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ARTICLE

Neuronal Nsun2 deficiency produces tRNA
epitranscriptomic alterations and proteomic shifts
impacting synaptic signaling and behavior
J. Blaze1,2, A. Navickas3, H. L. Phillips4, S. Heissel5, A. Plaza-Jennings6, S. Miglani 3, H. Asgharian3, M. Foo7,

C. D. Katanski7, C. P. Watkins7, Z. T. Pennington1,2, B. Javidfar2,6, S. Espeso-Gil 2,6, B. Rostandy5,

H. Alwaseem5, C. G. Hahn8, H. Molina5, D. J. Cai 1,2, T. Pan7, W. D. Yao 4, H. Goodarzi 3,

F. Haghighi1,2,6,9 & S. Akbarian 1,2,6✉

Epitranscriptomic mechanisms linking tRNA function and the brain proteome to cognition and

complex behaviors are not well described. Here, we report bi-directional changes in

depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation,

including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse

prefrontal cortex (PFC). Neuronal Nsun2-deficiency was associated with a decrease in tRNA

m5C levels, resulting in deficits in expression of 70% of tRNAGly isodecoders. Altogether,

1488/5820 proteins changed upon neuronal Nsun2-deficiency, in conjunction with glycine

codon-specific defects in translational efficiencies. Loss of Gly-rich proteins critical for glu-

tamatergic neurotransmission was associated with impaired synaptic signaling at PFC pyr-

amidal neurons and defective contextual fear memory. Changes in the neuronal translatome

were also associated with a 146% increase in glycine biosynthesis. These findings highlight

the methylation sensitivity of glycinergic tRNAs in the adult PFC. Furthermore, they link

synaptic plasticity and complex behaviors to epitranscriptomic modifications of cognate

tRNAs and the proteomic homeostasis associated with specific amino acids.
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Targeting the brain’s translational machinery bears promise
for psychiatric disease treatment1–3 but the role of tRNAs
—76–90 nucleotide cloverleaf-shaped structures and key

players for ribosomal protein synthesis comprising ~10% of the
cell’s RNA pool—remains unexplored. This is surprising given
that neurological phenotypes are often the primary manifestation
of mutations affecting the tRNA regulome4–6. For example,
mutations in a subset of mitochondrial enzymes charging tRNAs
with their cognate amino acids have been associated with adult-
onset frontal lobe dysfunction, depression, and cognitive
decline7,8. Furthermore, a recent metabolomics meta-analysis
integrating findings from multiple mouse and rat stress-based
depression models listed tRNA charging and amino acid meta-
bolism among the top five ranking pathways significantly affected
in the depressed brain, together with endocannabinoid signaling,
catecholamine biosynthesis, and GABA receptor signaling9. Here,
we focus on adult brain phenotypes after genetic disruption of
tRNA epitranscriptomic modification by NOL1/NOP2/SUN
domain tRNA cytosine methyltransferase (Nsun2), which is
essential for cytosine methylation (m5C) at the tRNA’s variable
loop on >75% of actively transcribed mammalian tRNAs10.

Evidence for the importance of solely NSUN2-mediated m5C
in human health and disease was first provided by individuals
with a loss-of-function mutation in NSUN2, displaying intellec-
tual disability (ID), facial dysmorphism, and distal
myopathy11–14. The idea that Nsun2 deficiency causes neurolo-
gical abnormalities was further delineated by studies in Droso-
phila (d) and mouse10,15, including knockdown of Drosophila
Nsun2 (dNsun2) which impaired short-term memory after
aversive olfactory conditioning, and the phenotype was rescued
by pan-neuronal expression of dNsun211. Furthermore, mice with
Nsun2 germline deletion demonstrated various impairments in
locomotor activity and behavior together with reduced brain size
due to excessive cell death in the prenatal brain10. The mechan-
ism thus far suggested for these deficits is impaired translation
induced by increased tRNA fragmentation after Nsun2
ablation10,16. While there is evidence for global impairment of
protein synthesis via fluorescent labeling of nascent proteins in
embryonic mouse brain10 and adult mouse skin10, to our
knowledge no one has used unbiased proteomic approaches such
as mass spectrometry to directly measure specific molecular
pathways altered by Nsun2 ablation in any tissue type. It has been
established previously that global Nsun2 knockout in mouse
alters the pool of mature tRNAs in the embryonic brain10 and
adult skin10 and liver17, including a marked depletion of tRNAGly,
which is a key target of Nsun2 methylation. However, although
tRNA cytosine methylation (m5C) has recently been profiled in
various tissues, including embryonic brain10,16–25, the molecular
characterization of the Nsun2-dependent epitranscriptome, and
its functional relevance in the mature adult mammalian brain is
still completely unexplored. In this study, we use three different
genetic approaches selectively targeting Nsun2 function in dif-
ferentiated neurons of the postnatal and adult brain. These
include neuron-specific conditional Nsun2 ablation and
transgene-mediated increase in Nsun2 expression and methyla-
tion activity in the adult prefrontal cortex (PFC), thereby focusing
on the effect of Nsun2 enzymatic activity on specific neuronal
subpopulations in the mature brain. We report that Nsun2 shapes
complex behaviors and neuronal function, which are highly
sensitive to bi-directional changes in tRNA methyltransferase
activity. We show that the underlying mechanisms include
alterations in tRNAs defined by high cytosine methylation spe-
cifically in the variable loop region, resulting in prominent deficits
of tRNAGly isodecoders with corresponding shifts in the neuronal
proteome due to decreased translational efficiency of glycine-rich
neuronal proteins. Ultimately, these distortions in the glycinergic

neuronal translatome lead to a 2.46-fold increase in PFC glycine
levels associated with multifold increases in several key enzymes
of the glycine biosynthetic pathway, further illustrating that in the
adult brain, proteomic and metabolic homeostasis associated with
specific amino acids is linked to epitranscriptomic modification of
cognate tRNAs.

Results
Neuronal Nsun2 modulates cortical tRNA cytosine methyla-
tion. We generated mice with conditional neuron-specific abla-
tion of Nsun2 in the forebrain (CamK-Cre+,Nsun22lox/2lox mutant
mice), (Fig. 1a and Supplementary Fig. 1a–c). Nsun2 mutant mice
were born and survived into adulthood at expected Mendelian
ratios (Supplementary Fig. 1d) without overt health abnormalities
and showed ~10% reductions in body and brain weight compared
to WT littermates 14-16 weeks after birth (ANOVA; body weight,
P < 0.001; brain weight, P < 0.001), with female but not male
mutants exhibiting decreased brain/body ratio (t test; P < 0.01;
Supplementary Fig. 1d and Supplementary Table 1). Assessment
of Nsun2 protein levels in mutant vs. control using western blot
confirmed a significant decrease in Nsun2 protein in tissue
homogenate. Nsun2 was still detectable at moderate levels in
homogenate due to expression in other, non-Camk2a-expressing
cell types (inhibitory neurons, glia, etc.), as our knockout was
specific to excitatory neurons expressing Camk2a, which
encompasses the majority of cortical neurons. tRNA bisulfite
sequencing (Supplementary Fig. 2a–c) for five highly expressed
tRNAs in the adult cerebral cortex (out of 162 detected cytosolic
isodecoders (tRNA molecules sharing the same anticodon but
differ in sequence elsewhere); see Fig. 2a for tRNA expression
levels independent of epitranscriptomic modification), including
tRNAGly

GCC, tRNAGlu
TTC, tRNAGlu

CTC, tRNAAsp
GTC, tRNAVa-

l
AAC, and tRNAPro

TTG, which all consistently showed >50%
methylation deficits at sites of Nsun2-sensitive cytosine(C) resi-
dues, including C46-49 in CamK-Cre+,Nsun22lox/2lox mutant
compared to littermate control mice (Fig. 1c, d, Supplementary
Fig. 3a and Supplementary Table 2). To assess the specificity of
these findings, we delivered into PFC of adult C57B6/J mice an
adeno-associated virus vector 8 (AAV8)-transgenic expression
cassette for chimeric Nsun2-green fluorescent protein (Nsun2-
GFP) under control of a neuron-specific (hSyn1) promoter.
Indeed, in AAV8hSyn1-Nsun2GFP injected PFC specimens, only one
cytosine residue with moderate baseline m5C levels (~10–20%),
tRNAGly

GCC C39, displayed a significant methylation increase (t
test, adjusted P= 0.038) (Fig. 1c, d and Supplementary Table 2).
These opposing tRNA m5C changes after neuron-specific Nsun2
ablation and transgenic expression models were extremely spe-
cific, because non-Nsun2 regulated m5C residues, including the
m5C Dnmt2-methylated tRNAGly

GCC C37 and tRNAAsp
GTC

C3826,27 only showed minimal differences compared to controls
(Fig. 1c, d and Supplementary Table 2). Furthermore, non-m5C
tRNA methylation including m1A, m3C, and m1G modification,
and levels of aminoacylation/charging for 151 nuclear-encoded
and 21 mitochondrial tRNA isodecoders with detectable levels of
expression in adult cortex revealed no significant differences
between Nsun2-deficient and control cortex (Supplementary
Fig. 4c, d).

