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Abstract 

Seasonal phenological dynamics of vegetation hold important clues on 

ecosystem performance towards management goals, like carbon uptake, and

thus should be considered in projections of their targeted services. However, 

in wetlands spatio-temporal heterogeneity due to mixing of open water, soil, 

green and dead vegetation makes it difficult to generalize ecosystem 

functioning across different regions. Remote sensing observations can 

provide spatially-explicit, cost-effective phenology indicators; however, little 

is known about their capacity to indicate the links between wetland 

ecosystem structure and function. Here we assessed this potential by 

comparing one-year Enhanced Vegetation Index (EVI) from satellite products 

at high (5m; RapidEye) and low (30m; Landsat) spatial resolutions with eddy 

covariance time series of net carbon exchange, field digital camera 

(phenocam) greenness and water temperature among three floristically 

similar restored wetlands in California, USA. Phenological timing differed by 

wetland site: depending on satellite, the range in site-median start of 

greening was up to 28 days, end of greening – up to 73 days, start of 

senescence – up to 79 days, and end of senescence – up to 10 days. Key 

transition dates from satellite inputs agreed with seasonal changes in net 

carbon exchange, phenocam greenness and water temperatures, suggesting

that phenological contrasts could result in part from site differences in 

vegetation configuration and litter affecting the exposure of canopy, soil and 

water to sunlight and thus sub-canopy microclimate and ecosystem 
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functioning. Yet, the agreement between satellite inputs was non-systematic,

with the greatest disparities at the more heterogeneous, less vegetated site. 

Phenological model fitting uncertainty increased with greater spatial 

resolution, highlighting the tradeoff between the accuracy of representing 

vegetation and the complexity of local seasonal variation. These findings 

highlight the sensitivity of satellite-derived phenology to structural and 

functional heterogeneity of ecosystems and call for more rigorous spatially-

explicit analyses to inform assessments of restoration and management 

outcomes.

Keywords: phenology; wetland; eddy covariance; heterogeneity; flux 

footprint; remote sensing
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1. Introduction

Remote sensing datasets, as they improve in temporal frequency, spatial 

coverage and resolution, are increasingly used to model and upscale 

ecosystem functions such as primary productivity and greenhouse gas fluxes

(Csillik et al., 2019; Knox et al., 2017; Wolf et al., 2016). Vegetation 

phenology, or variation in plant cycles following seasonal and inter-annual 

environmental dynamics, can modulate these functions in space and time 

(Keenan et al., 2014, 2012; Ma et al., 2017; Ryu et al., 2010), which can be 

manifested in the changes in spectral indicators of plant greenness (Gu et 

al., 2003; Melaas et al., 2018; Richardson et al., 2018; Vogelmann et al., 

2016). Remotely sensed phenological indicators have provided important 

insights on ecosystem sensitivity to climatic fluctuations (Friedl et al., 2014; 

Hufkens et al., 2012), disturbance (Kennedy et al., 2010; Sulla-Menashe et 

al., 2014) and land cover/use shifts (Zhang et al., 2015; Zhang and Weng, 

2016; Zhu, 2017), among other factors. However, phenological patterns may 

be also sensitive to less well understood local effects of vegetation structure 

on solar energy transfer and microclimate, which may produce heterogeneity

in ecosystem functioning, particularly in areas with complex environmental 

and floristic gradients (Huesca et al., 2015; Richardson et al., 2012; Tóth, 

2018; Vrieling  et al., 2018). To accurately model biogeochemical processes 

and ecosystem services across scales, it is critical to better understand the 

relationships between remotely sensed phenological complexity and on-the-
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ground ecosystem properties contributing to their dynamics and 

management responses. 

Restored wetlands present a particularly interesting and important case 

study to examine the phenological complexity and its implications for 

ecosystem functions targeted by management. Restoration has been 

globally expanding as a strategy to mitigate wetland losses and re-create 

their critical services such as carbon sequestration, ecological habitats, 

hydrological functions and coastal flood protection (Deverel et al., 2017; 

Hemes et al., 2019; Klemas, 2013; Miller and Fujii, 2010; Villa and Bernal, 

2018). However, as any ecological perturbation, restoration may lead to 

substantial spatio-temporal variability in ecosystem structure and function, 

particularly early in the recovery (Chamberlain et al., 2018; Chapple and 

Dronova, 2017; Dronova and Taddeo, 2016; Eichelmann et al., 2018; Suding,

2011; Zhao et al., 2016). Restored systems with varying degree of spatial 

heterogeneity thus offer a prime setting to study the impact of phenological 

complexity on ecosystem functions. Leveraging remote sensing to assess 

restoration outcomes in a spatially-explicit manner is critical to expand the 

scope of monitoring efforts in heterogeneous, isolated, large, or sensitive 

sites and to assess the progress towards targets or detect early signals of 

undesirable shifts (Eichelmann et al., 2018; Hemes et al., 2019; Matthes et 

al., 2014; McNicol et al., 2017; Taddeo and Dronova, 2019, 2018).

The relationship between vegetation structure and ecosystem function 

during post-restoration recovery has been documented by several recent 
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studies in deciduous herbaceous marshes showing that change in the 

relative coverage by plants versus open water affects surface energy 

balance, evapotranspiration and water temperatures (Detto et al., 2006; 

Eichelmann et al., 2018; Goulden et al., 2007; Hill and Payton, 2000; 

Rejšková et al., 2012; Smesrud et al., 2014). In the absence of periodic 

flushing, marshes dominated by reeds may also accumulate large amounts 

of dead matter (litter) which affects canopy transfer of solar radiation and 

thereby plant density, leaf area, aboveground productivity (Dronova and 

Taddeo, 2016; Rocha et al., 2008; Rocha and Goulden, 2009; Schile et al., 

2013) and evapotranspiration (Eichelmann et al., 2018; Goulden et al., 

2007). Dense litter may substantially reduce sub-canopy soil and water 

temperatures (Eichelmann et al., 2018; Goulden et al., 2007), affecting 

seasonality of plant and microbial metabolism and thus the phenological 

timing of plant establishment and growth (Flanagan et al., 2015; O’Connell et

al., 2019). Varying presence of litter and open water to vegetation coverage 

can be expected to produce heterogeneity in the timing of phenological 

transitions and ecosystem productivity even among floristically and 

hydrologically similar wetlands. 

Spatially explicit indicators of vegetation phenology derived from remote 

sensing data could thus represent such structure-function feedbacks 

(Butterfield and Malmstroem, 2009), as suggested by the previously reported

correlations between greenness and ecosystem function (Knox et al., 2017; 

Ryu et al., 2010; Toomey et al., 2015) and the sensitivity of such correlations
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to canopy structure and its effects on photosynthetic efficiency of plants 

(Dronova et al., 2011; Dronova and Taddeo, 2016; LaRue et al., 2018; Rocha 

et al., 2008; Smith et al., 2002). Phenologically informed indicators of 

ecosystem function are also desirable for up-scaling local management 

outcomes to broader regions of decision making (Byrd et al., 2014; Knox et 

al., 2017; Richardson et al., 2012), at which assessment of 3-dimensional (3-

D) vegetation structure (e.g., with light detection and ranging (lidar) 

systems) remains extremely costly. Fulfilling this potential requires a better 

understanding of how the choice of a remote sensing product may affect 

phenological interpretation depending on its spatial resolution and temporal 

frequency, as well as landscape configuration of the target ecosystems 

themselves. Historically popular imagery with 30+m spatial resolution has 

limited sensitivity to spatial structure of complex systems such as wetlands; 

yet the multi-decadal archives of such datasets provide nonparallel records 

of the long-term site dynamics (Bolton et al., 2020; Melaas et al., 2016, 

2013; Woodcock et al., 2020). In turn, emerging products offering both high 

spatial resolution (≤10m) and high temporal frequency (<7days) can make 

spatially explicit phenological assessments more informative (Vrieling et al. 

2018); however, it is not yet well understood to what extent the increase in 

spatial detail might complicate phenological estimation or differ in outcomes 

relative to the coarser-resolution inputs. Filling this gap becomes critical for 

developing new image products from sensors that differ in spatial resolution 
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and temporal frequency but might be used interchangeably to assess 

ecosystem performance (Bolton et al., 2020; Claverie et al., 2018). 

In response to these needs, our study comparatively assessed 

phenological characteristics in a set of restored freshwater wetlands in 

California’s Sacramento-San Joaquin Delta, USA (Figure 1) using one-year 

imagery from two satellite products at high (5m) and moderate (30m) spatial

resolutions. To better understand the local sensitivity of phenology to the 

feedbacks between structure and function, we also leveraged the time series

of net carbon exchange, water temperature, and digital photograph 

(phenocam) greenness from the AmeriFlux eddy covariance stations. Our 

objectives were to assess 1) whether satellite-based phenological indicators 

of the greening and senescence timing differed among wetland sites with 

varying configuration of vegetation patches; 2) to what extent phenological 

metrics were sensitive to seasonal variation in ecosystem productivity 

represented by the nearly continuous field-measured indicator of carbon 

dioxide (CO2) sequestration and phenocam spectral greenness, and 3) to 

what extent remote sensing-based estimates of phenological timing agreed 

between two satellite products with different spatial resolution. We expected 

that wetlands with larger and more contiguous patches would reach seasonal

peaks of greenness and net CO2 uptake later than wetlands with lower and 

more fragmented vegetation coverage, due to greater likelihood of 

accumulating litter which may restrict solar energy transfer and sub-canopy 

water temperatures. Using our results, we further discuss the potential of 
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cost-effective satellite-derived phenological metrics to elucidate canopy 

structure-function relationships in assessments of restoration outcomes in 

heterogeneous ecosystems with limited site access and key future research 

needs. 

FIGURE 1 ABOUT HERE

2. Methods

2.1. Study area and wetland sites

This study was conducted in the Sacramento-San Joaquin Delta, 

California, USA (hereafter the Delta), a region with Mediterranean climate 

characterized by wet, cool winters and dry, hot summers which allow for 

extensive cloud-free periods during the main growing season (March-

October). This region is currently undergoing extensive wetland restoration 

efforts aimed at reversing land subsidence and re-establishing wildlife 

habitat, recreational opportunities and other benefits (Bekaert et al., 2019; 

Deverel, 2015; Deverel et al., 2010; Knox et al., 2015; Schaffer-Smith et al., 

2018; Sharma et al., 2016). Of particular interest is the potential of restored 

wetlands to promote carbon sequestration and reduce emissions of 

greenhouse gases (Hemes et al., 2019; Knox et al., 2017; Matthes et al., 

2014; Miller and Fujii, 2010; Oikawa et al., 2017), a goal shared across a 

broader domain of emergent freshwater marshes (Chu et al., 2014; Franz et 

al., 2016; Minke et al., 2016; Stefanik and Mitsch, 2012; Strachan et al., 

2015). Quantifying and projecting wetland ecosystem functioning at the 

regional scale requires a deeper understanding of the role of spatio-temporal
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complexity in wetland performance towards their management targets (Chu 

et al., 2015; Matthes et al., 2014; McNicol et al., 2017).

