve the meaning of the program [6]. The dependence graph described
earlier encapsulates fundamental orderings that a reordering transform must preserve. The
benefits of reordering transforms are best illustrated by an example. Figure 3.4 shows
three legal orderings of matrix-multiply. Dependence sometimes also allows us to expose
parallelism in inner loops by sequentially executing outer loops. In this example, if the I-loop
is sequentially executed, then both the J-loop and K-loop may be executed in any order,
including in parallel. This is allowed because sequentially executing the I-loop ensures that
the left side of the statement will never point to the same memory location as the right side
of the statement does.

The inner-loop (K -loop) in Figure 3.4a carries a dependence that prevents inner-loop
vectorization because the K loop must run sequentially. This is because it reads and writes
the same memory location (Y [i][j]) in every iteration. However, dependence analysis also
tells us that the I and J loops carry no dependence and can be executed in parallel.

The nest shown in Figure 3.4b is amenable to inner-loop vectorization because the K -
loop has been interchanged with the outer-most loop and it has unit-stride memory accesses.
As our two conventional ISAs (x86 and ARM) include support for unit-stride vector load and
store instructions only, finding an inner loop with unit-stride memory operations is required
for vectorization. Now, the outer-loop in Figure 3.4b carries a parallelization-preventing
dependence. The middle-loop (I -loop) may be parallelized across multiple CPUs; however,
the profitability of this scheme is not guaranteed due to synchronization overhead. This
is because the work granularity is relatively small. Finally, Figure 3.4c shows a loop-nest
that allows for both outer-loop parallelization across cores and inner-loop parallelism across
vector units.

Reordering transformations are automatically performed by TFJ using the algorithm
presented in Figure 3.9. We present details our approach to automatic reordering and
parallelization in Section 3.3.2.
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  for(j=0;j<n;j++) 
    for(k=0;k<n;k++) 

for(i=0;i<n;i++) 

Y[i][j] += A[i][k]*B[k][j] 
(a) Inner loop is not vectorizable with unit-
stride memory instructions; however, the
outer loop is parallelizable.

  for(i=0;i<n;i++) 
    for(j=0;j<n;j++) 

for(k=0;k<n;k++) 

Y[i][j] += A[i][k]*B[k][j] 
(b) Inner loop vectorizable with unit-stride
memory instructions. Unfortunately, the
outer loop must run sequentially.

  for(k=0;k<n;k++) 
    for(j=0;j<n;j++) 

for(i=0;i<n;i++) 

Y[i][j] += A[i][k]*B[k][j] 
(c) Inner loop is vectorizable with unit-stride
memory instructions and the outer loop is
parallelizable.

Figure 3.4: Three legal loop orderings of Matrix-Multiply

3.2 A Restricted Subset of Python

TFJ supports only a small subset of the Python language that is amendable to auto-
parallelization techniques. This approach allows the programmer to generate efficient im-
plementations of kernels that manipulate arrays. Applications with kernels that manipulate
arrays are common. In the language of computational patterns [84], TFJ is designed to
accelerate the dense linear algebra and structured grid patterns. TFJ is also applicable to a
subset of the sparse linear algebra pattern in which the structure of matrix enables regular
array accesses.

We have chosen to embed TFJ within Python as an embedded domain specific lan-
guage (EDSL). By using TFJ as a Python EDSL, we gain interoperability with common
Python libraries and support the Python syntax already known by thousands of program-
mers worldwide. We believe exposing TFJ as an EDSL is the correct approach to exporting
auto-parallelization technology in Python. As Python is built around a dynamic type system
and allows a programmer to mix programming paradigms, attempting to extract parallelism
from an arbitrary Python program would face onerous program analysis challenges. How-
ever, by embedding TFJ within Python and restricting language support to a small subset
of the Python 2.7 language, we can efficiently extract performance for a large number of
numerical kernels found in a diverse field of multimedia applications.

We use the Python decorator mechanism to redirect execution to TFJ when it encounters
the @tfj decorator placed before a function definition. This approach allows the programmer
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stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list)

| Assign(expr* targets, expr value)
| For(expr target, expr iter, stmt* body)
| Global(identifier* names)
| Expr(expr value)

expr = BinOp(expr left, operator op, expr right)
| Compare(expr left, cmpop* ops, expr* comparators)
| Num(object n)
| Subscript(expr value, slice slice, expr_context ctx)
| Name(identifier id, expr_context ctx)

expr_context = Load | Store

slice = Index(expr value)

operator = Add | Sub | Mult | Div | Max | Min

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE

arguments = expr* args

Figure 3.5: The abstract grammar rules for Three Fingered Jack’s automatically paral-
lelizable EDSL. In the grammar shown above, object is a built-in Python data type. We
require all objects to be NumPy single-precision or 32-bit integer data types. The * oper-
ator expands a list into positional arguments. We have adapted TFJ grammar rules from
the Python 2 AST listing [56]

to signal his or her intent by adding the decorator to a conventional Python function. This
decorator allows compiler mechanisms of TFJ to introspect the abstract syntax tree (AST)
of the function under optimization, type check function arguments, and finally perform
parallelization analysis. If the function can be auto-parallelized, the function will execute at
upwards of 25000× faster than the naive Python function. If TFJ can not auto-parallelize
a function, the function will fall back to execution in the Python interpreter.

3.2.1 Supported Grammar

As TFJ is a language embedded in Python, it adopts a subset of the lexical and grammat-
ical rules of the host language. In Figure 3.5, we present the grammar for TFJ expressions
to define the supported subset of the Python language of our EDSL.
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The grammar shows the restrictions made to the Python language in order support
efficient auto-parallelization as we have removed many constructs from the core Python
language. In particular, functions calls from within a kernel and conditional branching
are not supported by TFJ. We believe these restrictions are not significant as TFJ targets
multimedia applications and these constructs are infrequent in multimedia codes [49]. In
addition, we have a more general EDSL that supports lowering a larger subset of Python
for efficient execution. However, the more general EDSL does not include support for
automatically extracting parallelism.

Auto-parallelizing kernels with function calls in a the loop-nest is rarely supported in
commercial compilers due to difficulties with analysis. In these systems, automatic paral-
lelization is usually supported only when function calls can be completely inlined into the
calling function. As building the infrastructure required to support this is out of the scope
of this dissertation, we did not consider supporting function calls. In addition, function calls
are not well supported by the range of hardware targets supported by TFJ. For example,
supporting function calls in our high-level hardware synthesis engine would likely increase
both the complexity of the tool and generated solutions.

While TFJ does not support function calls in all generality, it does support a small num-
ber of intrinsics functions that efficiently map to the underlying hardware. In particular,
TFJ supports max, min, and pred intrinsics. The max and min implement the common
maximum and minimum operators, while the pred operator implements the conditional
ternary operation (similar to the ?:operator in C/C++). By supporting the conditional
ternary operator, the programmer can manually predicate conditional statements for vec-
torized execution. In addition, our conditional ternary operator is an efficient building block
for a future implementation of automatic if-conversion [5].

3.2.2 Supported Data Types

The type checking system in TFJ is currently very simple. It requires that all arrays hold
either single-precision floating point values or 32-bit integer values. In addition, the func-
tions used to index arrays must be integer valued expressions. We require single-precision
data-types to be NumPy’s float32 and 32-bit integer data-types to be NumPy’s int32. TFJ
performs type-checking at compile-time in the EDSL front-end. Because the type restric-
tions of TFJ’s front-end are not fundamential, it would be straightforward to enable other
types, such as double-precision. However, for the class of multimedia applications (speech
recognition and optical flow evaluation) evaluated in this disseration, single-precision pro-
vides more than enough precision and accuracy.

The compile-time type check uses a traditional static type checking approach [3] to ensure
type safety with the arguments passed to the function at the time of first compile. To ensure
the argument types match those found during the first compile, the run-time introspects all
arguments to make sure they match what was previously found. If the run-time types do not
match the compile-time arguments, the entire compilation procedure will be rerun. If the
kernel uses data-types not supported by TFJ, it will be executed by the Python interpreter.
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Figure 3.6: TFJ compiler flow: TFJ compiler flow: We start with computation expressed as
a Python loop-nest. After syntactic and semantic checking in Python, we convert the Python
AST to an XML representation that is fed to our reordering and optimization engine. The
optimization engine then generates machine executable code for high-performance execution.
Detailed descriptions of the front-end, reordering engine, code generator, and run-time are
provided in Sections 3.3.1, 3.1, 3.3.3 and 3.3.5.

@tfj
def vvadd(y, a, b, n):
for i in range(0,n):

y[i] = a[i]+b[i]

Figure 3.7: Vector-vector addition written in Python for TFJ

3.3 The Software Architecture of TFJ

Our dynamic compilation process begins with a dense loop-nest specified in Python using
NumPy arrays, as illustrated in Figure 3.6. Our front-end then generates an intermediate
XML representation of the abstract syntax tree (AST) that is interpretable by our optimizing
compiler. Our compiler analyzes the loop-nest using dependence analysis to enable other
transformations such as loop reordering, blocking, and unrolling. Finally, separate backends
generate LLVM IR for JIT execution on x86 as well as C++ with vector intrinsics. TFJ’s
run-time interfaces with the Python interpreter to execute the compiled code. TFJ is
implemented in approximately 13000 lines of C++ and 9000 lines of Python.

3.3.1 Python Front-End

When the Python interpreter encounters a function wrapped with the @tfj decorator,
execution is redirected to our front-end. As described earlier, the front-end requires kernels
to be well-typed, and it enforces this restriction using a simple type system. We support
loop-nests with no control-flow and affine array indexing functions. These restrictions sim-
plify compiler construction and enable fast dependence checking heuristics. Our run-time
compilation has the benefit of dynamic program information. When TFJ accelerated func-
tions are executed, loop bounds are clearly defined and the dimensions of underlying NumPy
arrays are known.

Figure 3.7 presents an example of vector-vector addition coded in Python to use the
TFJ EDSL. As previously mentioned, our front-end generates an intermediate XML rep-
resentation of of the abstract syntax tree (AST) for the dependence and code generation
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engine. The XML representation of the vector-vector addition kernel is presented in Figure
3.8. Using the XML intermediate representation makes it possible to easily reuse the core
dependence and code generation engine with other scripting languages. For example, to port
TFJ to a new language, such as Ruby, only the front-end would have to be rewritten. Minor
changes to the TFJ run-time would also be required to support interfacing with arrays and
objects from a new programming language.

To avoid recompilation, we employ a compiled code cache. If a loop-nest does not use
dynamically scoped variables, future recompilations will not be required. The TFJ front-
end always attempts to use the code cache first; however, coding using dynamic scoping
will require recompilation every time it is called for correct execution. While we have spent
considerable effort making all stages of the compiler as efficient as possible, running the
complete compilation pipeline requires upwards of 100 milliseconds per invocation on our
Intel i7-2600. More discussion on the overheads of run-time compilation is found in Section
4.5.

We have a fall-back compiler that handles a larger subset of Python if and when TFJ
rejects a loop-nest due to an unsupported construct. This EDSL does not attempt to
exact any parallelism and therefore can handle a larger subset of the Python language,
such as branches in loop-nests. We generate optimized sequential code using the same code
generation framework described in Section 3.3.3. We do this because sequential Python
code rejected by TFJ can become a performance bottleneck and thus in practice requires
our fallback EDSL. We currently require the programmer to manually annotate code for the
fallback compiler using a Python decorator.

3.3.2 TFJ’s Dependence and Reordering Engine

Our reordering engine algorithm is shown in Figure 3.9. It uses a greedy approach when
searching the legal reordering space to find profitable parallelism for chip-multiprocessors
with vector units. Our reordering algorithms are based on the approach used by Allen and
Kennedy [6]; however, we place additional effort on finding unit-stride memory accesses
due to the limitations of vector hardware on conventional desktop and mobile microproces-
sors. Our implementation is also designed to be efficient as it is a key element of our JIT
compilation flow.

Our approach is as follows: we sort dependence-free loops by the size of their trip count
(iteration space or stated more simply, how many times the loop executes) and select the
loop with the largest iteration space for the outer-loop. We desire the outer-most loop to
have a large trip count to avoid the overhead of frequent thread creation, if the loop-nest is
executed with multiple threads. We then attempt to select a dependence-free inner loop with
unit-stride or constant memory accesses in order to use the vector units found on desktop
and mobile processors. As an example of how TFJ reorders loops, the matrix-multiply
loop-nest shown in Figure 3.4a will be interchanged to achieve the ordering shown in Figure
3.4c. Had we reused Allen and Kennedy’s algorithm, it would have produced the KIJ loop
ordering of matrix-multiply, shown in Figure 3.4b. While this reordering of matrix-multiply
allows for a vectorized inner-loop, it prevents effective use of multicore processors due to
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1 <program>
2 <Name>vvadd</Name>
3 <Var> <Name>y</Name> <Type>float</Type> <Dim>16777216</Dim> </Var>
4 <Var> <Name>a</Name> <Type>float</Type> <Dim>16777216</Dim> </Var>
5 <Var> <Name>b</Name> <Type>float</Type> <Dim>16777216</Dim> </Var>
6 <Var> <Name>n</Name> <Type>int</Type> </Var>
7 <ForStmt>
8 <LoopHeader>
9 <Name>49654096</Name> <Induction>i</Induction>

10 <Start>0</Start> <Stop>n</Stop>
11 </LoopHeader>
12 <LoopBody>
13 <MemRef>
14 <Name>49654608</Name> <Var>a</Var>
15 <Subscript>
16 <IndVar>i</IndVar>
17 <IndCoeff>1</IndCoeff>
18 <Offset>0</Offset>
19 </Subscript>
20 </MemRef>
21 <MemRef>
22 <Name>49654864</Name>
23 <Var>b</Var>
24 <Subscript>
25 <IndVar>i</IndVar>
26 <IndCoeff>1</IndCoeff>
27 <Offset>0</Offset>
28 </Subscript>
29 </MemRef>
30 <CompoundExpr>
31 <Name>49654992</Name>
32 <Op>ADD</Op>
33 <Left>49654608</Left>
34 <Right>49654864</Right>
35 </CompoundExpr>
36 <MemRef>
37 <Name>49654352</Name> <Var>y</Var>
38 <Subscript>
39 <IndVar>i</IndVar>
40 <IndCoeff>1</IndCoeff>
41 <Offset>0</Offset>
42 </Subscript>
43 </MemRef>
44 <AssignExpr>
45 <Name>49655056</Name>
46 <Left>49654352</Left>
47 <Right>49654992</Right>
48 </AssignExpr>
49 </LoopBody>
50 </ForStmt>
51 </program>

Figure 3.8: Vector-vector addition in TFJ’s XML intermediate representation. TFJ can be
quickly ported to a new programming language as the interface between the host language
and TFJ is a light-weight XML representation. The XML representation abstracts host
language implementation details from the core reordering engine.
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Algorithm: tfj codegen
Input: R (Region to analyze for reordering)

k (Current loop nesting depth)
D (Dependence graph for the current region under analysis)
L (List of statements with associated dependence and nesting information)

Output: L (Updated list of statements)
1 Compute the set of strongly-connected components in

the dependence graph for the current region of interest
2 Topologically sort strongly-connected components according

to the dependence relationship to compute a set of πi ∈ Π blocks
3 for πi ∈ Π
4 if πi has a cycle (it can not parallelized at this loop-nest level)
5 If legal, attempt loop interchange by shifting dependence carried

at deeper loop nesting depth (k + n) with the current level (k)
6 Remove new region graph, Ri by removing

all edges that are not in πi
7 Update Lin with dependence and loop-nesting information for

the statements in πi
8 Compute Ri and Di with dependence and loop-nesting information for

the statements in πi
9 Call tfj codegen(πi,k + 1,Di,L) for the region encapsulated by πi
10 else (πi can be parallelized at this loop-nest level)
11 Attempt to find a legal permutation of the loop-nests such that

a dependence-free loop is placed at the outer-most position and
a dependence-free loop with unit-stride memory access is placed
at the inner-most position, if found update nesting order for pii

12 Update Lin with dependence and loop-nesting information for
the statements in πi

Figure 3.9: A high-level sketch of the parallelization algorithm used by TFJ. The core
of the algorithm is based on Allen’s codegen algorithm; the details of the algorithm are
well documented in several publications [6, 5, 4]. We have modified his algorithm to find
profitable parallelism on chip-multiprocessors with vector units. In particular, we attempt
to reorder loops to achieve unit-stride memory accesses for vectorization and avoid overhead
of thread creation and synchronization.

increased overhead of thread creation and synchronization as the second loop (the I loop)
would be run across cores.

Finding unit-stride or constant memory access is particularly important on contempo-
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rary microprocessors as the vector units do not currently support strided memory accesses.
If the desired memory access patterns can not be extracted, it is unlikely that vectorization
on these platforms will be yield high-performance results. Emulating strided vector memory
operation requires accesses to be implemented as a series of scalar memory operations fol-
lowed by a sequence of vector permutations to place the operands in a vector register. The
large number of operations required to emulate a strided vector memory operation likely
dwarfs the benefits of vectorized arithmetic in all but the most computationally intense
kernels.

If we cannot find a reordering that satisfies these criteria, we attempt to expose paral-
lelism in inner loops by allowing outer loops to execute sequentially. For the kernels and
applications evaluated in this dissertation, this heuristic works well in practice and gener-
ates results comparable to those generated by exhaustive search. This reordering scheme
is valid because by running the outer-most dependence-carrying loop sequentially, we are
free to reorder all inner-loops as we see fit. This heuristic trades increased parallelism (in
particular, vector parallelism) for potentially reduced access locality. As dependence implies
operand reduce, placing a dependence carrying loop in an outer loop position could reduce
locality. The KIJ reordering (Figure 3.4b) of the canonical IJK matrix-multiply (Figure
3.4a) is an example of a loop interchange scheme that enhances data-parallelism at the
expense of operand locality

To enhance opportunities for vectorization, we also perform loop distribution. By dis-
tributing loops, we can independently reorder statements in a loop-nest. If loop distribution
does not unlock opportunities for vectorization, we apply loop fusion on distributed loops
to reconstitute the original loop-nest.

A restricted form of TFJ’s dependence engine is used to generate parallel processing
engines employing hardware high-level synthesis techniques and described in Chapter 5. The
dependence engine used for high-level hardware synthesis is less aggressive when attempting
to find unit-stride memory access as it is not required for custom hardware implementations.

3.3.3 Code Generation

After dependence analysis, we generate both C++ and LLVM IR. Our C++ code uses an
abstract inline library of vector functions to map different vector ISAs such as ARM Neon,
Intel SSE, or IBM AltiVec. The results from our source-to-source translation backend can be
used outside our embedded Python environment or on systems that the LLVM JIT poorly
supports.

We use LLVM’s MCJIT to generate machine code at runtime because it does an excel-
lent job of mapping high-level representations of vector operations in the LLVM IR to the
appropriate vector instructions in a processor ISA. TFJ relies on LLVM implementations
of scalar optimizations such as common-subexpression elimination, loop-invariant code mo-
tion, and strength reduction An example TFJ’s LLVM code generation is shown in Figure
3.10 for the vector-vector addition kernel (Figure 3.7). TFJ emits C++ with intrinsics and
generates shared objects with GCC at run-time due to the relatively immature nature of
MCJIT for ARM (performance is approximately 2× using G++). The C++ intrinsics used
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1 define void @vvadd(float* noalias %y, float* noalias %a, float* noalias %b, i32 %n) {
2 vvaddentry:
3 %0 = and i32 %n, -32
4 %smZeroTesti = icmp eq i32 %0, 0
5 br i1 %smZeroTesti, label %thirdTermi, label %smLoopi
6
7 smLoopi:
8 %i1 = phi i32 [ %nexti, %smLoopi ], [ 0, %vvaddentry ]
9 %1 = getelementptr float* %y, i32 %i1

10 %2 = getelementptr float* %a, i32 %i1
11 %vector_ld_ptr = bitcast float* %2 to <32 x float>*
12 %3 = load <32 x float>* %vector_ld_ptr, align 1
13 %4 = getelementptr float* %b, i32 %i1
14 %vector_ld_ptr2 = bitcast float* %4 to <32 x float>*
15 %5 = load <32 x float>* %vector_ld_ptr2, align 1
16 %6 = fadd <32 x float> %3, %5
17 %vector_st_ptr = bitcast float* %1 to <32 x float>*
18 store <32 x float> %6, <32 x float>* %vector_st_ptr, align 1
19 %nexti = add i32 %i1, 32
20 %condTesti = icmp slt i32 %nexti, %0
21 br i1 %condTesti, label %smLoopi, label %firstTermi
22
23 secondTermi:
24 ret void
25
26 thirdTermi:
27 %i = phi i32 [ %13, %thirdTermi ], [ 0, %vvaddentry ]
28 %7 = getelementptr float* %y, i32 %i
29 %8 = getelementptr float* %a, i32 %i
30 %9 = load float* %8
31 %10 = getelementptr float* %b, i32 %i
32 %11 = load float* %10
33 %12 = fadd float %9, %11
34 store float %12, float* %7
35 %13 = add i32 %i, 1
36 %14 = icmp slt i32 %13, %n
37 br i1 %14, label %thirdTermi, label %secondTermi
38
39 firstTermi:
40 %preCondTest = icmp eq i32 %nexti, %n
41 br i1 %preCondTest, label %secondTermi, label %smCleanUpi
42
43 smCleanUpi:
44 %i3 = phi i32 [ %cNexti, %smCleanUpi ], [ %0, %firstTermi ]
45 %15 = getelementptr float* %y, i32 %i3
46 %16 = getelementptr float* %a, i32 %i3
47 %17 = load float* %16
48 %18 = getelementptr float* %b, i32 %i3
49 %19 = load float* %18
50 %20 = fadd float %17, %19
51 store float %20, float* %15
52 %cNexti = add i32 %i3, 1
53 %condTesti4 = icmp slt i32 %cNexti, %n
54 br i1 %condTesti4, label %smCleanUpi, label %secondTermi
55 }

Figure 3.10: TFJ code generation for vector-vector addition (Figure 3.7) using LLVM. Lines
3 through 5 compute the upper loop bound of the strip-mined loop and check if the function
was called with arrays of less than length 32. Lines 7 through 21 perform vectorized addition
for vectors of length 32. Lines 26 through 37 perform scalar addition when the function is
called with an array length of less than 32. Lines 39 through 55 clean-up the strip-mined
vector loop by executing any remaining iterations. Note that our vector lengths (32) are
longer than the hardware vector lengths of either AVX (8) or SSE/NEON (4). Using longer
vectors enables a variant of software prefetching.
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by TFJ are shown in Figure 3.11.