Nsun2 knockout selectively depletes tRNAGly expression. It has
been previously established that tRNA m5C within the variable
loop region, the primary Nsun2 target (Fig. 1c, d and ref. 28),
could affect tRNA stability and translation efficiency29,30. To
explore, we profiled full-length tRNAs in adult CamK-Cre+,
Nsun2lox/2lox and control cortex with dm-HydrotRNA-seq31,32.
10/10 tRNAGly isodecoders showed decreased expression in the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24969-x

2 NATURE COMMUNICATIONS |         (2021) 12:4913 | https://doi.org/10.1038/s41467-021-24969-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Nsun2-deficient cortex compared to control. This included sig-
nificant deficits (FDR adj. P < 0.05) in 4/4 tRNAGly

GCC, 2/4
tRNAGly

CCC, and 1/1 tRNAGly
TCC isodecoders. These changes

were tRNAGly-specific, because only 4/152 (non-tRNAGly) iso-
decoders showed a significant change in the mutant, without
anticodon preference (Fig. 2a, statistical analyses for all detected
isodecoders in Source Data file). Next, we confirmed the highly
specific deficits in tRNAGly

GCC, tRNAGly
CCC, and tRNAGly

TCC

isodecoder expression in our Nsun2-deficient cortex (FDR adj. P
< 0.05) with an independent tRNA profiling method, YAMAT-
seq33 (Supplementary Fig. 4a). We then performed tRNA frag-
ment (tRF)/tRNA half (tiRNA) sequencing (tRF 3’—17–22 nt;
5’—14–32 nt; and tiRNAs—33–35 nt), representing a

heterogenous small RNA group produced from precursor or
mature tRNAs and important for translational regulation and
cellular stress responses34 and observed in Nsun2-deficient cortex
a selective deficit in tRNAGly

CCC, tRNAGly
GCC, and tRNAGly

TCC 5’
originating fragments primarily representing 5’ tiRNAs and
5’tRF-5c (28–32 nt long) (P < 0.05; Supplementary Fig. 4b).
Therefore, our three independent sequencing assays exploring the
“tRNAome”, further confirmed by isoacceptor-specific qPCR
(Supplementary Fig. 4a, b), consistently showed that loss of
neuronal Nsun2 is associated, in a codon-specific manner, with
selective deficits in multiple tRNAGly isodecoders. In contrast,
non-tRNAGly isodecoders were minimally affected. Our findings
resonate with previous studies in Nsun2- and Dnmt2-RNA
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cytosine methyltransferase-deficient fibroblasts which showed
isodecoder destabilization limited to a small subset of tRNAs
including tRNAGly

GCC
35. However, in contrast to our findings in

the adult cortex, Nsun2 in the prenatal brain is essential for
inhibition of tRNA fragment production10.

Nsun2 ablation decreases the expression of Gly-rich proteins.
Studies in dividing cells and tissues lacking Nsun2 expression
reported broadly impaired protein synthesis10,25,36. Therefore, we
explored with LC-MS/MS mass spectrometry the adult PFC
proteome after neuronal Nsun2 ablation. From a total of 5820
proteins identified in the PFC, 635 were decreased and 853
increased in CamK-Cre+, Nsun22lox/2lox compared to littermate
control PFC (n= 5–6/group; FDR adj. P < 0.05; Fig. 2b, Supple-
mentary Fig. 4g). Strikingly, neuronal signaling and synaptic
functioning pathways represented 10/10 top-ranking StringDB
functional categories for the group of downregulated proteins,
while pathways associated with RNA processing, metabolism, and
tRNA aminoacylation/ligation ranked top among the list of
upregulated proteins (Fig. 2c). Given the loss of codon-specific
tRNAGly isodecoders in our Nsun2-deficient cortex, we then
examined glycine amino acid composition in the cortical pro-
teomes. Indeed, downregulated proteins were significantly
glycine-enriched (average 7.16% glycine content) in the mutant
compared to wild-type proteome, which on average had 6.63%
glycine content (P < 0.0001; Fig. 2c). This included many proteins
crucial for synaptic functioning, such as neurogranin (Nrgn),
calcium voltage-gated channel auxiliary subunit gamma 8
(Cacng8), synaptogyrin 3 (Syngr3), neuronal pentraxin receptor
(Nptxr), discs large MAGUK scaffold protein 4 (Dlg4), glutamate
ionotropic receptor AMPA type subunit 2 (Gria2), and protein
kinase C gamma (Prkcg) (comprehensive list in Supplementary
Table 3). Conversely, proteins upregulated after Nsun2 ablation
were significantly glycine de-enriched (P= 0.046; Fig. 2c). These
alterations were highly specific because glycine content of the
entire set of n= 434 neuron-specific proteins (UniProtKB) in our
cortical proteome (comprised of neuronal and glial proteins) was
very similar to the glycine content of the total proteome in our
cortex homogenates (Mann–Whitney test, P= 0.412; Supple-
mentary Fig. 4f), confirming that the observed enrichment of high
glycine content proteins in the fraction of downregulated proteins
in the Nsun2 mutant cortex do not reflect a non-specific decline
of the neuronal proteome overall. Notably, a subset of 50
downregulated proteins known to be involved in excitatory
synaptic transmission (Supplementary Table 3), including Neu-
rogranin (Nrgn) as a key regulator of glutamate NMDA receptor-

dependent intracellular signaling in PFC37,38, and calcium
voltage-gated channel auxiliary subunit gamma 8 (Cacng8), reg-
ulating AMPA receptor intramembranous distribution39, dis-
played even higher average glycine content (7.62%;
Supplementary Fig. 4f). Therefore, deficits in neurotransmission
due to deficiencies in Gly-rich synaptic proteins may be present
in the Nsun2 mutant cortex.

Correlation analysis between proteome and transcriptome
(RNAseq; n= 2/genotype) of the 76 synapse-associated genes
comprising the top 10 GO categories (Fig. 2c and Supplementary
Fig. 4e) demonstrated poor correlation (r2= 0.1066), suggesting
that the aforementioned proteomic deficit in Nsun2-deficient
cortex cannot be explained solely by gene expression alterations.
We then computed codon-specific translational efficiency ratios
(logTER) from normalized differentials of protein and RNA
levels40. Indeed, we again identified a significant association
between glycine codon content (including all four glycine codons
due to their unanimous decrease in tRNA expression in the
Nsun2 KO) and translation such that low logTERs were
associated with higher glycine codon content within genes and
vice versa (Fig. 2d). Interestingly, glutamic acid (Glu) and aspartic
acid (Asp), two amino acids that in our set of 5820 cortical
proteins were anti-correlated with Gly content, showed signifi-
cantly increased logTERs in the mutant cortex (Supplementary
Fig. 5a). Importantly, tRNA abundance is a key determinant for
translational elongation rates during protein biogenesis, including
codon-specific variabilities in ribosome speed along mRNAs41–43.
Therefore, we asked whether the observed deficit in Gly tRNAs
was associated with codon-specific alterations in ribosome
dynamics. To examine this, we conducted genome-wide riboso-
mal footprinting assays (Riboseq)44, calculated P-site offsets (the
site holding the tRNA associated with the growing polypeptide
chain) with riboWaltz45, and then computed both codon-specific
dwell times as a measure of the codon-specific decoding rate and
the expression of codons occupying the A-site for WT vs. KO
cortex (see “Methods”; Fig. 2e; Supplementary Fig. 5c, d). Indeed,
the cerebral cortex of adult CamK-Cre+, Nsun22lox/2lox mice, in
comparison to cortex with wild-type levels of Nsun2, showed a
significant increase in dwell time (DT) (P= 1.97e−71) and A-site
occupancy (P= 3.07e−21) for Gly (GGN) codons. This alteration
was Gly-specific because codons from the 19 non-Gly amino acids
were much less affected (Fig. 2f). Closer inspection of the 64
codons revealed that the excess DT and increased A-site occupancy
in ribosomes from Nsun2 mutant cortex were primarily driven by
the Gly GGA codon (TCC anticodon). Likewise, in the KO cortex
A-site occupancy was also significantly increased for 2/3 of the