Our study focused on three wetland sites (Table 1) in the western part of 

the Delta (Figure 1) that had been established in 1997 (West Pond, or WP, 

AmeriFlux code US-Tw1), 2010 (Mayberry Farms, or MB, code US-Myb) and 

2014 (East End, or EE, code US-Tw4). Currently all of them function as 

managed freshwater marshes excluded from tidal impacts, dominated by 

cattails (Typha spp.) and tule (Schoenoplectus acutus) reeds. The sites differ 

in size and initial design (Table 1); the oldest one was initially engineered as 

a fully graded unit, half-planted with tule (Miller and Fujii, 2010), while the 

other two sites were created with greater bathymetric complexity but no 

specific design for emergent wetland vegetation (Dronova and Taddeo, 

2016; Hemes et al., 2018; Knox et al., 2017). All these sites provide publicly 

available AmeriFlux (https://ameriflux.lbl.gov) eddy covariance 

measurements of the greenhouse gas carbon dioxide (CO2), methane (CH4) 

and water vapor (H2O) fluxes, as well as fixed-view above-canopy digital 

photographs (phenocam data) and several ecosystem parameters, including 

water temperature, administered by the UC Berkeley Biometeorology Lab. 

Eddy covariance technique involves high temporal frequency measurements 

of atmospheric concentrations of the abovementioned gases (using field-

mounted open-path gas analyzers) together with the three-dimensional wind 

speed and several other environmental drivers (Baldocchi et al., 1988; 

Hemes et al., 2019). These measurements can be converted to greenhouse 
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gas and carbon budgets for a given time frame of interest (e.g., daily) and 

compared with phenological indicators derived from remote sensing images 

(Gonsamo et al., 2013; Knox et al., 2017). Within each wetland site, 

phenocam and water temperature data were collected at one location 

associated with the eddy covariance flux station. 

These wetlands provide a useful setting for comparing phenological 

patterns because, despite their geographic proximity and similarities in 

vegetation and hydrology, they markedly differ in their landscape surface 

configuration (Eichelmann et al., 2018) due to varying size and geometry of 

plant patches and vegetation structure (Table 1). The oldest wetland (19 

years in 2016, WP) is nearly fully vegetated, and near the peak season of 

2016 had the tallest canopy among the three sites (Table 1). In contrast, the 

MB wetland (6-year old in 2016) is a mosaic of open water and smaller, more

geometrically complex vegetated patches (Figure 1) covering ~64% of the 

whole site (Table 1). Plant canopies at MB had litter layers on average of 

similar height as in WP, but shorter live vegetation and lower green leaf area 

(Table 1). Finally, the youngest site (EE, 2 years in 2016) had the highest 

green leaf area and shortest litter layer among the three wetlands (Table 1). 

However, percent vegetation cover and mean patch size of EE were greater 

than those of MB (Table 1), likely because this wetland experienced a rapid 

colonization by Typha spp. in its first post-restoration summer and developed

relatively large patches that had persisted since. 

TABLE 1 ABOUT HERE
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2.2. Remote sensing data 

We used two satellite remote sensing datasets for the year 2016 with high

frequency of cloud-free dates (Table A1, Appendix): 1) Landsat-8 Operational

Land Imager (OLI) Tier I surface reflectance product at 30m spatial 

resolution, publicly available via the U.S. Geological Survey archive and 

Google Earth Engine (Gorelick et al., 2017) catalog (16 dates), and 2) 

RapidEye imagery at 5m spatial resolution provided by the Planet Labs 

Education and Research Program (21 dates). The latter program by Planet 

Labs Inc. allows researchers and educators to apply for non-commercial, 

limited cost-free access to the RapidEye archive and Planetscope imagery for

various landscape analysis applications. In this study RapidEye data provided

a unique opportunity to assess wetland phenology at high spatial resolution 

and temporal frequency and compare this inference with traditionally 

popular 30-m Landsat data (e.g., Melaas et al., 2016, 2013; Mo et al., 2015). 

Another reason for comparing these products was the length of their 

missions’ archives, covering substantial portions of the post-restoration 

history of these sites (with Landsat 30-m data going back to mid-1980s and 

RapidEye imagery – to 2009), which could facilitate longer-term multi-year 

phenological analyses in the future. 

All Landsat images in this study were from the same tile which 

corresponded to path/row 44/34 in this satellite’s World Reference System 2 

and covered all three study sites. In turn, RapidEye data were selected so 

that all three wetland sites were captured by the same dates. We then 
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converted each image individually from the at-sensor radiance to ground 

surface reflectance using imagery metadata and 6S algorithm (Kotchenova 

and Vermote, 2007), as surface reflectance product was not available from 

the provider for 2016. Satellite images were clipped to the spatial extents of 

the biometeorological flux footprints of each AmeriFlux eddy covariance 

tower averaged for the year 2016, which resulted in 30, 81 and 30 Landsat 

pixels and 928, 2234 and 784 RapidEye pixels for West Pond, Mayberry 

Farms and East End, respectively (Supplementary Table S1). Flux footprints 

represent areas of the landscape from which 90% of the flux originates, and 

were generated using an analytical two-dimensional footprint model (Detto 

et al., 2006; Hsieh et al., 2000; Knox et al., 2017). Each satellite image was 

then converted into Enhanced Vegetation Index (EVI (1); Huete et al. 2002) 

as a proxy of greenness:

EVI=
2.5∗( NIR−¿ )

(NIR+6∗¿−7.5∗¿+1)
,(1)

where Blue, Red and NIR indicate spectral reflectance in the blue (0.450-

0.515 μm for Landsat and 0.440-0.510 μm for RapidEye), red (0.630-0.680 

μm for Landsat and 0.630-0.685 μm for RapidEye) and near-infrared (0.845-

0.885 μm for Landsat and 0.760-0.850 μm for RapidEye) electromagnetic 

regions, respectively. EVI was selected due to its wide use in phenological 

remote sensing studies (Klosterman et al., 2014; Melaas et al., 2018, 2016, 

2013; Toomey et al., 2015), as it can circumvent important limitations of 

other popular indices, particularly the tendency to saturate in closed 
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canopies (Huete et al., 2002). Furthermore, in an earlier study focusing on 

two of our wetland sites, Landsat-based EVI showed stronger correlations 

with gross primary productivity than a set of other satellite-derived indices 

(Knox et al., 2017). Spectral indices and subsequent phenological metrics 

(Table 2) were estimated in Matlab software version R2018b (MathWorks 

Inc.).

FIGURE 2 ABOUT HERE

To identify pixels most likely to represent vegetation phenology, we 

applied a spatial form of principal components analysis transformation 

(Machado-Machado et al., 2011) to each image time series using all the 

pixels within the flux footprints at the three sites. This transformation 

produces a series of outcomes, or principal components (PCs) representing 

common types of seasonal EVI trajectories in order of decreasing prevalence 

(as indicated by variance explained by each PC), with the maximum possible 

number of components equal to the number of pixels in a single-date image 

within the flux footprint. As the dominant plant species of our wetland sites 

were deciduous perennials, we focused on the “deciduous” trajectory with an

early-season increase in greenness during the greening phase and 

subsequent decline in greenness during the senescence phase. For both 

Landsat and RapidEye inputs, such a trajectory was captured by the first two 

PCs which together accounted for 90.3% and 82% variation in each dataset, 

respectively (Supplementary Figure S1). In contrast, the trajectories 

captured by PCs 3 and 4 (Supplementary Figure S1) showed strongest 
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correlations with pixels from non-vegetated portions of roads and berms 

within the footprints. Pixels whose trajectories showed a linear correlation of 

0.7 or greater with either of the first two PCs were selected for subsequent 

phenological metric estimation. Among these, pixels with trajectories similar 

to PC1 were the overwhelming majority, occupying 70-100% of the flux 

footprints (Supplementary Table S1).

2.3. Phenological metric estimation and comparison among 

wetland sites

Next, we estimated a set of phenological parameters for individual pixel 

seasonal trajectories  by fitting the non-symmetrical double-logistic curves 

(Bauer et al., 2017; Head et al., 2004) to each satellite’s EVI time series and 

interpolating EVI to a daily step:

EVI (t )=P1+
P2

1+eP3(P¿¿4−t )
+

P2

1+eP5(P¿¿6−t ) ,(2)¿
¿

where the parameters P1, P2,…, P6 determine the shape and asymmetry in 

the fitted double-logistic curve function (Bauer et al., 2017), while t indicates 

the consecutive day of year (DOY). The double-logistic function (2) was then 

fit using Matlab lsqcurvefit function, and the updated parameter values were 

used to interpolate EVI to a daily step (details are given in Supplementary 

Material, section B). Goodness of fit was assessed using root mean square 

error (RMSE) as a measure of deviation in the fitted model curve from the 

empirical data in a pixel series. 
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Statistical distributions of RMSE contained outliers exceeding the value

of 0.05, which corresponded largely to roads, berms and open water that 

were not representative of wetland vegetation, but also in some cases – 

vegetated areas with complex EVI trajectories where (2) was not sufficiently 

applicable despite their similarity with PC1 or PC2. Several corrective 

measures were applied to avoid immediately excluding such pixels from 

phenological estimation (discussed in Supplementary Material section B, 

Table S2 and Figure S3). These measures ranged from simpler steps, such as

re-fitting (2) after removing the observation with the largest residual, to 

more complex measures, such as using a Fourier function as an alternative 

harmonic regression model, or a combination of multiple strategies 

(Supplementary Material section B, Table S2 and Figure S3). Such re-

assessments were more common with RapidEye data, especially at the MB 

site where 69% RapidEye pixels retained after masking were fitted with the 

double-logistic model, in contrast to 86-100% pixels for other site/sensor 

combinations (Supplementary Table S3). Pixels where none of the strategies 

improved model fitting were excluded from the analyses (Supplementary 

Material section B).

Next, curvatures in the daily-interpolated EVI series were used to 

estimate five metrics of phenological timing (Table 2; Supplementary Figure 

S2; Supplementary Table S4): start and end of greening (SOG and EOG, 

respectively) and senescence (SOS and EOS) and the duration (DUR) of the 

growing season (Table 2; Supplementary Figure S2). For pixels fitted with 
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double-logistic model (1), these estimates were typically based on the local 

minima and maxima of the 3rd derivative in the interpolated EVI series, 

indicating changes in the rate of greenness dynamics at the onsets and end 

times of greening and senescence (Gonsamo et al., 2013; Misra et al., 2016; 

Tan et al., 2011). Depending on a site, such cases corresponded to 91-100% 

fitted pixels with Landsat data and 52-77% pixels with RapidEye inputs 

(Supplementary Table S3). In special cases where curvatures at the 

beginning or end of the season were insufficiently captured by the data 

series or an alternative fitting model was used (Supplementary Material 

section B, Tables S2 and S4), local minima or maxima of the 2nd derivative 

were admitted as the next closest approximation of phenological change 

(Tan et al., 2011). Maximum greenness (MAXG, Table 2) was estimated from 

the original pixel EVI values rather than predicted values, so that it could be 

later compared with model RMSE. We expected that such a comparison 

would help differentiate cases when modeling uncertainty resulted from 

lower vegetation coverage and higher background exposure within a pixel 

(Dronova and Taddeo, 2016) versus a disagreement between the 

hypothetical fitted model and the spectral trajectory of pixels with high 

vegetation coverage, and hence higher maximum greenness.   

Importantly, the potential (dis)agreement of phenological metrics 

between different satellite products may depend on multiple characteristics 

of the product characteristics, including pixel size, specific timing of image 

acquisitions and instrument characteristics, among others. Therefore, to 
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better understand the implications of varying spatial resolution on 

phenological estimation and differences between Landsat and RapidEye 

inputs, we additionally aggregated RapidEye data to a 30m pixel size 

matching Landsat’s resolution and evaluated the same phenological metrics 

for 30m RapidEye-based pixels. We then compared median values and 

statistical distributions of all phenological metrics within flux footprints 

among the wetland sites and among the satellite inputs using non-

parametric Mood’s median test (Mood, 1950) and Kruskal-Wallis distribution 

test (Kruskal and Wallis, 1952), respectively. 