//Broadcast v to all four vector entries
inline float4 vecLoadSplatter4(float v);
//Load four entry vector
inline float4 vecLoad4(float *addr);
//Store four entry vector
inline void vecStore4(float *addr, float4 v);
//Add two four entry vectors
inline float4 vecAdd4(float4 a, float4 b);
//Subtract two four entry vectors
inline float4 vecSub4(float4 a, float4 b);
//Divide two four entry vectors
inline float4 vecDiv4(float4 a, float4 b);
//Multiply two four entry vectors
inline float4 vecMul4(float4 a, float4 b);
//Find element-wise minimum of four entry vectors
inline float4 vecMin4(float4 a, float4 b);
//Find element-wise maximum of four entry vectors
inline float4 vecMax4(float4 a, float4 b);
//Select operator of four entry vectors
inline float4 vecSel4(int4 s, float4 t, float4 f);

Figure 3.11: TFJ’s C++ intrinsics for machines with four entry vectors, such Intel’s SSE or
ARM’s Neon. We have intrinsics with eight entry vectors to map to Intel’s AVX extension
too.

We generate unaligned vector memory operations because addresses are not guaranteed
to be aligned. While unaligned vector loads and stores are potentially slower than their
aligned equivalents on older x86 micro-architectures, new micro-architectures significantly
close the performance gap. For example, on the Intel Nehalem micro-architecture unaligned
vector memory instructions are as fast as aligned operations when the memory operation
does not span two cache lines [42].

We also use the C++ generation backend to generate kernels for stand-alone applications.
On platforms that do not support Python (or host-based compilation) such as a research
operating system or an embedded microprocessor without an OS, we can use TFJ to generate
high-performance kernels that are used in a standalone C or C++ application. We have
used the offline capability to build a standalone computer-vision based music synthesizer on
the Tessellation operating system [37] employing the optical flow application described in
Section 4.3.2.

Independent of the backend selected, both approaches provide a function pointer to the
JIT compiled code. We register both the function pointer and a hash of the Python source
representation with the TFJ runtime system to enable code caching. If a TFJ accelerated
function does not change after compilation, we can avoid compilation and executed cached
machine code. We also store additional meta-data along with a function pointer for the
run-time environment. This meta-data encapsulates if the function is multi-threaded and
information, such as the function pointer’s prototype, needed to call the JIT-compiled code
at run-time.



CHAPTER 3. TFJ SOFTWARE APPROACHES 35

//Set vector length
int set_vlen(int vlen);
//Configure register file and set vector length
int config(int n_intregs, int n_fltregs, int vlen);
//Load unit stride vector
void HardwareVector<T>::load( const T* ptr);
//Load unit strided vector (stride of 0 translates to broadcast)
void HardwareVector<T>::load( const T* ptr, int stride);
//Load unit-stride vector
void HardwareVector<T>::store( const T* ptr);
//Execute ‘‘body of code’’ on vector lanes
VT_FETCH( (/*inputs*/), (/*inouts*/), (/*inputs), (/*passthrus*/), ({/*body of code*/ }) );

Figure 3.12: Subset of the VTAPI classes and functions used by TFJ to generate code for
vector-thread machines.

3.3.4 Vector-Thread Code Generation

Vector-thread (VT) microprocessors [95, 86] merge the ideas from symmetric multi-
processors and vector processors. Following Flynn’s Taxonomy [55], VT machines unify
architectural ideas about SIMD and MIMD machines. By providing a small amount of
additional hardware to a traditional vector processor lane, vector-thread processors provide
the illusion of a MIMD machine and the associated ease of programming with the energy-
efficiency of a SIMD machine. Our VT code generation framework builds upon the Maven
VT Application Programming Interface (VTAPI) [18]. The VTAPI provides a handful of
specialized classes, macros, and functions designed to encapsulate the nuances of the VT
programming model. The VTAPI provides the programmer with a reasonably productive,
yet low-level interface to the underlying VT hardware. As shown in Figure 3.12, TFJ only
uses a small subset of the VTAPI; however, for the class of dense and sparse linear algebra
kernels targeted by TFJ, these primitives are all that are needed.

The current generation VT processors use the RISC-V instruction-set [140] and are built
around the Rocket processor as the scalar CPU and the Hwacha vector-core accelerator.
Rocket is an in-order decoupled 5-stage RISC-V processor while Hwacha integrates ideas
from both vector-thread and single-lane vector processors[124] to achieve high performance
and energy efficiency. TFJ is currently used in an offline compilation mode on VT platforms
as cross-compilation is required to generate VT machine code. We compile VT kernels for
the RISC-V ISA using GCC 4.6.1 on an x86 workstation running Linux. Recently, Linux has
been ported to the RISC-V ISA; therefore, it should be straightforward to run the machine
code compilers directly on the RISC-V hardware.

We have run three TFJ accelerated applications on actual VT hardware using the EOS14
test chip. Specifically, we have run a simple convolution kernel (Figure 3.14), the optical flow
application of Section 4.3.2, and the speech recognition application discussed in Chapter 6.
We have not collected performance results on real VT hardware due to the experimental
nature of the EOS14 test chip. While EOS14 CPU core operates at upwards of 1 GHz, the
test chip has limited DRAM bandwidth due to a slow memory interface (16-bit read and
write channels operating at 1

32
of the CPU core clock rate).
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1 __attribute__ ((noinline))
2 void vvadd (float *__restrict__ y,float *__restrict__ a,float *__restrict__ b,int n)
3 {
4 /* starting parloop i*/
5 /* Vectorizable loop */
6 {
7 /* Vectorizable with unit stride operations */
8 vt::config(32,32,32);
9 vt::set_vlen(32);

10 int i_smlen = ((n))- (((n) - 0) % 32);
11 for(int i=0;i<i_smlen;i+=32)
12 {
13 vt::HardwareVector< float >vt_st_ty_1;
14 vt::HardwareVector< float >vt_ld_ta_0;
15 vt::HardwareVector< float >vt_ld_tb_0;
16 vt_ld_ta_0.load((&a[( 0+ 1*i )*1]));
17 vt_ld_tb_0.load((&b[( 0+ 1*i )*1]));
18 VT_VFETCH(
19 (vt_st_ty_1),
20 (),
21 (vt_ld_ta_0,vt_ld_tb_0),
22 (),
23 (VT_FREG),
24 (),
25 (VT_FREG,VT_FREG),
26 (),
27 ({vt_st_ty_1=(vt_ld_ta_0)+(vt_ld_tb_0);
28 }));
29 vt_st_ty_1.store((&y[( 0+ 1*i )*1]));
30 }
31 if( i_smlen!=(n) ) {
32 vt::fence_g_cv();
33 }
34 for(int i=i_smlen;i<(n);i++) {
35 y[( 0+ 1*i )*1]=(a[( 0+ 1*i )*1])+(b[( 0+ 1*i )*1]);
36 }
37 /* ending parloop i*/
38 }
39 vt::fence_g_cv();
40 }

Figure 3.13: TFJ code generation for vector-vector addition (Figure 3.7) using the VTAPI.
Line 8 configures the vector register file and line 9 configures the hardware vector length.
Line 10 computes the upper loop bound for strip-mining. Single-precision vector objects for
the source and destination operands are declared in lines 13 through 15, while lines 16 and 17
perform the vector loads for the source operands. The lines 19 and 23 describe the output
argument and operand type to the VT VFETCH macro. Lines 21 and 25 provide the
same information for the input operands. The VT VFETCH macro performs the vector
computation in line 27. The vector store occurs at line 29. Lines 31 through 36 handle
strip-mining clean-up on the scalar CPU. Line 32 issues a memory fence to synchronize the
vector unit with the scalar processor, and lines 34 through 36 execute the clean-up code for
the strip-mined loop.
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@tfj
def tfj_conv2d(I,O,K,ydim,xdim):
for y in range(3,ydim):
for x in range(3,xdim):

for yy in range(-2,3):
for xx in range(-2, 3):

O[y][x] = O[y][x] + K[2+yy][2+xx] * I[y+yy][x+xx];

(a) 2d convolution using a 5x5 Laplacian kernel written in Python for TFJ. The Laplacian kernel
will sharpen edges in an image.

(b) Image before convolution with an edge
sharpening kernel.

(c) Image after convolution with an edge
sharpening kernel.

Figure 3.14: An example of TFJ generate code running on real vector-thread hardware. We
used the code presented in Figure 3.14a with the image shown in Figure 3.14b to generate
Figure 3.14c. Results generated on the EOS14 test chip.

3.3.5 Run-time

To execute a function accelerated by TFJ, our run-time first queries the code cache to
check if a compiled version exists. If it does not exist, or the hash changes due to program
modifications, the code must be recompiled and the code cache updated. Once the desired
code is found, execution meta-data and a function pointer to the compiled machine code
are returned to the runtime.

To execute a TFJ accelerated function, TFJ queries the Python interpreter to find ref-
erences for the arguments to the function and the dimensions (shape) of multidimensional
arrays used by the function. The arguments are stored in an array according to the order
specified by function pointer prototype. The process of collecting arguments also includes
querying the Python interpreter for shape information needed for address calculation used
to access elements within a multidimensional array. Arguments and shape data are used
to check for pointer aliasing among arrays used as function arguments. If arguments alias
the function must be executed in the Python interpreter. By dynamically querying shape
information at function call-time, we avoid recompilation when a TFJ accelerated function
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is called with a different-sized array. For example, statically including shape information
would prevent a function compiled for matrices of size 1024×1024 from working with a
matrix of size 1023×1023.

To execute an TFJ accelerated function, the run-time checks whether or not the function
has been compiled for multi-threaded execution. If the function is single-threaded, the
Python interpreter executes the function by calling the function pointer with the appropriate
arguments. If the code has been compiled for multi-threaded execution, the TFJ run-time
forks multiple threads for parallel execution using the pThreads API. In this mode, the
Python interpreter blocks until the parallel execution completes.

3.4 Summary

In this chapter, we have described the theory and techniques TFJ uses to compile Python
for efficient parallel execution. The chapter started with an overview of dependence. We
described how dependence applies to programs with nested loops and how to automatically
infer dependences in loops.

After describing the key theory behind TFJ’s optimizations, we then described the in-
ner workings of TFJ : the front-end, the analysis and reordering engine, and finally the
run-time. This involved the description of our approach to loop interchange and our ap-
proach to code generation for vector-thread processors. In the next chapter, we provide
an in-depth evaluation of TFJ generated software solutions for four kernels and two small
applications.



39

Chapter 4

Three Fingered Jack: Evaluation of
Software Approaches

4.1 Overview and Setup

In this chapter, we evaluate performance results for the software backends of TFJ with
four kernels (Section 4.2) and two applications (Section 4.3) from the UC Berkeley ParLab
[14]. The ParLab applications were chosen to represent compelling new uses of parallel hard-
ware and software. For all benchmarks, we present a comparison to untuned and optimized
C++ implementations of the same computation. The untuned C++ implementations are
not parallel (thread or data), but they were written either by an experienced programmer
or taken from existing applications. We also compare TFJ with optimized Python libraries,
if they exist for the given computation. The Python libraries we use for comparison are
all implemented in C/C++ for efficiency. For completeness, we also present results when
the loop-nests used by TFJ are executed in the Python interpreter. These implementations
are represented in the headings of Table 4.4 by “C++ (Untuned)”, “C++ (Hand-tuned)”,
“Python Libraries”, and “Pure Python”, respectively.

We ran our benchmarks on both x86-based desktop and ARM-based mobile systems.
We used a PandaBoard-ES with a dual-core 1.2 GHz Texas Instruments OMAP4460 SoC
and 1GB of LPDDR2 RAM for our mobile system. Likewise, we used a 3.4Ghz Intel Core
i7-2600k with 8GB of RAM for our desktop system. Both systems run Linux. We used
LLVM 3.1 and GCC 4.7.3 for code generators on x86 and ARM, respectively.

4.2 Numerical Kernels

In this section we provide a brief description and provide a source listing of the four
kernels used in the evaluation of TFJ.
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4.2.1 Vector-Vector Addition

Vector-vector add is the canonical data-parallel benchmark. As vector-vector addition
has no data reuse (it streams through memory), it serves as benchmark to show the achieved
fraction of memory subsystem performance. A highly optimized implementation of vector-
vector addition operating on large vectors (larger than any data caches present in the system)
should be able to achieve machine peak DRAM bandwidth. Our Python source for TFJ
is shown in Figure 3.7. We used NumPy to compare against a Python library, while our
optimized C++ implementation is manually vectorized.

4.2.2 Matrix Multiply

@tfj
def matmul(A,B,Y,n):
for i in range(0,n):

for j in range(0,n):
for k in range(0,n):

Y[i][j]=Y[i][j]+A[i][k]*B[k][j];

Figure 4.1: Matrix multiply written in Python for TFJ

Matrix multiply appears in a wide range of applications spanning scientific computing,
engineering applications, and the heart of many multimedia applications. For example, it is
the key kernel in efficient implementations of both neural network training [22] and support
vector machine training [33]. Evaluating Gaussian mixture models, a key kernel in speech
recognition, can also be formulated as a matrix multiply [51].

Matrix multiply is a well studied kernel with significant research on both manual [90, 60]
and automatic [16, 23] tuning approaches. As an efficient implementation of matrix multiply
will be compute bound, this kernel serves as an effective benchmark of the peak floating
point performance achievable.

We used 2048×2048 single-precision matrices for matrix multiply because these matrices
are too large to fit in any level of the cache hierarchy. Our Python source is shown in Figure
4.1. ATLAS BLAS [143] and NumPy were used for our optimized C++ and Python library
comparisons, respectively.

4.2.3 Diagonal Sparse-Matrix Vector Multiply

Optical flow is a key computer vision computation as it relates the motion of objects
between two video frames. Many optical flow algorithms address the problem using the
conjugate gradient method to solve a system of linear equations. When optical flow is solved
with conjugate gradient, a diagonal sparse-matrix vector multiply (SpMV) dominates the
solver runtime. We describe the theory behind optical flow when evaluating a whole optical
flow application in Section 4.3.2. For our simple kernel benchmark, we used Sundaram’s
C++ implementations [131] and the SciPy Python library for comparison.
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4.2.4 Back Propagation Weight Adjustment

@tfj
def bpnn_adjust_weights(delta, ndelta, ly, nlyp1, w, oldw):
for j in range(0, ndelta):
for k in range(0, nlyp1):

w[k][j+1] += ((0.3*delta[j+1]*ly[k]) + (0.3*oldw[k][j+1]));
oldw[k][j+1] = ((0.3*delta[j+1]*ly[k]) + (0.3*oldw[k][j+1]));

Figure 4.2: Back propagation weight adjustment kernel from the Rodinia benchmarks
rewritten in Python for TFJ acceleration

Back propagation weight adjustment (shown in Figure 4.2) is used to train neural net-
works. The C++ implementation is from Rodinia [34] and we used the OpenMP accelerated
version of the kernel as the optimized implementation. We were unable to find a Python
library for this computation.

4.2.5 Numerical Kernel Results
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Figure 4.3: Performance results for the small benchmark kernels presented in Section 4.2.
Fully tabulated performance results for these benchmarks are available in Table 4.4.

Results for the small kernel benchmarks are presented in Figure 4.3, while fully tabulated
results including performance relative to interpreted Python are displayed in Table 4.4. On
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the i7-2600, we achieved 95% of the optimized, hand-tuned C++ performance with TFJ for
the vector-vector addition kernel. These results indicate TFJ is able to generate solutions
that utilize nearly all available DRAM bandwidth on the x86 platform.

We are particularly encouraged by our matrix multiply results on the Intel Core i7-
2600 as our performance is within 33% of an optimized, autotuned library. As TFJ uses
a compiler-driven approach to code optimization, we compared it to other automatically
parallelizing compilers on the same 2048×2048 single-precision matrix multiply problem.
As we know of no other automatically parallelizing compilers for Python, we compared with
two C compilers: GNU’s open-source GCC 4.6.4 and Intel’s commercial C compiler, ICC
13.0.1. GCC has claimed support for automatic vectorization since 2004 [109]; however,
it does not currently support automatic multicore parallelization. Intel’s C compiler has
included support for automatic vectorization and parallelization since at least 2004 [21].

void mm_2048x2048(float Y[2048][2048], float A[2048][2048],
float B[2048][2048])

{
for(int i=0;i<2048;i++)

for(int j=0;j<2048;j++)
for(int k=0;k<2048;k++)

Y[i][j] += A[i][k]*B[k][j];
}

Figure 4.4: Matrix multiply written in C. Statically allocated arrays and fixed loop bounds
are required to get the Intel C compiler to automatically vectorize/parallelize matrix mul-
tiply.

Our C source for matrix multiply is shown in Figure 4.4. In our C source, we use stati-
cally allocated memory to allow the compiler to easily disambiguate memory addresses. If
the compiler can not disambiguate array addresses, it must assume the pointer addresses of
the matrices could point to the same memory location. This would produce low-performance
code as the compiler would be forced to serialize execution due to additional dependences.
While there are other approaches to inform the compiler addresses do not alias, we have
found static memory allocation to be the most effective approach across a variety of com-
pilers.

Figure 4.5 presents matrix multiply results for the two C compilers and TFJ on an
Intel Core i7-2600. All runs with GCC include the additional “-ffast-math” flag to enable
reordering of floating point operations. For the two C compilers, we have included baseline
performance results when automatic parallelization and vectorization are disabled but full
scalar optimizations are enabled. These data points are presented as “IJK GCC -O3” and
“IKJ ICC -O3 -no-vec” for GCC and ICC, respectively. Using scalar optimizations alone,
ICC is approximately 4× faster than GCC.

We next consider automatic vectorization without multicore parallelization enablined
using the three platforms under consideration. As shown in column “IKJ ICC -O3 -vec”,
automatic vectorization improves ICC’s performance by a factor of 4.2×. GCC is unable
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Figure 4.5: 2048×2048 matrix multiply performance comparison. Results generated using
GCC 4.6.4 or ICC 13.0.1 use the C source presented in Figure 4.4. TFJ results generated
using the Python source shown in Figure 4.1. In the plots labels on the bar chart,“IJK”
signifies the IJK loop-nest ordering while “IKJ” implies the “IKJ” ordering. The compiler
flags used for the C versions of the benchmark are shown on the bar chart. Both C and
Python used single-precision matrices and all experiments were run on a 3.4 GHz Intel Core
i7-2600. All implementations compiled with GCC also include flags to enable reordering of
floating point operations.

to successfully vectorize the simple matrix multiply code with the IJK loop ordering (see
column “IJK GCC -O3 -ftree-vectorize”). However, when we apply manual loop interchange
(Figure 4.6) to swap the J and K loops, GCC is able to successfully vectorize matrix multiply,
albeit with a minor amount of assistance from the programmer. GCC automatic vectoriza-
tion results are shown in the column “IKJ GCC -O3 -ftree-vectorize”. We also present TFJ
results for single-threaded vectorized execution in “Python - TFJ (vectorized)”. Our single-
threaded vectorized TFJ results are approximately 1.37× faster than the best GCC results
and 49% of the single-threaded ICC results. As TFJ performs automatic loop interchange
in order to obtain the IKJ loop ordering (manually performed in our use of GCC), we are
particularly encouraged by our results.

Finally, we evaluate matrix multiply on TFJ and ICC with both automatic vectorization
and parallelization enabled. As GCC does not currently include automatic parallelization
capabilities, we limit our evaluation to just TFJ and ICC. TFJ generated results achieve
65% of ICC’s performance when all optimizations are enabled.

While TFJ is unable to outperform a commercial compiler, it is able to outperform
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void mm_2048x2048_IKJ(float Y[2048][2048], float A[2048][2048],
float B[2048][2048])

{
for(int i=0;i<2048;i++)
for(int k=0;k<2048;k++)

for(int j=0;j<2048;j++)
Y[i][j] += A[i][k]*B[k][j];

}

Figure 4.6: Matrix multiply written in C with manual loop interchange of the J and K
loops.

the ubiquitous open-source compiler GCC. Perhaps it is more important to evaluate TFJ
performance with naive Python execution. Naive Python execution of matrix multiply
results in 1.4 MFlops/sec, while the same Python source code compiled with TFJ results
in nearly 40 GFlops/sec, a 25000× performance improvement. While we are encouraged
by our performance results relative to optimizing C compilers, we designed TFJ to help
productivity programmers write high performance software in Python. To that end, our
results show three-orders of magnitude better performance with TFJ than raw Python.
This result clearly indicates that we have achieved our performance goal for small kernels;
however, whole applications are required to truly evaluate TFJ. We describe the evaluation
of TFJ on whole applications in Section 4.3.

4.3 Small Applications

Kernel performance results are not enough to fully demonstrate a programming system;
therefore, we evaluated TFJ on two full applications representative of emerging workloads:
content-aware image resizing and the computation of optical flow.

4.3.1 Content-Aware Image Resizing

Content-aware image resizing [15], also known as seam carving, resizes images by re-
moving “boring regions”. The canonical example of content-aware image resizing is shown
in Figure 4.7. The seam carving algorithm computes an energy function on the image to
determine the least interesting regions. It then computes a connected path of least-interest
through the image and removes the seam. The algorithm iteratively applies this procedure
until the desired image resolution has been achieved.