Fig. 1 Neuronal Nsun2 expression and activity modulates tRNA cytosine methylation in the adult cortex. a Left, schematic representation of conditional
Nsun2 ablation with loxP sites surrounding Nsun2 exon 6 and representative RNA-seq profiles from the cortex of adult CamK-Cre+,Nsun2lox/2lox (KO) and
WT control mice. Right, immunoblot (top) for Nsun2 protein expression in cortical tissue homogenate (Histone H3 was used as a loading control; two-
tailed, t(5)= 3.381, *P= 0.0196; n= 3 WT, 4 KO). Uncropped western blots depicted in Supplementary Fig 1b. Nsun2 mRNA levels (bottom) were
measured in forebrain tissue homogenate using qPCR with Gapdh as a housekeeping gene (n= 9 WT, 8 KO; two-tailed, Mann–Whitney U= 0, ***P <
0.0001). Data are presented as mean values +/− SEM. b Top left, schematic representation of viral vector containing hSyn1 promoter to drive neuronal
expression, mouse Nsun2 transcript, and GFP fusion protein (top). Brain atlas depiction of discrete PFC bilateral microinjections that were confirmed via
GFP illumination (left) and immunostaining of Nsun2GFP (right; top scale bar= 100 μm, bottom scale bar= 20 μm). Note nucleolar staining pattern of
Nsun2GFP. Bottom left, a significant increase in Nsun2 mRNA was detected by qPCR in PFC tissue after AAV8hSyn1-Nsun2GFP injection compared to
AAV8hSyn1-GFP controls using Gapdh as a housekeeping gene (n= 7–8/condition; two-tailed, Mann–Whitney U= 0, ***P= 0.0003). Data are presented as
mean values+/− SEM. c Left, schematic of tRNAGly

GCC, depicting 11 cytosines that were queried with tRNA bisulfite sequencing. Yellow circles represent
unmethylated cytosines, blue circles represent cytosines methylated by Nsun2, and green circles represent cytosines methylated by Dnmt2. Right,
representative tRNA bisulfite sequencing methylation maps for WT & Nsun2 KO cortex and AAVNsun2 PFC. tRNA bisulfite methylation maps include one
cytosine per column and reads are represented as horizontal lines. d Methylation maps for differential methylation levels of Nsun2 and Dnmt2 cytosine
targets compared to appropriate control for tRNAGly

GCC, tRNAGlu
CTC, and tRNAAsp

GTC (n= 3–5 biological replicates per condition (denoted as 1–5), two-
tailed t test, ***FDR adj. P < 0.001; *FDR adj. P= 0.038 vs. same-batch control for each group; statistics for each cytosine shown in Supplementary
Table 2). Source data are available as a Source Data file.
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other Gly codons (GGC and GGU) (Fig. 2f and Supplementary
Fig. 5e). Furthermore, GGA codon-enriched transcripts had lower
translational efficiencies in KO as compared to the mutant cortex
(Supplementary Fig. 5b). Finally, we examined ribosomal dynamics
for the AAC and ATG codons associated with the two non-Gly
tRNAs that were upregulated in the Nsun2 KO cortex (see Fig. 2a;

tRNAAsn
GTT and tRNAMet

CAT). There were no significant changes
in ribosome DT or A-site occupancy (Fig. 2f and Supplementary
Fig. 5e). Therefore, we conclude that loss of glycinergic tRNAs,
including tRNAGly

TCC isodecoders, is associated with disruption, or
slowing, of proper translational elongation at the site of the
corresponding Gly codons.
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Glycine biosynthesis is increased in the Nsun2 mutant cortex.
We noticed five differentially expressed enzymes in our pro-
teomics screen that were involved in the monosaccharide-based
glycine/serine biosynthesis and metabolism pathway, including
phosphoserine aminotransferase 1 (Psat1), phosphoserine phos-
phatase (Psph), phosphoglycerate dehydrogenase (Phgdh), serine
hydroxymethyltransferase 2 (Shmt2), and serine racemase (Srr)
(Fig. 3a and Supplementary Table 4). Because all five glycine/
serine biosynthesis proteins showed significantly altered expres-
sion in our mutant cortex in a direction consistent with increased
glycine biosynthesis, we speculated that alterations in expression
of these proteins combined with the impact of tRNAGly dys-
function in the Nsun2 mutant cortex could signal changes in bulk
amino acid content, specifically for glycine. To examine this, we
used an unbiased metabolomic approach to profile 19 of the 20
canonical amino acids (no data for cysteine due to high reactiv-
ity). Indeed, there was a significant 2.46-fold (146%) increase of
glycine in the Nsun2-deficient as compared to wild-type litter-
mate cortex (n= 4/group, t test P < 0.05). In contrast, levels for
each of the remaining 18 amino acids showed minimal, non-
significant differences between mutant and control cortex
(Fig. 3b). These findings, taken together, point to selective sus-
ceptibility of the glycinergic translatome in the adult cerebral
cortex upon removal of neuronal Nsun2. Nsun2 ablation resulted
in decreased levels of hypomethylated Gly tRNAs, with decreased
translation of Gly-rich proteins and compensatory upregulation
of the glycine biosynthetic pathway, ultimately leading to a 2.46-
fold increase in glycine levels in bulk tissue extracts.

Neuronal Nsun2 deletion impacts synaptic transmission in
PFC. Of note, as discussed above, alterations in the cortical
proteomic landscape after neuronal Nsun2 ablation included
many Gly-rich proteins crucially important for synaptic signaling
(Supplementary Table 3 and Supplementary Fig. 4f). Therefore, in
order to test whether neurotransmission is affected in the Nsun2
mutant cortex, we performed whole-cell patch-clamp recordings
on individual layer V pyramidal neurons in the mouse PFC to
measure AMPA receptor-mediated miniature(m) excitatory
postsynaptic currents (EPSCs) in adult Nsun2 mutants and
controls. We specifically chose two sub-regions of the rodent
PFC, the anterior cingulate cortex (ACC) and prelimbic cortex
(PrL), which have been repeatedly implicated in rodent
cognition46–49 and depressive-like behavior50,51. In ACC, there
was no change in amplitude (t(23)= 0.9987, P= 0.328) but a
significant decrease in mEPSC frequencies (t(23)= 2.958, P=

0.007), indicating potential loss of functional synapses or a lower
probability of presynaptic glutamate release in KO mice. In PrL,
mEPSC frequencies were normal (t(23)= 0.6787, P= 0.504)
but there was a significant decrease in amplitude for KO mice
(t(23)= 2.243, P= 0.035), suggesting a decreased abundance of
postsynaptic AMPA receptors or less neurotransmitter quanta in
presynaptic vesicles (Fig. 4a). To more directly link functional
changes in synaptic transmission with alterations in Gly-rich
synaptic proteins, we isolated synaptosomes from Nsun2 KO
cortex and measured protein abundance for the synaptic protein
with the highest glycine content, Neurogranin (Nrgn; Supple-
mentary Table 3, Fig. 4b, and Supplementary Fig. 5f). Synaptic
fractions in the KO cortex indeed had significantly decreased
Neurogranin protein expression (t(8)= 2.282, P= 0.026, one-
tailed; Fig. 4b). Based on these results, we propose a working
model linking neuronal codon-specific loss of Gly tRNAs after
Nsun2 ablation to impaired translation of synaptic proteins,
resulting in defective synaptic plasticity and signaling (working
model, Fig. 4c).

Neuronal Nsun2 deletion impairs complex behaviors. Given
these alterations in PFC neurotransmission, we asked whether
PFC-dependent behaviors could be affected in mice with neuro-
nal Nsun2-deficiency. To this end, we subjected multiple cohorts
of mice to behavioral realms causally related to cortical function,
including fear learning, anxiety, and behavioral despair/
depression50,52–54 (Supplementary Table 5). Indeed, CamK-Cre+,
Nsun22lox/2lox mice showed impaired acquisition of a tone/shock
association in the fear-conditioning paradigm (P= 0.06) and a
dramatic reduction in freezing when placed in the training con-
text during the contextual fear memory test (P < 0.001) suggesting
impaired contextual memory (Fig. 5a). This cognitive deficit was
specific to contextual memory because cued fear conditioning and
Y-maze working memory were completely preserved (Fig. 5a).
However, mutant mice were significantly less anxious in the
elevated plus maze (P= 0.004) and light/dark box (P= 0.012;
Fig. 5b and Supplementary Fig. 6a–c) compared to controls and
exhibited significantly decreased immobility scores on the forced
swim test (P= 0.009) but not the tail suspension test (P= 0.291;
Fig. 5c).