2.4. Relationships among satellite-based phenological 

transitions and field-measured ecosystem properties

To assess the potential relationships between the indicators of satellite-

detected phenology and ecosystem function, footprint-level mean and 

median values of the four phenological timing metrics representing start and

end of greening and senescence phases (SOG, EOG, SOS and EOS) were 

compared with 2016 time series of  two field-based ecosystem variables: 

spectral greenness indicator derived from midday digital photographs taken 

by in situ phenocams (green chromatic coordinate, or GCC (Woebbecke et 

al., 1995) and daily gap-filled net ecosystem exchange for CO2 (NEE; 

negative values indicate net ecosystem uptake (Chapin et al., 2006); gC-

CO2m-2d-1) from the flux towers. We subsequently fit the double-logistic 

model (2) to each site’s GCC and NEE time series to estimate the days of 

year associated with their key seasonal transitions (curvatures). We then 
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regressed the days of the key transitions for GCC and NEE against the start 

and end dates of greening and senescence estimated from the satellite-

based EVI and compared the slopes and intercepts of the regressions with 

the 1:1 model (slope=1 and intercept=0) and between models using Landsat

versus RapidEye-based metrics. We acknowledge that such relationships 

between EVI-based metrics and GCC should be interpreted with caution due 

to the view angle differences between oblique phenocam images and 

satellite data (Bolton et al., 2020; Vrieling et al., 2018). However, as field 

datasets provide independent, high temporal frequency series with large 

number of observations, they are useful for verifying the general agreement 

between satellite-derived metrics and ground-based ecosystem transitions.

Finally, we compared satellite-measured EVI with water temperatures 

summarized as daily averages for the image dates of each time series (Table

A1, Appendix) using field measurements from one location at each site, at 

10-cm depth at MB and EE and 8-cm depth at WP. Water temperatures were 

used here to represent potential effects of vegetation and canopy structure 

on solar radiation transfer, and thus canopy microclimate (Eichelmann et al., 

2018; Rocha et al., 2008; Schile et al., 2013). We further examined whether 

three wetland sites differed in the magnitude of their daily mean water 

temperature during the growing season and in the slopes of EVI-water 

temperature regressions for the dates of satellite image acquisitions. 

3. Results

3.1. Site and sensor differences in phenological timing
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Estimated phenological transition dates differed among wetland sites 

(Figure 2a-d), with several notable features. First, WP, the site with the 

highest vegetation and litter coverage (Table 1) showed pronounced delays 

in greening compared to other wetlands (Figure 2a,b); however, specific 

nature of these contrasts varied by satellite input. For Landsat, the median 

start of greening (Figure 2a, Table A2, Appendix) was relatively synchronous 

across the sites, with a 3-day difference between WP and MB (p>0.1), a 7-

day difference between WP and EE (p>0.1) and an 9-day earlier onset at EE 

compared to MB (p=0.003). However, the median end of greening (Figure 

2b, Table A2, Appendix) at MB was substantially earlier than at both WP (~73

days, p<0.001) and EE (~66 days, p<0.001), while the latter two sites 

showed similar timing (p>0.1). In contrast, for RapidEye 5m inputs, both 

median values and distributions of the start (Figure 2a) and the end (Figure 

2b) of greening were significantly different across all site pairs (p<0.001, 

Table A2, Appendix), but all of these median transition date estimates 

similarly indicated greater (by 12-28 days) delay in greening at WP 

compared to the other two sites. For RapidEye data aggregated to 30m pixel 

size, however, only SOG was significantly different between all site pairs, but 

not EOG (Table A2, Appendix).

These differences were also reflected in the spatial distribution of 

greening dates, where the two most recently established sites, MB and EE, 

showed a greater proportion of pixels with relatively earlier start and end of 

greening compared to WP (Figures 3a-c for RapidEye-based start of greening
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and Figure 3d-f for the end of greening). At the same time, however, the 

agreement in greening transition dates between two satellite products was 

not systematic among the sites (Figure 2a,b), showing the greatest disparity 

for the more heterogeneous MB wetland where Landsat-based median end of

greening was 64 days earlier than RapidEye’s at 5m resolution (Figure 2b).

FIGURE 2 ABOUT HERE

The timing of senescence also contrasted among the sites and satellite 

inputs. For Landsat, both the start and the end of senescence were not 

significantly different for any site pair (all p-values >0.1, Table A2, 

Appendix). For RapidEye 5m input, however, all differences were significant 

(p<0.001), except the start of senescence between WP and EE (p>0.1, Table

A2, Appendix). Two most vegetated sites WP and EE, again, showed the most

substantial delay in the start of senescence compared to MB (78 and 79 

days, respectively, Figure 2c). In contrast, the RapidEye-based end of 

senescence for 5m inputs differed among the sites by only 2-7 days, 

comparable to 3-10 days for Landsat (Figure 2d). For RapidEye pixels 

aggregated to 30m, only SOS significantly differed between MB and the 

other two sites, while no site pairs significantly differed in EOS (Table A2, 

Appendix).

Spatial variability in senescence dates also differed among three 

wetlands, showing a more pronounced heterogeneity in the MB footprint 

(Figure 3h and 3k) but also greater prevalence of late start and end of 

senescence values at WP (Figure 3g and 3j) and EE (Figure 3i,l). Greater 
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overall variability of transition dates within the footprint of the more complex

MB wetland (Figures 3b,e,h,k) also highlighted the contrasts in phenology 

between main vegetation patches and pixels representing water channels 

and water-vegetation edges (visible as the interfaces between darker water 

and lighter vegetation in reference images in Figure 3q). Water channel and 

edge pixels were often characterized by later greening and earlier 

senescence, which could result from differences in ecosystem elements and 

vegetation contributing to greenness dynamics and contrasts in physical 

environment (i.e., open water versus emergent patches).

FIGURE 3 ABOUT HERE

Median duration of the growing season (Figure 2e) was similar for all site 

pairs for Landsat estimates (p>0.1), but for RapidEye it was significantly 

longer at EE and MB compared to WP (by 28 and 27 days, respectively, 

p<0.001 for each, Table A2, Appendix). After aggregating RapidEye pixels to 

30m, all site pairs significantly differed in duration metric. Spatial variation in

per-pixel duration estimates (Figures 3m-o) suggested that the latter 

differences resulted from presence of pixels with relatively early onset of 

greening and relatively late senescence in both younger sites, which could 

be areas where wetland vegetation was not obstructed by litter early in the 

season. In contrast, most of the pixels at the oldest WP site (RapidEye 

example in Figure 3m) corresponded to litter-laden patch interiors with a 

relatively shorter growing season.  
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Finally, seasonal maximum of EVI significantly differed across the three 

sites and their individual pairs regardless of the sensor (all p-values <0.05), 

with the oldest WP site being the greenest, followed by the youngest EE as 

the second greenest (Figure 2f). These patterns were largely consistent 

among the two satellite datasets, although RapidEye-based estimates of 

maximum greenness exhibited longer tails of high values in their 

distributions compared to Landsat-based ones (Figure 2f). These tails were 

likely due to the greater chance of capturing smaller clumps of green 

vegetation cover with 5m pixels compared to 30m ones. For RapidEye 

aggregated to 30m, maximum greenness significantly differed only between 

MB and each of the other sites (Table A2, Appendix). 

Among the satellite inputs, the lowest agreement in metric estimates 

occurred at the most heterogeneous MB site where all except maximum 

greenness significantly differed between Landsat and both RapidEye inputs 

(Table A2, Appendix). For EE and WP, site-median differences between 

Landsat and 5-m RapidEye metrics were within 1-14 days for SOG and EOG 

(Figure 2a,b) and within 0-19 days for SOS, EOS and duration (Figure 2c,d,f). 

In contrast, for MB, input differences were most pronounced for the 

curvatures near peak growing season, showing a 64 day earlier EOG and 72-

day later SOS with Landsat (Figures 2b and 2c, respectively). Differences in 

median SOG, EOS and DUR at MB were within 17-20 days, comparable to the

other two sites. However, most phenological metrics did not significantly 

differ between Landsat and 30-m aggregated RapidEye except MAXG for WP 
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(Table A2, Appendix). Similarly, only three metrics significantly differed 

between the original and aggregated RapidEye inputs: SOG and DUR for MB 

and MAXG for WP (Table A2, Appendix), indicating no substantial effect of 

RapidEye scaling on phenological estimation in more vegetated sites.

3.2. Curve-fitting error and sensitivity to spatial resolution of 

remote sensing data

The median RMSE of the fitted phenological curve models did not 

significantly differ among three wetlands for Landsat data (p=0.074; Figure 

A1, Appendix). For RapidEye 5m input, median RMSE did not differ between 

WP and MB (p>0.1) but was significantly lower at EE than at each of the 

other two sites (p<0.001). When compared among the satellite inputs, 

median RMSE was significantly (p<0.001) higher for the original 5m 

RapidEye estimates compared to Landsat’s and for the aggregated RapidEye

input for each site (Figure A1, Appendix). The proportion of pixels where 

transition dates could be estimated using only 3rd derivative extrema of the 

double-logistic model alone was also lower for RapidEye (52-77%; 

Supplementary Table S3) compared to 91-100% for Landsat (Supplementary 

Table S3). 

Spatial distribution of RMSE within the flux footprints (Figure 4a,c,e,g,i,k) 

indicated presence of local hotspots of higher fitting error that were also 

more evident at higher spatial resolution of RapidEye (Figure 4a,e,i). 

Comparing these local clusters of high RMSE to footprint aerial images 

(Figure 3p-r) revealed that they were more common at the different types of 
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wetland vegetation edges: near roads and berms, visible in the WP footprint 

(Figures 4a and 3p) and upper left portion of the MB footprint (Figures 4e and

3q), and near the vegetation-water interfaces in the lower left and central 

parts of the EE footprint (Figures 4i and 3r) and parts of the MB footprint 

(Figures 4e and 3q). Notably also, areas of higher RMSE often corresponded 

to areas with higher maximum greenness (Figure 4b,f and j for RapidEye and

Figure 4d,h and l for Landsat). In fact, per-pixel RMSE significantly and 

positively correlated with maximum EVI for nearly all site-sensor 

combinations with p-value<0.001 and R2 ranging between 0.32 and 0.66 

(except for Landsat metrics at MB, p>0.1). In contrast, image regions with 

lower RMSE (Figures 4b,f and j) often coincided with larger, contiguous 

patches of wetland vegetation (Figures 3p-r).

FIGURE 4 ABOUT HERE

3.3. Agreement between satellite-based phenological metrics 

and field variables

Both phenocam greenness (GCC) and net carbon exchange (NEE) followed

a seasonal trajectory similar to the double-logistic model of satellite-based 

greenness for vegetation (Figures 5a and 5b, respectively). Both GCC and 

NEE increased in magnitude during the first half of the year, stayed close to 

their mid-year asymptotic values for a certain period of time and 

subsequently reversed in late fall. However, specific shapes and timing of 

these trajectories varied by site. The oldest site (WP) showed a later onset of 

GCC greenness (~DOY 98) compared to MB and EE (~DOYs 69 and 51, 
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respectively); however, the end of greening for GCC was similar between two

more vegetated sites (DOYs 160 and 167 for EE and WP, respectively) than 

for MB (DOY 117). The latter site also had lower maximum GCC and lower 

magnitude of NEE (Figures 5a and 5b), which could be partially attributed to 

field-detected increases in water salinity during 2015-2016 that may have 

reduced the productivity and increased plant stress (Chamberlain et al., 

2019). The dynamics of NEE indicated an earlier onset for MB around DOY 68

compared to 85 and 99 at EE and WP, respectively, followed by an earlier 

saturation near DOY 125, compared to 137 for EE and even more delayed 

(192) for WP (Figure 5b). There were also notable site differences during the 

senescence phase: for GCC, senescence at MB started approximately 102 

and 140 days earlier than for EE and WP, respectively, though ended at a 

similar time close to DOY 318. For NEE, the senescence phases were delayed

at WP and EE compared to MB by 17 and 19 days, respectively, at the onset 

of senescence and by 31 and 45 days, respectively, at the end (Figure 5b). 