Our implementation of seam carving is shown in Figure 4.8. We first blur the image using
the function conv2d (Figure 4.8a) to remove noise and then use the function grad2d (Fig-
ure 4.8b) to compute the gradient. The gradient extracts edges from an image. Regions with
a small gradient have few edges and are unlikely to be interesting. We use a two-dimensional
convolution kernel to compute the gradient. After computing the image gradient, we com-
pute the minimum cost path through the image using the function compute cost (Figure
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(a) Original image (b) Retargeted image

Figure 4.7: Original image and retargeted image after removal of 750 vertical seams. Original
image of the Broadway Tower reproduced from Wikipedia

4.8c). The minimum cost seam is computed by backtracking through the memorization
table generated by compute cost. To compare against Python libraries, we use SciPy and
NumPy implementations of convolution and gradient calculation. The conv2d, grad2d,
and compute cost kernels have been manually vectorized and parallelized in our optimized
C++ implementation.

@tfj
def conv2d(I,O,K,ydim,xdim):
for y in range(3,ydim):

for x in range(3,xdim):
for yy in range(-2,3):

for xx in range(-2,3):
O[y][x]+=\

K[2+yy][2+xx]*\
I[y+yy][x+xx];

(a) Convolution kernel

@tfj
def grad2d(I,O,K,ydim,xdim):

for y in range(3,ydim):
for x in range(3,xdim):

O[y][x]=\
(I[y][x-1]-I[y][x])*\
(I[y][x-1]-I[y][x])+\
(I[y-1][x]-I[y][x])*\
(I[y-1][x]-I[y][x]);

(b) Gradient kernel

@tfj
def compute_cost(Y,G,ydim,xdim):

for i in range(5,ydim):
for j in range(5,xdim):

Y[i][j]=G[i][j]+min(min(Y[i-1][j-1],Y[i-1][j]),Y[i-1][j+1]);

(c) Dynamic programming kernel

Figure 4.8: A portion of the TFJ accelerated kernels used in content-aware image resizing.

We evaluated content-aware image resizing by removing 750 vertical seams from the
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Figure 4.9: Run-times for the kernels used in content-aware image resizing

Implementation OMAP4460 i7-2600

TFJ 81.2 7.1
Pure Python >82400.0 34648.8

Python Libraries 18873.1 2238.6
C++ (Untuned) 205.4 20.4

C++ (Hand-tuned) 68.5 4.6

Table 4.1: Image resizing performance results across five different implementations

image of the Broadway Tower shown in Figure 4.7a. The original image has a resolution of
1428×968 and after resizing, the retargeted image has a resolution of 678×968. The time to
remove 750 seams using a variety of different implementations is shown in Table 4.1, while
a per-kernel runtime breakdown is presented in Figure 4.9. The TFJ implementation of
content-aware image resizing outperforms all implementations except for hand-tuned C++
on both ARM and x86 platforms. The highly optimized C++ implementations outperform
TFJ by 16% and 35% on ARM and x86 platforms, respectively. As shown in Figure 4.9,
performance of TFJ generated kernels and highly tuned C++ are very similar for content-
aware image resizing. The performance discrepancy between TFJ and highly-tuned C++
comes from two primary sources. First, the control code for the TFJ implemention remains
in Python and interpreted Python is signifantly slower than C++. Second, as described in
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Section 3.3, using TFJ accelerated kernels has a small amount of overhead due to kernel
code search and argument address lookup.

4.3.2 Horn-Schunck Optical Flow

(a) First frame (b) Second frame

(c) Optical flow computed between the
frames shown in Figure 4.10a and 4.10b.

(d) Optical flow displacement legend. Leg-
end reproduced from Kondermann [85]

Figure 4.10: An example of optical flow

Optical flow computes the apparent motion of pixels between a pair of two images.
Optical flow is a building block of many computer vision and multimedia applications.
Common uses of optical flow include object tracking [131], video interpolation [142], action
recognition [139], and object segmentation [28]. Other uses include motion estimation for
video compression [107].

An example of optical flow is shown in Figure 4.10. In this example, we are calculating
the motion of the hands between the frame shown in Figure 4.10a and the frame shown
in Figure 4.10b. The resulting motion is shown in Figure 4.10c using the displacement



CHAPTER 4. TFJ SOFTWARE EVALUATION 48

visualization scheme shown in Figure 4.10d.

IxU + IyV + It = 0 (4.1)

Solving for optical flow between a pair of images has been approached with a diverse
set of techniques. All approaches start with the same motion constraints between a pair
of images. The motion constraint equation is shown in Equation 4.1 in which Ix, Iy, and
It are the time and spatial intensity derivatives. V and U are the vertical and horizontal
components of the pixel velocities.

argmin
U,V

∫ ∫
(IxU + IyV + It)

2 + α2
(
|∇U |2 + |∇V |2

)
dxdy (4.2)

The Horn-Schunck [70] method of computing optical flow solves the motion contraint
equation (Equation 4.1) by formulating the problem as an optimization problem using the
calculus of variations. The resulting energy functional is given in Equation 4.2. Applying
the two-dimensional Euler-Lagrange equation to the functional results in the coupled partial
differential equations shown in Equations 4.3 and 4.4.

(IxU + IyV + It) Ix − α2∆U = 0 (4.3)

(IxU + IyV + It) Iy − α2∆V = 0 (4.4)

Rearranging Equations 4.3 and 4.4 results in the system of equations shown in Equation
4.5. The spatial derivatives (∆U and ∆V ) can easily be approximated using a numerical
finite difference scheme such as a five-point Laplacian stencil. After numerically evaluting
the spatial derivates, computing optical flow using the Horn-Schunck method requires solving
a large linear system of equations.[

−ItIx
−ItIy

]
=

[
Ix

2 IxIy
IxIy Iy

2

] [
U
V

]
− α2

[
∆U
∆V

]
(4.5)

To solve the linear system shown in Equation 4.5, we use the conjugate gradient method
as the matrix is positive semi-definite for all non-zero values of α [105]. While we used Horn-
Schunck to solve optical flow, techniques for this problem span the full gamut of solutions
from custom analog VLSI chips [72] to non-linear, non-convex optimization techniques [27].

We evaluate our implementations of Horn-Schunck optical flow with 100 frames of video.
The evaluation video has a resolution of 320×240 pixels and the linear solver uses 50 iter-
ations of the conjugate gradient method. The key kernels used in optical flow are shown
in Figure 4.3. To compare TFJ with Python libraries1, we use the SciPy implementation
of conjugate gradient [38]. We also wrote our own C++ implementation of Horn-Schunck
optical flow. In our optimized C++ implementation, we manually vectorized all kernels,
while we also parallelized the sparse matrix vector kernel (shown in Figure 4.12d) using
OpenMP.

1Many thanks to Michael Anderson for providing the Python libraries implementation of Horn-Schunck
optical flow.
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Implementation OMAP4460 i7-2600

TFJ 83.4 4.5
Pure Python >82400.0 24146.7

Python Libraries 436.8 29.0
C++ (Untuned) 72.8 4.4

C++ (Hand-tuned) 52.5 1.9

Table 4.2: Optical flow performance re-
sults across five different implementations

Kernel Call count

spmv 5202
vsaxpy 10200
vzaxpy 5100
vdot 10302

Table 4.3: Optical flow kernel call counts
for the results shown in Table 4.2

Our optical flow results are shown in Table 4.2. TFJ generated solutions for optical
flow are significantly faster than the Python libraries approach for both x86 and ARM. The
Python libraries approach uses the highly optimized SciPy’s conjugate gradient solver to
numerically compute the differential equations used in optical flow. However, TFJ is slightly
outperformed by both C++ implementations of optical flow.
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Figure 4.11: Run-times for the kernels used in optical flow

The performance differential between TFJ and the C++ implementations can largely
be attributed to the overhead of calling a TFJ accelerated function. As shown in Table 4.3,
solving optical flow using conjugate gradient requires calling a small number of kernels many
times. In particular, the vdot and vsaxpy kernels are called 100 times per frame, while
spmv and vzaxpy are called 50 times per frame. The overheads associated with more
significant control flow in Python can impact overall performance. A per-kernel runtime
breakdown is presented in Figure 4.11. This figure shows time spent per computation from
the perspective of the TFJ runtime; therefore, it does not include any of the overheads
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associated with calling out of Python into a TFJ accelerated function. On the i7-2600
platform, the total running time of the optical flow application is 1.9s, 4.4s, and 4.5s for
the untuned C++, tuned C++, and TFJ implementations, respectively. However, the total
time spent in the key kernels (Figure 4.11) is 1.8s, 4.2s, and 3.5s for the same platforms.
While the C++ implementations spent more than 95% of the runtime in the key kernels,
the TFJ implementation spent only 78% of its runtime in those same key kernels. More
detailed profiling of the TFJ implementation shows that at least 20% of the runtime is spent
in application control logic that is implemented in interpreted Python.

As for the per-kernel performance discrepancies, the tuned C++ implementation of
vdot uses an optimized reduction implementation. As TFJ does not currently perform
reduction detection, the TFJ implementation of vdot is limited to scalar execution, which
in turn limits performance. However, TFJ’s performance is within a factor of two for the
other kernels compared to both C++ implementions. In addition, the TFJ implementation
of the spmv kernel is more than 2× faster than the untuned C++ implementation. More
importantly, using TFJ guarantees a “correct-by-construction” based approach to generating
parallel code. The equivalent tuned C++ implementations using SSE or AVX often have
subtle bugs related to the low-level nature of the underlying intrinsics. Correcting these
bugs can require a significant amount of developer effort; however, using TFJ enables a high
performance solution with hours-to-days less developer time.

We are encouraged that TFJ generated results are faster than the equivalent library-
based Python program, within 98% performance of an equivalent untuned C++ implemen-
tation, and within a factor of three compared to a manually tuned C++ implementation.
The results from the TFJ implementation of optical flow indicate that future work should
focus on accelerating application control logic in SEJITS-based approaches. In more com-
plex applications with many kernels and significant control flow, the overhead interpreted
Python could dominate the benefits provided by software specializers. As Amdahl’s Law [7]
also applies to software, perhaps a coordination and control specializer for computational
patterns is needed. This would allow application control logic to execute more efficiently.
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@tfj
def vdot(a1, a2, b1, b2, dst, width, height):

for y in range(0,height):
for x in range(0,width):

dst[0] = dst[0] + a1[y][x] * b1[y][x] + a2[y][x] * b2[y][x]

(a) vdot matrix reduction kernel

@tfj
def vsaxpy(alpha, x1, x2, y1, y2, width, height):

for y in range(0,height):
for x in range(0,width):
y1[y][x] = y1[y][x] + alpha[0] * x1[y][x]
y2[y][x] = y2[y][x] + alpha[0] * x2[y][x]

(b) vsaxpy scaled vector addition

@tfj
def vzaxpy(alpha, x1, x2, y1, y2, width, height):

for y in range(0,height):
for x in range(0,width):
x1[y][x] = alpha[0] * x1[y][x] + y1[y][x]
x2[y][x] = alpha[0] * x2[y][x] + y2[y][x]

(c) vzaxpy scaled vector addition. Note vzaxpy scales the output vector while vsaxpy
scales input vector.

@tfj
def spmv(Ix, Iy, x1, x2, y1, y2, w1, h1):

for y in range(1,h1):
for x in range(1,w1):

y1[y][x] = 0.4 * x1[y][x]+\
Ix[y][x] * Ix[y][x] * x1[y][x] +\
Iy[y][x] * Ix[y][x] * x2[y][x] - \
0.1 * x1[y][x-1] - 0.1 * x1[y-1][x] - \
0.1 * x1[y][x+1] - 0.1 * x1[y+1][x]

y2[y][x] = 0.4 * x2[y][x] +\
Iy[y][x] * Iy[y][x] * x2[y][x] +\
Ix[y][x] * Iy[y][x] * x1[y][x] - \
0.1 * x2[y][x-1] - 0.1 * x2[y-1][x] - \
0.1 * x2[y][x+1] - 0.1 * x2[y+1][x]

(d) spmv sparse matrix vector multiply kernel

Figure 4.12: The key kernels used in solving optical flow
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4.4 Autotuning Using TFJ Demonstrated With Ma-

trix Multiply

Matrix multiply is a well understood numerical kernel with many decades of research
spent developing optimization techniques. While matrix multiply is a numerical kernel and
not an entire application, the design space for an efficient implementation of matrix multiply
is very large and can be explored for trade-offs in both software (this Section) and hardware
(Section 5.4) implementations.

Matrix multiply benefits from both locality and parallelism optimizations such as: loop
interchange, loop tiling, register tiling, multithreaded execution, and vectorized instructions.
In fact, the code transformations that benefit matrix multiply are larger than the set of
transformations performed by TFJ. The combination of all potential optimizations creates
a design space that is too large for a human to manually explore. Instead, an automatic
approach is required.

Autotuning [23] is a programmatic approach to design space exploration by which a
program automatically generates potential solutions and then evalutes the performance of
it. The solution with the highest performance is recorded and returned to the user. The
autotuning approach to code generation is done offline and the result is saved for later
execution. For example, when tuning matrix multiply, the best combination of locality
and parallelism optimizations are empirically determined during a long offline tuning run.
When the user performs a matrix multiply after tuning, the fastest implementation from
the tuning run is automatically selected.

As autotuning requires a “compiler-in-the-loop” to generate and evaluate potential so-
lutions, past approaches to autotuning have relied on a combination of shell scripts and
templated C code. In this approach, a tuning script generates potential solutions by assign-
ing parameters in the templated C code. While this approach has worked for past autotuning
projects, it is relatively brittle due to many external tool dependences. TFJ makes it pos-
sible to integrate all the autotuning logic into a single Python script. As Python includes
rich string manipulation libraries, such as string templates, and TFJ includes an automati-
cally parallelizing and vectorizing JIT compiler, a complete autotuning environment can be
provided without additional scripts or external compilers.

To demonstrate the potential for building autotuners using TFJ, we have constructed a
simple autotuner for matrix multiply. This autotuner considers only square matrices with a
power-of-two leading dimension; however, this limitation is not fundamental. Extending it to
more general matrices would be straightforward but would require handling for significantly
more edge cases. In addition, our autotuner considers only a single optimization: loop tiling
to enhance cache locality. By enhancing locality, matrix multiply can be greatly accelerated
because operands will be fetched from fast cache memories instead of DRAM.

We also exhaustively explore the design space of legal loop tilings to find the best tile
size. More efficient search algorithms, such as a genetic algorithm, are also possible and
easily implementable in Python. We have decided to use a naive search approach as a more
advanced search algorithm complicates the autotuner implementation. In future work, more
sophisticated autotuners could easily be built on top of TFJ.
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1 def make_mm(iblk,jblk,kblk):
2 mb = ’’’
3 from VecFunction import *
4 from decorators import *
5 @tfj
6 def bmm$iiblk$jjblk$kkblk(A,B,Y,nI,nJ,nK):
7 for i in range(0,nI):
8 for j in range(0,nJ):
9 for k in range(0,nK):

10 for ii in range(0,$iiblk):
11 for jj in range(0,$jjblk):
12 for kk in range(0,$kkblk):
13 Y[ii+i*$iiblk][jj+j*$jjblk] = Y[ii+i*$iiblk][jj+j*$jjblk] +
14 A[ii+i*$iiblk][kk+k*$kkblk]*B[kk+k*$kkblk][jj+j*$jjblk];’’’
15 s = Template(mb);
16 sstr = s.substitute(iiblk=str(iblk),jjblk=str(jblk),kkblk=str(kblk))
17 return sstr

Figure 4.13: A Python function to generate variants of matrix multiply with different loop
tiling dimension. Lines 1 through 18 generate tiled implementations of matrix multiply.
The parameters iblk, jblk, and kblk of make mm describe the dimensions of the cache
tile. The output of this function is an implementation of loop titled matrix multiply as a
string.

Writing autotuners in Python using TFJ relies on two key language features. First,
Python allows for dynamic loading of new modules. We exploit this feature when we generate
new configurations using make mm (Figure 4.13). The other language feature we use is
the eval function that allows the user to execute a dynamically generated code string from
within the Python interpreter. Our autotuner uses eval to execute the different loop tiled
matrix multiply strings generated by make mm.

The results for autotuned matrix multiply are shown in Figures 4.15 and 4.16 for ARM
and x86 platforms, respectively. The source of our prototype autotuner for square matrix
multiply is shown in Figures 4.14 and 4.13. A line-by-line description of the autotuning
software is provided in both captions. We compare the results of autotuned matrix multiply
to the baseline matrix multiply shown in Figure 4.1 for correctness checking.

On both platforms, the overhead of loop tiling dominates performance for small matrix
sizes. As the small matrices already fit into cache memory, there is no benefit to blocking
loops for increased locality. With larger matrices, tiling loops results in increased perfor-
mance on both platforms. The matrix size at which the autotuned code outperforms the
baseline code depends on the specific platform. On the OMAP4460, the autotuned loop tiled
code outperforms the naive code with matrices greater than 64×64, while on the i7-2600
matrices need to be larger than 128×128. The crossover point for the platforms is likely
due to differences in memory hierarchy. In partcular, the i7-2600 has an eight megabyte L3
cache, while the OMAP4460 does not have a third-level cache.

We achieve a maximum performance improvement of 1.53× and 1.45× over our baseline
implementation matrix multiply for our OMAP4460 and i7-2600 platforms, respectively.
While our evaluation of autotuning was fairly limited, the performance improvements clearly
demonstrate the potential for autotuned codes using TFJ.
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1 T = list();
2 n_itrs = 8;
3 for i_n in [32,64,128,256,512,1024,2048]:
4 n = np.int32(i_n);
5 A = np.array(np.random.rand(n,n), dtype=np.float32);
6 B = np.array(np.random.rand(n,n), dtype=np.float32);
7 Y0 = np.zeros((n,n), dtype=np.float32); Y1 = np.zeros((n,n), dtype=np.float32);
8
9 sn = 0.0;

10 for r in range(0, n_itrs):
11 Y1 = np.zeros((n,n), dtype=np.float32);
12 start = time.time(); matmul(A,B,Y1,n); elapsed = time.time() - start;
13 fps = 2*(n**3) / (elapsed * 1e6)
14 if(r != 0):
15 sn += fps;
16 m_nflps = sn/(n_itrs-1)
17
18 R = dict();
19 for iblk in (2**x for x in xrange(2,14) if 2**x < n):
20 for jblk in (2**x for x in xrange(2,14) if 2**x < n):
21 for kblk in (2**x for x in xrange(2,14) if 2**x < n):
22 mm_n = ’mm$iiblk$jjblk$kkblk’
23 mm_T = Template(mm_n);
24 mm_S = mm_T.substitute(iiblk=str(iblk),jjblk=str(jblk),kkblk=str(kblk))
25 fp = open(mm_S + ’.py’, ’w’);fp.write(make_mm(iblk,jblk,kblk)); fp.close();
26 fnS = ’mm.b’+mm_S
27 fstr = fnS + "(A,B,Y0,np.int32(n/iblk),np.int32(n/jblk),np.int32(n/kblk))"
28 mm = __import__(mm_S)
29 s = 0.0;
30 for r in range(0, n_itrs):
31 Y0 = np.zeros((n,n), dtype=np.float32);
32 start = time.time(); eval(fstr); elapsed = (time.time() - start);
33 fps = 2*(n**3) / (elapsed * 1e6)
34 if(r > 0):
35 s += fps;
36
37 m_flps = s/(n_itrs-1)
38 fStr = ’(’ + str(iblk) + ’,’ + str(jblk) + ’,’ + str(kblk) + ’)’;
39 R[fStr] = m_flps;
40
41 fastConf = None; fastVal = 0;
42 for v in R:
43 if(R[v] > fastVal):
44 fastVal = R[v];
45 fastConf = v;
46 T.append((n,fastVal,fastConf,m_nflps));
47 for t in T:
48 print t

Figure 4.14: An autotuner for matrix multiply written in Python using TFJ. Line 1 allocates
a list to keep track of the best performing configuration for each problem size. The problem
sizes for which we are generating solutions are shown in line 3. Lines 4 through 16 allocate
matrices and then evaluate the performance of the naive TFJ matrix multiply code for the
current problem size. Lines 19 through 21 define the loop tiling search space, while lines
22 through 27 generate perform code generation using make mm and write the resulting
module to the filesystem. Line 28 imports the newly generated loop tiled matrix multiply
into the Python environment. Lines 30 through 35 evaluate the performance of the generated
loop tiled matrix multiply. The generated tiled matrix multiply is called on line 32 using the
eval function. Lines 41 through 46 keep track of the best performing configuration, while
Lines 47 and 48 report the best configuration and performance for each problem size.
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Figure 4.15: Autotuned matrix multiply results on an Texas Instruments OMAP4460. We
present baseline and tuned results for matrices from size 32 to 2048.
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Figure 4.16: Autotuned matrix multiply results on an Intel Core i7-2600. We present
baseline and tuned results for matrices from size 32 to 2048.
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4.5 Overheads for Runtime Code Generation
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Figure 4.17: Run-time breakdown for the numerical kernels described in Section 4.2. Note
the logarithmic time scale on the bar chart.

We have gone to significant lengths to ensure our compiler runs fast enough to be used
interactively in a JIT-based framework. Figure 4.17 presents a breakdown of execution
time into front-end parsing and syntax checking, compiler analysis and code generation,
and execution for the benchmark kernels listed in Section 4.2. These results present only
a single execution of a given benchmark. That is, we execute the kernel only once after
compiling. This reflects a pathologically bad situation in which recompilation occurs for
each call to a TFJ accelerated function.

As mentioned in Section 3.3.3, LLVM MCJIT performance is currently subpar on the
ARM platform. This requires the use of the GNU C++ compiler as the machine code
generator. The added file I/O and general overhead of the C++ compiler results in greater
than one second compile times. We expect these issues to be resolved with a new release of
LLVM.