Nsun2 overexpression in PFC produces depressive-like beha-
vior. We were highly surprised to observe reductions in depres-
sion and anxiety-related behaviors in mice with neuronal Nsun2-

Fig. 2 Nsun2 ablation depletes tRNAGly causing decreased expression of glycine-rich synaptic proteins. a Left, tRNA sequencing of mouse forebrain in
Nsun2 KO and WT (n= 3/genotype). Note decreased expression in 10/10 tRNAGly isodecoders (green) among 162 total isodecoders (gray). Isodecoders
that are differentially expressed (adj. P < 0.05) between KO and WT have black outlined circles. Right, 11 isodecoders were significantly altered by Nsun2
ablation (FDR P < 0.05) with 7/9 downregulated isodecoders belonging to the tRNAGly family. Data are presented as mean values+/− SEM. b Unbiased
proteomic screen identified 1488 proteins significantly altered (FDR adj. P < 0.05) after Nsun2 ablation (635 decreased, 853 increased; n= 5–6/genotype).
c Left, gene ontology analysis using StringDB identified the top ten significant KEGG pathways downregulated in Nsun2 KO including those involved in
synaptic functioning and neurotransmission, while one of the top ten significant KEGG pathways upregulated was the family of aminoacyl tRNA ligases.
Right, box plot for glycine content in three subgroups of proteins, n.s (not significant; 4332 proteins; median: 6.403, IQR: 2.811, whiskers represent min (0)
and max (35.93)), decreased (635 proteins; median: 6.849, IQR: 2.7, whiskers represent min (0.73) and max (24.36)), and increased (853 proteins;
median: 6.234, IQR: 2.852, whiskers represent min (0) and max (27.54)) proteins in Nsun2 KO cortex vs. WT. (two-tailed, Mann–Whitney test; ***P <
0.0001, *P= 0.046). d Proteins produced by genes with higher glycine codon content exhibited a significant decrease after Nsun2 ablation. Left, LogTER
(top, red) corresponding to glycine codon content enrichment scores (bottom, yellow-blue). Heatmap represents gene clusters from the top 50% of
glycine codon-enriched genes, with yellow representing most enriched and blue representing least enriched. The red and dark-blue borders indicate the
statistical significance of the calculated hypergeometric P values for that cluster after Bonferroni’s correction, obtained from the z scores associated with
the mutual information (MI) values calculated with 10,000 randomization tests (adj. P < 0.05). e Schematic of translation at the ribosome and locations of
the A, P, and E sites. f Top, RiboSeq data for A-site occupancy (KO vs. WT) (top left) and relative ribosomal dwell time (KO/WT) (top right) grouped by
amino acid. Bottom, ribosome A-site occupancy shown for all 64 codons. Note the significant increase in DT and A-site occupancy for Gly (GGN) codons
and specifically GGA codons (n= 2 KO/2 WT). Source data are available as a Source Data file.
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deficiency, and we then wondered whether a viral-mediated
increase in neuronal Nsun2 expression in the adult cortex would
elicit similar or opposite phenotypes. Indeed, mice expressing a
Nsun2GFP transgene (AAV8hSyn1-Nsun2GFP; Fig. 1b) bilaterally in
PFC neurons showed significantly increased immobility scores in
the two behavioral despair tests (P= 0.005 and 0.003; Fig. 5d),
while anxiety-related test scores were indistinguishable from
controls (Supplementary Fig. 6a–c). In addition, fear acquisition,
contextual memory, cued fear memory, and Y-maze working
memory were all preserved in Nsun2 overexpressing mice (Sup-
plementary Fig. 6d).

Nsun2 ablation in PFC produces an anti-depressant pheno-
type. Due to these bi-directional behavioral effects, with
antidepressant-like phenotypes after Nsun2 ablation in postnatal
forebrain but increased depression-like behaviors in mice
expressing a Nsun2 transgene selectively in adult PFC neurons,
we next sought to determine if we could recapitulate the anti-
depressant-like effect with a PFC-specific neuronal Nsun2 abla-
tion in adulthood. To this end, we bilaterally injected AAVhSyn1-

CreGFP into PFC of 10–12 weeks old adult Nsun2lox/2lox mice
(Supplementary Fig. 1e). PFC-specific loss of Nsun2 expression
was confirmed by qPCR (n= 16–17/AAV injection type; t(31):

3.945, P < 0.001) and the resulting loss of Nsun2 methyl-
transferase activity further confirmed by tRNA bisulfite sequen-
cing for tRNAGly

GCC, showing decreased methylation at Nsun2
target cytosines (n= 3/AAV injection type; C39: P= 0.032,
C46,47,48: P= 0.002; Supplementary Table 6). Indeed, mice with
PFC-specific loss of Nsun2 showed decreased immobility in tests
of behavioral despair, specifically the TST (N= 7–10/sex/AAV
injection type; t test, P < 0.001; Fig. 5e and Supplementary
Table 5).

Discussion
We show that Nsun2 expression and activity in mature neurons is
essential for synaptic transmission and complex behaviors
including contextual fear memory. Furthermore, Nsun2 robustly
shapes affective states associated with depression and anxiety. Bi-
directional changes in Nsun2 tRNA methyltransferase activity in
adult PFC neurons are associated with directly opposing changes
in behavioral despair paradigms and differential effects on
anxiety-related behaviors. Consistent with these behavioral stu-
dies, our recordings from Nsun2-ablated PFC layer V neurons
show significant deficits in mEPSC amplitude and frequencies,
which, although a preliminary finding, shows a functional con-
sequence of synaptic protein loss elicited by Nsun2 ablation.
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Schematic of glycine–serine biosynthesis pathways that are significantly altered in cortex after Nsun2 ablation. Red arrows represent significant FDR
adjusted P values <0.1 in unbiased proteomic screen (see Fig. 2b) between Nsun2 KO and WT cortex with average t test differences denoted next to
arrows. The green arrow represents significantly changed amino acid concentration in KO vs. WT cortex. bMetabolomic profiling of mutant and WT cortex
for 19 amino acids (20 canonical amino acids, except for cysteine; see “Methods”) revealed a significant increase in glycine for Nsun2 KO vs. WT (n= 4/
genotype; two-tailed t tests, FDR adj. *P= 0.020; **Grubb’s test for fold changes identified glycine as a significant outlier with alpha= 0.001). Data are
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Which molecular mechanisms link Nsun2 to these robust
behavioral and physiological phenotypes? Our findings confirm
that Nsun2 ablation and overexpression in PFC neurons induce
corresponding changes in m5C methylation of Nsun2-regulated
cytosine residues positioned in the 3’ half of several tRNA iso-
acceptor families. These include Gly tRNAs harboring altogether
four Nsun2-regulated methyl-cytosines including C37 positioned
distal from the anticodon hairpin and C46, C47, C48 in the
variable loop region, contrasting with a lower number of Nsun2-
regulated cytosine residues for other (non-glycinergic) tRNAs in
the adult brain. Therefore, it is plausible that the sharp drop in
Nsun2-dependent m5C levels in our mutant cortex renders the
tRNAGly family particularly susceptible to degradation or other
types of molecular defects resulting in lower levels of expression,
which is what we observed for the entire set of 10/10 tRNAGly

isodecoders. Of note, deficits in tRNAGly levels after germline
Nsun2 ablation have been previously reported for the liver17,35

and skin10. The latter finding is interesting in view of Blanco

et al.’s comprehensive mouse tRNA methylome atlas for mouse
skin and human dermal fibroblasts10, which lists only 3/41 iso-
acceptor families, or Gly, Glu, and Pro-specific tRNAs, each
carrying three Nsun2-methylated cytosine residues (Supplemen-
tary Fig. 3b, c). In contrast, brain harbors altogether four Nsun2-
methylated cytosine residues for multiple Gly isoacceptors
including tRNAGly