Field-measured water-temperature (Figure 5c) showed a strong seasonal 

change pattern for all sites, but differed in the rates of increase and 

maximum values (Figure 5c). It was consistently the lowest at WP during the 

main part of the growing season and similarly delayed in its seasonal 

increase compared to the other two sites, as could be expected with a taller 

canopy and presence of a litter layer affecting solar radiation transfer 

through the canopy and canopy microclimate (Eichelmann et al., 2018; 

Schile et al., 2013). In contrast, water temperature at MB site with greater 
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surface complexity and smaller vegetated patches was consistently the 

highest among three wetlands, also showing an earlier seasonal increase 

(Figure 5c).

FIGURE 5 ABOUT HERE

Satellite-estimated transition dates for greenness and senescence 

strongly aligned with the DOYs of the key seasonal transitions (all p<0.001) 

from the field-measured phenocam greenness and NEE (Figure 6a,b). For 

models comparing satellite and field GCC transition dates (Figure 5a), 

regression slopes were not significantly different from 1, nor did they differ 

between two satellite inputs (both p>0.1, Table 3) despite the degree of 

mismatch between satellite and phenocam fields of view (Knox et al., 2017). 

However, for NEE transitions (Figure 5b) the slopes of regression with 

Landsat and RapidEye’s median DOYs were significantly greater than 1 

(p=0.005 and p=0.009, respectively, Table 3). These patterns indicated the 

tendency of satellite-based transitions to occur slightly ahead of the 

corresponding changes in NEE early in the season, and slightly after NEE 

changes late in the season (Figures 5b and 6b). 

FIGURE 6 ABOUT HERE

TABLE 3 ABOUT HERE

Finally, water temperature for the dates of satellite image acquisitions 

significantly and positively correlated with EVI of the corresponding remote 

sensing series (Figure 7a,b). The slopes of these relationships did not differ 

between satellite inputs for any of the sites (p>0.1 for all slope 
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comparisons). However, for both Landsat (Figure 7a) and RapidEye (Figure 

7b), the slope of EVI-water temperature relationship for WP was significantly 

steeper than for either MB (p=0.006 and p=0.001 for Landsat and RapidEye, 

respectively) or EE (p=0.026 and p=0.023 for Landsat and RapidEye, 

respectively), and did not differ between the latter (p>0.1 for each). In turn, 

water temperatures corresponding to the dates of estimated SOG and EOG 

for each satellite series significantly differed (p<0.001) between three sites. 

These temperatures, however, were all lower for WP, indicating cooler sub-

canopy conditions at the onset and the end of greening. 

FIGURE 7 ABOUT HERE

4. Discussion 

4.1. Spatial phenological heterogeneity as the indicator of 

restoration outcomes

As ecological restoration efforts continue expanding, the need to 

understand how their novel outcomes contribute to ecosystem management 

and conservation becomes ever more urgent (Matthews et al., 2009; Mitsch 

et al., 2013; Villa and Bernal, 2018). Our analysis of satellite-based 

phenological metrics across three restored wetlands in California’s Delta 

region corroborates the unique potential of remote sensing to help develop 

this understanding via repeated cost-effective observations. Our findings 

also highlight the need for more spatially explicit phenological analyses, for 

two important reasons. First, the timing of phenological transitions appears 

to vary substantially among wetland sites with similar geographic setting, 
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vegetation and hydrology but contrasting surface composition and canopy 

structure. This limits the representativeness of aggregated single-site data 

and calls for individual, spatially explicit site-level observations which are 

becoming increasingly feasible (Csillik et al., 2019; Gorelick et al., 2017; 

Tóth, 2018; Woodcock et al., 2020). Second, we find that the agreement in 

phenological indicators between satellite inputs of different spatial resolution

may also vary among wetlands with different amount and configuration of 

vegetation cover. Such differences in spatial heterogeneity and phenology 

may further contribute to the functional contrasts among sites, as suggested 

by the agreement between satellite-detected EVI transition dates and the 

timing of in situ measured phenocam greenness and CO2 exchange (Figure 

5). 

From the remote sensor’s perspective, two main factors likely contributed

to heterogeneity of phenological metrics and challenges in their estimation: 

wetland surface and plant composition (Vrieling et al., 2018) and the effects 

of non-photosynthetic plant matter on canopy structure, radiative transfer 

and microclimate (Dronova and Taddeo, 2016; Farrer and Goldberg, 2009; 

Rocha et al., 2008; Schile et al., 2013). Despite relatively low diversity of the 

emergent vascular plants in these wetlands, some non-dominant species 

could have distinct seasonality and form local patches large enough to 

influence pixel-level EVI dynamics. For example, portions of the flux 

footprints near roads and berms included grasses, herbs and sometimes 

woody species, while some of the open-water areas had floating aquatic 

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658



vegetation. Both types of such locations (i.e., berms and open water areas; 

Figure 3p-r) differed in phenological timing from the reed-dominated wetland

patches, particularly for the start of greening (Figure 3a-c) and duration 

(Figure 3m-o). 

In turn, the 3-D complexity of plant canopies and presence of dead 

biomass (Dronova and Taddeo, 2016; Rocha et al., 2008; Rocha and 

Goulden, 2009; Tóth, 2018) likely contributed to the wide range of start and 

end dates of phenological phases observed even within the larger wetland 

vegetation patches (Figure 3p-r). Although full understanding of such effects 

is difficult without spatially explicit information on canopy structure, the 

following evidence suggests the importance of both horizontal and vertical 

configuration of vegetation in these patterns. First, as expected, 

phenological differences among wetland sites closely resonated with 

differences in their spatial heterogeneity and configuration. Greater greening

delays within the oldest and the youngest wetlands, WP and EE (Figure 2a,b),

were consistent with their greater plant coverage, patch size, canopy height 

and canopy-to-litter height proportion (Table 1). In contrast, less contiguous 

plant coverage together with smaller patch size and greater shape index at 

MB site (Figure 3r, Table 1) would imply a greater availability of fine-scale 

edge spaces both at the perimeters and inside the patches, where green 

vegetation may have greater access to light and become visible to remote 

sensors earlier compared to larger, contiguous patches of the other two sites

(Dronova and Taddeo, 2016). 
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Second, the general agreement in the timing of remotely sensed 

phenological metrics and site-measured ecosystem processes indicates that 

phenological variability was not merely an optical artifact of litter obscuring 

green vegetation from the sensors’ view, but rather the outcome of more 

complex feedbacks among canopy structure, microclimate and plant function

(Eichelmann et al., 2018; Hemes et al., 2018). Regardless of the input 

satellite product, delays in greening were accompanied by delays in seasonal

enhancement of CO2 uptake (Figures 5a,b and 6b) and phenocam greenness,

which had been earlier shown to positively correlate with gross primary 

productivity at MB and WP (Knox et al., 2017). Presence of litter likely 

mediated these relationships via reduced solar energy to young short 

vegetation early in the season, and via its broader effects on sub-canopy 

microclimate and evapotranspiration (Eichelmann et al., 2018; Goulden et 

al., 2007; Hemes et al., 2018; Rejšková et al., 2012). Although here we 

cannot directly validate such causal effects due to the lack of spatially 

explicit data on site-level litter distribution, microclimatic contrasts among 

three wetlands throughout the study period were consistent with this 

assertion. In particular, lower water temperatures and their smaller change 

change in unit greenness (Figure 7a,b) at WP and EE with larger litter-laden 

vegetation patches could contribute to their stronger greenness delay 

(Figures 2b and 5c) compared to MB due to potential inhibition of plant and 

microbial metabolism early in the season. 
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Some of the deviations from a 1:1 agreement between satellite-derived 

phenological transition dates and those estimated from GCC and NEE series 

(Figure 6a,b) could also result from the differences in ecosystem sampling 

between satellite and ground instruments. A recent continental-scale 

analysis of ecosystem phenology combining Landsat-8 and Sentinel-2 

imagery (Bolton et al., 2020) has noted stronger disagreements between 

satellite and phenocam estimates in more heterogeneous systems as well as

landscapes with sparser vegetation cover. Applying this evidence to restored

deciduous marshes may suggest that, similar to our findings, the agreement 

among different remote sensing systems should vary both with the degree of

surface complexity at a given post-restoration stage, and possibly even with 

season, due to differences in plant density and canopy structure. These 

considerations, again, point to the difficulties in generalizing ecosystem 

cycles among heterogeneous areas (Eichelmann et al., 2018; Goulden et al., 

2007; Larsen and Harvey, 2011; Rocha et al., 2008; Schile et al., 2013) and 

underscore the need for more spatially explicit phenological analyses at the 

site level, which are not feasible with oblique single-location phenocam 

images alone (Bolton et al., 2020; Vrieling et al., 2018).  

4.2. The implications of spatial resolution and frequency of 

remote sensing data 

Our findings also show that heterogeneity of vegetation in relation to 

spatial resolution of a remote sensing product is a critical consideration in 

selecting the input data for phenological analyses. Smaller pixels enable 
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more accurate representation of vegetation patch structure and floristic 

components as a potential contributor to site-level ecosystem function 

(Eichelmann et al., 2018; Matthes et al., 2014; McNicol et al., 2017). For 

example, stronger agreement between RapidEye-based phenological 

transitions with those of field GCC and NEE (Figure 6) compared to Landsat-

based ones could be in part due to better separation of vegetation and water

and thus lower likelihood of mixed-cover pixels where water may attenuate 

vegetation signals (Kearney et al., 2009). As a result, 5m RapidEye pixels 

retained after masking would be expected to more closely resemble green 

vegetation as seen by oblique-looking phenocams than 30m Landsat pixels 

with a greater chance of including background water signals (Dronova and 

Taddeo 2016). In terms of spatial representation of the footprints, the cost of

“losing” a pixel due to noise and inconsistency with the phenological model 

is obviously higher with coarser-resolution Landsat data, since there are 

fewer overall pixels and each covers a larger area than a RapidEye’s pixel, as

was especially evident at the EE site (Supplementary Tables S1 and S3).

However, in this study benefits of the high-resolution dataset also came at

the cost of somewhat higher model fitting error (Figures A1 (Appendix) and 

4) and greater diversity of pixel-level trajectories that were not always easy 

to accommodate by the standard mathematical functions (Supplementary 

Material section B, Tables S2 and S4). These challenges likely contributed to 

greater model RMSE with 5m RapidEye inputs (Appendix Figure A1) and to 

the positive association between RMSE and maximum EVI, also more evident
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with RapidEye data (Figure 4). These patterns likely reflected the potential of

smaller pixels to capture more nuanced and localized seasonal variation in 

canopy reflectance spectra, affecting seasonal change in EVI. For example, 

duration and consistency of the phenological phases with higher greenness 

could be affected by various events and processes such as flowering, 

disturbance, mortality, or changes in green leaf orientation (e.g., Bolton et 

al., 2020; Ryu et al., 2010; Sonnentag et al., 2011), making per-pixel EVI 

trajectories more complex than in a hypothetical model (Figure S2, 

Supplementary Material). 