On several benchmarks, the actual code execution runs faster than the compilation steps:
front-end parsing, compiler analysis, and machine code generation. In general, we attribute
this phenomena to the relatively low computational complexity of our benchmarks and small
datasets. Vector-vector addition is a linear time algorithm, while the back propagation
weight adjustment and diagonal sparse matrix vector multiply kernels are both quadratic
algorithms. In both cases, it results in a short run-time compared to compilation. Only
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matrix multiply can significantly dwarf the compilation overhead. Fortunately, we believe
TFJ will likely be used such that compiled kernels can be reused many times. Reuse of a
compiled kernel will amortize the cost of calling the JIT compiler.
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Figure 4.18: Run-time breakdown for the TFJ accelerated kernels used in content-aware
image resizing.

The run-time breakdown for the small applications of Section 4.3 paints a different
picture of TFJ’s JIT compilation than the numerical kernels. As presented in Figures 4.18
and 4.19, the overhead of JIT compilation is effectively amortized as compilation is a small
fraction of the overall program run-time.

Compared to other SEJITS-style frameworks, we believe TFJ has excellent compilation
performance due to limited use of external compilers (there are no external compilers used
on x86) and an efficient, low-level interface with the Python run-time. In contrast, the
ASP framework [82] reports compile times greater than 20 seconds for a structured grid
computation, while Copperhead compile times are upwards of 10 seconds [31] for their
benchmarks. The slow compilation times of the other two frameworks is likely due to
calling external compilers and the extensive use of Boost::Python [41] for interoperability
with the Python C run-time. Calling external compilers requires slow file I/O; however, the
use of Boost::Python results in large compilation units for even the simplest codes due to
the extensive use of template metaprogramming.

As an example of the compilation unit size when using Boost::Python, consider the array-
doubler example (Figure 4.20) included with the ASP framework [80]. The original source
is 13 lines of Python. When compiled by the ASP framework into an intermediate C++



CHAPTER 4. TFJ SOFTWARE EVALUATION 58

0.0001	
  

0.001	
  

0.01	
  

0.1	
  

1	
  

10	
  

100	
  

1000	
  

O
M
AP

44
60
	
  

i7
-­‐2
60
0	
  

O
M
AP

44
60
	
  

i7
-­‐2
60
0	
  

O
M
AP

44
60
	
  

i7
-­‐2
60
0	
  

O
M
AP

44
60
	
  

i7
-­‐2
60
0	
  

O
M
AP

44
60
	
  

i7
-­‐2
60
0	
  

O
M
AP

44
60
	
  

i7
-­‐2
60
0	
  

O
M
AP

44
60
	
  

i7
-­‐2
60
0	
  

vdot	
   grad2d	
   vvcopy	
   vvsub	
   vsaxpy	
   vzaxpy	
   spmv	
  

Ti
m
e	
  
(s
ec
)	
  

Front-­‐end	
   Compiler	
  analysis	
  and	
  code-­‐generaDon	
   Run-­‐Dme	
  code	
  execuDon	
  

Figure 4.19: Run-time breakdown for the TFJ accelerated kernels used in optical flow.

class ArrayDoubler(object):
def __init__(self):

self.pure_python = True
def double_using_template(self, arr):

import asp.codegen.templating.template as template
mytemplate = template.Template(filename="templates/

double_template.mako", disable_unicode=True)
rendered = mytemplate.render(num_items=len(arr))
import asp.jit.asp_module as asp_module
mod = asp_module.ASPModule()
mod.add_function("double_in_c", rendered)
return mod.double_in_c(arr)

def double(self, arr):
return map (lambda x: x*2, arr)

Figure 4.20: Array doubler implemented with ASP

representation, it is still a very managable 19 lines; however, after preprocessing the C++
source of the resulting postprocessed, intermediate representation has ballooned to 64828
lines of C++. This is due to extensive template metaprogramming in the Boost::Python
framework.

In constrast, array doubler implemented using TFJ (Figure 4.21) is 4 lines of Python.
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@tfj
def array_doubler(y, a, n):

for i in range(0,n):
y[i] = 2.0 * a[i];

Figure 4.21: Array doubler implemented with TFJ

When we use our C++ backend, compilation results in 14 lines of intermediate represen-
tation C++. Preprocessing this C++ expands to just 3456 lines of code, a 19× reduction
compared to the equivalent ASP postprocessed representation. In practice, TFJ’s compi-
lation process results in compile times under 100 milliseconds on x86 platforms with the
LLVM MCJIT backend and less than two seconds on our relatively slow PandaBoard-ES
platform using a GNU C++ backend.

4.6 Summary

In this chapter, we have evaluated four kernels and two applications with TFJ. We
have also implemented a simple autotuner for matrix multiply and evaluated the overheads
for runtime complication. A complete tabulation of our performance results for the four
kernels and two applications is presented in Table 4.4. Our resutls show TFJ obtains similar
performance to optimized C++ code on both ARM and x86 platforms.

Our prototype matrix multiply autotuner demonstrated the potential for implementing
autotuners entirely in Python using TFJ. In addition, we achieve a maximum performance
improvement of 1.53× and 1.45× using autotuning on our OMAP4460 and i7-2600 platforms,
respectively. Our evaluation of runtime code generation showed that for the two applications
presented in this chapter, the overheads of dynamically generating parallelized code at
runtime is insignificant.

Finally, we must emphasize that while our TFJ results are within 60% to 80% of the
performance of hand-tuned C++. the productivity benefits of our system are enormous.
Hand-tuning our simple C++ kernels for correctness and performance took several hours,
while tuning the whole applications of Section 4.3 took several weeks. In contrast, TFJ
results achieved correct, high-performance results within 15 minutes of developer effort for
kernels and within hours for applications. For individuals requiring higher performance, our
results are a good starting point for further code optimization as TFJ emits readable C++
that can be manually tuned.
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§ Kernel/Application Device C++ (Untuned) C++ (Hand-tuned) Python Libraries Pure Python TFJ

4.2.1 Vector-Vector Add
(Mflops/sec)

OMAP4460 81.8 95.3 0.4 56.6
i7-2600 1073.3 1090.4 950.6 2.0 1039.2

4.2.2 Matrix Multiply
(Mflops/sec)

OMAP4460 40.4 3268.6 2292.7 <0.2 546.7
i7-2600 317.0 112882.3 71570.2 1.4 39293.6

4.2.3 Diagonal SpMV
(Mflops/sec)

OMAP4460 130.1 175.3 114.0 <0.2 336.2
i7-2600 2457.8 3052.6 1847.3 1.5 4321.0

4.2.4 Back propagation
(Mflops/sec)

OMAP4460 100.7 101.4 N/A 0.07 41.2
i7-2600 668.3 2568.3 N/A 0.41 3147.5

4.3.1 Seam Carving
(Runtime in sec)

OMAP4460 205.4 68.5 18873.1 >86400.0 81.2
i7-2600 20.4 4.6 2238.6 34646.8 7.1

4.3.2 Optical Flow
(Runtime in sec)

OMAP4460 72.8 52.5 436.9 N/A 83.4
i7-2600 4.4 1.9 29.0 24146.7 4.5

Table 4.4: Performance results for the 4 kernels and 2 applications. Bold numbers indicate best results. For the 4 kernels,
larger Mflops/sec values indicate faster implementations. Application performance is reported in seconds; therefore, shorter
runtimes reflect higher peformance. We have marked categories N/A if we could not find a Python library that implements
a given benchmark. On our ARM platform, several benchmarks did not complete in under 24 hours when executed as
Python loop-nests.
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Chapter 5

Three Fingered Jack: Hardware
Approaches

In this chapter, we describe the design and implementation of Three Fingered Jack’s
high-level hardware synthesis (HLS) engine. As mentioned in Chapter 2 of this thesis, the
work presented in this disseration addresses the challenges associated with the diversity of
potential implementation platforms. To target both FPGA and ASIC platforms, we require
a flow to generate register-transfer descriptions of hardware. This is in contrast to the
approach for generating software for programmable processors described in Chapter 3.

We describe the micro-architecture of our processing cluster in Section 5.1 and the im-
plementation and algorithms of our HLS system in Section 5.2. We evaluate the results of
automatically generated hardware for several micro-benchmarks in Section 5.3. Section 5.4
concludes this chapter with a case study in tuning a hardware implementation of matrix
multiply.

Our approach to high-level hardware synthesis [126, 127] is similar to traditional ap-
proaches [103] in many respects; however, our approach focuses on exploiting vector paral-
lelism (data parallelism) uncovered by the analysis performed in our compiler front-end. We
focus on vector parallelism instead of instruction-level parallelism or thread-level parallelism
because vector instruction semantics are very beneficial when automatically generating a
high-performance memory subsystem. In particular, when a loop is vectorized, we guaran-
tee it carries no dependence; therefore, each iteration of the loop proceeds in parallel. This
allows for many inflight memory operations as they are guaranteed to be independent.

We have also placed considerable effort in implementing efficient handling of memory
operations in our HLS flow. We support stalling memory accesses, which allows our HLS
flow to use machine structures such as cache memories. In contrast, systems such as C-To-
Verilog [134], require memories with a fixed access latency. Supporting multiple outstanding
memory requests is a particular focus in our system. We support multiple requests inflight
to amortize the latency of main memory [58] by exploiting the inherent memory-level par-
allelism present in vectorized codes. Figure 5.2 demonstrates the benefits of supporting
multiple inflight memory requests in a high-level hardware synthesis flow. Performance is
improved by 3.76× to 4.6× for main memory latencies between 1 and 100 cycles compared
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Instantiate functional units 
•  User specifies type and count 

Emit Verilog 

LLVM optimization passes 
•  Pointer alias analysis 
•  Collect loop information 

Schedule instructions 

Modify schedule for memory 
•  Generate scoreboard, compute 

stall points in the DFG, and 
compute possible wait states 

Allocate registers 
•  Iterative algorithm based live 

ranges 

LLVM IR  
(from TFJ front-end or Clang) 

Figure 5.1: Our high-level hardware synthesis flow
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Figure 5.2: The benefits of supporting multiple outstanding memory requests when applied
to a 64×64 matrix multiply with a variety of main memory latencies. Both configurations
use 2 processing engines. Each processing engine has its own 64 word L1 cache and share a
1024 word L2 cache. The configuration labeled “non-blocking” supports many concurrent
memory requests to the L2 cache. The configuration supporting multiple inflight requests
achieves greater than 4× better performance than the blocking configuration.

to a serializing approach.
Another possible way of extracting memory-level parallelism to tolerate memory la-

tency is fine-grained multithreading. This approach has recently been popularized on pro-
grammable graphics processors such as Nvidia’s Tesla [98] and Fermi [111] series processors.

5.1 The Architecture of TFJ’s Processing Engine Clus-

ters

Building custom hardware with TFJ relies on both high-level hardware synthesis tech-
niques to generate processing elements for a specific computation and a predesigned system
hardware template. The predesigned system template connects the custom generated pro-
cessing elements to a memory hierarchy and performs any required synchronization between
the processing elements.

An example of a predesigned system hardware template is shown in Figure 5.3. In this
figure, the processing engines (PEs) enclosed in the orange rounded rectangle are automat-
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Figure 5.3: The initial architecture of our HLS processing cluster. The processing engines
enclosed in orange are automatically generated by our HLS framework.

ically generated by our HLS flow for a specific computation. The rest of the system is
provided as parameterized Verilog. The user selects the number of processing engines he or
she would like to use for a given system implementation. When the user changes the number
of processing engines, the system hardware template is customized for that specific number
of processing engines. This includes updating the synchronization and control logic along
with connecting the processing engines to the memory hierarchy. The HLS flow generates
processing engines with a predefined Verilog interface to make integration into the system
hardware template straightforward. The user also selects the size of L1 and L2 caches. Cus-
tomization of the system hardware template is enabled by heavily parameterized Verilog
RTL. While we currently require the designer to select the number of processing elements
and size of the caches, it possible to use existing design space exploration techniques [63] to
automate this procedure. The details of those approaches however, are outside the scope of
this disseration.

We have built two versions of the system hardware template. The details of which are
described in the rest of this Section. In our first implementation of TFJ’s HLS engine,
the flow generated processing engines with blocking memory operations. This simplified
the interaction with variable latency cached memory. In this initial implementation, each
processing engine had a blocking memory interface. This prevented a single processing
engine from saturating the simple memory subsystem. Therefore, in our initial approach, a
cluster of processing engines shared a global memory interface as an individual processing
element required relatively little memory bandwidth. This system used a direct-mapped,
write-back cache with 128-byte cache-lines to back a cluster of processing engines. In the
blocking approach, each processing engine can have 1 outstanding memory request, and
processing engines arbitrate for the FIFO connecting the processing engines to cache and
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global memory.
Our initial approach to HLS generated processing engines with relatively poor utiliza-

tion of the memory subsystem due to blocking memory accesses. To remedy our memory
utilization problem, we modified our HLS scheduling algorithm to generate non-blocking
memory requests. We have not found any other HLS systems that support multiple mem-
ory instructions inflight to a memory subsystem with variable latency (caches). When
memory access have a constant latency, supporting multiple inflight memory requests is no
more difficult than any other pipelined operation given sufficient memory address aliasing
information. Systems such as C-To-Verilog [134] do support multiple inflight requests but
only to memories with a fixed access latency. Other systems, such as Conservation Cores
[137], support memory accesses with variable latency, but they do not support simultaneous
memory requests from a single processing engine.

As we extract data-parallelism with our automatically parallelizing front-end, we are able
to uncover significant amounts of memory-level parallelism (MLP) [58] from a program. To
exploit the MLP discovered by our parallelizing front-end required the implementation of a
new memory scheduling algorithm, described in Section 5.2.2, and modifying the architec-
ture of our processing engine cluster to support multiple inflight memory operations.
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Figure 5.4: The final architecture of our HLS processing cluster

The architecture of the processing cluster after additions to support simultaneous in-
flight memory requests is shown in Figure 5.4. This architecture has several changes. As
described in detail in Section 5.2.2, memory instructions are tagged and the processing en-
gines stall only when they attempt to consume an operand that is still inflight. To support
multiple memory instructions inflight, we added per processing engine queues before global
memory subsystem arbitration. These queues allow the processing engines to inject memory
operations as long as space is available in the queue. After arbitration, memory requests are
placed in another queue to await access to the global memory subsystem. When operands
hit in the L1 cache, the system template can deliver 1 word per cycle with a latency of 4
cycles. We size our queues following Little’s Law [99] which means we have enough storage
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in our queues to hold at least 4 requests per processing element. In practice, we suffer cache
misses and slightly long queues improve performance. Eight entries per processing element
queues combined with a 16 entry global arbitration queue is a reasonable trade off between
resource allocation and system performance.

Similar to the blocking implementation of the system template, the global memory sys-
tem is backed by an L2 cache with a direct-mapped, write-back cache with 128-byte cache
lines. We also added small per-processing engine write-through L1 caches to capture tem-
poral locality if it exists in the program. The L1 caches are direct-mapped and have a single
cycle access latency. We only support L1 caches if programs have been compiled with the
TFJ front-end. The dependence analysis performed by the front-end is used to insert flushes
of the L1 caches when needed. The L1 caches are completely optional and can be disabled
by the system user.

Figure 5.5: Color conversion (source shown in Figure 5.12) system with 8 processing engines.
The 8 processing engines are highlighted in yellow, green, orange, dark blue, burnt orange,
red, light blue, and magenta. The memory subsystem is highlighted brown. Figure generated
using Xilinx PlanAhead 14.1 with a Zynq ZC702 FPGA.

5.2 Our High-Level Hardware Synthesis Flow

The structure of our HLS flow is shown in Figure 5.1. Our HLS back-end uses the
LLVM [94] framework because it enables straightforward code optimization and machine
code generation passes. In addition, LLVM includes a vast repertoire of traditional com-
piler transformations that we apply to the intermediate representation generated by our
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vectorizing front-end. In particular, we apply dead-code elimination, loop-invariant code
motion, and peephole optimizations to optimize the IR generated by our front-end. As
described in Chapter 3, we also exploit the ability to generate machine code for our x86
desktop CPUs in LLVM framework.

To generate processing engines, we map LLVM IR to Verilog RTL. Although our RTL
generator is similar in principle to C-To-Verilog [134] and other HLS systems that use LLVM
for RTL generation, the architecture of the processing engine cluster requires a slightly differ-
ent set of features than those provide. Above all, we need stalling memory support because
contention for the shared memory interface and cache access introduces non-deterministic
memory access times. We did consider manual modification of the RTL generated by an
existing system, but this approach would have defeated our goal of automatically generating
hardware implementations from Python. We also briefly considered using an automatic clock
gating scheme with C-To-Verilog to support stalling memory operations, but we decided it
was simpler to implement our own tool.

Our RTL generation system is built on many conventional HLS algorithms [103]; how-
ever, we have placed considerable focus on efficient support of memory operations. We now
provide a brief overview of our HLS system. The user specifies the mix of functional units, la-
tency, and support for pipelined operation. Functional units that can not be easily described
in small number of lines of behavioral Verilog are instantiated from a hardware component
library (Section 5.2.4). The system then schedules the datapath using a list scheduling
formulation; however, we have also experimented with integer programming formulations
[138, 73] of scheduling algorithms. More details about datapath scheduling are presented
in Section 5.2.1, while register allocation is described in Section 5.2.3. Our approach to
efficient memory support is described in Section 5.2.2.

5.2.1 Datapath Scheduling

We schedule LLVM IR to generate both a datapath and control finite-state machinebe-
cause the LLVM IR encapsulates both the control flow and data flow graphs. An example
of LLVM IR for vector-vector addition is shown in Figure 5.6. Within the LLVM IR, each
basic block (straight-line code segments) has edges to potential successors. The edges be-
tween basic blocks represent control flow. Within basic blocks, dependences are explicit
and unique as LLVM uses a static single assignment IR representation [44]. In the static
single assignment intermediate representation variables are assigned exactly once. This in
turn makes use-def chains explicit and allows for a simple straight-line instruction schedul-
ing technique. We use list scheduling to schedule within basic blocks. In addition, we also
have an integer programming scheduler. In practice, we find the integer programming based
approach gives slightly better results at the expense of a much longer compile time.

As data dependence is explicit in a static single assignment representation, we can easily
topologically sort instructions within a basic block via dependence edges. We can then
greedily schedule an instruction when all of the instructions on which it depends have
completed execution. The basic approach of topologically sorting instructions and issuing
instructions when all dependences are resolved is known as list scheduling. We convert the



CHAPTER 5. TFJ HARDWARE APPROACHES 68

CFG for 'vvadd' function

vvaddentry:
 %smZeroTesti = icmp eq i32 %n, 0
 br i1 %smZeroTesti, label %thirdTermi, label %smLoopi

T F

thirdTermi: 
 %i = phi i32 [ %12, %thirdTermi ], [ 0, %vvaddentry ]
 %6 = getelementptr float* %y, i32 %i
 %7 = getelementptr float* %a, i32 %i
 %8 = load float* %7
 %9 = getelementptr float* %b, i32 %i
 %10 = load float* %9
 %11 = fadd float %8, %10
 store float %11, float* %6
 %12 = add i32 %i, 1
 %13 = icmp slt i32 %12, %n
 br i1 %13, label %thirdTermi, label %secondTermi

T F

smLoopi: 
 %i1 = phi i32 [ %nexti, %smLoopi ], [ 0, %vvaddentry ]
 %0 = getelementptr float* %y, i32 %i1
 %1 = getelementptr float* %a, i32 %i1
 %2 = load float* %1
 %3 = getelementptr float* %b, i32 %i1
 %4 = load float* %3
 %5 = fadd float %2, %4
 store float %5, float* %0
 %nexti = add i32 %i1, 1
 %condTesti = icmp slt i32 %nexti, %n
 br i1 %condTesti, label %smLoopi, label %firstTermi

T F

secondTermi: 
 ret void

firstTermi: 
 %preCondTest = icmp eq i32 %nexti, %n
 br i1 %preCondTest, label %secondTermi, label %smCleanUpi

T F

smCleanUpi: 
 %i2 = phi i32 [ %cNexti, %smCleanUpi ], [ %n, %firstTermi ]
 %14 = getelementptr float* %y, i32 %i2
 %15 = getelementptr float* %a, i32 %i2
 %16 = load float* %15
 %17 = getelementptr float* %b, i32 %i2
 %18 = load float* %17
 %19 = fadd float %16, %18
 store float %19, float* %14
 %cNexti = add i32 %i2, 1
 %condTesti3 = icmp slt i32 %cNexti, %n
 br i1 %condTesti3, label %smCleanUpi, label %secondTermi

T F

Figure 5.6: LLVM IR representation of the vector-vector addition kernel without autovec-
torization. This kernel has 6 basic blocks. The largest basic block has 11 instructions.

schedule generated by our scheduling algorithm into a control finite state machine. This
control finite state machine sequences the datapath of processing elements. In the worse case,
our state machine will have approximately as many states as the longest instruction latency
multiplied by the number of instructions in the kernel under consideration. To efficiently
handle variable latency memory instructions, we perform a post pass on the control FSM
that better handles memory instructions. We describe this is more detail in Section 5.2.2.

We attempt to issue as many instructions per cycle as hardware and dataflow constraints
allow. When control flow requires a transition to a different basic block, we require that
the pipeline be completely drained to avoid tracking pipeline state across control flow edges.
While this restriction appears onerous, if we generate large basic blocks, the pipeline startup
and drain overhead can be amortized. Control flow has historically been a challenge for
superscalar processors [54] and our high-level synthesis flow faces the same problem. The
problem for our system is to generate large enough basic blocks such that the pipeline
startup and drain costs will not dominate execution.