CCC (ref. 10) and tRNAGly
GCC (our data), while

Glu and Pro tRNAs in the brain still contain three Nsun2-
methylated cytosines (Supplementary Fig. 3c). In addition to
highly methylated (>80–90% methylated at baseline) cytosines
C46/C47/C48 in the variable loop region, Gly tRNA C39 at
baseline is moderately methylated (~10–20%), while highly sen-
sitive to changes in Nsun2 methyltransferase activity (Fig. 1c, d).
Finally, C37 of tRNAGly isoacceptors is regulated by a non-Nsun2
RNA methyltransferase, Dnmt227. These findings, taken together,
suggest that loss of m5C in the brain is destabilizing to Gly tRNAs
that uniquely carry four Nsun2-regulated cytosine residues.
Indeed, in the adult mutant cortex with neuron-specific Nsun2
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Fig. 4 Neuronal Nsun2 is essential for synaptic transmission in the prefrontal cortex. a Electrophysiological recordings from two distinct PFC subregions,
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recorded from layer V pyramidal neurons at −70mV (two-tailed t test, **P= 0.007, *P= 0.035). Data are presented as mean values+/− SEM. b Left,
glycine content for 50 downregulated synaptic proteins (see Supplementary Table 3) that may contribute to synaptic transmission phenotype, including
Neurogranin with 23% glycine. Right, synaptosomes were isolated from Nsun2 KO cortex and immunoblot showed decreased expression of Neurogranin at
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deficiency, loss of tRNA expression was specific for the group of
Gly tRNAs, while no consistent alterations in tRNA isodecoder
expression were found for any of the remaining tRNA families. In
turn, loss of Gly tRNA resulted in a decline in translational effi-
ciencies specifically of Gly-rich (including many synapse-asso-
ciated) neuronal proteins (Supplementary Table 3 and
Supplementary Fig. 4f). Our findings, taken together, point to
Nsun2 as a key epitranscriptomic regulator in mature neurons
with a critical role in the maintenance of proper levels of Gly
tRNAs required for the efficient translation of Gly-rich proteins.
Disruption of this mechanism then leads to deficits in synaptic
transmission and alterations in complex behaviors.

Unexpectedly, our study uncovered a 2.46-fold increase of
glycine amino acid levels in the bulk extract from the Nsun2-
deficient cortex. In contrast, levels for the remaining 19 canonical
amino acids were indistinguishable from the wild-type cortex.
Glycine upregulation in the mutant cortex was accompanied by
increased protein abundance for enzymes sequentially aligned in
glycine biosynthetic pathways starting from a product of glyco-
lysis, 3-phosphoglycerate. Interestingly, however, serine racemase
(Srr), a key regulatory enzyme diverting the glycine precursor, L-
serine, towards the production of D-serine, was significantly
downregulated in the mutant cortex. These findings suggest that
the loss of tRNAGly and the corresponding drop in translational
efficiencies of Gly-rich neuronal proteins triggers a compensatory
response among multiple key nodes in the glycine biosynthetic
pathway resulting in an increase in cortical glycine levels.

Therefore, these data, as an emerging hypothesis, would suggest
that mature cortical neurons, when sensing codon-specific
disruptions in tRNA supply, may respond by adjusting meta-
bolic and biosynthetic pathways regulating the cellular pool of
the cognate amino acids. Alternatively, there is evidence that
the metabolism of glycine and its precursor molecule, serine,
are part of a general response to translational stress in the brain
and in peripheral tissues. For example, mice with a mutation-
induced loss of an Arg-tRNA gene expressed specifically in the
brain, n-Tr20, reportedly show ~200% increase of hippocampal
glycine and ~100% increase in serine levels in conjunction with
upregulated expression of Phgdh (D-3-phosphoglycerate dehy-
drogenase), an enzyme involved in the early steps of the gly-
cine/serine biosynthetic pathway43. Furthermore, a 100–200%
increase in serine and glycine metabolism was reported for
acute lymphoblastic T-cell leukemia cells carrying a specific
ribosomal protein mutation, RPL10R98S55. This effect was
thought to result from increased expression of PHGDH,
PSAT1, PSPH, and SHMT255, comprising the glycine/serine
biosynthetic pathway; these proteins also showed upregulated
expression in the present study (Fig. 3). Downstream effects of
elevated glycine/serine levels could include (i) an increase in the
supply of intermediates for purine biosynthesis as a critical
building block for nucleic acids, (ii) increased availability of
nutrients for the surrounding cells and tissues, and
(iii) increased NMDA receptor-mediated excitatory signaling
and glycinergic receptor (GlyR)-mediated fast inhibitory
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Fig. 5 Manipulation of neuronal Nsun2 modulates complex behaviors, including cognition and depressive behaviors. a Behavioral tests of cognition in
adult Nsun2 KO and WT mice (n= 12 WT, 7 KO). Left, changes in contextual but not cued fear memory in Nsun2 KO mice compared to WT. Right, no
changes in working memory were detected in Y-maze spontaneous alternation (n= 7/genotype; ***P < 0.0001). b Nsun2 KO and WT mice in elevated
plus maze (EPM; n= 6 WT M, 7 WT F, 7 KO M, 4 KO F) and light/dark box (L/D; n= 11 WT M, 12 WT F, 10 KO M, 7 KO F; **P= 0.010 for KO vs. WT
males post hoc comparisons). c Nsun2 KO vs. WT mice immobility scores in the forced swim (FST; n= 10 WT M, 11 WT F, 10 KO M, 7 KO F) and tail
suspension (TST; n= 10 WT M, 11 WT F, 10 KO M, 7 KO F). d AAV8hSyn1-Nsun2GFP vs. AAV8hSyn1-GFP control mice immobility scores in the FST (n= 10
AAVGFP M, 10 AAVGFP F, 6 AAVNsun2 M, 10 AAVNsun2 F; **P= 0.002 for post hoc comparisons) and TST (n= 10/sex/condition; *P= 0.044 for post hoc
comparisons). e AAV8hSyn1-CreGFP vs. AAV8hSyn1-GFP control mice immobility scores in the FST and TST (n= 7 AAVGFP M, 9 AAVGFP F, 8 AAVCre M, 10
AAVCre F; ***P < 0.001). All data are presented as mean values+/− SEM, and all post hoc t tests are two-tailed with Bonferroni correction. Source data are
available as a Source Data file.
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neurotransmission, given that D-serine and glycine are well-
established ligands for these two receptor types.

Therefore, in addition to the long-established “glycine neuro-
physiology” via (1) binding sites on glutamate NMDA receptors56,
and (2) its cognate receptors (GlyR) in subtelencephalic areas57,
our findings point to the third type of mechanism, starting with
tRNAGly epitranscriptomic modification, by which glycinergic
pathways could critically regulate adult brain function and com-
plex behaviors. Pharmacological alterations in glycine function in
the brain58 have shown promise for alleviating cognitive deficits59

and depressive symptoms in humans60 and animal models61,62.
The findings presented here broadly align with the therapeutic
promise of glycinergic pathways. Thus, our Nsun2 mutant model
for tRNA m5C epitranscriptomic modification unveils a selective
vulnerability of glycine-specific tRNA isodecoders, ultimately
resulting in decreased translational efficiencies of glycine-rich
proteins in the affected neurons, in conjunction with altered
glutamatergic synaptic signaling in two distinct subregions of the
PFC (ACC and PrL; Figs. 2c and 4a, b) and antidepressant-like
behavioral phenotypes (Fig. 5c, e). Importantly, the novel fast-
acting antidepressant drug ketamine exerts therapeutic effects via
rapid modulation of protein synthesis, including translational
initiation3 and elongation2, and mTOR signaling57, providing an
additional link between translational regulation of the proteome
and the neurobiology and treatment of depression and anxiety.
Finally, we note that while tRNAs are the main and most well-
characterized target of Nsun2 methyltransferase activity, addi-
tional work will be required to explore the heterogenous non-
tRNA species potentially methylated by Nsun2, including small
ribonucleoprotein-(vault)-associated RNAs24,63, microRNAs64,
and even a limited subset of messenger RNAs65–67. Future work
will further investigate additional Nsun2 targets in the adult brain
as well as tRNA-induced proteomic changes that may produce
differential effects on glutamatergic signaling in PFC subregions.
Our work here adds to the existing literature on epitranscriptomic
mechanisms in the mature brain, which has until now solely
focused on adenosine methylation (m6A) on mRNA, a mod-
ification which regulates mRNA stability, splicing, and localiza-
tion, and provided causal links between m6A, brain function, and
behavioral outcomes, including learning, memory, and neuronal
function68–71. We now show evidence that the m5C modification
on tRNAs, specifically tRNAGly, is another level of epitran-
scriptomic regulation for neurobiology and behavior in the
mature brain.

Methods
Animals. All animal work was approved by the Institutional Animal Care and Use
Committee of the Icahn School of Medicine at Mount Sinai. Mice were group-
housed 2–5/cage with ad libitum access to food and water and a 12 h light/dark
cycle (lights off at 7 pm) under constant conditions (21 ± 1 °C; 60% humidity).
Mice bred in-house were weaned at ~P28, housed with same-sex littermates, and
ear-tagged/genotyped.