Together, these results highlight an important tradeoff between two 

aspects of phenological complexity in heterogeneous systems: coarser 

spatial resolution increases the chance of mixed pixels where phenological 

trajectory may be complicated by the seasonality of both vegetated and non-

vegetated components, while higher resolution may accentuate local 

phenological and spectral variability even for exclusively vegetated pixels, 

posing challenges to traditional curve-fitting approaches. Smoothing the 

satellite-derived EVI time series using moving time windows might also be 

impractical if there are substantial gaps between image acquisition dates, as

this might reduce the accuracy of estimated transitions. Optimizing the 

choice of remote sensing products thus should weigh the relative importance

of spatial accuracy in representing landscape elements (e.g., patches) versus

the ratio of temporal noise relative to phenologically relevant signal, both of 

which may increase with smaller pixel size. These findings also highlight the 
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shortcomings of phenological estimation approaches developed in “upland” 

terrestrial ecosystems within complex wetland environments and call for 

more rigorous wetland-specific assessments which have been scarce to date 

(Mo et al., 2015; Vrieling et al., 2018).

Finally, the agreement in the estimated timing of greening and 

senescence between satellite inputs may also depend on their image 

acquisition dates (Bolton et al., 2020; Melaas et al., 2016, 2013; Vrieling et 

al., 2018). For our single-year study this issue was not a major concern, as 

indicated by relatively high temporal frequency of both datasets (Table A1, 

Appendix) and the general agreement of the satellite-derived DOYs of 

greening and senescence with the phenology of field-based phenocam GCC 

greenness (Figure 6a). However, disparities in phenological metrics between 

Landsat and both original and aggregated RapidEye inputs for the most 

heterogeneous MB site (Table A2, Appendix) suggest that phenological 

analyses might be more sensitive to both sensor-specific spatial resolution 

and image timing in landscapes with greater complexity and phenological 

variability (Tóth, 2018; Vrieling et al., 2018). In general, less frequent image 

series can be more strongly impacted by cloudy conditions leading to 

prolonged gaps between usable dates. From this perspective, greater 

frequencies of RapidEye and other new platforms such as Sentinel-2 (Bolton 

et al., 2020; Claverie et al., 2018; Vrieling et al., 2018) become an obvious 

advantage over Landsat’s 8-16 day intervals between acquisitions even 

during cloud-free seasons. These considerations also argue for a wider 
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adoption of cost-effective, high temporal frequency phenological validation 

and gap-filling strategies, such as in situ phenocam systems (Knox et al., 

2017; Richardson et al., 2018; Sonnentag et al., 2012) and unmanned 

vehicles (Tóth, 2018). 

4.3. Future research needs

Collectively, our findings suggest that phenological indicators derived 

from high- and moderate-resolution passive remote sensing images can be 

sensitive to spatio-temporal heterogeneity of ecosystems and the potential 

links between vegetation structure and function targeted by restoration and 

management (Matthes et al., 2014; McNicol et al., 2017). However, a more 

in-depth interpretation of such couplings ultimately requires spatially explicit

information on 3-D canopy structure which could be characterized using 

multi-angular spectral reflectance (Hilker et al., 2011) and/or active remote 

sensing such as lidar (LaRue et al., 2018). At present, lidar data are not 

systematically acquired in our study area, and high cost of such data 

collection over large regions generally limits their use in ecosystem 

monitoring (Taddeo and Dronova, 2019). However, where available, active 

remote sensing data could facilitate more in-depth studies of the role of 

canopy structure in phenological variability. Employing such instruments on 

the unmanned platforms (Bekaert et al., 2019; Sharma et al., 2016; Tóth, 

2018) could be especially useful in complex systems to develop such an 

understanding in a cost-effective and spatially explicit way. 

Future research should also more closely investigate the role of site-
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specific environmental conditions in phenological contrasts among wetlands 

with similar vegetation and hydrology. In addition to patch configuration and 

3-D structure, phenological patterns could be also associated with less well 

known variation in wetland soil and water column characteristics 

(Chamberlain et al., 2018; Franz et al., 2016; Minke et al., 2016; Smesrud et 

al., 2014; Strachan et al., 2015). In particular, the correspondence of greater 

phenological delay with high maximum greenness (Figure 2) in the sites with

higher LAI, canopy height (Table 1) and NEE (Figure 5b) presents an 

interesting paradox to examine in the future. One of the possible reasons for 

this association could be the effects of site-specific soil properties, salinity 

and litter on nutrient status (Chamberlain et al., 2018; Farrer and Goldberg, 

2009; Tóth, 2018), potentially affecting spectral reflectance via both the 

amount and chemistry of green foliage (Byrd et al., 2014). For instance, 

salinization of wetland soils at the MB site during the California drought of 

2011-2017 reduced its annual gross ecosystem productivity compared to 

WP, consistent with our observed contrasts in maximum greenness between 

these sites (Chamberlain et al., 2018). Similarly, a study of phenological 

variability in freshwater Phragmites stands at Lake Balaton, Hungary (Tóth, 

2018) reported a stronger sensitivity of phenological variation to sediment 

texture and chemical properties than to air and water temperature. 

Alternatively, greater litter accumulation could be hypothesized to enhance 

site quality (Lenssen et al., 1999) and protect the reed seedlings in patch 

interior from wind and water-related disturbance (Zhang and Wang, 2016), 
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which, again, could be tested more explicitly via experimental studies.

Finally, to better understand the implications of the coupled structure-

function relationships for restoration outcomes, future studies should 

investigate the inter-annual variability in wetland phenology using longer-

term satellite product archives, such as Landsat’s, at least in areas with 

sufficiently cloud-free time series. Such multi-year assessments could 

elucidate the potential cycles in spectral contributions of litter (Anderson et 

al., 2016; Rocha et al., 2008) and the role of these cycles in stability and 

resilience of the ecosystem functions in response to climatic anomalies 

(Rocha and Goulden, 2010) or pest outbreaks. Increasing availability of 

higher-resolution remote sensing datasets capable of characterizing 

ecosystem heterogeneity and phenological dynamics (e.g., Sentinel-2, Planet

Lab products) expands this critical new frontier for more continuous 

monitoring of ecosystem function (Bolton et al., 2020; Claverie et al., 2018; 

Matthes et al., 2014; Vrieling et al., 2018). Ultimately, the knowledge derived

from comprehensive analyses of richer remote sensing series would also 

support the upscaling of ecosystem function and associated ecological 

benefits from local sites to regional scales and similar efforts in other 

locations.

5. Conclusions

Remote sensing products are increasingly used to characterize 

phenological transitions of ecosystems and their functional dynamics; 

however, the sensitivity of such assessments to local vegetation structure 
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and scale of remote sensing data is still not universally understood. This gap 

is especially evident in spatially heterogeneous systems such as wetlands, 

where remotely sensed vegetation indicators may depend on local mixing of 

plants and non-vegetated surfaces and the complexity of canopy structure at

a given image resolution, which might further vary in the course of ecological

restoration or succession. Understanding the implications of heterogeneity 

on remotely sensed phenological indicators thus becomes critical for 

interpreting links between plant structure and function and their sensitivity 

to management and restoration treatments.

Our study of three restored wetlands in California, USA finds that even 

under similar floristic composition and geographic setting, wetlands may 

differ in remotely sensed phenological characteristics in accordance with 

their contrasts in vegetation coverage and structure. Such differences are 

especially evident in variable length and timing of the greening phase which 

can be more delayed in areas with larger vegetation patches and greater 

accumulation of canopy litter. The consistency between site-level remotely 

sensed phenological metrics and field-based changes in eddy covariance 

NEE for CO2 as well as phenocam greenness suggests that such delays may 

reflect the local effects of litter on canopy radiative transfer, water 

temperatures and microclimate. A more in-depth investigation of this 

assertion would benefit from incorporating spatially explicit information on 

local canopy structure, e.g., from lidar instruments. 
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We also show that both the local spatial variability in phenological metrics

and the disagreement in their estimation between two satellite inputs tended

to be higher in wetlands with more heterogeneous surface configuration. We 

also find that the uncertainty in fitting standard phenological models pixel-

level greenness series increased with greater spatial resolution, likely due to 

greater sensitivity of smaller pixels to local-scale variation in phenological 

patterns within vegetation patches. Such tradeoffs between the benefits of 

higher spatial resolution and the analysis uncertainty raise an important 

question on which spatial and temporal scales most effectively represent the

links between vegetation structure and function, particularly in complex 

systems such as restored wetlands. With the increasing interest in multi-

sensor data integration efforts and higher-resolution phenological products, 

this question highlights an important research need to inform future remote 

sensing uses in monitoring, modeling and up-scaling of ecosystem function 

and restoration outcomes.
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List of Figures

Figure 1. Study area in the Sacramento-San Joaquin Delta, California, USA. 

Background image: aerial photo from the National Agriculture Imagery 

Program (NAIP) for California.

Figure 2. Statistical distributions of the main phenological metrics 

estimated from Landsat (darker fill), RapidEye at the original 5m spatial 

resolution (moderately dark fill) and RapidEye aggregated to 30m spatial 

resolution (lightest fill) image inputs within biometeorological  footprints of 

East End (EE), Mayberry Farms (MB) and West Pond (WP) wetland sites: a) 

start of greening (SOG), b) end of greening (EOG), c) start of senescence 

(SOS), d) end of senescence (EOS), e) duration of the season (DUR) and f) 

maximum greenness (MAXG).

Figure 3. Spatial distributions of phenological metrics computed from 5m 

RapidEye Enhanced Vegetation Index (EVI) within biometeorological flux 

footprints of three wetland sites: a-c) start of greening (SOG), d-f) end of 

greening (EOG), g-i) start of senescence (SOS), j-l) end of senescence (EOS), 

m-o) duration of the growing season (DUR), and p-r) reference high-

resolution aerial imagery. Vertical arrangements represent the 19-year old 

West Pond (WP) wetland (a,d,g,j,m,p), the 6-year old Mayberry Farms (MB) 

wetland (b,e,h,k,n,q) and the 2-year old East End (EE) wetland (c,f,i,l,o,r). 

Figure 4. Spatial distributions of phenological curve fitting error (left panels)

from models fitted to 30m Landsat and 5m RapidEye input series and 
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maximum greenness (right panels) at three wetland sites: a-b) West Pond, 

RapidEye; c-d) West Pond, Landsat; e-f) Mayberry Farms, RapidEye; g-h) 

Mayberry Farms, Landsat; i-j) East End, RapidEye, and k-l) East End, Landsat.

Figure 5. Seasonal trajectories of field-measured a) eddy covariance net 

ecosystem exchange (NEE, gC-CO2m-2d-1; negative sign indicates net 

ecosystem uptake), b) phenocam green chromatic coordinate (GCC) spectral 

index, and c) water temperature measured at 10cm for Mayberry Farms (MB)

and East End (EE) sites and at 8cm for West Pond (WP). All variables are 

plotted as 5-day moving window averages.

Figure 6. The agreement between site-median satellite-based days of year 

(DOYs) representing start and end transitions of the Enhanced Vegetation 

Index (EVI) trajectories from 30m Landsat imagery and 5m RapidEye 

imagery and the corresponding transitions in the trajectories of phenocam-

based green chromatic coordinate (GCC) spectral index (a) and net 

ecosystem exchange (NEE) for CO2 measured by eddy covariance stations 

(b). Equations represent the fitted linear regression models where y denotes 

site median transition dates estimated from satellite-based EVI series, and x 

denotes the transition dates from the time series of a respective field-

measured metric.