List scheduling [61] works well within a basic block; however, its utility is limited across
basic blocks. Past approaches to create large basic blocks include trace scheduling [53],
superblock formulation [74], hyperblock formulation [101], and treegions [66]. All of these
approaches attempt to expand the number of instructions (regions) in which a straight line
code scheduling technique, such as list scheduling, can be applied. Many of the approaches
listed previously speculate on the control flow through a region of code in order to create a
large basic block. These approaches rely on accurate branch profiling in order to generate
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CFG for 'vvadd' function

vvaddentry:
 %0 = and i32 %n, -8
 %smZeroTesti = icmp eq i32 %0, 0
 br i1 %smZeroTesti, label %thirdTermi, label %smLoopi

T F

thirdTermi: 
 %i = phi i32 [ %62, %thirdTermi ], [ 0, %vvaddentry ]
 %56 = getelementptr float* %y, i32 %i
 %57 = getelementptr float* %a, i32 %i
 %58 = load float* %57
 %59 = getelementptr float* %b, i32 %i
 %60 = load float* %59
 %61 = fadd float %58, %60
 store float %61, float* %56
 %62 = add i32 %i, 1
 %63 = icmp slt i32 %62, %n
 br i1 %63, label %thirdTermi, label %secondTermi

T F

smLoopi: 
 %i1 = phi i32 [ %nexti, %smLoopi ], [ 0, %vvaddentry ]
 %1 = getelementptr float* %y, i32 %i1
 %2 = getelementptr float* %a, i32 %i1
 %3 = load float* %2
 %4 = getelementptr float* %b, i32 %i1
 %5 = load float* %4
 %6 = fadd float %3, %5
 store float %6, float* %1
 %7 = or i32 %i1, 1
 %8 = getelementptr float* %y, i32 %7
 %9 = getelementptr float* %a, i32 %7
 %10 = load float* %9
 %11 = getelementptr float* %b, i32 %7
 %12 = load float* %11
 %13 = fadd float %10, %12
 store float %13, float* %8
 %14 = or i32 %i1, 2
 %15 = getelementptr float* %y, i32 %14
 %16 = getelementptr float* %a, i32 %14
 %17 = load float* %16
 %18 = getelementptr float* %b, i32 %14
 %19 = load float* %18
 %20 = fadd float %17, %19
 store float %20, float* %15
 %21 = or i32 %i1, 3
 %22 = getelementptr float* %y, i32 %21
 %23 = getelementptr float* %a, i32 %21
 %24 = load float* %23
 %25 = getelementptr float* %b, i32 %21
 %26 = load float* %25
 %27 = fadd float %24, %26
 store float %27, float* %22
 %28 = or i32 %i1, 4
 %29 = getelementptr float* %y, i32 %28
 %30 = getelementptr float* %a, i32 %28
 %31 = load float* %30
 %32 = getelementptr float* %b, i32 %28
 %33 = load float* %32
 %34 = fadd float %31, %33
 store float %34, float* %29
 %35 = or i32 %i1, 5
 %36 = getelementptr float* %y, i32 %35
 %37 = getelementptr float* %a, i32 %35
 %38 = load float* %37
 %39 = getelementptr float* %b, i32 %35
 %40 = load float* %39
 %41 = fadd float %38, %40
 store float %41, float* %36
 %42 = or i32 %i1, 6
 %43 = getelementptr float* %y, i32 %42
 %44 = getelementptr float* %a, i32 %42
 %45 = load float* %44
 %46 = getelementptr float* %b, i32 %42
 %47 = load float* %46
 %48 = fadd float %45, %47
 store float %48, float* %43
 %49 = or i32 %i1, 7
 %50 = getelementptr float* %y, i32 %49
 %51 = getelementptr float* %a, i32 %49
 %52 = load float* %51
 %53 = getelementptr float* %b, i32 %49
 %54 = load float* %53
 %55 = fadd float %52, %54
 store float %55, float* %50
 %nexti = add i32 %i1, 8
 %condTesti = icmp slt i32 %nexti, %0
 br i1 %condTesti, label %smLoopi, label %firstTermi

T F

secondTermi: 
 ret void

firstTermi: 
 %preCondTest = icmp eq i32 %nexti, %n
 br i1 %preCondTest, label %secondTermi, label %smCleanUpi

T F

smCleanUpi: 
 %i2 = phi i32 [ %cNexti, %smCleanUpi ], [ %0, %firstTermi ]
 %64 = getelementptr float* %y, i32 %i2
 %65 = getelementptr float* %a, i32 %i2
 %66 = load float* %65
 %67 = getelementptr float* %b, i32 %i2
 %68 = load float* %67
 %69 = fadd float %66, %68
 store float %69, float* %64
 %cNexti = add i32 %i2, 1
 %condTesti3 = icmp slt i32 %cNexti, %n
 br i1 %condTesti3, label %smCleanUpi, label %secondTermi

T F

Figure 5.7: LLVM IR representation of the vector-vector addition kernel with autovector-
ization for a data-parallel operation length of 8. In contrast to Figure 5.6, the largest basic
block has 67 instructions.

effective traces. In contrast, TFJ converts data-parallelism found by the autovectorizing
front end into instruction-level parallelism to create very large basic blocks. TFJ converts
data-parallelism into instruction-level parallelism by unrolling vector operations into a se-
quence of scalar operations. The large basic blocks can be efficiently scheduled using list
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scheduling. Figure 5.7 presents the control flow graph when we enable the autovectorizer
with the same Python kernel used to generate the LLVM IR shown in Figure 5.6. TFJ’s
HLS scheduler predicts the non-vectorized implementation will execute the 11 instructions
in the inner basic block in 24 cycles. In contrast, with vectorization, the 67 instructions in
the inner basic block will execute in 38 cycles. Using vectorization, the HLS flow improved
the instructions per clock (IPC) by nearly a factor of 4×.

//FPGA: Type, Count, Latency
ALU,4,1
MUL,2,5
ADDR,1,1
MEM,1,10
FADD,1,5
FMUL,1,6
FCMP,1,1
RET,1,1
PHI,1,1
BRANCH,1,1
SELECT,1,1
NAOP,2,0

(a) Datapath configuration file for FPGAs.
Notice integer functional units match la-
tency of DSP48 for better resource utiliza-
tion.

//ASIC: Type, Count, Latency
ALU,2,1
MUL,1,2
ADDR,1,1
MEM,1,6
FADD,1,5
FMUL,1,6
FCMP,1,1
RET,1,1
PHI,1,1
BRANCH,1,1
SELECT,1,1
NAOP,2,0

(b) Datapath configuration file for ASICs.
Functional units have lower latency than the
FPGA equivalent due to reduced propaga-
tion delay in ASIC fabric.

Figure 5.8: Datapath configuration files for FPGA and ASIC

As shown in Figures 5.8a and 5.8b, the designer selects the number of functional units
in the datapath. All functional units have a 1 cycle initiation interval (fully pipelined);
however, the user is also allowed to select the latency (in cycles) of all units except for the
single-precision adder and multiplier. Our HLS tool generates behavioral RTL descriptions
for integer operations and can easily vary the latency to match ASIC or FPGA primitives.
For example, Xilinx FPGAs have digital signal processing (DSP48) blocks with hard im-
plementations of multipliers and adders. Using DSP48s results in higher throughput and
lower device utilization than implementing the same function in the FPGA fabric. For max-
imum efficiency, our tool must generate functional units that match the underlying DSP48
primitives. As DSP48 latencies vary among different FPGA families, we require the user
to manually input latencies for the device he or she is targeting. Our floating-point units
are manually implemented in a structural implementation style. As a result, they are not
easily amenable to variable latency operation. Our tool could easily be adapted to a more
flexible floating-point implementation. We also tend to use more functional units in FPGA
implementations than multiplexing a single functional unit because wide multiplexers are
relatively slow in FPGA fabric [133].
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5.2.2 Generation of Non-blocking Memory Operations

Efficiently supporting memory-level parallelism (MLP) is at the heart of TFJ’s HLS flow.
Given that memory operations often have high latency (10 to 100 cycles), as shown in Figure
5.2, it is critical to support multiple inflight memory operations to tolerate memory latency
[88]. Our approach to this task is based on the conversion of data-level parallelism found
by our vectorizing front-end into memory-level parallelism. As described in Section 5.2.1,
using vectorization algorithms to generate scalar operations produces large basic blocks with
many independent operations. Within the large basic blocks, there is significant potential for
memory-level parallelism; however, the high-level synthesis flow must generate the proper
control structures in order to support multiple inflight memory operations.

Conventional high-level synthesis approaches do not attempt to extract memory-level
parallelism from cache-based memories due to variable memory latency. In classical HLS
approaches [103], a control finite state machine expects all operations to complete in a fixed
number of cycles. When coupled with a memory structure, such as an SRAM scratchpad,
classical HLS approaches can support memory-level parallelism. However, for the class of
kernels and applications addressed in this thesis, the working sets considered are far too
large to fit in a scratchpad. A simple approach to supporting variable memory latency is
to serialize the processing element when a memory operation occurs. In this approach, the
processing element pipeline must be drained before a memory operation occurs, and no new
operations are issued until the memory operation completes. If memory accesses are only
a small number of cycles (1 or 2 cycles), this approach is likely reasonable; however, when
memory has a large access latency, this approach will be highly inefficient.

In order to allow multiple inflight memory operations with variable access latency mem-
ory, a more advanced approach is required. Our approach is conceptually simple: we sched-
ule the kernel for expected memory latency and then add additional states to the control
finite state machine. These extra states stall the pipeline and perform operand clean up
if our latency assumptions are incorrect. Our algorithm for supporting multiple inflight
memory instructions is shown in Figure 5.9.

Our approach stalls the processing engine when it attempts to consume a memory oper-
ation that is currently inflight due to longer than expected memory latency. This approach
potentially prevents useful work from executing during a memory stall as instructions with
satisfied operand dependences can not execute during this period. In contrast, modern out-
of-order microprocessors [128] would be able to continue execution in the same situation due
to the large number of resources dedicated to dynamic instruction scheduling. We believe
our approach is a reasonable trade-off between hardware resources and system performance;
however, we have not implemented or evaluated other solutions.

We show the impact of our memory-level parallelism enhancing algorithm in Figure
5.10 for a single-precision floating-point 160×160 matrix multiply. Using the naive triply-
nested matrix-multiply described in Section 5.4, we measured memory-level parallelism for
a variety of different system configurations. We experimented with different lengths of data-
parallel operations discovered by the compiler front-end, specifically we explore data-parallel
opertions from a single entry to operations of length 16. On the memory subsystem side, we
use two different L2 caches sizes and main memory latency from zero cycles (instant reload)
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Algorithm: tfj mkmlp
Input: I (Instructions in kernel)
Output: Smlp (Instruction schedule with support for memory-level parallelism)
1 List schedule i ∈ I assuming average case memory latency
1 to generate baseline control finite state machine. Build
1 data-structure F to track instructions issued in each state
2 Create a hardware scoreboard to keep track of inflight memory operations
3 Mark every memory operation with a unique tag.
4 for i ∈ I
5 If i consumes an operand produced by a load from memory
6 Determine predecessor states for i using F
7 Add memory scoreboard test in each predecessor state
7 and additional states to handle instructions retiring
7 while the PE is stalled. The total number of wait states
7 is equal to the longest latency of any inflight instruction
7 when the stall occurs.

Figure 5.9: A high-level sketch of the algorithm used by TFJ to support memory-level
parallelism. This algorithm allows for memory-level parallelism when memory operations
execute in the expected number of cycles. When memory operations take longer than
expected, this algorithm adds additional wait states into the control finite state machine to
handle stalling the processing element.

to 100 cycles. The results clearly show the effectiveness of our approach. Our configurations
that use data-parallel operations of length 16 have greater than 10× more memory-level
parallelism than the scalar equivalent. The increased memory-level parallelism also has a
significant impact on performance, as shown in the case study of Section 5.4.1. As shown
in Figure 5.22, with a 256 kByte L2, performance increases from 5 MFlops/sec to nearly 40
MFlops/sec using the scheduling techniques described in this section.

5.2.3 Register Binding

After scheduling our datapath, we need to bind virtual registers in the LLVM IR to
physical registers (flip-flops) to construct a circuit. One approach to binding virtual registers
to physical registers is to allocate a physical register for each virtual one. While this naive
approach to register binding works, it unnecessarily wastes hardware resources and results
in a very large custom compute accelerator.

In contrast, our high-level synthesis uses a register binding algorithm based on live
ranges and a list of free registers. Our algorithm is conceptually simple. We first compute
the largest number of live registers at any point in the program. After computing the total
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Figure 5.10: 160×160 matrix-multiply memory-level parallelism for a data-parallel operation
lengths from 1 entry to 16 entries and three different cache reload latencies. All results
generated for a single custom processing element with no L1 cache. Results generated using
logic simulation with ModelSim SE 10.0d.

number of physical registers needed, we generate a queue with physical register identifiers.
The size of the queue is equal to the largest number of live registers at any point in the
kernel. We then use LLVM’s dataflow algorithm framework to compute live ranges for each
virtual register. Over the live range of a variable, it is allocated to a physical register. This
is done by popping a register identifier off the physical register queue. When a variable is
killed, the corresponding physical register identifier is pushed back on the physical register
queue. Due to nuances of our pipelined memory operations, we might need more registers
than predicted by dataflow analysis. When this situation occurs, we add a small number of
additional register identifiers to the physical register queue and retry the binding process.
We repeat this process until the system finds a successful binding. In practice, it usually
takes two or three iterations to find a valid solution.

As each time a register is reused multiplexers are required to forward the operand to a
new functional, one potential downside of our simple algorithm is wide multiplexers. While
they are less of an issue in ASIC technologies, FPGAs poorly support wide multiplexers.
We have not observed register multiplexing in the critical path of any of our benchmark
kernels; however, we could modify our binding algorithm to detect when a register becomes
heavily multiplexed and then add additional registers to alleviate multiplexer delay.

While our binding algorithm is simple, we find it works well in practice. Table 5.1
presents results for the naive and our optimized algorithms for the benchmarks presented in
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Vector-vector addition Color conversion Matrix multiply Gaussian mixture model
Naive approach 80 25 120 148
Our approach 30 15 45 47

Table 5.1: A comparison of the number of 32-bit registers required by the two different
binding algorithms.

Section 5.3. Our algorithm reduces register requirements for the benchmark kernels under
consideration between 1.6-3.15×.

5.2.4 A Library of Hardware Components

As described in Section 5.1, the architecture of TFJ-based hardware solutions include
both custom processing engines generated by HLS techniques (Section 5.2) and a system
micro-architectural template (Section 5.1). Both components of TFJ’s hardware backend
require a library of hardware components. While the HLS flow is able to generate inline
behavioral descriptions of integer arithmetic operations, floating-point components are in-
stantiated as hand-coded Verilog modules. Likewise, the system template (shown in Figure
5.4) is built from hand-coded modules that comprise the memory subsystem interconnect
and caches. Parameters such as cache size or memory subsystem queue depth can be mod-
ified by the end user.

We evaluate the FPGA resource requirements for components of the hardware library by
connecting them to the ARM processors on the Zynq platform using the AXI interface. We
describe our methodology for interfacing with the ARM processors on the Zynq platform
in Section 5.3.2. By directly connecting components to the AXI interface, we can both
verify correctness of individual components and measure resource requirements for a specific
component. As logic optimization can potentially modify components in the hardware
library to better meet timing or resource constraints in a real system, the resource statistics
presented below serve as an approximation to the resource requirements when the component
is used in a real system.

Floating-point Units

TFJ’s hardware library includes single-precision addition and multiply functional units.
These units are fully pipelined. As presented in Table 5.2, the adder has a latency of 4
cycles, while the multiplier has a latency of 5 cycles. If required, these designs could easily
be further pipelined. Both units are based on Parhami’s designs [117].

Hardware component Latency LUTs DSP48s
Single-precision addition 4 cycles 709 0

Single-precision multiplication 5 cycles 382 2

Table 5.2: FPGA statistics for our floating-point units on the Xilinx Zynq XC702 FPGA
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Systems that use floating-point operands routinely need to deal with exceptions. As
the processing elements generated by TFJ use hardwired finite-state based control, adding
support for exceptions would be impractical. Therefore, TFJ requires the user to ensure
that his or her design will generate valid results over the range of possible floating-point
inputs.

Caches

The hardware solutions generated by TFJ use up to two levels of caching to back main
memory. As shown in Figure 5.4, each processing element has a private L1 cache while
all processing elements share a single L2 cache. We have chosen to implement only direct-
mapped caches due to the ease of efficient implementation on FPGA platforms. Caches with
higher associativity would require wide multiplexers that are inefficient in FPGA fabric.

The private L1 cache design, presented in Table 5.3, is entirely optional. When the
L1 cache is used, it has a single-cycle access latency and uses a direct-mapped, write-
through scheme. Using a write-through scheme makes synchronization straightforward.
When synchronization is required between processing elements (as dictated by dependence
analysis performed by our compiler front-end), the caches are kept coherent by clearing valid
bits on the L1 caches. This forces the processing elements to reload their L1 caches with
synchronized data from the shared L2.

Some kernels with a significant amount of operand reuse, such as matrix multiply, greatly
benefit from from the L1 cache. When a code does not have operand reuse, the L1 cache is
easily removed from the design to reduce resource requirements.

Size LUTs 36 kBit RAMs 18 kBit RAMs
64 Bytes 587 0 0
128 Bytes 430 0 1
256 Bytes 489 0 1
512 Bytes 577 0 1
1 kBytes 745 0 1
2 kBytes 1105 0 1
4 kBytes 1880 1 0
8 kBytes 3509 1 1
16 kBytes 6474 2 1

Table 5.3: FPGA statistics for our direct-mapped, write-through L1 caches on the Xilinx
Zynq XC702 FPGA

We have two different L2 cache designs that are presented in Table 5.4. Both designs
support pipelined cache accesses for high-throughput cache access; however, only our more
“optimized” design supports a “hit-under-miss” scheme. Our implementation of “hit-under-
miss” allows the L2 cache to continue serving requests as long as there are less than two
active L2 cache misses. As shown in Table 5.4, adding support for a “hit-under-miss” scheme
requires approximately twice as many LUTs as the equivalently sized “baseline” L2 cache.
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As our L2 caches additionally serve as the point of ordering among the processing ele-
ments, adding support for advanced features, such atomic memory operations, is reasonably
straightforward.The first design, our “baseline” design, has enough additional hardware to
support atomic memory operations. The dependence-driven approach to HLS described in
this chapter does not use atomic memory operations; however, TFJ has the ability to lower
a larger subset of Python to LLVM IR (Section 3.2), which includes support for atomic
memory operations.

Size Atomics Hit-under-miss LUTs 36 kBit RAMs 18 kBit RAMs

Baseline

1 kByte Yes No 1104 0 4
2 kBytes Yes No 1087 0 5
4 kBytes Yes No 1095 0 5
8 kBytes Yes No 1063 5 0
16 kBytes Yes No 971 5 2
32 kBytes Yes No 1062 9 3
64 kBytes Yes No 1027 18 2
128 kBytes Yes No 1123 36 3
256 kBytes Yes No 977 72 2

Optimized

1 kByte No Yes 1916 0 4
2 kBytes No Yes 1602 0 5
4 kBytes No Yes 1708 0 5
8 kBytes No Yes 2090 1 4
16 kBytes No Yes 2006 5 3
32 kBytes No Yes 1993 9 4
64 kBytes No Yes 2041 18 3
128 kBytes No Yes 1880 36 4
256 kBytes No Yes 1916 72 3

Table 5.4: FPGA statistics for our direct-mapped, write-back L2 caches on the Xilinx Zynq
XC702 FPGA. All L2 caches use 16 byte cache lines.

System Template Glue Logic

The hardware system template is comprised of many common circuit elements such
as synchronous FIFOs and arbiters. Because many aspects are dependent upon specific
parameters fixed by a given system, it is not possible to report tabulated resource statistics.
Many of these structures were originally designed and written as part of the ELM project
[45].

5.3 Evaluation of Numerical Kernels on a FPGA

We evaluate the automatically generated hardware synthesized by our system with four
numerical kernels on an field-programmable gate array (FPGA). We use a FPGA platform
for several reasons. First, the design automation tools used with FPGAs accept the same
Verilog RTL as the ASIC tool flow does. This allows for verification of the RTL generated
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by TFJ without long running software simulations. Second, FPGA implementation allows
for a realistic evaluation of the area (using lookup tables) and cycle time. However, as we
are using FPGAs for evaluation, the cycle time of our solutions will be slower than a design
implemented in a standard-cell ASIC flow due to the nature of the programmable intercon-
nect and lookup table-based logic implementation. Third, it is a cost-effective solution for
prototyping hardware designs as FPGAs are inexpensive, particularly when compared to
the costs of designing and implementing an ASIC.

To fairly evaluate our system against another programmable substrate, we use a soft-
core processor. A soft-core processor is conventional microprocessor pipeline implemented
on a FPGA platform. We use a soft-core processor because it allows for a comparison of the
performance (run time) and area in the same implementation technology between two design
methodologies: TFJ generated hardware and a traditional C-based software development
flow. Our evaluation approach oblivates the need to manually generate custom processing
blocks in a hardware description language. The details of soft-core evaluation methodology
are described in Section 5.3.2.

The benchmarks, presented in full in Section 5.3.1, are representative of numerical op-
erations performed in many multimedia codes. The codes used for evaluation of our system
are all data-parallel codes. As our system is designed to handle regular dense loop-nests, it
is a natural fit for data parallel applications. Finally, the size of the data manipulated by
each benchmark is implied in the loop-bounds.

5.3.1 Overview of Numerical Kernels

Vector-vector addition

A vector-vector addition is a canonical data-parallel benchmark. In addition, it is
bandwidth-bound. Our implementation is shown in Figure 5.11.

for i in range(0,131072):
c[i]=a[i]+b[i]

Figure 5.11: Vector-vector addition used for HW evaluation

Color conversion

We evaluate a simple color space conversion benchmark for a 128x128 pixel image. Color
conversion can be expressed as a 3x3 matrix-transform applied to each pixel in an image.
As the color conversion matrix is reused for each pixel, this benchmark has better memory
reuse than vector-vector addition does. Our implementation is shown in Figure 5.12.