Nsun2 conditional knockout mice. C57BL/6N-Nsun2tm1c(EUCOMM)WtsiOulu

mutant mouse sperm were obtained from the Wellcome Trust Sanger Institute
(Cambridgeshire, UK). This line is modified from EUCOMM ES clone
EPD0105_2_F10, after breeding with a Flp recombinase deleter line to convert the
original knockout first targeted allele (tm1a) into a conditional allele (tm1c). Mice
with the tm1c allele exhibit a phenotypical wild-type state although exon 6 of
Nsun2 is flanked by loxP sites, where the presence of Cre-recombinase excises this
exon and produces a frame-shift, resulting in early termination of Nsun2 transla-
tion (Fig. 1a). IVF was performed with C57BL/6N-Nsun2tm1c(EUCOMM)WtsiOulu

mutant mouse sperm and wild-type (WT) C57BL/6N females. Mice were then bred
further to obtain Nsun22lox/2lox mice (two copies of tm1c mutant allele). Nsun22lox/
2lox mice were crossed with a CamK-Cre+ line to produce CamK-Cre+,Nsun22lox/
2lox mice for knockout of Nsun2 in excitatory forebrain neurons. This particular
calmodulin-kinase II (CamK)-Cre transgenic line is associated with widespread
neuronal Cre-mediated deletion across the forebrain before postnatal day 18, as
previously described73–76. For behavioral and molecular experiments, we bred

CamK-Cre-,Nsun22lox/2lox males with CamK-Cre+,Nsun22lox/- females and obtained
expected Mendelian ratios of offspring genotypes (X2(3, N= 99)= 0.459, P=
0.928). Age- and sex-matched CamK-Cre-,Nsun22lox/2lox or Nsun22lox/− were used
as wild-type controls in genotype experiments. Mice were 13–16 weeks old for all
behavioral experiments and sacrificed at 13–16 weeks for all molecular experiments
except for tRNA bisulfite sequencing of CamK-Cre+,Nsun22lox/2lox mice, which
were ~8 weeks old at the time of sacrifice.

Viral microinjections. For viral microinjection surgeries into adult mouse PFC
(AAV8hSyn1- Nsun2GFP, AAV8hSyn1-GFP, AAV8hSyn1-CreGFP), 10–12 week-old
C57BL/6J mice were anesthetized with isoflurane and 1 μl of virus per hemisphere
(bilateral injection) was injected at a rate of 0.25 μl/min using a Hamilton syringe
(Reno, NV), a micropump (Stoelting) and a stereotactic frame (Stoelting). Ste-
reotactic coordinates for injection were as follows: 1.5 mm anterior/ posterior, ±0.5
mm medial/lateral, and 1.5 mm dorsal/ventral. Control animals received 1 μl per
hemisphere of AAV8hSyn1-GFP using the same conditions.

Immunohistochemistry. Adult mice were anesthetized with a terminal intraper-
itoneal injection of a ketamine/xylazine mixture (IP: 200 and 30 mg/kg, respec-
tively). Transcardial perfusion was performed with 100 ml of 10% sucrose followed
by 200 ml of 4% paraformaldehyde in PBS. Brains were removed and placed in 4%
formaldehyde overnight at 4 °C, followed by incubation in 30% sucrose until iso-
tonic. After embedding in OCT compound (Tissue-Tek), the brains were cut on a
freezing microtome (Leica SM2010 R) into 30-µm coronal sections and placed in
1× PBS. Antibody staining was performed as follows: coronal sections containing
prefrontal cortex were blocked and permeabilized with 10% BSA and 0.05% Triton
X-100 in 1× PBS for 1 h at room temperature, followed by incubation in primary
antibody (NeuN, 1:200) diluted in 0.01% Triton X-100 overnight at room tem-
perature. The sections were washed for 5 min in PBS followed by incubation in
secondary antibodies diluted 1:5000 in PBS for 1 h at room temperature. Sections
were washed briefly in PBS before being mounted on Superfrost Plus slides (Fisher)
with DAPI Fluoromount-G media (SouthernBiotech). Imaging was done using a
Zeiss CLSM780 upright microscope. Image processing was done in NIH ImageJ
software.

BaseScope in situ hybridization. Adult CamK-Cre+,Nsun22lox/2lox and WT mice
(~2–3 months old) were anesthetized with a terminal intraperitoneal injection of a
ketamine/xylazine mixture (IP: 200 and 30 mg/kg, respectively). Transcardial
perfusion was performed with 100 ml of 10% sucrose followed by 200 ml of 4%
paraformaldehyde in PBS. Brains were removed and placed in 4% formaldehyde
overnight at 4 °C, followed by incubation in 30% sucrose until isotonic. After
embedding in OCT compound (Tissue-Tek), the brains were cut on a freezing
microtome (Leica SM2010 R) into 10-µm coronal sections and placed in 1× PBS
until ready to use.

BaseScope (ACDBio) in situ hybridization for Nsun2 mRNA was performed
using a single ZZ probe targeting nucleotides 615–659 of Nsun2 mRNA, which
exclusively targets half of exon 6 (the exon deleted in our Nsun2 KO mouse).
Briefly, sections were slide-mounted and dried for 1 h at 60 °C. A hydrophobic
barrier was drawn around the tissue sections before incubation in hydrogen
peroxide and protease. The ZZ probe was added to the sections for 2 h at 40 °C.
The slides were incubated in a series of amplifier oligonucleotide sequences, with
wash steps in between. The signal was developed with BaseScope FAST Red for
10 min at room temperature, followed by hematoxylin staining. The sections were
coverslipped with VectaMount mounting media (Vector Labs). Images were
acquired on a Zeiss Axio Imager Z2 Upright microscope configured with a ×63
objective.

Subcellular fractionation for synaptosomes. Frozen cortical tissue was homo-
genized in ice-cold HEPES-sucrose with a Teflon homogenizer at 600 rpm and
centrifuged at 1000×g at 4 °C for 10 min. The supernatant was removed and
centrifuged two more times until no pellet was visible. The supernatant was then
centrifuged at 10,000×g for 10 min, and the supernatant was removed and kept as
the cytoplasmic fraction. Pelleted material was used as the crude synaptosomal
fraction and resuspended in HEPES-sucrose, followed by two additional washes
with HEPES-sucrose. After the final wash, the synaptosome pellet was resuspended
in 100 µl RIPA buffer and quantified by BCA assay for western blotting.

Western blotting. Cortical tissue was homogenized using a vibrating pestle in
buffer containing SDS, HEPES, sucrose, and protease inhibitors and quantified
using a BCA assay. In total, 30 µg of purified protein (10 µg for synaptosomes) was
denatured at 95 °C for 10 min and then electrophoresed on 4–12% NuPAGE Bis-
Tris protein gels (Invitrogen) in Novex SDS running buffer (Invitrogen). Gels were
then transferred to nitrocellulose membranes using the Trans-blot Turbo Transfer
System (Bio-Rad), and efficient transfer was confirmed with direct-blue staining.
Membranes were then incubated with blocking buffer (5% milk) followed by
overnight incubation at 4 °C with the primary antibody in blocking buffer. Primary
antibodies were Nsun2 (Proteintech, 1:1000), β-actin (Cell Signaling Technology,
1:5000), H3 (Novus Biologicals, 1:10,000), Neurogranin (Santa Cruz Biotechnology,
1:1000), and Synaptophysin (Abcam, 1:500). Membranes were washed and
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incubated with a peroxidase-labeled secondary antibody (rabbit: 1:10,000; mouse:
1:5000) for 1 h, followed by another set of washes. Bands were visualized with
Immobilon Western Chemiluminescent HRP Substrate (Millipore), exposed, and
developed before quantification with NIH ImageJ software. Band size was nor-
malized to actin or H3 (or synaptophysin for synaptosome blot) to control for
equal loading and protein concentration. An unpaired one- or two-tailed t test was
used to compare KO and WT and significance was denoted at P < 0.05.