Figure 7. The associations between satellite EVI and average daily water 

temperature on the corresponding image dates for a) Landsat at 30m spatial

resolution, and b) RapidEye at 5m spatial resolution. Equations represent the
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fitted linear regression models where y denotes EVI and x denotes water 

temperature of a given site.
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Figure 6
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Tables
Table 1. Landscape metrics of vegetation distribution and field 

measurements of canopy structure, by wetland site. All metrics except patch

density and percentage values show means of the plot or site measurements

with standard deviation in parentheses.

Metric type Metric

Site
West Pond
(WP), est.

1997

Mayberry
Farms (MB),

est. 2010

East End
(EE), est.

2014
Spatial extent Whole wetland 

area, km2 0.032 1.242 2.995

Flux footprint area 
(90th percentile), 
km2

0.022 0.054 0.018

Landscape 
metrics 
based on 
aerial 
images*

Percent vegetated 
cover (whole site)

99.7% 64.4% 82.2%

Percent vegetated 
(flux tower 
footprint; 90th 
percentile)

74.0% 55.7% 83.2%

Patch density 
(number of patches/
100 ha)

19.29 81.56 42.70

Mean Patch Area of 
vegetated patches, 
km2 

0.05 (0) 0.01 (0.09) 0.02 (0.28)

Mean Shape Index 
of vegetated 
patches

1.42 (0) 1.58 (1.55) 1.48 (1.50)

Field 
measurement
s (summer 
2016) ‡ 

Green one-sided 
leaf area index, m2 
m-2

3.1 (1.7) 1.9 (2.3) 3.8 (2.2)

Canopy height, cm 335.5 (29.1) 223.7 (27.6) 282.4 (29.1)
Litter height, cm 211.4 (39. 4) 211.6 (41.5) 161.8 (16.4)
Litter volume (m3 
per 0.09m2 plot)

0.134 (0.05) 0.100 (0.04) 0.022 (0.02)

Percent dead 
vegetation in plot 
cover

58.9% 51.7% 54.2%

Water depth, cm 19.6 (11.3) 37.9 (14.8) 66.3 (17.6)
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* Landscape metrics are based on vegetation patches delineated from 1-m spatial resolution

aerial imagery publicly available from USDA’s National Agriculture Inventory Program (NAIP) 

for the summer 2016. 

‡Field sampling was conducted between August 2 and 8, 2016 within 0.3m×0.3m sampling 

plots (24 plots in West Pond, 36 plots in Mayberry Farms, and 20 plots in East End). Litter 

height corresponds to the height of standing litter, approximated to the nearest 0.05m. 

Litter volume is based on visually estimated percent litter cover class (0-25%, 25-50%, 50-

75%, >75%) summed across the 0.2-m increments along the vertical dimension of the 

canopy above each 0.3m×0.3m plot. Percent dead vegetation is a visual estimation of the 

percentage of the sampling plot covered by dead vegetation versus green plants or other 

surfaces (open water, bare soil).
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Table 2. Key phenological metrics and ecosystem variables used in this 
study.
Abbreviation Explanation Definition

Wetland site names
WP West Pond The oldest study site (restored in 

1997)
MB Mayberry Farms The intermediate-aged site 

(restored in 2010)
EE East End The youngest study site (restored in

2014)
Spectral vegetation indices
EVI Enhanced Vegetation 

Index
Huete et al. 2002

GCC Green Chromatic 
Coordinate Index

Woebbecke et al. 1995

Phenological metrics
DOY Day of year Consecutive day of year starting 

from Jan 1, 2016. In cases where 
growing season and its 
mathematical analysis extended 
beyond December 31, 2016, DOY 
values exceeded 365 according to 
the additional dates.

SOG Start of greening DOY representing the first major 
curvature point in the phenological 
curve indicating the onset of spring 
increase.

EOG End of greening DOY representing the second major 
curvature point in the phenological 
curve indicating the slowdown in 
spring EVI increase approaching 
maximum greenness.

SOS Start of senescence DOY representing the third major 
curvature point in the phenological 
curve indicating the onset of EVI 
decline (senescence). 

EOS End of senescence DOY representing the last major 
curvature point in the phenological 
curve indicating the end of the fall 
spectral index decline.

DUR Duration of the 
growing season

The difference between DOYs 
corresponding to EOS and SOG.

MAXG Maximum greenness Maximum value of the seasonal EVI.
RMSE Root mean square 

error
Standard deviation of residuals in 
the phenological curve model 
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indicating the deviation of satellite-
measured greenness values from 
the modeled trajectory.

Ecosystem variables
NEE Net ecosystem 

exchange (for CO2)
Net exchange of CO2 carbon 
between the wetland ecosystem 
and the atmosphere based on eddy 
covariance CO2 flux data.

LAI Leaf area index One-sided green canopy leaf area 
per unit ground area.
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Table 3. Slope and intercept comparisons between regressions with DOYs 

for phenological transition dates derived from satellite inputs or seasonal 

trajectories of field-measured Green Chromatic Coordinate greenness (GCC) 

and net ecosystem exchange for CO2 (NEE). 

Response
variable

Predictor
variable 1

Compared to
model

P-value,
slope

compariso
n

P-value,
intercept

comparison

Transition 
DOY for  
GCC

Site-median DOYs 
of key stages 
(Landsat)

Slope=1, intercept=0 0.226 0.549

Transition 
DOY for  
GCC

Site-median DOYs 
of key stages 
(RapidEye)

Slope=1, intercept=0 0.186 0.926

Transition 
DOY for NEE

Site-median DOYs 
of key stages 
(Landsat)

Slope=1, intercept=0 0.004 0.031

Transition 
DOY for NEE

Site-median DOYs 
of key stages 
(RapidEye)

Slope=1, intercept=0 0.005 0.053

Transition 
DOY for NEE

Site-median DOYs 
of key stages 
(Landsat)

With site-median 
DOYs of key stages 
from RapidEye

0.983 0.883

Transition 
DOY for  
GCC

Site-median DOYs 
of key stages 
(Landsat)

With site-median 
DOYs of key stages 
from RapidEye

0.663 0.635
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Appendix

Figure A1. Root mean square error (RMSE) of per-pixel phenological model 

fitting for three different satellite data inputs (Landsat at 30m spatial 

resolution, RapidEye at the original 5m spatial resolution and RapidEye 

aggregated to 30m spatial resolution) averaged for the CO2 flux footprints of 

wetland sites West Pond (WP), Mayberry (MB) and East End (EE). Upper error 

bars show standard deviations of RMSE for each respective group.
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Table A1. Satellite products and dates used in phenological metric estimation

(DOY stands for consecutive day of year starting from January 1, 2016). 

Month
Yea

r

Date: Landsat-8
Surface Reflectance

Tier 1 (DOY)

Date: RapidEye
Geocorrected At-sensor

Radiance (DOY)
Februar
y

201
6

4 (35)
15 (46)
22(53)

March
201
6

23 (83) 17 (77)
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April
201
6

24 (115)
17 (108)
20 (111)

May
201
6

10 (131)
26 (147)

1 (122)
26 (147)

June
201
6

11 (163)
27 (179)

1 (153)
20 (172)
22 (174)

July
201
6

13 (195)
29 (211)

16 (198)
23 (205)

August
201
6

14 (227) 2 (215)

Septem
ber

201
6

23 (267)
7 (251)
24 (268)

October
201
6

1 (275)
18 (292)
20 (294)

Novemb
er

201
6

2 (307)
18 (323)

8 (313)
18 (323)

Decemb
er

201
6

4 (339)
3 (338)
26 (361)

January
201
7

5 (371 since Jan 1,
2016)

Table A2. Mood’s test results for pairwise comparisons of phenological 
metrics between site and sensor pairs. Values represent test chi-square 
statistic estimated using Matlab mediantest function by Keine (2020).

Metri
c

Site pair comparisons for a given satellite input

Landsat (30m) RapidEye (5m) Aggregated RapidEye
(30m)

WP&MB WP&EE MB&EE WP&MB WP&EE MB&EE WP&MB WP&EE MB&EE

SOG 1.71 2.67 13.12* 438.15
*

281.69
*

37.82* 15.08* 3.94* 11.03*

EOG 24.38* 2.67 23.63* 112.72
*

167.99
*

23.39* 2.06 2.95 0.23

SOS 1.02 2.30 1.16 856.81
*

0.23 738.61
*

22.39* 1.17 14.93*

EOS 2.57 0.03 0.20 12.26* 37.97* 4.26* 1.72 1.43 0.23

DUR 1.34 2.30 0.10 145.18
*

249.35
* 0.57 5.82* 4.36* 4.03*

MAXG 50.00* 17.53* 18.52* 882.24
*

169.47
*

695.58
* 21.74* 1.17 23.89*

Metri
c

Satellite input comparisons for a given site

Landsat (30m) & original
RapidEye data (5m)

Landsat & aggregated
RapidEye data (30m)

Original (5m) &
aggregated (30m)

RapidEye data
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WP MB EE WP MB EE WP MB EE

SOG 7.85* 13.32* 0.09 2.58 23.94* 1.97 0.37 4.57* 2.88

EOG 0.39 23.59* 6.13* 0.16 29.48* 3.67 0.04 0.39 0.08

SOS 15.62* 25.42* 5.44* 2.58 29.52* 0.73 0.73 2.58 0.59

EOS 0.92 16.66* 1.94 0.35 8.40* 3.81 1.30 0.01 0.47

DUR 0.06 8.07* 0.34 0.16 8.40* 0.57 0.10 4.80* 0.00

MAXG 11.38* 1.52 5.96* 15.06* 0.20 2.67 7.27* 0.02 0.69

* p-value <0.05

 

1470
1471
1472
1473



Supplementary Material
 
A. Selecting pixels for phenological estimation within the 

biogeochemical footprints

Figure S1. Seasonal trajectories of the first four principal components 
(together explaining >90% variation in the data) derived from Landsat (left) 
and RapidEye 2016 Enhanced Vegetation Index (EVI) time series of the pixels
inside the biometeorological flux footprints combined among the three 
wetland study sites.
Note that PC1 trajectory here is the most consistent with the deciduous 
vegetation where the greenness values are expected to be low at the 
beginning of the year, then increase until the seasonal maximum is reached 
and then decrease again at the end of the growing season. PC2 represents a 
similar pattern; however, it is somewhat shifted in time. The early-season 
increase in the trajectory is delayed compared to PC1, while the end-of-
season decrease continues into the winter time frame as suggested by the 
initial decrease in the trajectory during the days 0-100 as a spillover from the
previous year.
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Table S1. Selection of pixels for phenological curve fitting based on the 
similarity to deciduous trajectory within the biogeochemical flux footprints of 
three wetland sites represented by the first and second principal 
components (PC1 and PC2, respectively) of the greenness series from each 
satellite product. Here “in mask” denotes pixels included in the subsequent 
phenological analyses.