Matrix multiply

Matrix-matrix multiply is a widely used kernel in dense linear algebra libraries. It serves
as the workhorse for many higher-level algorithms such as solving a system of linear equa-
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for p in range(0,16384):
for i in range(0,3):
for j in range(0,3):
img_out[p][i]=img_out[p][i]+img_in[p][j]*mat[i][j]

Figure 5.12: Color conversion kernel used for HW evaluation

tions, and it stresses the compute capability of most devices. Our matrix-matrix multiply
is expressed as a triply nested loop and shown in Figure 5.13.

for i in range(0,32):
for j in range(0,32):
for k in range(0,32):
c[i][j]=c[i]j]+a[i][k]*b[k][j]

Figure 5.13: Matrix multiply kernel used for HW evaluation

Gaussian mixture model evaluation

Modern speech recognition systems model the probability of a sound occurrence using
a mixture of multivariate Gaussian distributions. It is common to use a mixture of 16 39-
dimensional Gaussians per speech sound (phone). As noted in previous work [76], Gaussian
mixture model evaluation accounts for greater than 50% of the run-time in the Sphinx3
system. The code used to evaluate a 3006 phone Gaussian mixture model is shown in
Figure 5.14.

for i in range(0,3006):
for m in range(0,16):
for f in range(0,39):
LogP[i][m]=LogP[i][m]+(In[f]-M[i][f][m])*(In[f]-M[i][f][m])*(V[i][f][m])

Figure 5.14: Gaussian mixture model evaluation kernel used for HW evaluation

5.3.2 Evaluation Setup

For the evaluation of our automatically processing engines, we used a Xilinx Zynq
XC7z020-1CLG484 FPGA on a Digilent ZedBoard (Figure 5.16). As shown in Figure 5.15,
the Zynq series of FPGAs includes both dual core ARM Cortex-A9 processors and FPGA
fabric. In our evaluation, we use the ARM processors on the Zynq platform to drive the
inputs and outputs of our solutions.

As described early in Section 5.3, to evaluate the runtime performance and area efficiency
of hardware solutions generated by TFJ, we compare them with a soft-core microprocessor.
Using a soft-core processor allows for a direct comparison of performance (run-time) and
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Zynq-7000 AP SoC Technical Reference Manual www.xilinx.com 27
UG585 (v1.6) June 28, 2013

Chapter 1: Introduction

The processors in the PS always boot f irst, allowing a software centric approach for PL system boot 
and PL configuration. The PL can be configured as part of the boot process or configured at some 
point in the future. Additionally, the PL can be completely reconfigured or used with partial, dynamic 
reconfiguration (PR). PR allows configuration of a portion of the PL. This enables optional design 
changes such as updating coefficients or time-multiplexing of the PL resources by swapping in new 
algorithms as needed. This latter capability is analogous to the dynamic loading and unloading of 
software modules. The PL configuration data is referred to as a bitstream.

1.1.1 Block Diagram
Figure 1-1 illustrates the functional blocks of the Zynq-7000 AP SoC. The PS and the PL are on 
separate power domains, enabling the user of these devices to power down the PL for power 
management if required.

X-Ref Target - Figure 1-1

Figure 1-1: Zynq-7000 AP SoC Overview
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Figure 5.15: Block diagram of Xilinx Zynq-7000 [145]. Our automatically generated pro-
cessing engines are implemented in the programmable logic (marked with a red oval). The
processing engines interface with the onboard ARM processors using the general-purpose
ports marked in green.

area using productive design methodologies instead of manually generating hardware solu-
tions with Verilog RTL. Using a FPGA-based solution also obviates the need for software
simulation (RTL simulation) of hardware designs in order to collect accurate cycle counts.

LUTs DSP48s RAMs Max Frequency
4800 3 9 50.2 MHz

Table 5.5: FPGA statistics for our soft-core RISCV CPU on the Xilinx Zynq XC702 FPGA

To evaluate against a soft-core processor, we used an in-order 5-stage RISC pipeline.
This processor design supports only 32-bit loads and stores, has a fully bypassed pipeline,
and includes a small 4-entry branch target buffer. In addition, branches are resolved in the
decode stage to reduce branch misprediction penalty. We use a 2-read, 1-write register file
to ensure maximum efficiency of our processor micro-architecture implemented on a FPGA.

With single-cycle memory access and predictable branches, the processor retires approx-
imately 1 instruction-per-cycle. Our soft-core processor implements a variant of the RISCV
ISA [140] and includes a 4 kByte instruction cache. The rest of the memory system is
identical to the soft-core processor and the automatically generated processing engines. We
compiled the kernels listed in Section 5.3.1 to the RISCV ISA using GCC 4.4.0. FPGA
statistics for our soft-core CPU are shown in Table 5.5.

We used a data-parallel operation length of 16 for all TFJ generated HLS solutions
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Figure 5.16: ZedBoard Zynq-7000 Development Board used for FPGA evaluation

and to implement our designs, we used Xilinx ISE 14.1 for logic synthesis, mapping, and
place-and-route. The ARM cores on the Zynq platform run Linux 3.3.0-14.2. Our hardware
solutions are mapped into an uncached physically addressed region of the ARM processors
address space 1. This allows for a simple polling protocol (shown in Figure 5.17) to move
data between the FPGA fabric and the ARM processors. All designs operate on a 100 MHz
FPGA clock.

5.3.3 Results and Analysis

The FPGA resource usage statistics and static timing analysis of the automatically
generated processing engines for each kernel are shown in Table 5.6. Resource usage grows
linearly with number of processing engines for all kernels. We are able to evaluate the
Gaussian mixture model kernel in systems that have less than 7 processing engines. This
is due to limited resources on our Zynq FPGA. The Gaussian mixture model accelerator
requires significantly more resources than the other kernels. A single processing engine
Gaussian mixture model accelerator requires almost 3× as many LUTs a single processing
engine color conversion accelerator does.

We use the same memory subsystem for both the soft-core CPU and the automatically
generated processing engines so that we can directly compare LUT utilization between the
two implementations. The color conversion kernel uses fewer LUTs than the soft-core CPU
does for all configurations. In contrast, a single vector-vector add processing engine with
memory subsystem requires approximately the same number of LUTs does as our soft-core
CPU. A single processing engine matrix-multiply accelerator requires about 2× the FPGA
resources as the soft-core CPU does.

We present results for all kernels with 16 kByte shared write-back cache with 128-byte
cache lines. We use this cache configuration as a 16 kByte cache can hold the working sets

1Thanks to Andrew Waterman for the implementation of a memory-mapped I/O device.
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1 while(true) {
2 unsigned int x = (unsigned int)d.read(0);
3 if(x & 0x1) {
4 unsigned int addr = x >> 8; bool write = x & 0x2;
5 if(write) {
6 mem[addr] = d.read(1); mem[addr+1] = d.read(2);
7 mem[addr+2] = d.read(3); mem[addr+3] = d.read(4);
8 } else {
9 d.write(1, mem[addr]); d.write(2, mem[addr+1]);

10 d.write(3, mem[addr+2]); d.write(4, mem[addr+3]);
11 }
12 d.write(0,(˜0));
13 }
14 x = (unsigned int)d.read(7);
15 unsigned done = x >> 31;
16 if(done) break;
17 }

Figure 5.17: C++ source used as glue to interface memory-mapped accelerators in Zynq
FPGA fabric with ARM cores. Line 2 polls the accelerator status register. Bit zero of the
status register indicates a request. As shown in line 4, the second bit of the status register
indicates if the transaction is a read or write while the memory operation address is placed
in the upper 24 bits of the status register. Lines 5 through 11 perform the actual 16-byte
read or write while line 12 acknowledges a complete memory transaction. Finally, lines 14
through 16 check if the accelerator has completed executing a given computation. Using
this code, a 16-byte cache line reload takes approximately 100 cycles on the 100 MHz FPGA
clock domain.

of all the benchmarks presented in this section. We evaluate the cache-based systems with
1-cycle (Figure 5.18), 10-cycle (Figure 5.19), and 100-cycle (Figure 5.20) cache reloads to
show performance under different memory subsystem configurations.

Single-cycle cache reloads represent an idealized memory system. Conflict and cold
cache misses will be most apparent in this configuration. If we were to directly connect
our accelerator subsystem to a DRAM interface on the Zynq platform, cache reloads would
take approximately ten cycles, given our FPGA logic clock [146]. Therefore, the ten-cycle
configuration presents a realistic evaluation of our system on an FPGA with a hard (fixed-
function) DRAM memory controller. The 100-cycle cache line reload latency represents
a realistic memory configuration if our custom processing engines were implemented in a
modern ASIC technology. We compute speed-up by comparing the number of execution
cycles on the soft-core to the number of execution cycles on the processing engine. This
does not account for the difference in obtainable frequency between the soft-core and the
processing engines.

As shown in Figure 5.18, our processing engines are highly scalable with single-cycle
cache reloads. The Gaussian mixture model kernel scales to greater than 12× soft-core
performance with 4 processing engines, while the matrix-multiply kernel scales to just under
12× soft-core performance with 8 processing engines. In addition, the color conversion
kernel performance scales to just under 8× soft-core performance with 5 processing engines.
With single-cycle cache line reloads, the vector-vector add kernel has the poorest scaling.
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FPGA Resource Vector-vector
addition

Color conversion Matrix multiply Gaussian
mixture model

1 PE

LUTs 5443 3548 7539 10245
DSP48s 0 3 3 3
RAMs 11 11 11 11

2 PEs

LUTs 9956 4915 14213 18060
DSP48s 0 6 6 6
RAMs 12 12 12 12

3 PEs

LUTs 14203 6400 20814 25920
DSP48s 0 9 9 9
RAMs 14 14 14 14

4 PEs

LUTs 19700 8644 27370 34017
DSP48s 0 12 12 12
RAMs 16 16 16 16

5 PEs

LUTs 24457 10473 33286 42031
DSP48s 0 15 15 15
RAMs 18 18 18 18

6 PEs

LUTs 28972 11797 39329 49620
DSP48s 0 18 18 18
RAMs 20 20 20 20

7 PEs

LUTs 33322 15016 45486 57858
DSP48s 0 21 21 21
RAMs 22 22 22 22

8 PEs

LUTs 37293 17273 52597 63100
DSP48s 0 24 24 24
RAMs 24 24 24 24

Table 5.6: FPGA statistics for the four benchmarks of Section 5.3.1 on the Xilinx Zynq
XC702 FPGA. All processing engines were generated using the datapath resource config-
uration file shown in Figure 5.8a. Designs that require more LUTs than provided by the
FPGA are marked in red.

The performance of this kernel is limited to a maximum of slightly greater than 4× soft-
core performance with 5 processing engines. The performance of the vector-vector add
kernel is limited by shared cluster memory bandwidth and cache conflicts. However, as
vector-vector add is a bandwidth-bound kernel, the results show our automatically-generated
processing engines are more efficient with available memory bandwidth than our soft-core
microprocessor.

Figures 5.19 and 5.20 show performance with the shared cache for 10-cycle and 100-
cycle reloads, respectively. As the matrix-multiply kernel is compute bound, performance
scales with additional processing engines under both memory latency configurations. With
10-cycle memory latency, a 10× speed-up is achieved with 8 processing engines. With
100-cycle memory latency, the matrix-multiply kernel achieves a 5× speed-up over the soft-
core CPU. Performance results for the matrix-multiply kernel are explainable given the L2
cache reload statistics shown in Table 5.7. The working set for our 32×32 matrix-multiply
computation entirely fits in on-chip memory. Only 1025 reloads are required to fill the L2
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Figure 5.18: Scaling with one-cycle reloads (larger speedup connotes better results)

cache. The fact that the kernel has a relatively small number of cold cache misses insulates
the accelerators for changes to memory latency.

With 10-cycle reloads, the other kernels achieve between 6× and 2× performance im-
provements over the soft-core CPU. With 100-cycle memory latency, performance drops to
between 3× and 1× soft-core performance for vector-vector addition, color conversion, and
Gaussian mixture model kernels. As expected, the bandwidth-bound vector-vector addition
kernel suffers the most with increased memory latency. Scalability with 10 or 100 cycle
cache reloads is reduced compared with that of single-cycle reloads; nevertheless, adding
processing engines increases performance. A larger cache would help all kernels except
vector-vector addition. The inclusion of banked caches with multiple memory ports would
help performance for all memory latency configurations. Adding associativity to caches
would also likely help performance scaling due to reduced cache conflict misses. Finally,
a LUT-efficient design would use less than 8 processing engines as peak performance is
achieved with a smaller number of processing engines for all kernels except matrix multiply.
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Figure 5.19: Scaling with ten-cycle reloads (larger speedup connotes better results)
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Figure 5.20: Scaling with 100 cycle reloads (larger speedup connotes better results)
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RISCV 1 PE 2 PEs 3 PEs 4 PEs 5 PEs 6 PEs 7 PEs 8 PEs
Vector-vector
addition

525175 393217 458761 393217 524289 393437 402277 393651 518211

Color conversion 454730 164212 329249 244510 329306 164182 188285 164180 198199
Matrix multiply 946 1025 1025 1025 1025 1025 1025 1025 1025
Gaussian
mixture model

1495642 978352 983023 1020905 1000948 1008119 1017435 N/A N/A

Table 5.7: L2 cache reload statistics. Reload counts are identical for all three memory
latency configurations. Configurations that do not fit in our Zynq device are marked in red.
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5.4 Case Study: Tuning Hardware Matrix Multiply

Matrix multiply is a well understood numerical kernel with a large design space. We
have already explored a small portion of the design space for software-based solutions using
TFJ in Section 4.4, and we have investigated hardware results for matrix multiply in Section
5.3.1. However, the hardware results for matrix multiply explored considered only a small
32×32 matrix multiply problem with an integer matrix. In this section, we explore different
hardware tuning parameters for a 160×160 single-precision floating-point matrix multiply.
To demonstrate the portability TFJ, we use the Python matrix multiply source that was
used in Chapter 4 to explore performance behavior of software solutions for matrix multiply.

This case study examines the performance implications of different data-parallel opera-
tion length, L2 cache sizes, number of processing elements, and non-blocked versus blocked
matrix multiply algorithms. We manually swept the parameters previously described for
this case study; however, as mentioned in Section sec:tfj-hw:micro, there exists potential for
automating the design space explorating using existing techniques.

We use a 160×160 matrix as it is the largest matrix we can fit in an L2 cache on our
FPGA platform. For our blocked matrix multiply (shown in Figure 5.21b), we have chosen
a matrix sub-block size of 8×8 as it is large enough to enable a reasonably long data-parallel
operation and small enough to fit in a modestly sized L1 cache. We use a 4 kByte L1 cache
to hold three 8×8 sub-matrices for all blocked matrix multiply experiments except for the
eight processing element system. Due to FPGA resource constraints, we are able to fit only
a 1 kByte L1 cache.

In this case study, we generate non-blocked matrix multiply processing elements using
data-parallel operation lengths from 1 to 16 and blocked matrix-multiply processing elements
from length 1 to 8. We are limited to a data-parallel operation of length eight with the
blocked solution because a length greater than eight would be larger than sub-block size
and have no benefit to performance. As described in Section 5.2.2, TFJ’s HLS flow converts
data-level parallelism found by the compiler front-end into memory-level parallelism. By
increasing data-parallel operation length, we expect to increase memory-level parallelism
and in turn increase the performance of our matrix multiply code. For the matrix multiply
computation, vectorization also increases operand locality due to loop interchange. For
example, in the three-nested loop matrix multiply shown in Figure 5.21a, the TFJ front-end
will interchange the loop nest to achieve the IKJ ordering. The interchange enables loop-
invariant code motion to hoist access to the matrix A out of the inner loop, thereby reducing
memory traffic and increasing locality. We expect longer data-parallel operation lengths to
result in high performance processing elements at the cost of more FPGA resources.

We explore different L2 cache sizes to determine the implications of cache size on ma-
trix multiply performance. Smaller L2 caches demonstrate the impact of memory-level
parallelism and the blocked matrix multiply algorithm. While the largest L2 cache imple-
mentable on our Zynq platform (256 kBytes) can not entirely hold all three matrices (300
kBytes), it does capture a significant amount of the data set and demonstrates performance
when operands are stored largely in the memories on the FPGA. By varying the number
of processing elements, we explore the parallel scalability of our system hardware template.
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def matmul(A,B,Y,n):
for i in range(0,n):

for j in range(0,n):
for k in range(0,n):

Y[i][j]=Y[i][j]+A[i][k]*B[k][j];

(a) Matrix multiply

def bmatmul(A,B,Y,n):
for i in range(0,n):

for j in range(0,n):
for k in range(0,n):

for ii in range(0,8):
for jj in range(0,8):
for kk in range(0,8):

Y[ii+i*8][jj+j*8]=Y[ii+i*8][jj+j*8]+A[ii+i*8][kk+k*8]*\
B[kk+k*8][jj+j*8];

(b) Blocked matrix multiply with an 8×8 block size

Figure 5.21: Python implementations of the two kernels used for tuning hardware matrix
multiply

While we hope performance will increase linearly with the number of processing elements,
in practice, we expect performance to plateau after a certain number of them. The limited
scaling is due to memory subsystem saturation. This case study characterizes the scalability
of multiple processing engine solutions for different combinations of data-parallel operation
lengths, L2 cache sizes, and matrix multiply algorithms.

5.4.1 Results

To evaluate our matrix multiply accelerators, we used the Xilinx Zynq platform with
the methodology of Section 5.3.2. TFJ’s HLS engine used the single-precision floating-point
units and optimized L2 cache described in Section 5.2.4. The custom hardware accelerators
were both synthesized and placed-and-routed using Xilinx ISE version 14.1. The design
space exploration required the implementation of 246 design points, and all design points
were evaluated on real hardware using the Digilent ZedBoard. All custom hardware solutions
operate at 100 MHz.

FPGA resource utilization for the non-blocked and blocked matrix multiply accelerators
are shown in Tables 5.8 and 5.9, respectively. The resource statistics are shown only for
designs with a 256 kByte L2 cache; however, as presented in Table 5.4, increasing the size of
the L2 cache has little impact on the total number of LUTs used. Of particular interest is
the impact of data-parallel operation length on LUT utilization for the non-blocked matrix
multiply. Increasing the data-parallel operation length results in a larger processing element
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FPGA Resource 1 entry 2 entries 4 entries 8 entries 16 entries

1 PE
LUTs 3948 5238 6048 7675 10971

DSP48s 14 14 14 14 14

2 PEs
LUTs 5997 8769 10451 13463 19830

DSP48s 22 22 22 22 22

4 PEs
LUTs 10162 15820 19160 25113 37920

DSP48s 38 38 38 38 38

8 PEs
LUTs 18552 29929 36516 48442 N/A

DSP48s 70 70 70 70 N/A

Table 5.8: Single-precision non-blocked matrix multiply FPGA resource statistics for 256
kB L2 with data-parallel operation lengths from 1 to 16. Designs that do not fit in Zynq
device are marked in red.

FPGA Resource 1 entry 2 entries 4 entries 8 entries

1 PE
LUTs 8199 8148 8148 8471

DSP48s 14 14 14 14

2 PEs
LUTs 18880 18835 18835 18883

DSP48s 22 22 22 22

4 PEs
LUTs 34991 34931 34931 34905

DSP48s 38 38 38 38

8 PEs
LUTs 40095 39935 39935 39935

DSP48s 70 70 70 70

Table 5.9: Single-precision blocked matrix multiply FPGA resource statistics for 256 kB L2
with data-parallel operation lengths from 1 to 16. Due to FPGA resource limitations, the
eight processing engine design uses 256 word L1 cache. All other designs use 1024 word L1
cache.

due to increased operand locality and correspondingly greater hardware register usage. In
contrast, the blocked matrix multiply accelerators have approximately identical LUT usage
across different data-parallel operation lengths. The fixed loop bounds for inner 8×8 sub-
matrix multiply allows the LLVM framework to automatically unroll the inner loop, largely
achieving equivalent performance benefits as achieved by the vectorization based approach.

Single Processing Element Solutions

Figure 5.22 presents results for single processing element solutions. A peak performance
of nearly 40 MFlops/sec is obtained with a single non-blocked matrix multiply processing
element using a data-parallel operation length of 16. With a single processing element,
the non-blocked matrix multiply solution is highly dependent on long vectors to achieve
high-performance. In contrast, the blocked-matrix multiply solution is not dependent on
data-parallel operation length for performance. When vectors are less than length eight, vec-
torization has little impact on performance. As presented, the non-blocked matrix multiply
is highly dependent on a large L2 cache to achieve high performance. With a data-parallel
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Figure 5.22: Matrix multiply using a single processing element

operation length of 16, the non-blocked matrix multiply solution is nearly 7× faster with a
256 kByte L2 than with a 16 kByte L2. On the other hand, the blocked solution is much
more tolerant of a small L2 cache. Performance varies by a factor of less than 2× from the
smallest to largest L2 cache.

Two Processing Element Solutions

With two processing elements, the performance of our matrix multiply accelerators in-
creases between 1.2× to 1.9× compared to that of a single processing element solution. As
shown in Figure 5.23a, raw performance increases to slightly greater than 60 MFlops/sec
with a 256 kByte cache and a data-parallel operation length of eight. The non-blocked
and blocked matrix multiply accelerators have different behaviors with increased processing
elements. The blocked matrix multiply solutions scale well for all L2 cache sizes and data-
parallel operation lengths, while non-blocked solutions scale well for data-parallel operation
lengths less than eight. This is probably because a single non-blocked processing element
with a long data-parallel operation length is able to saturate the memory subsystem.

Four Processing Element Solutions

As shown in Figure 5.24a, performance nearly approaches 100 MFlops/sec with 4 pro-
cessing elements using blocked matrix multiply. The solutions with 4 processing elements
are between 1.0× and 3.9× faster than those with the equivalent single processing element
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(a) Raw performance of matrix multiply using 2 processing elements
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(b) Scalability compared to single processing element matrix multiply

solution. With increased processing elements, longer data-parallel operation lengths have
less of an impact on the non-blocked matrix multiply accelerators. While performance gap
between non-blocked matrix multiply accelerators with a data-parallel operation length of
1 and 16 was greater than 7× with a single processing element, with 4 processing elements,
the gap fell to below 3×. The L2 cache bandwidth for the system template likely becomes
an issue with 4 processing elements.