RNA sequencing. For RNAseq, the total RNA was extracted from Nsun2 KO or
WT cortex using the Directzol RNA MiniPrep Kit (Zymo Research) including on-
column DNase treatment, and quantity was measured on Qubit fluorometer. The
quality of the total RNA was checked on the Agilent Bioanalyzer using the RNA
6000 Pico Kit. In total, 5 µg of total RNA was rRNA depleted using the Illumina
RiboZero Gold rRNA depletion kit according to the manufacturer’s instructions.
We then used 40–50 ng rRNA-depleted RNA samples as input for the Smartr
Stranded RNAseq kit (Takara Biosystems) following the manufacturer’s instruc-
tions for library preparation and amplifying libraries with 11 PCR cycles. Four
libraries (2 KO, 2 WT) were then pooled at equimolar concentrations in one lane
for sequencing on the Illumina HiSeq at the New York Genome Center.

Data analysis. After paired-end sequencing, samples were mapped to mouse
(GRCm38.p5_M13) with STAR (v2.5.3a) using a two-method step protocol fol-
lowing tool specifications77. Samples were counted by exon using featureCounts
(subread v.1.5.2).

tRNA bisulfite sequencing. The tRNA amplicon bisulfite sequencing protocol was
adapted from Bormann et al.78 (Supplementary Fig. 2a). Cortex or PFC punches
were homogenized in Trizol reagent (Invitrogen) and RNA was extracted, purified,
DNase-treated, and quantified using the Qubit fluorometer. We used the Agilent
Bioanalyzer Small RNA kit to confirm the presence of tRNAs after total RNA
extraction. In total, 1 µg of the total RNA was used for bisulfite conversion with the
EZ RNA Methylation kit according to the manufacturer’s instructions (Zymo
Research). Due to the strong secondary structure of tRNAs, the PCR step during
bisulfite conversion was repeated three times consecutively, as previously
reported10 to completely denature tRNAs. Following bisulfite treatment and clean-
up, we performed cDNA synthesis using the reverse primer for each of our six
tRNA isodecoders (i.e., GlyGCC-1-135, GluTTC-1-1, GluCTC-1-1, AspGTC-1-135,78,
ValAAC-2-135, ProTGG-2-1; primer sequences listed in Supplementary Table 7).
Targeted cDNA was then PCR-amplified with the tRNA-specific forward primer
and products were size-verified on a 4% agarose gel. PCR amplicons (~120 nt
including tRNA amplicon and overhangs for adapter ligation) were then extracted
and purified (Qiaquick Gel Extraction Kit, Qiagen). We labeled each amplicon with
a unique index (Nextera XT, Illumina) and pooled up to 20 amplicons in equimolar
concentrations before running with 75 bp paired-end reads on the MiSeq (Illu-
mina). Read depth for each amplicon is presented in Supplementary Fig. 2c.

Data analysis. Data were analyzed using bisAmp, a publicly available web-based
pipeline to identify and quantify methylated cytosine at tRNA targets78. tRNA
bisulfite sequencing data from bisAMP (methylation percentages for each cytosine)
was further analyzed by conducting a t test for each cytosine with FDR correction
using the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli.

Bisulfite conversion positive control. To confirm the efficiency of RNA bisulfite
conversion, pure human RNA (from a previous study) was bisulfite-converted as
described above and traditional cDNA synthesis (Quantitect Reverse Transcription
kit, Qiagen) was performed followed by SYBR-based PCR amplification and Sanger
sequencing of the 28S rRNA (Supplementary Fig. 2b).

tRNA sequencing. RNA was extracted as previously described, and 5 µg of total
DNase-treated RNA was used for pre-treatment and library prep. Pre-treatment of
RNA, library preparation, next-generation sequencing, and some aspects of data
analysis were performed by Arraystar, Inc. (Rockville, MD). Full-length tRNA
sequencing and tRNA fragment sequencing were performed separately to provide
more accurate size selection and better sequencing depth and coverage.

Full-length tRNA sequencing. For full-length tRNA sequencing, 5 µg of total DNase-
treated RNA was resolved on a urea-polyacrylamide gel and recovered within a size
window of 60–100 nt and then pre-treated with demethylation enzymes32 to
prepare for efficient reverse transcription and adapter ligation. Specifically, we
coupled nucleotide demethylation and the well-established Hydro-tRNAseq31 to
optimize efficiency in tRNA seq library preparation, which included (1) m1A and
m3C demethylation of purified tRNA, (2) limited alkaline hydrolysis of deme-
thylated tRNA by carbonate buffer, and (3) calf intestinal phosphatase (CIP)
dephosphorylation and then T4 polynucleotide kinase (PNK) re-phosphorylation
of the partially hydrolyzed tRNA fragments. Following this pre-treatment, resulting
fragments of ~19–35 nt were converted to small RNA sequencing libraries using
NEBNext Multiplex Small RNA Library Prep Set (Illumina) and quantified on the
Agilent Bioanalyzer before 50 bp single-end sequencing on the Illumina NextSeq
500 instrument.

Data analysis. Sequencing quality was assessed with FastQC, and raw sequencing
read data that passed the Illumina chastity filter was used for further data analysis,
including alignment of trimmed reads (cutadapt) to mature tRNA reference
sequences from GtRNAdb79 and mitotRNAdb80 using BWA. For tRNA alignment,
the maximum number of mismatches were two. tRNA expression levels were
measured with tag count and the multi-map-corrected number of reads over-
lapping the tRNA (mrcount) was then calculated. For differential expression
analysis, we used the R package edgeR, with a fold change cutoff of 1.5 and
requirement that CPM >= 20 (mean in one group) and generated P values and q
values (FDR-adjusted P values) based on results of the exact test by the negative
binomial distribution. Significantly up- or downregulated tRNAs were denoted if q
< 0.05.

tRNA fragment/half (tiRNA/tRF) sequencing. For tRNA fragment/half sequencing,
5 µg of total DNase-treated RNA was pre-treated for m1A and m3C demethylation,
3’ deacylation and 3’ – cP removal for 3’ adapter ligation, and 5’ phosphorylation
for 5’ adapter ligation. Pre-treated total RNA was then ligated to 3’ and 5’ small
RNA adapters and cDNA was synthesized and amplified using Illumina’s Small
RNA RT primers and amplification primers. Following amplification, ~134–160 bp
PCR products were extracted and purified from a PAGE gel and resulting libraries
were quantified on the Agilent 2100 Bioanalyzer. tRNA fragment libraries were
denatured and diluted to a loading volume of 1.3 ml and loading concentration of
1.8 pM for loading onto a reagent cartridge and sequencing on the Illumina
NextSeq 500 system using NextSeq 500/550 V2 Kit (#FC-404-2005, Illumina)
according to the manufacturer’s instructions.

Data analysis. Raw sequencing read data that passed the Illumina chastity filter was
used for further data analysis. Reads were trimmed and aligned to mature tRNA
reference sequences from GtRNAdb and mitotRNAdb allowing for 1 mismatch,
and reads that did not map were then mapped to precursor tRNA sequences (pre-
tRNAs) allowing for 1 mismatch with bowtie software. Expression of mapped
tRNA fragments was measured with CPM, which were summed across isodecoders
for each fragment type and individual t tests were performed for each isoacceptor.
Any fragment that had a CPM of 0 for any sample was excluded from the analysis.
Statistical significance was denoted by P value < 0.05.

YAMAT/UMI seq. Y-shaped Adapter MAture tRNA (YAMAT) sequencing was
adapted from Shigematsu et al.33 to include unique molecular identifiers (UMIs) in
order to avoid overamplification of individual tRNA isodecoders due to mod-
ification levels or abundance. In total, 5 µg total RNA was deacetylated to remove
amino acids from 3’ ends and demethylated to remove m1A, m1C, and m3C
modifications using a proprietary demethylation mix (Arraystar, Inc). In total,
40 µm of YAMAT forked linkers (Y-3-AD_UMI: 5’-P-GTATCCAGTNNNNTGG
AATTCTCGGGTGCCAAGG-3’-ddC; Y-5-AD_UMI: 5’-GTTCAGAGTTCTAC
AGTCCGACGATCNNNNACTGGATACTGrGrN-3’) were then incubated with
pure demethylated and deacetylated RNA followed by the addition of 10×
annealing buffer (50 mM Tris HCl pH 8, 100 mM MgCl2, 5 mM EDTA) and then
overnight incubation with T4 RNA ligase 2. Linker-ligated RNA was then incu-
bated with RT Primer (TruSeq Small RNA Library Prep Kit, Illumina), and reverse
transcription was performed with Superscript III RT (Invitrogen) followed by bead
purification. Libraries were amplified using Phusion Hotstart II Polymerase
(Thermo Scientific) with primers and indexes from the TruSeq Small RNA kit
(Illumina) for 11 PCR cycles. Amplified libraries were then bead-purified and run
on the Agilent Bioanalyzer for confirmation of library size and quantified with the
Qubit Fluorometer (Invitrogen). Seven libraries (n= 3 WT, 4 KO) were pooled at
equimolar concentrations and run with 75 bp paired-end reads on the MiSeq
(Illumina).