Metric
Landsat RapidEye

West
Pond

Mayberry
Farms

East
End

West
Pond

Mayberry
Farms

East
End

Total pixel 
count

33 81 30 928 2234 784

Pixels with 
≥0.7 
correlation to 
PC1

33 68 21 799 1924 664

Pixels with 
≥0.7 
correlation to 
PC2

0 0 3 18 0 87

Pixels with
≥0.7

correlation to
PC1 or PC 2

as %total

100% 84% 80% 88% 86% 96%

B. Phenological parameter estimation

1. Double-logistic model for seasonal greenness

As a proxy of vegetation greenness, we used the Enhanced Vegetation Index
(EVI) which has been widely used in terrestrial phenological analyses and 
sometimes preferred over other popular indicators due to greater sensitivity 
to vegetation signals in closed canopy setting (Huete et al., 2002; Melaas et 
al., 2016, 2013):

EVI=
2.5∗( NIR−¿ )

(NIR+6∗¿−7.5∗¿+1)
,(1)

Fitting a curve to per-pixel phenological series of EVI is an important step in 
the analyses because it allows interpolating greenness (spectral vegetation 
index) values from discrete observations of available image dates to a daily 
time step. While a variety of algorithms and functions have been proposed 
for such interpolations, studies focusing on vegetation with deciduous 
seasonality have often considered sigmoid logistic functions  consistent with 
the non-linear dynamics of greenness proxies (Figure S2), i.e., more rapid 
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changes during the early season green-up and late season senescence and 
low variation during the low greenness (i.e., before the start of greening and 
after the end of senescence) and high greenness (between end of greening 
and start of senescence) phases (Gonsamo et al., 2013; Klosterman et al., 
2014; Misra et al., 2016; Son et al., 2016; Tan et al., 2011; Toomey et al., 
2015; Xu et al., 2014). 
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Figure S2: Deciduous phenological trajectory represented by a double-
logistic function.

A double-logistic function (Bauer et al., 2017; Head et al., 2004) captures 
both increase (green-up) and decrease (senescence) phases by a single 
equation with different parameter sets for each phase to the Enhanced 
Vegetation Index (EVI) series:  

EVI (t )=P1+
P2

1+eP3(P¿¿4−t )
+

P2

1+eP5(P¿¿6−t ) ,(2)¿
¿

where the parameters P1, P2,…, P6 determine the shape and asymmetry in 
the fitted double-logistic curve (Bauer et al., 2017) and t indicates the day of 
year (DOY). 

Fitting the function in (2) as a regression model to the input series of EVI 
involves finding a set of parameter values P1, P2,…, P6  which minimize the 
“cost function”, i.e. a measure of error as the distance between the original 
and fitted values. By the nature of model (2), its cost function may have 
more than one local minimum in the multi-dimensional space of its 
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parameters, which may complicate the search for their best fitting set. To 
help achieve the global, rather than local, minimum corresponding to the 
least predictive error, it is important to constrain the search space by 
providing the initial guess on the parameters P1, P2,…, P6. As such a guess 
would be specific to both the shape and the extrema of the individual per-
pixel trajectories, a fixed set of numbers might not be applicable to all the 
pixels in the sample, especially in landscapes with high local variation in 
greenness. To automate such initial parameter guessing in this study, we 
estimated the starting values of P3, P4, P5 and P6 using the extrema in the first
derivative of a first-order Fourier function fitted to the original pixel EVI 
series. The starting values of P1 and P2 were approximated by the minimum 
and the difference between maximum and minimum, respectively, of the 
original EVI series for each pixel.

2. Extracting phenological metrics for the timing of greening and 
senescence

Following the fitting of the double-logistic function, curvatures in the pixel 
daily interpolated EVI series were used to estimate the start and end dates of
greening and senescence phases and the duration of the growing season 
(Figure S2). Such key transitions can be approximated by the local minima 
and maxima in the curve derivatives; however, specific choices of the latter 
vary among studies. Tan and colleagues (2011) provide a detailed analysis 
and interpretation of such curvatures, indicating that the 3rd derivative’s 
extrema approximate more closely the timing of changes in the actual 
curvature of greenness, while the 2nd derivative’s extrema represent the 
timing when the majority of a pixel changes in greenness. The latter study 
preferred 3rd derivative as the primary indicator of the greening and 
senescence transitions, more consistent with how they might be detected in 
ground-scale phenological observations (Tan et al., 2011). Another study 
focusing on a rural landscape with broadleaf forest areas in Germany (Misra 
et al., 2016) also recommended the 3rd derivative over 2nd as the former 
more effectively captured inter-annual phenological variability and 
contributions from the forest understory species. A well-defined double-
logistic curve typically has three prominent peaks and two troughs in the 2nd 
derivative and three peaks and three troughs in the 3rd derivative (Figure 
S3). 

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556

1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577



 
0 100 200 300 400

day of year

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
V

I

interpolated
raw

0 100 200 300 400

day of year

-8

-6

-4

-2

0

2

4

6

8

2
n

d
 d

e
ri

v
a
ti

v
e
 o

f 
E
V

I 
cu

rv
e

10-5

0 100 200 300 400

day of year

-5

-4

-3

-2

-1

0

1

2

3

4

3
rd

 d
e
ri

v
a
ti

v
e
 o

f 
E
V

I 
cu

rv
e

10-6

Figure S3. An interpolated double-logistic curve fitted to the raw greenness 
series (left panel) with its second (middle panel) and third (right panel) 
derivatives.

3. Special cases and challenges in double-logistic fitting

Many previous phenological studies have focused on “upland” terrestrial 
ecosystems and used moderate to coarse spatial resolution imagery, where 
seasonal change in aboveground vegetation biomass, cover and health are 
often the main contributors to variation in spectral indicators, consistent with
generalized models such as (2). However, in wetland environments, 
phenological dynamics may show high local heterogeneity due to inundation 
effects on plant reflectance spectra, zoning of plant communities along 
elevation gradients, local disturbance and other factors (Kearney et al., 
2009; Knox et al., 2017; Mo et al., 2015). For hydrologically managed 
wetlands such as in our study area, we expected that spatial variability in the
amount and height of litter, dominant species and disturbance such as pest 
outbreaks could be especially important contributors to the local timing of 
green-up and senescence and the specific shape and magnitude of seasonal 
EVI trajectories (Eichelmann et al., 2018; Knox et al., 2017; Rocha et al., 
2008). 
Indeed, initial efforts to fit double-logistic function (2) to per-pixel EVI series 
of our wetland sites revealed that some of the pixel trajectories were difficult
to accommodate by this model, as summarized in Table S2. Such cases were
diagnosed using model root mean square error (RMSE)>0.05 and number of 
peaks and troughs in both 2nd and 3rd derivatives inconsistent with the 
double-logistic model (Figure S3), or both (Figure S4). To avoid excluding 
such pixels entirely from the analysis, considering our primary focus on 
analyzing phenological heterogeneity, we adopted a set of corrective 
strategies (Table S2), sometimes applying more than one of them to a given 
pixel (Figure S4). 
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Table S2. Examples of the common challenges in fitting double-logistic 
function to EVI series.

Challenge Example of EVI series Potential strategies*
Short-term spike in 
greenness at the 
beginning or the end of 
the peak greenness 
phase, deviating from 
the main region of high 
EVI values but 
consistent with the 
overall timing of the 
higher greenness phase

0 50 100 150 200 250 300 350 400
day of year

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
V

I

Remove the observation with 
the largest residual and re-fit 
the model.

Insufficient curvature at
the very onset of 
greening and the very 
end of senescence

0 50 100 150 200 250 300 350 400
day of year

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E
V

I

To facilitate the fitting, extend 
the time series by replicating 
the minimum EVI at 16 days at 
each end of the series, 
assuming that the values do 
not change substantially during
the lowest greenness phase.**

Insufficient 
representation of 
double-logistic 
curvature at some 
stages of greening and/
or senescence, leading 
to fewer than expected 
extrema in the 3rd 
derivative function 

0 50 100 150 200 250 300 350 400
day of year

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

E
V

I

Consider 2nd derivative 
extrema as the next closest 
approximation for a given 
indicator of the greening 
and/or senescence timing.

Complex variation of 
EVI values near the 
peak of the growing 
season which, however,
remains constrained 
within a certain range 
of high greenness 
values 0 50 100 150 200 250 300 350 400

day of year

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
V
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If the 3rd derivative has 3 
maxima and 3 minima, use 
these extrema as in double-
logistic model which may still 
fit reasonably well to such a 
series. In case of a more 
complex trajectory implied by 
high model RMSE >0.05, use 
the 2nd order Fourier fitting 
function and its derivative 
extrema.

1609
1610



Complex trajectory with
high variation of EVI 
values at the peak 
growing season without
a well-defined plateau 
of high greenness 
values
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Use the 2nd order Fourier 
function and its 2nd and 3rd 
derivative extrema instead of 
the double-logistic model; to 
facilitate the fitting, artificially 
extend the time series 
replicating the minimum EVI at
16 days at each end of the 
series.

Greenness trajectory 
represents a single 
peak instead of a 
plateau
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If the 3rd derivative has 3 
maxima and 3 minima while 
the 2nd derivative has 2 
maxima and 1 minimum, the 
case is consistent with the 
double-logistic model, and the 
3rd derivative’s extrema can be
used for transition dates. If 
there is insufficient early- or 
late-season curvature, consider
2rd derivative extrema or, with
high model RMSE >0.05, use 
the 2nd order Fourier function 
and its derivative extrema.

Substantial noise 
despite the evidence of
the overall seasonal 
increase and decrease 
in greenness
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If none of the corrective 
measures achieve a 
satisfactory level of error, 
exclude the pixel from the 
analysis.

*Potential strategies presented here are not necessarily mutually exclusive and 
more than one strategy may be sometimes used for a particular special case pixel.

**This measure was based on the assumption that late December and January 
would be the periods of the lowest greenness for the respective pixels, which would 
be also consistent with the general trajectory of phenocam greenness for each 
wetland site.
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Initial double-logistic model 
fitting & RMSE estimation

RMSE≤0.05 RMSE>0.05

Extend time series by adding a 
minimum greenness at the 

beginning & end; re-fit

Remove the largest-
residual  observation & 

re-fit the model

Fit 2nd order Fourier model 
instead of double-logistic

Exclude the pixel 
from further analysis

Examine if 2nd & 3rd derivative 
extrema are consistent with 
the double-logistic model

not consistent

Use extrema in the 3rd & 
2nd derivatives of the 2nd

order Fourier fit as proxies 
for main transition dates

Use 3rd derivative 
extrema as 

proxies for main 
transition dates

Check if the number of extrema is 
sufficient to include 2nd derivative 

extrema; extend series again if not

Use extrema in the 3rd & 2nd

derivatives of the double-
logistic function as proxies 
for main transition dates

RMSE>0.05

RMSE>0.05

RMSE≤0.05

RMSE≤0.05
consistent

sufficient not sufficient

RMSE>0.05 or insufficient 
extrema in 2nd & 3rd

derivativesRMSE≤0.05

Extend the time series & re-
fit 2nd order Fourier model

RMSE≤0.05

RMSE>0.05 or insufficient 
extrema in 2nd & 3rd

derivatives

Figure S4. A flowchart diagram representing major steps in curve-fitting.

In some cases, pixel trajectories could not be reasonably approximated by a 
double-logistic model due to the nature of signal variation. Such were, for 
instance, cases when the main increase in greenness was accompanied by 
smaller-magnitude fluctuations during the “low” greenness periods, or when 
the peak-season greenness values exhibited more complex variation not 
consistent with either a plateau or a single peak (Table S2). For such pixels, 
RMSE could remain high or the number of meaningful extrema in 2nd and 3rd 
derivative could be insufficient even after implementing the initial corrective 
measures (Figure S4). The second-order Fourier function was considered as 
an alternative “harmonic regression” model (Brooks et al., 2012; Wallace et 
al., 2013; Wilson et al., 2018) because it allows representing the expected 
periodicity of deciduous vegetation greenness while also accommodating 
some degree of complexity in the main EVI trajectory:

EVI (t )=a0+∑
i=1

n

ai cos(iwt )+bi sin(iwt )  (3)

where t is the time (day of year), a0 is a constant (intercept) related to i=0, w
is the fundamental frequency of the signal, n is the number of harmonics in 
the series (here n=2 for the second-order function). We then similarly used 
the extrema of 3rd and, where necessary, 2nd derivatives of the fitted Fourier 
curve to estimate the days of the key transitions. Overall, such cases were 
relatively uncommon, representing 0-14% pixels in most sites (Table S3), 
except for RapidEye pixels at one of our wetlands, the Mayberry Farms site, 
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where they constituted ~31% of the sample (Table S3) and occurred both 
within water and within vegetated areas. 