Eight Processing Element Solutions

In order to fit eight processing elements on our Zynq FPGA, we had to make minor
modifications to our system hardware template. In particular, we had to decrease the size
of the L1 cache from 4 kBytes to 1 kByte for the blocked matrix multiply accelerators. In
addition, the non-blocked matrix multiply accelerator built with a data-parallel operation
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(a) Raw performance of matrix multiply using four processing elements
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(b) Scalability compared to single processing element matrix multiply

length of 16 would no longer fit with eight processing elements. As shown in Figure 5.25a,
doubling the processing elements from 4 to 8 increases memory bandwidth issues seen in
the previous configurations. Reducing the size of the L1 cache on the blocked matrix mul-
tiply accelerators only exacerbates the memory bandwidth problem. As a result, only the
relatively low performance accelerators built with a data-parallel operation length of 1 or 2
increase in performance compared to the 4 accelerator solution.

Summary of Matrix Multiply Case Study

Using TFJ we have generated solutions for matrix multiply that span from three MFlop-
s/sec to slightly under 100 MFlops/sec. These results demonstrate that TFJ can generate
efficient hardware solutions to computationally intensive kernels from the same Python
source as that used by the TFJ software backends. The results also show the impact of our
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(a) Raw performance of matrix multiply using eight processing elements
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(b) Scalability compared to single processing element matrix multiply

approach to generating non-blocking memory operations, as longer data-parallel operation
lengths result in higher performance solutions. The case study also eludicates room for
future improvements on the hardware system template as the performance of our solutions
do not scale well beyond 4 processing elements.

5.5 Summary

In this chapter, we have described the design and implementation of TFJ’s high-level
hardware synthesis engine. We have presented our approach to datapath scheduling, reg-
ister binding, and generation of non-blocking memory operations. In particular, we have
demonstrated the approach TFJ uses to convert data-level parallelism to memory-level par-
allelism. Figure 5.10 shows our matrix multiply results of processing elements built using
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our approach have up to 10× more memory-level parallelism than the equivalent scalar im-
plementation. We also describe in detail the design and implementation of the components
used in our system hardware template have also been described in detail.

Using TFJ’s HLS engine, we have evaluated performance results for four simple kernels
with a highly optimized soft-core processor. Compared to an optimized soft-core CPU, TFJ
generated solutions are up to 12× faster. We have also evaluated several different imple-
mentations of single-precision matrix multiply to demonstrate the impact of data-parallel
operation length and memory hierarchy configuration on the performance of TFJ generated
solutions. These experiments varied the number of single-precision matrix multiply accel-
erators to investigate the parallel scalability of our custom hardware solutions. Using the
same starting Python source, we were able to generate non-blocked matrix multiply accel-
erators with performance from 3 MFlops/sec to 57 MFlops/sec. Likewise, we were able to
generate blocked matrix multiply accelerators with performance from 15 MFlops/sec to 98
MFlops/sec without modifying any Python source.
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Chapter 6

A Case Study in Speech Recognition
using Three Fingered Jack

In this chapter, we use Three Fingered Jack’s multiple backends to perform a case
study in implementing speech recognition on mobile devices. Section 6.1 describes the
challenges of speech recognition on energy-constrained mobile devices. Section 6.2 provides
a brief background of the concepts related to large vocabulary continuous speech recognition
and profiles our speech recognizer to better understand the memory subsystem behavior.
The kernels used with Three Fingered Jack for hardware and software solutions to speech
recognition are described in Section 6.3. The methodology used to verify correctness of
our hardware solutions is presented in Section 6.4, while detailed energy results for both
software and custom hardware solutions are presented in Section 6.5. Section 6.6 provides
a summary of the work presented in this chapter.

6.1 Challenges for Mobile Speech Recognition

Automatic speech recognition (ASR) has become an enabling technology on today’s
mobile devices. Current solutions, however, are not ideal. An ideal mobile ASR solution
would be capable of running continuously (always-on), provide a low-latency response, have
a large vocabulary, and operate without excessive battery drain while untethered to WiFi.
Mobile devices are limited by their batteries that gain only 4% capacity annually from
technological innovations [121]. Given the mobile energy constraint, we seek to understand
the energy consumption of various speech recognition approaches and provide a productive
method for designing energy efficient ASR solutions.

Some current mobile solutions, such as Apple’s Siri, provide ASR capabilities by sending
audio or feature vectors to a remote server in the cloud over a wireless network. Unfortu-
nately, using the cloud to offload ASR may not be the most energy efficient approach to
delivering speech recognition solutions. We calculate that sending the same 60 seconds of
speech data as 39-dimension single-precision Mel-Frequency Cepstral Coefficients (MFCCs)
feature vectors would consume between 100 and 340 joules using the 3G energy-per-bit
values presented by Miettinen [104]. The large range in 3G energy consumption is due
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Figure 6.1: Energy consumption for 60s of ASR on a menagerie of commercial platforms.
All devices achieve real-time performance on Wall Street Journal 5k corpus [115]. Energy
recorded using a “watts up? PRO” power meter.

to differences caused by geographic location, data rate, and radio vendor. At this rate, a
typical 20 kJ battery would last between 1 to 3 hours when performing continuous speech
recognition.

An alternative to using a cloud-based solution for speech recognition is to employ an
ASR solution that runs locally on the mobile device. There are many potential motivational
reasons for client-only speech recognition other than increased energy efficiency. Security,
reliability, and quick response are enabled when using a client-based solution. Security
is enhanced as potential confidential audio is not sent over the network where data can
be potentially snooped. Security risks associated with Apple’s Siri resulted in its being
banned at large corporations [43]. Furthermore, reliability of speech recognition solutions is
increased when performed locally as cloud-based solutions do not work in low connectivity
environments and thus are incapable of providing robust service in a variety of environments.
Finally, locally performing speech recognition reduces response time as speech data does not
need to be uploaded to a remote server.

In order to evaluate energy consumption characteristics of software-based local speech
recognition solutions, we performed a simple experiment using 60 seconds of audio from the
WSJ5k corpus. We measured the energy consumption on several hardware platforms. Figure
6.1 shows the local energy consumption characteristics and summarizes our results: our most
efficient platform requires approximately 200 joules to perform ASR on 60s of audio. At this
rate, a typical 20 kJ battery would last roughly 100 minutes. With a software-only speech
recognition solution, the number of hours that a device can perform speech recognition is
not significantly improved. For all day speech recognition, another solution is required.

Speed and energy efficiency can be improved by employing custom hardware designed for
speech recognition. Several hardware-based solutions have been proposed during the last 30
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years [83, 10, 102, 87, 110, 97, 25]. These approaches claim performance or energy benefits of
10 to 100× over that of a conventional microprocessor. However, these approaches employ
an inflexible design process in which high-level algorithmic design decisions are hard-coded
into a low-level implementation. This means that the system would potentially require
a complete overhaul in order to experiment with a new algorithmic approach or language
model. Additionally, these systems are point samples and do not give us a full understanding
of the design space for speech recognition hardware solutions.
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For our class project we plan on taking a look at e�cient implementations of noise reduction tech-
niques for front-end components of speech recognition systems. Noise reduction is an important com-
ponent in speech signal processing as it increases the signal-to-noise ratio in the audio signal input and
allows for higher recognition accuracy. E�cient and fast implementations of these techniques allow for
more robust speech recognition systems, especially on mobile systems since they are usually used in
high-noise environments.

The design space for speech enhancement techniques is large. For example, Lin and Oppenheim’s [?]
survey paper lists 7 general techniques we list below.

• Speech enhancement based on direct estimation of short-time spectral amplitude

• Speech enhancement based on Wiener filtering

• Speech enhancement based on adaptive comb filtering

• Speech enhancement based on adaptive noise canceling techniques

• Speech enhancement based on an all-pole model of speech

• Speech enhancement based on an pole-zero model of speech

• Speech enhancement based on nonparametric model of speech

In this project we will look at low-level implementations of noise reduction techniques for mobile and
desktop parallel processors. Specifically we will look at the Wiener filter and the closely related least
mean squares filter. We believe adaptive signal processing techniques, like Wiener filtering, are powerful
enough to denoise speech signals; however, the techniques are general enough so that we can reuse our
implementations in other contexts (such as music analysis).

Our e�cient implementations will target mobile multicore processors, desktop multicore processors,
and Nvidia GPUs. We have access to representive mobile hardware, such as the Texas Instruments
OMAP4430 and Nvidia Tegra3, in the ParLab. We will start with functionally correct implementations
in high-level languages such as MATLAB and analyzing the computational patterns in these algorithms.
We have already found a working implementation of Scalart’s improvement to Wiener filtering for speech
denoising [?] in MATLAB 1 and begun to analyze it.

We have access to raw audio for the Wall Street Journal 5k (WSJ5k) corpus [?] and plan to experiment
noise and how it impacts the accuracy of speech recognition. Our ASR experiments will be made with the
ICSI Parallax decoder, which has highly optimized implementations on both the GPU and conventional
multicore CPUs. We are not sure how we should add noise to the WSJ5k corpus but we believe should
at least try to model representative noise found in common mobile environments. We have not found
a good reference for the characterization of noise in the mobile environment. As a first pass we can
use the noisy versions of the WSJ5k testing data; however, the noise in the WSJ5k is unlikely to be
representative of a mobile system.

|X(!)| � µ(!) (1)

We will then implement e�cient versions of the algorithms in low-level C/CUDA code using SIMD
instructions. We will then analyze the performance of the algorithms in terms of faster-than-realtime
factors and analyze the capabilities of our new implementations in real-time mobile and desktop systems.
Finally, if time permits, we will look other algorithms for denoising [?] [?].

1http://isdl.ee.washington.edu/people/stevenschimmel/sphsc503/notes.html
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Figure 6.2: There are a number of ways of providing speech recognition on mobile devices.
Different target markets, performance requirements, client-computing profiles, and energy
concerns motivate many different solutions. For these reasons, we need the ability to explore
the entire design space of general purpose CPUs, data-parallel accelerators, and custom
fixed-function hardware.

In this case study, we explore high performance software and hardware implementations
of an ASR system that can run locally on a mobile device. As shown in Figure 6.2, there are a
number of potential ways of providing this capability. As previously mentioned, it is possible
to run the speech recognizer entirely on the mobile phone’s host processor. However, if the
device has a more advanced programmable data-parallel accelerator, it is possible to run key
speech recognition kernels on it for a potentially significant energy efficiency improvement.
Finally, custom fixed-function hardware can be used for maximal energy efficiency. As shown
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in Figure 6.3, we intend our fixed-function speech hardware solutions to be included as a
small module on system on a chip (SoC).
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Figure 6.3: A system on a chip: a large fraction of the SoC die area is dedicated to custom
accelerators such as video encoders/decoders or image processing. The hardware speech
recognition solutions presented as a possible solution for mobile ASR in this chapter are
intended be a small logic block (under 5mm2) on a SoC.

The correct mobile device configuration for speech recognition also depends on several
additional parameters. Given differences in target market, time-to-market concerns, and
client-computing profile, it is unlikely that one specific configuration will provide the best
speech recognition solution on all mobile system configurations. Moreover, each of the
mobile system constraints previously mentioned is rapidly changing; the best solution for
this product generation may not be the correct solution for the next one. For these reasons,
providing the best speech recognition solutions requires that we explore the entire design
space of traditional CPU, programmable data-parallel accelerator, and fixed-function cores.
Manually crafting a point solution for each design point, however, is too time consuming
and error prone to be practical. For these reasons, we automate the generation of key
components of our speech recognition system using Three Fingered Jack.

Through detailed hardware simulation we are able to produce accurate estimates for
energy and performance. We show that our custom solutions are 3.6× and 2.4× more
energy efficient than a conventional microprocessor and a highly-optimized data-parallel
processor, respectively.
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6.2 Speech Recognition Background
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For our class project we plan on taking a look at e�cient implementations of noise reduction tech-
niques for front-end components of speech recognition systems. Noise reduction is an important com-
ponent in speech signal processing as it increases the signal-to-noise ratio in the audio signal input and
allows for higher recognition accuracy. E�cient and fast implementations of these techniques allow for
more robust speech recognition systems, especially on mobile systems since they are usually used in
high-noise environments.

The design space for speech enhancement techniques is large. For example, Lin and Oppenheim’s [?]
survey paper lists 7 general techniques we list below.

• Speech enhancement based on direct estimation of short-time spectral amplitude

• Speech enhancement based on Wiener filtering

• Speech enhancement based on adaptive comb filtering

• Speech enhancement based on adaptive noise canceling techniques

• Speech enhancement based on an all-pole model of speech

• Speech enhancement based on an pole-zero model of speech

• Speech enhancement based on nonparametric model of speech

In this project we will look at low-level implementations of noise reduction techniques for mobile and
desktop parallel processors. Specifically we will look at the Wiener filter and the closely related least
mean squares filter. We believe adaptive signal processing techniques, like Wiener filtering, are powerful
enough to denoise speech signals; however, the techniques are general enough so that we can reuse our
implementations in other contexts (such as music analysis).

Our e�cient implementations will target mobile multicore processors, desktop multicore processors,
and Nvidia GPUs. We have access to representive mobile hardware, such as the Texas Instruments
OMAP4430 and Nvidia Tegra3, in the ParLab. We will start with functionally correct implementations
in high-level languages such as MATLAB and analyzing the computational patterns in these algorithms.
We have already found a working implementation of Scalart’s improvement to Wiener filtering for speech
denoising [?] in MATLAB 1 and begun to analyze it.

We have access to raw audio for the Wall Street Journal 5k (WSJ5k) corpus [?] and plan to experiment
noise and how it impacts the accuracy of speech recognition. Our ASR experiments will be made with the
ICSI Parallax decoder, which has highly optimized implementations on both the GPU and conventional
multicore CPUs. We are not sure how we should add noise to the WSJ5k corpus but we believe should
at least try to model representative noise found in common mobile environments. We have not found
a good reference for the characterization of noise in the mobile environment. As a first pass we can
use the noisy versions of the WSJ5k testing data; however, the noise in the WSJ5k is unlikely to be
representative of a mobile system.

|X(!)| � µ(!) (1)

We will then implement e�cient versions of the algorithms in low-level C/CUDA code using SIMD
instructions. We will then analyze the performance of the algorithms in terms of faster-than-realtime
factors and analyze the capabilities of our new implementations in real-time mobile and desktop systems.
Finally, if time permits, we will look other algorithms for denoising [?] [?].

1http://isdl.ee.washington.edu/people/stevenschimmel/sphsc503/notes.html
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Figure 6.4: An architecture for Mel-frequency cepstral coefficient generation

An ASR application accepts an utterance as input waveform and infers the most likely
sequence of words and sentences of that utterance. Our ASR system is built on top of
the ICSI Parallex decoder [35]. As shown in Figure 6.5, Parallex is built around a hidden
Markov model (HMM) inference engine with a beam search approximation and may be
easily decomposed into feature extraction and an inference engine. A feature extraction
pipeline (Figure 6.4) generates 39-dimensional MFCCs for every 10ms frame from an analysis
window of 25ms. The MFCCs are fed to the inference engine to recognize words and
sentences. The inference engine has two key phases: observation probability calculation
using a Gaussian Mixture Model (GMM) and a graph-based knowledge network traversal.
The GMM computes the probabilities of phonemes in a given acoustic sample. These
probabilities are used by the HMM to compute the most likely sequence of words using the
Viterbi search algorithm. We use a beam search approximation to prune the search space.

Observation 
probability 
evaluation 
   (GMM) 

HMM search Phoneme 
scores 

Active phoneme list 

Recognized 
utterances  

Figure 6.5: Architecture of an HMM-based speech recognizer

The inference engine at the heart of Parallex [35] employs the linear lexical model (LLM)
to implement the graph-based knowledge network used for language modeling. The LLM
representation distinguishes between two types of transitions: within-word and across-word
[120]. LLM has a highly regular structure that makes it favorable to a parallel implementa-
tion; however, this regularity comes at a cost as the representation contains many duplicated
states [35].

We have two versions of Parallex: a portable C++ version and a hybrid implementation
written in a combination of Python and C++. The hybrid implementation is written in
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Python to take advantage of TFJ, while the rest of the application remains in C++. This
approach allows us to demonstrate the power of TFJ without entirely reimplementing the
speech recognizer in Python. We evaluate both versions of Parallex using the 5000-word
Wall Street Journal corpus.

In order to focus our optimizations, we profiled our portable C++ speech recognizer
running on a PandaBoard 1 to simulate contemporary mobile hardware. The profiling results
led us to focus our efforts on accelerating the GMM and across-word transition kernels, as
they consume 60% and 25% of the run-time, respectively.

6.2.1 Profiling Our Speech Recognizer

Past computer architecture research has extensively profiled and characterized [2, 102]
Carnegie Mellon’s Sphinx decoder as it has been included in two editions of the industry
standard SPEC benchmarks (SPEC CPU2000 and SPEC CPU2006). Studies of the Sphinx
decoder have shown that it extensively stresses the memory hierarchy due to the large
working set and accessing the graph-based knowledge network results in an irregular memory
access pattern.

To determine the impact of the more regular knowledge network representation used in
our decoder, we performed several experiments to elucidate memory behavior. Our studies
also include memory subsystem behavior as a function of the beam width used in the beam
search approximation. As shown in Figure 6.6b, by limiting the maximum number of active
states in our beam search, we both prune the search space and reduce the size of the working
set. A smaller beam width has the potential downside of reduced accuracy; however, as
shown in Figure 6.6a, large beam widths do not significantly improve the accuracy of our
decoder. In fact, there is less than a two percent improvement in recognition correctness
beyond a beam width of 3000. The simple experiment of Figure 6.6 demonstrates that a
relatively narrow beam width can deliver both acceptable accuracy and high-performance
with our speech recognizer. To understand interplay between beam width and the decoding
performance of our recognizer, we implemented a simple memory hierarchy simulator. We
used this simulator to measure the size of the program working set as a function beam
width.

Memory Hierarchy Simulation

Our memory hierarchy simulators are built on top of the Intel Pin dynamic binary
instrumentation framework [100]. The Pin framework makes it possible to quickly develop
profiling and analysis tools using dynamic recompilation on existing binaries. The PIN
API allows the user to insert instrumentation at arbitrary locations throughout an existing
binary. Unlike other approaches to dynamic program analysis, Pin does not require the
user to recompile his or her application to insert instrumentation code. As a result, off-the-
shelf x86 binaries run without modification. In addition to an extensive instrumentation
API, Pin emits efficient monitoring code by using a just-in-time compiler to re-optimize the

1www.pandaboard.org

www.pandaboard.org
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(a) Speech recognition accuracy and correctness as a function of beam
width. Accuracy and correctness computing using the HTK tools [147].
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(b) Speech recognition real-time factor as a function of beam width. Large
real-time factors imply faster speech decoding. Results generated with
single-threaded C++ implementation of our speech recognizer running on
an Intel Celeron G530.

Figure 6.6: Speech recognition correctness, accuracy, and real-time factor for a variety of
beam widths. Experiments run on 2404 seconds of audio encapsulating 330 utterances from
the Wall Street Journal 5000 word corpus. Plots generated by sweeping beam width from
100 to 10000 in steps of 100 and then from 10000 to 30000 in steps of 500.

binary under test after instrumentation code injection. Unlike pure architectural simulation,
applications instrumented with Pin still have reasonable performance.

Our analysis framework is based on annotating all memory operations in order to analyze
the program address stream. We instruct Pin to intercept the execution of all memory oper-
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ations so that the program address stream is fed to our cache model. We have implemented
a simple behavioral multi-level cache simulator in C++. The simulator is parameterizable
and allows for run-time configuration of cache size, associativity, and number of levels of
caching in the memory hierarchy. We use the cache simulation framework with a single-
threaded C++ implementation of our speech recognizer for all workload characterization
studies.
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Figure 6.7: Measured cache locality in our speech recognizer for a variety of beam width
sizes. To measure locality, we simulate a single-level memory hierarchy and then sweep L1
cache sizes from 64 bytes to 512 mBytes. Our experiments use a direct mapped cache with
32 byte cache lines.

Figure 6.7 presents cache misses rates for five beam width values and a variety of L1
sizes. To measure the working set size, we simulate only a single level of caching. The
memory subsystem behavior was recorded while speech recognizer decoded 60 seconds of
audio for each beam width. As expected, the simulation shows a higher miss rate for large
beam widths across all cache sizes. In addition, there is a sharp knee in the miss rate curve
with a 64 kByte cache. With a 64 kByte cache, the miss rate drops from approximately
35% to 15%. Beyond the 64 kByte, the next large dip in miss rate curve occurs with an 8
to 16 mByte cache. At this point, the miss rate drops from approximately 10% to around
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1% for all beam widths. While a working set of 8 to 16 mBytes is too large for conventional
L1 caches, it is approximately the same size as the L3 cache on today’s commodity desktop
processors.
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Figure 6.8: Average memory access time as function L3 cache size and beam width sizes.
We use 16 kByte 4-way set-associative L1 cache with 1 cycle access latency. Our L2 cache
is 256 kBytes with 8-way associativity and has a 10 cycle access latency while our L3 cache
has 32-way associativity and 30 cycle access latency. All 3 levels of the memory hierarchy
have 32 byte cache lines.

As our working-set simulation studies found, the L3 caches included in today’s com-
modity desktop processors can hold enough of the working set to drop miss rates to below
1%. We investigated the average memory access time (AMAT) as a function of beam width
and L3 cache size. As shown in Figure 6.8, we model a 3 level cache hierarchy and record
average memory access time. With a multi-level cache hierarchy, moving from a 2 mByte to
8 mByte cache improves the AMAT by approximately a factor of 3× for all beam widths.