If for a given pixel none of the corrective measures sufficiently improved the 
fit, that pixel was excluded from the analysis completely. Such excluded 
pixels ultimately constituted for Landsat and RapidEye inputs, respectively, 
3% and 1% of the originally selected pixels at West Pond, 12% & 8% of the 
selected pixels at East End and 4% of pixels with both input products at 
Mayberry Farms (Table S3). Visual examination showed that these cases 
often corresponded to open-water areas where EVI trajectories could be 
influenced by algae, changes in water chemistry and physical disturbance 
affecting spectral values, such as wind-induced ripples. A more detailed list 
of special cases and rules considered in assigning curvatures of the 2nd and 
3rd curve derivatives as key transition dates is provided in Table S4 below.

Table S3. Differences in model fitting to pixels from two satellite input 
sources within the wetland site flux footprints.

Metric
Landsat RapidEye

West
Pond

Mayberry
Farms

East
End

West
Pond

Mayberry
Farms

East
End

Pixels with 
fitted curves 
(%of in-mask 
pixels)

32 65 21 807 1850 692

%of in-mask
pixels

97% 96% 88% 99% 96% 92%

Pixels with 
double-logistic 
fitting

31 65 18 775 1277 612

%all fitted 97% 100% 86% 96% 69% 88%
Pixels with 2nd 
order Fourier 
fitting

1 0 3 31 573 80

%all fitted 3% 0% 14% 4% 31% 12%
Pixels with 
double-logistic 
model where 
transitions 
were 
estimated with 
only 3rd 
derivative 
extrema 

30 59 18 598 659 416

%all fitted 97% 91% 100% 77% 52% 68%
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Table S4. Rules and special cases for approximating phenological transition dates using the timing of the 
curvatures of the 2nd and 3rd derivatives of the fitted functions. Cases where second or third derivatives 
had less than 2 peaks were excluded from estimation. The terms such as “first”, “last”, “penultimate” and 
“earliest” below refer to the timing, i.e., day of year associated with a given curvature.
Number (#) of curvature points (peaks
& troughs) in the 2nd & 3rd derivatives

of the fitted curve

Phenological transition dates inferred from
the timing of the curvatures in the 2nd and/or

3rd derivatives
Special cases,

if any
2nd, 
#peaks 

2nd, 

#troughs
3rd, 
#peaks

3rd, 
#troughs

SOG EOG SOS EOS

Double-logistic curve function
≥3 2 3 3 First peak of

3rd
Penultimate 
peak of 3rd

Penultimat
e trough of 
3rd

Last trough 
of 3rd 

If estimated EOG>SOS, 
use SOS as last trough of
3rd and EOS as the last 
peak of the 2nd 

≥3 2 3 2 First peak of
3rd

Penultimate 
peak of 3rd

Last trough
of 3rd

Last peak of 
2nd 

≥3 3 3 3 First peak of
3rd

Penultimate 
peak of 3rd

Last trough
of 3rd

Last peak of 
2nd 

≥3 3 3 2 First peak of
3rd

Penultimate 
peak of 3rd

Last trough
of 3rd

Last peak of 
2nd 

≥3 2 2 3 First peak of
2nd

First peak of
3rd 

Penultimat
e trough of 
3rd

Last trough 
of 3rd

≥3 2 2 2 First peak of
3rd

Last peak of
3rd

Last trough
of 3rd

Later of the 
last peaks of 
2nd & 3rd 

≥3 3 4 3 First peak of
3rd

Second 
peak of 3rd  

Penultimat
e trough of 
3rd

Last trough 
of 3rd

≥3 3 3 4 First peak of
3rd

Penultimate 
peak of 3rd

Penultimat
e trough of 
3rd

Last trough 
of 3rd

≥3 2 4 3 First peak of
3rd

Second 
peak of 3rd  

Penultimat
e trough of 
3rd

Later of the 
last troughs 
of 2nd & 3rd 

3 1 2 3 First trough 
of 3rd

First peak of
3rd

Penultimat
e trough of 

Last trough 
of 3rd 
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3rd

3 1 3 2 First peak of
3rd 

Penultimate 
peak of 3rd

Penultimat
e peak of 
2nd

Last peak of 
2nd 

2 2 3 3 First peak of
3rd

Penultimate 
peak of 3rd

Penultimat
e trough of 
3rd

Last trough 
of 3rd

If penultimate peak of 3rd

is later than penultimate
trough of 3rd, use SOS as
penultimate peak of 3rd 
and EOS as the last peak
of 2nd

2 2 3 2 First peak of
3rd

Penultimate 
peak of 3rd 

Last trough
of 3rd

Last peak of 
3rd

If estimated EOG>SOS, 
approximate both EOG &
SOS as the first trough of
3rd

2 2 2 3 Earlier of 
the first 
peak of 3rd &
the first 
trough of 2nd

Last trough 
of 2nd

Last peak 
of 3rd

Last trough 
of 3rd 

2 3 3 3 First peak of
2nd

Penultimate 
trough of 2nd

Last trough
of 3rd

Last peak of 
3rd

2 3 2 2 First peak of
2nd

Penultimate 
trough of 2nd

Penultimat
e trough of 
2nd

Last trough 
of 3rd

2 3 3 2 First peak of
2nd

Penultimate 
trough of 2nd

Penultimat
e trough of 
2nd

Last trough 
of 3rd

2 3 2 3 First peak of
3rd

Penultimate 
trough of 2nd

Penultimat
e trough of 
3rd

Last trough 
of 3rd 

2 1 3 3 First peak of
3rd

Penultimate 
peak of 3rd 

Penultimat
e trough of 
3rd

Last trough 
of 3rd 

2 1 3 2 First peak of
3rd

Penultimate 
peak of 3rd

Later of the
penultimat
e peak of 
3rd & last 
trough of 
3rd 

Last peak of 
2nd 



2 2 3 4 First peak of
3rd 

Penultimate 
peak of 3rd

Penultimat
e trough of 
3rd

Last trough 
of 3rd

4 3 3 3 First peak of
3rd

Penultimate 
trough of 2nd

Penultimat
e trough of 
3rd 

Last trough 
of 3rd

Fourier function:
3 2 3 3 First peak of

3rd
Penultimate 
peak of 3rd

Penultimat
e trough of 
3rd

Last trough 
of 3rd

If estimated EOG>SOS, 
use the last peak of 2nd 
for SOS

3 2 3 2 First peak of
2nd

First trough 
of 2nd

Penultimat
e peak of 
3rd

Later of the 
last peaks of 
2nd & 3rd

3 2 2 2 Earliest of 
the first 
peak of 2nd 
& first 
trough of 3rd

First peak of
3rd

Same as 
EOG 
(single-
peak 
trajectory)

Later of the 
last peaks of 
2nd & 3rd

Special case if predicted 
EVI at the first peak of 
3rd is greater than EVI at 
the last troughs of both 
2nd & 3rd derivatives. 
Additionally, for EOG & 
SOS use last trough of 
3rd if the absolute 
difference in EVI 

between first peak of 3rd 
& last trough of 3rd is 
<0.1, and use the last 
trough of 2nd if the 
absolute difference in 
EVI between the first 
peak of 3rd & last trough 
of 2nd <0.1

Earliest of 
the first 
peak of 2nd 
& first 
trough of 3rd

First trough 
of 3rd 

Same as 
EOG 
(single-
peak 
trajectory)

Later of the 
last peaks of 
2nd & 3rd

Special case if predicted 
EVI at the last trough of 
3rd >EVI at the last 
trough of 2nd 

Earliest of 
the first 
peak of 2nd 

First trough 
of 2nd

Same as 
EOG 
(single-

Later of the 
last peaks of 
2nd & 3rd

Special case if predicted 
EVI at the last trough of 
3rd <EVI at the last 



& first 
trough of 3rd

peak 
trajectory)

trough of 2nd 

3 2 2 3 First peak of
2nd

First peak of
3rd

Penultimat
e trough of 
3rd

Last peak of 
2nd

3 3 3 2 First peak of
3rd

Penultimate 
peak of 3rd 

Penultimat
e peak of 
3rd

Last peak of 
3rd

3 3 4 3 First peak of
3rd

Second 
peak of 3rd  

Penultimat
e trough of 
3rd

Last trough 
of 3rd

3 3 3 3 Earlier of 
the first 
peaks of 2nd 
& 3rd

Penultimate 
trough of 2nd

Penultimat
e peak of 
3rd

Last peak of 
3rd

2 2 2 3 Earlier of 
the first 
peak of 3rd &
first trough 
of 2nd 

Last trough 
of 2nd 

Last trough
of 2nd

Last trough 
of 3rd

2 2 3 3 First peak of
3rd 

Second 
peak of 3rd

Second 
peak of 3rd

Last peak of 
2nd

2 2 3 2 First peak of
2nd

First trough 
of 2nd

Penultimat
e peak of 
3rd

Last peak of 
3rd

2 3 2 3 First peak of
2nd

Second 
trough of 2nd

Second 
trough of 
2nd

Last peak of 
2nd

2 3 3 3 First peak of
3rd

Second 
trough of 2nd

Second 
trough of 
2nd

Later of the 
last peak of 
3rd & the last 
trough of 2nd

2 3 3 2 First peak of
2nd

Second 
trough of 2nd

Second 
trough of 
2nd

Last trough 
of 3rd

2 3 2 2 First peak of
2nd

First peak of
3rd

Same as 
EOG

Later of the 
last peaks of 
2nd & 3rd

Special case if predicted 
EVI at the first peak of 
3rd is greater than EVI at 
the last troughs of both 



2nd & 3rd derivatives

2 3 2 2 First peak of
2nd

First trough 
of 3rd 

Same as 
EOG

Later of the 
last peaks of 
2nd & 3rd

Special case if predicted 
EVI at the last trough of 
3rd >EVI at the last 
trough of 2nd 

2 3 2 2 First peak of
2nd

First trough 
of 2nd

Same as 
EOG

Later of the 
last peaks of 
2nd & 3rd

Special case if predicted 
EVI at the last trough of 
3rd <EVI at the last 
trough of 2nd 

2 1 3 2 First peak of
2nd

Second 
peak of 3rd

Second 
peak of 3rd

Last peak of 
3rd

Additional cases considered if model RMSE 
<0.05

2 2 2 1 Earlier of 
the first 
peak of 3rd &
first trough 
of 2nd

Trough of 
the 3rd (one 
value)

Last trough
of the 2nd 

Last peak of 
the 2nd

2 2 2 2 Earlier of 
the first 
peak of 2nd 
& first 
trough of 3rd

Earlier of 
the two 
values with 
the highest 
predicted 
EVI within 
the set 
including 
first peak of 
3rd, first 
trough of 
2nd, last 
trough of 3rd

& last 
trough of 2nd

Later of the
two latest 
values with
the highest 
predicted 
EVI within 
the set 
including 
first peak of
3rd, first 
trough of 
2nd, last 
trough of 
3rd & last 
trough of 
2nd

Last peak of 
the 3rd

Estimation of EOG and 
SOS requires a special 
adjustment because 
their correspondence  to 
peaks vs troughs 
depended on the 
(as)symmetry of the 
overall fitted curve 
which could vary 
depending on a pixel’s 
time series
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