To verify our locality simulation results, we ran our speech recognizer on an Intel i7
920 (8 mByte L3) and recorded performance with all levels of the cache hierarchy, enabled
and disabled. The results of this experiment are presented in Table 6.1, and, as expected,
performance is significantly reduced with caches disabled. The ratio between cached and



CHAPTER 6. SPEECH RECOGNITION CASE STUDY 103

Beam width Caches Disabled Caches Enabled Cached vs Uncached Ratio
1500 2.6× 17.8× 6.9
3000 2.3× 12.8× 5.6
6000 1.2× 8.5× 7.1
12000 1.1× 5.4× 4.9
24000 1.0× 3.4× 3.4

Table 6.1: Speech recognizer performance (results presented in real-time factor) with caches
enabled and disabled on an Intel i7 920. Results generated using 60 seconds of audio from
the Wall Street Journal 5k corpus. All levels of the cache hierarchy were disabled by setting
the CD flag and clearing the NW flag of CR0 and clearing the memory type range registers
[75]

uncached performance drops with large beam widths indicating that a significant number of
cache misses occur when caches are enabled. This reflects the fact that the working set can
not fit the cache hierarchy when the recognizer is run with a large beam width. While the
ratio of cached to uncached performance is not a linear function of beam width, the general
trend reflects the fact that larger beam widths result in a larger working set.

Our simulation results clearly demonstrate that locality exists in our speech recognizer,
and it can be captured by reasonably sized caches. In contrast, past approaches to speech
recognition on GPUs were unable to exploit the locality in the application due to the lack
of a traditional cache hierarchy [36, 35]. The GPU-based approaches to speech recognition
required complicated algorithmic reformulation to regularize data structures for efficient
use of GPU memory bandwidth. Our simulation results directed our study to use speech
recognition algorithms and data structures that are work-efficient in order to exploit a cache
hierarchy.

6.3 Accelerated Speech Recognition Kernels

def GMM(In, Mean, Var, Out, Idx, n):
for i in range(0,n):

for f in range(0,39):
for m in range(0,16):
ii = Idx[i];
Out[ii][m] += (In[f]-Mean[ii][f][m])*(In[f]-Mean[ii][f][m])*(Var[ii][f][m]);

Figure 6.9: GMM-based observation probability evaluation kernel in Python for TFJ accel-
eration

We evaluate the observation probability of labels in the acoustic model using a GMM.
The GMM is a computationally intense kernel that consumes 60% of the runtime in our
portable recognizer. As shown in Figure 6.9, the GMM computation is a regular dense loop-
nest; however, several arrays are indexed with an indirect map as a beam search prunes
improbable labels.
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def step4(..):
for i in range(0,num):

thisStateID = endsQ_stateID[i];
endwrdStTStep = endsQ_wrdStTStep[i];
endsWordID = Chain_wpID[ thisStateID ];
endsFwdProb = Chain_fwrdProb[ thisStateID ];
prev_likelihood = endsQ_likelihood[i];
lumpedConst = prev_likelihood + endsFwdProb;
thisOffset = bffst[ endsWordID ];
thisbSize = bSize[ endsWordID ];

for b in range(0,thisbSize):
w = nxtID[b+thisOffset];
t = prob[b+thisOffset] + lumpedConst;
bigramBuf[w] = t;
lock(step4_lck[w]);
if(bigramBuf[w] < likelihood[w]):

likelihood[w] = t;
updateIndices[w] = i;

unlock(step4_lck[w]);

Figure 6.10: Across-word traversal kernel represented in Python for TFJ acceleration

Our LLM knowledge network has two types of transitions: within-word and across-word.
We use Chong’s [36] specialized data-layout to represent the first, middle, and last states
of the triphone chains. His triphone chain layout, used for word pronunciation, enables
efficient use of memory bandwidth on parallel platforms.

The within-word kernel used in the LLM representation operates on the first and middle
states of the triphone chain to update the middle and last states. Profiling experiments of
our portable speech recognizer showed the within-word kernel consumed less than 5% of the
runtime. We therefore decided against further optimizations.

In contrast, the across-word kernel shown in Figure 6.10 consumes 25% of the runtime.
The across-word kernel operates on the last states of triphone chains to update the first
states. Parallelizing this kernel requires fine-grained synchronization. This is because mul-
tiple end states transition to the same next state and could result in interleaved updates
and thus a race condition. Fine grained synchronization is efficiently handled by TFJ as the
custom hardware generator has support for multiword atomic memory operations.

To demonstrate the efficient parallel codes generated by TFJ, we run our hybrid Python
and C++ speech recognizer on a conventional PC desktop. As mentioned in Chapter 3,
we have a JIT compilation backend on x86 processors for TFJ in a conventional Python
install. We obtain a real-time factor 2 (RTF) of 0.0625 when our hybrid Python/C++
speech recognizer runs on a quad-core 3.4 GHz Intel i7-2600 using TFJ. This corresponds
to 16× faster than real-time performance. To contextualize the TFJ on a desktop results,
the same LLM based recognizer with manually parallelized C++ runs at 0.05 RTF, while
the hybrid recognizer without TFJ runs at greater than 330 RTF. This is due to the low
performance of the Python interpreter.

2The real-time factor (RTF) metric is the ratio of the number of seconds required to process one-second
of speech input. An RTF of less than 1.0 connotes better than real-time performance.
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6.4 Hardware Verification

In order to validate our custom hardware design points, we modified the software speech
recognizer running on our workstation to interface with the Synopsys VCS logic simulator.
This configure allows us to selectively verify that our kernel accelerators function properly;
unfortunately, each WSJ utterance took well over a day to run, making verification of the
WSJ5k corpus unfeasible using logic simulation alone.

LUTs DSP48s 18 kBit RAMs 36 kBit RAMs
16401 10 7 18

Table 6.2: FPGA statistics for our prototype speech recognition accelerator on the Xilinx
Zynq xc702 FPGA. The speech recognition solution prototyped on the FPGA platform has
two GMM accelerators and two across-word accelerators. The accelerators run at 50 MHz
on the Zynq FPGA.

To remedy our slow simulation runtimes and to provide more credibility to our auto-
matically generated custom hardware solutions, we ported our simulation infrastructure to
the Xilinx Zynq SoC FPGA [145]. As mentioned in Section 5.3.2, the Xilinx Zynq platform
provides both reconfigurable logic and interconnect (similar to a traditional FPGA), along
with two ARM Cortex-A9 processors. The FPGA statistics for the FPGA prototype are
shown in Table 6.2. We ran the accelerator logic on a Xilinx Zynq SoC+FPGA, which
sped-up our verification process by approximately 465× over that of logic simulation. This
enabled 330 utterances (2404 seconds of audio) to run on our simulated hardware in just
under 42 hours.

6.5 Hardware and Software Evaluation

We trained the acoustic model that we used in Parallex with HTK [147] using the speaker
independent training data from the Wall Street Journal 1 corpus. The acoustic model has
3,006 16-mixture Gaussians, while the LLM recognition network has 123,246 states and
1,596,884 transitions. We set the language model weight to 15. The word error rate of
our TFJ accelerated solution is 11.4%, which matches the error rate of the state-of-the-art
Parallex recognizer.

6.5.1 Rocket-Hwacha Data-Parallel Processor

We used the in-order decoupled RISC-V 5-stage Rocket processor as our baseline CPU
[140]. To evaluate data-parallel solutions, we used the Hwacha data-parallel accelerator
with Rocket as its scalar control processor. The Hwacha data-parallel accelerator integrates
ideas from both vector-thread [86] and conventional data-parallel processors to achieve high
performance and energy efficiency. TFJ was used to generate optimized implementations
for Rocket and Hwacha. The resulting kernels were compiled using GCC 4.6.1.
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Figure 6.11: Speech recognition hardware verification scheme using our decoder and Syn-
opsys VCS. Speech recognizer diagram based adapted from Chong.

6.5.2 VLSI Flow

We targeted TSMC’s 45nm GP CMOS library using a Synopsys-based ASIC toolchain:
Design Compiler for logic synthesis, IC Compiler for place-and-route, and PrimeTime for
power measurement. Following best industrial practice [20], we used logic simulation to
extract cycle counts and detailed circuit-level simulation to record power. The GMM and
across-word traversal accelerators have direct-mapped 4 kByte caches (“baseline” caches
from Section 5.2.4) share a 256 kByte L2 cache, and do not include a L1 cache. The cache
sizes were chosen using the working-set simulation presented earlier in Figure 6.7. The
processors with which we compare have a 32 kByte 4-way set-associative L1 data-cache, a
16 kByte 2-way set-associative instruction cache, and a 256 kByte 8-way set-associative L2
cache. The SRAM macros used for all caches were generated by Cacti 6.0 [108]. We used
DRAMSim2 to model main memory latency with a DDR3-based memory subsystem [122].
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Design Features

Hwacha data-parallel processor (Figure 6.12c) 1 Single-Precision Fused Multiply-Adder
8 Single-Precision Comparators

1 Double-Precision Fused Multiply-Adder
8 Double-Precision Comparators

833 MHz Max
213188 Gates, 1.7 mm2

GMM accelerator (Figure 6.12a) 2 Single-Precision Multipliers
2 Single-Precision Adders

920 MHz Max
38294 Gates, 0.16 mm2

Across-word search accelerator (Figure 6.12b) 2 2 Single-Precision Adders
2 Single-Precision Comparators

860 MHz Max
19544 Gates, 0.13 mm2

Table 6.3: Design statistics for the VLSI layouts presented in Figure 6.12
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Figure 6.13: Energy breakdown of GMM and across-word search kernels running on pro-
grammable and fixed-function accelerators.

6.5.3 VLSI results

To make our study complete, we have included images of VLSI layout from IC Compiler
for our data-parallel processor, GMM accelerator, and across-word traversal accelerator (see
Figure 6.12). More detailed statistics of each design are listed in Table 6.3. Figure 6.13
shows the detailed energy breakdown of GMM and across-word search kernels running on
each of our platforms.
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Rocket Rocket +
Hwacha

Custom
HW

GMM 0.86 J 0.58 J 0.24 J
Word-to-word 0.15 J 0.15 J 0.09 J
Rest of system 0.2 J 0.2 J 0.2 J

Complete system 1.21 J 0.93 J 0.54 J

Table 6.4: Energy results for WSJ clip 441c0201 (6.07 seconds) with TFJ generated solu-
tions. The “rest of system” category includes all kernels not accelerated with TFJ.

The energy results of our study are presented in Table 6.4. The Rocket and Rocket+Hwacha
based solutions achieve a RTF of 1.0. The automatically generated hardware solutions have
a RTF of 0.94. In order to calculate total system power (processor + memory), we assume
our memory subsystem will consume 384 mW. These are conservative DDR3 power statis-
tics from a commercial vendor [62]. Table 6.5 estimates the total hours of ASR achievable
with the solutions presented in this work.

Rocket Rocket +
Hwacha

Custom
HW

System power 0.20 W 0.15 W 0.09 W
System + memory power 0.58 W 0.54 W 0.47 W
Hours of ASR 9.5 h 10.3 h 11.8 h

Table 6.5: Expected hours of ASR with hardware/software solutions assuming a 20 kJ
battery

The bar on the left shows the energy consumption in the core, L1 caches, and the L2
caches. The bar on the right breaks down the energy into dynamic and static portions.
Running ASR on fixed-function accelerators is 2.4× and 3.6× more energy efficient than
running on a data-parallel processor and a simple scalar processor, respectively. The data-
parallel processor is able to reduce the energy consumption in the core as it is able to
amortize instruction delivery costs across many elements in a vector. It also runs faster,
reducing static energy.

The fixed-function accelerator can further reduce core energy, but the memory system
becomes the new energy bottleneck. When we include DRAM energy, the fixed-function
accelerator’s advantage has been further diminished. The memory energy wall presents a
new opportunity for reformulating algorithms and architectures to more efficiently handle
through-memory communication [47].

6.6 Summary

We wish to achieve always available mobile ASR untethered to WiFi or 3G networks.
To this end, we have proposed and constructed an ASR system with a variety of implemen-
tations of the two key kernels used in speech recognition. Our results show the potential
energy savings using data-parallel processors and custom hardware for mobile speech recog-
nition. Our results show energy savings of 3.6× over that of a conventional mobile processor
and 2.4× over that of a highly-optimized data-parallel processor. We also demonstrated a
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productive design-space exploration of potential speech recognition solutions using Three
Fingered Jack. Using our best automatically generated solution, given current battery life-
times, we can run ASR just under 12 hours.

We have demonstrated software and hardware mobile ASR solutions that are capable of
running all day while providing real-time performance. We believe our preliminary results
clearly demonstrate the benefit of accelerators for mobile ASR and the power of TFJ to
generate solutions for multiple platforms.
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Chapter 7

Conclusions and Future Work

The challenges associated with scaling high performance uniprocessor systems combined
with the rise of mobile systems has caused an explosion of potential implementation plat-
forms. Many applications can be implemented many different ways; however, if we wish to
evaluate this design space, we need prototypes for the elements of it. With current tools and
design methodologies, constructing functional prototypes for each hardware substrate is a
daunting prospect. As developing high performance software on a new platform routinely
takes weeks to months when doing initial development, alternative system platforms and
algorithmic approaches are rarely explored. This is because each implementation target re-
quires a radically different set of programming and design tools. For example, implementing
an application on a data parallel processor requires a complete rewrite in languages such as
OpenCL or CUDA.

Specialized hardware is rarely considered due to the even greater challenges of building
specializing processing engines, even though performance or energy improvements can be
anywhere from 2× to 100× better. Building custom hardware requires first describing the
micro-architecture of an accelerator in a high-level hardware description language such as
SystemC. As SystemC is effectively a C++ class library, designers can then use C++ ab-
stractions to evaluate architectural ideas. After converging on a final design, the designer
must manually convert the design into a representation amendable to hardware implemen-
tation such as a description in Verilog or VHDL. As the translation process from simulation
description to hardware description is done manually, it provides ample opportunity for the
introduction of hardware bugs and errors

To address the challenges associated with the explosion of implementation platforms,
we have proposed and implemented Three Fingered Jack. Three Fingered Jack is an auto-
parallelizing compiler for a subset of the highly productive Python language that allows
an end-user to target multicore processors and specialized data parallel processors and to
generate custom hardware all from the same Python source.

7.1 Contributions

In this section, we summarize the key contributions of this dissertation.
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7.1.1 Three Fingered Jack

Parallelizing and optimizing an application on a single parallel platform is challenging; –
attempting to target multiple parallel platforms is proportionally more difficult. To address
the challenges associated with mapping applications to multiple programmable platforms
and generating new custom hardware processing engines, we propose Three Fingered Jack.

The Design and Implementation of Three Fingered Jack

Three Fingered Jack extends the SEJITS ideas with key algorithms from parallelizing
compilers to target loop-nests. In Chapter 3, we describe the theory behind reordering trans-
formations and their application to automatic parallelization. We then describe the subset
of the Python language Three Fingered Jack supports and how unsupported constructs
will be executed in the Python interpreter. We detail Three Fingered Jack’s approach to
loop-nest optimization and describe the software architecture of the tool. The software ar-
chitecture details our approach to partitioning the framework into a front-end, reordering
engine, and code generation backends. We conclude Chapter 3 with the details of our ma-
chine code generator for both conventional multicore processors and specialized data parallel
processors.

The Evaluation of Three Fingered Jack’s Software Backends

Chapter 4 evaluates the performance results of software solutions generated by Three
Fingered Jack on conventional desktop and mobile multicore processors. We first evaluate
Three Fingered Jack with four numerical kernels: matrix multiply, diagonal sparse-matrix
vector multiply, and back propagation weight adjustment. On these four kernels, Three
Fingered Jack generates results that are within 33% to 100% of hand-tuned C++ imple-
mentations on desktop platforms.

As the evaluation of kernels is not a thorough enough test of a compiler framework, in
Chapter 4, we also evaluate Three Fingered Jack with two small applications in Chapter
4. Our first application, content-aware image resizing, resizes an image by removing “un-
interesting” regions using a dynamic programming algorithm. Both mobile and desktop
platforms have performances that are within a factor-of-two of the best parallelized C++
implementations on their respective platform. We use Horn-Schunck optical flow as our sec-
ond benchmark. This numerically intensive application calculates the apparent motion of
pixels between two frames of video. On our desktop platform, Three Fingered Jack achieves
42% of the hand parallelized C++ equivalent. The Three Fingered Jack solution has slightly
better results on our mobile platform as it achieves 63% of the hand parallelized equivalent
program. For both applications, we provide detailed profiling results to demonstrate per
kernel performance with respect to the equivalent C++ implementation.

Chapter 4 concludes with a demonstration of how an autotuning framework can be
implemented using Three Fingered Jack. We use Three Fingered Jack as the code generation
framework with the tuning decision logic implemented in interpreted Python to optimize
single precision matrix multiply. Our autotuner increases performance by 1.53× and 1.45×
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on our mobile and desktop platforms, respectively over our baseline implementation.

The Design and Evaluation of Three Fingered Jack’s Hardware Backend

Chapter 5 describes our approach to generating custom hardware from Python and
presents performance results on a modern FPGA platform. We begin the chapter by describ-
ing the micro-architecture of Three Fingered Jack’s predesigned system hardware template.
As building custom hardware with Three Fingered Jack relies on both high-level hardware
synthesis techniques to generate processing elements for a specific computation and a pre-
designed system hardware template, the predesigned system template connects the custom
generated processing elements to a memory hierarchy and performs any required synchro-
nization between the processing elements.

After detailing our predesigned system template, we then provide a detailed description
of the high-level hardware synthesis flow integrated into Three Fingered Jack’s hardware
backend. Our description of a high-level synthesis engine focuses on how we exploit the
data parallelism found by the reordering engine. In particular, we demonstrate how data
parallelism can be used to generate memory-level parallelism when our high-level synthesis
flow supports non-blocking memory operations. The ability to support multiple in flight
memory operations has the potential to significantly increase memory subsystem through-
put. To this end, we present our approach to pipelined memory accesses to structures with
non-deterministic access latencies. Our matrix multiply results show processing elements
built using our approach have up to 10× more memory-level parallelism than does a naive
implementation.

We evaluate solutions generated by the hardware backend of Three Fingered Jack on a
FPGA. We compare against a soft-core implementation of a RISC-style microprocessor, this
allows a comparison of the performance and area between two design methodologies that
use the same implementation technology. We use four kernels to evaluate our automatically
generated hardware: vector-vector addition, color conversion, matrix multiply, and Gaussian
mixture model evaluation. Compared to an optimized soft-core CPU, Three Fingered Jack
generated solutions are up to 12× faster and performance scales with increased hardware
resources.

To conclude Chapter 5, we investigate several different implementations of single-precision
matrix multiply to evaluate the performance impact of Three Fingered Jack’s hardware op-
timizations. By selectively enabling optimizations, we are able to generate non-blocked
matrix multiply accelerators with performances from 3 MFlops/sec to 57 MFlops/sec. Like-
wise, we are able to generate blocked matrix multiply accelerators with performance from
15 MFlops/sec to 98 MFlops/sec without modifying any Python source.

7.1.2 A Case Study in Mobile Speech Recognition using Three
Fingered Jack

Finally, we use Three Fingered Jack to explore different implementations of large vo-
cabulary continuous speech recognition in Chapter 6. This case study demonstrates the
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effectiveness of our approach to hardware and software codesign using large vocabulary con-
tinuous speech recognition. We productively explore different implementations across all
three target platforms supported by Three Fingered Jack.

By using Three Fingered Jack, we show our approach automatically generates software
solutions that are performance competitive with manually coded implementations despite
requiring significantly less source code. We also show our automatically generated hardware
is significantly more efficient than software-only solutions running on both conventional and
vector microprocessors. Specifically, our results show an energy savings of 3.6× over that
of a conventional mobile processor and 2.4× over that of a highly-optimized data parallel
processor.

7.2 Future Work

Three Fingered Jack has the potential for many future additions; frameworks will succeed
with the growth of its user community. If Three Finger Jack begins to be included in
mainstream SEJITS implementation infrastructure, it will be adopted by more and more
application developers. To that end, TFJ requires minor changes so that it will work with
ASP infrastructure. These changes will benefit ASP as well as TFJ because ASP [80] will
be improved from the adaptation of TFJs generation framework and its ability to optimize
dense loop-nests.

TFJ will benefit from the changes in several ways. First, if TFJ supported a larger
subset of Python than it currently does, its expressiveness and ease of use would increase.
Second, in the current implementation, users are required to manually predicate computa-
tion. Supporting conditional statements through if-conversion would make the framework
more approachable to programmers who are not familiar with TFJ. Third, extending TFJ
so that whole applications can be automatically tuned in the style of PetaBricks [11] would
expand implementation of an autotuner for matrix multiply. Finally, the evaluation of TFJ
would greatly benefit from more application studies.

We believe our approach to high-level hardware synthesis has several extension points.
Of particular interest is the interaction between reordering transformations and high-level
hardware synthesis. We currently use the data parallelism extracted by our reordering engine
to generate memory-level parallelism. We do this by producing pipelined scalar operations.
As a long-term goal, we would like to generate direct-memory access (DMA) operations
from data parallelism rather than from a sequence of scalar operations. Generating DMA
operations has two potential benefits. First, it would reduce the amount of state required
by the compiler and hardware to track. Second, because the Zynq family of FPGAs includes
a high performance DMA engine that can achieve peak memory bandwidth, it would allow
Three Fingered Jack to generate much higher performance FPGA solutions.
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7.3 Summary

We see platform diversity as one of the fundamental challenges facing application de-
velopers today and believe that the problem will only continue to grow. In order to map
applications to the most appropriate platform, it is essential that application developers have
tools that will allow them to productively explore the hardware platform design space. To
overcome the challenges associated with manual design space exploration, this dissertation
proposes a tool framework, Three Fingered Jack, that allows an end-user to map his or her
applications to multicore processors or specialized data parallel processors, or to generate
custom hardware all from a single Python description.

Our initial results with Three Fingered Jack have been encouraging. In our speech
recognition case study, we generated software solutions that are performance competitive
with hand parallelized C++ on desktop and mobile platforms, targeted specialized data
parallel processors, and automatically constructed highly efficient custom hardware all using
the same Python source code. We are confident that future applications will use Three
Fingered Jack to explore potential implementation platforms.
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