Data analysis. Raw sequencing reads were processed using cutadapt to trim adaptor
sequences and UMItools to extract UMIs from reads and perform deduplication.
Paired-end reads were merged using Pear and differential expression analysis was
performed using Deseq2, with significant differences in KO vs. WT tRNA
expression denoted at adjusted P < 0.05.

Real-time qPCR. For real-time qPCR to identify Nsun2 mRNA expression levels
after knockout or overexpression, total RNA was extracted from cortex (KO)
or PFC punches (viral overexpression samples) that were identified with a Bluestar
GFP flashlight81 (Nightsea) from 1-mm coronal brain sections. RNA was prepared
with the Directzol RNA MiniPrep Kit (Zymo Research) with on-column DNase
treatment and reverse transcribed with the Quantitect Reverse Transcription kit
(Qiagen) before being subjected to Taqman qPCR using Taqman Universal Master
Mix and Taqman probes for Nsun2 (Assay ID: Mm01349532_m1) and Gapdh as a
housekeeping gene (Assay ID: Mm99999915_g1; Applied Biosystems). Data were
analyzed using the comparative Ct method and normalized to the housekeeping
gene and AAVhsyn1-GFP or WT same-sex littermate controls. Unpaired t tests were
used to compare experimental groups and significance was denoted at P < 0.05.

tRNA/tRF expression. To further verify full-length tRNA expression after next-
generation sequencing, we reverse-transcribed 1 µg of total RNA and amplified
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target tRNAs using pre-validated PCR primer sets specific to mature tRNA
sequences (GlyGCC, AspGTC; Arraystar, Inc,) using SYBR-based qPCR. For full-
length GluTTC and 5’ tRNA fragments/halves (GlyGCC, GluTTC, GluCTC), we
reverse-transcribed total RNA using a sequence-specific small RNA RT-stem-loop
primer and used qPCR to amplify target tRNA/tRFs using custom-designed Taq-
man probes (Applied Biosystems). Full-length tRNA and tRF amplicons were run
on a 4% agarose gel to confirm the size. All qPCR data were analyzed using the
comparative Ct method and normalized to the housekeeping gene 5S rRNA and
WT same-sex, littermate controls. A one-sample t test was used to compare
KO to WT.

tRNA charging and non-m5C tRNA modification assays. tRNA charging ana-
lysis and measurement of non-m5C modifications were performed using DM-
tRNAseq as previously described32,82,83 with minor modifications as follows. For
tRNA charging studies, tRNAs were subjected to a one-pot periodate oxidation/β-
elimination procedure (adapted from ref. 83), followed by a ligation reaction and
RNA-seq library construction. Briefly, up to 500 ng of total RNA from Nsun2 KO
and WT cortex was eluted in 7 µl and mixed with 1 µl of 90 mM sodium acetate
buffer, pH 4.8. Next, 1 µl of freshly prepared 150 mM sodium periodate solution
was added for a reaction condition of 16 mM NaIO4, 10 mM NaOAc pH 4.8.
Periodate oxidation proceeded for 30 min at room temperature. Oxidation was
quenched with the addition of 1 µl of 0.6 M ribose to 60 mM final concentration
and incubated for 5 minutes followed by the addition of 5 µl freshly prepared 100
mM sodium tetraborate, pH 9.5 for a final concentration of 33 mM. This mixture
was incubated for 30 min at 45 °C. To stop β-elimination and perform 3’ end
repair, 5 µl of T4 PNK mix (200 mM Tris HCl pH 6.8, 40 mM MgCl2, 4 U/µl T4
PNK, from New England Biolabs) was added to the reaction and incubated at 37 °C
for 20 min. T4 PNK was heat-inactivated by incubating at 65 °C for 10 min. This
20 µl reaction mixture was used directly in the adaptor ligation reaction. tRNA
libraries were then prepared32 (with or without AlkB demethylase treatment to
increase efficiency and quantitation and to investigate modification) and Illumina
sequencing was performed. Data were aligned using Bowtie to a modified mouse
tRNA genome file containing chromosomal-encoded tRNAs and mitochondrial-
encoded tRNAs to determine charging levels and to identify potential modification
misincorporations and modification fractions.

Ribosome profiling. RiboSeq libraries were constructed as follows, which was
adapted from Ingolia and colleagues44. Cortical tissue was homogenized in lysis
buffer (containing cycloheximide) and cleared for 10 min at 20,000×g at 4 °C.
Monosomes obtained by RNase I digestion were purified using spin-column
chromatography. Briefly, MicroSpin S-400 HR columns (Cytiva) were equilibrated
with 3 ml of Polysome buffer by gravity flow, then spun down 4min at 600×g. In
total, 100 µl of RNase I digested lysate was loaded onto the column and spun for
2 min at 600×g. The flow-through was collected, and the RNA was extracted using
RNA Clean & Concentrator-25 kit (Zymo). The rRNA depletion was performed
onto linker ligated RPFs using riboPOOLs (siTOOLs). RNAseq libraries were
constructed using SMARTer-Stranded Total RNA-Seq Kit v2 - Pico Input Mam-
malian (Takara), as recommended by the manufacturer. RiboSeq and RNAseq
libraries were sequenced on HiSeq4000 (Illumina) at the Center for Advanced
Technology (UCSF).

Data analysis. The adapters in the sequencing reads were removed using cutadapt
(v3.1) with options “—trimmed-only -m 15 -a AGATCGGAAGAGCAC”. The
PCR duplicates in the reads were collapsed using CLIPflexR v0.1.19. The Unique
Molecule Identifiers (UMIs) for each read were extracted using umi_tools v1.1.1
with the options “extract—bc-pattern=NN” for the 5’ end and options “extract—
3prime—bc-pattern=NNNNN” for the 3’ end. Reads corresponding to rRNA and
other non-nuclear mRNA were removed by aligning out the reads using Bowtie2
v2.4.2 on a depletion reference (rRNA, tRNA, and mitochondrial RNA sequences).
This depletion reference was built from the noncoding transcriptome for Mus
musculus (Ensembl release v96). The reads that did not align to the depletion
reference were aligned to the Mus Musculus mRNA transcriptome using Bowtie2
with options “—sensitive—end-to-end—norc”. The mRNA transcriptome was built
using the cDNA longest CDS reads of Mus musculus downloaded from Ensembl
release v96. The resulting reads were converted to bam files and then sorted using
samtools v1.11. The duplicate reads in the sorted files were removed using
umi_tools v1.1.1 with options “dedup”.

The quality check and downstream processing of the processed reads were
performed using Ribolog v0.0.0.9. After quality check, the P-site information was
converted to codon counts in Ribolog. The codon reads resulting from stalling were
corrected using the CELP (Consistent Excess of Loess Preds) method in Ribolog.
After median normalization and removal of transcripts with 0 count, the
translational efficiency testing was performed in Ribolog as well.

Mass spectrometry (LC-MS/MS)
Digestion. PFC tissue was homogenized using a vibrating pestle in buffer con-
taining SDS, HEPES, sucrose, and protease inhibitors and quantified using a BCA
assay. Proteins were purified by Wessel/Flügge extraction84, and the resulting
protein pellets were solubilized in 8M urea, 50 mM triethylammonium bicarbonate

(TEAB), 10 mM dithiothreitol (EMD Chemicals), and disulfide bonds were
reduced at room temperature for 1 h. Thiols were alkylated using 20 mM iodoa-
cetamide (Sigma) for 1 h at room temperature in the dark. Urea was diluted using
50 mM TEAB and proteins were digested, first with lysyl endopeptidase (Wako
Chemicals) for 3 h and then overnight with sequencing grade modified trypsin
(Promega). Digestion was halted by the addition of TFA. Peptides were purified by
solid-phase extraction using Oasis HLB cartridges (Waters) according to the
manufacturer’s specifications.

Isotopic labeling. Peptide pellets were redissolved in 100 mM TEAB and labeled
with tandem mass tag 11-plex (TMT, Thermo Scientific) dissolved in anhydrous
acetonitrile. Labeling proceeded for 1 h at room temperature and was quenched by
the addition of hydroxylamine (Thermo Scientific). Based on a label-check, the
labeled peptides were mixed in equal amounts.

High-pH reverse-phase fractionation. Peptides were pre-fractionated using a Dionex
3000 Ultimate loading pump equipped with a 2.1 × 150 mm 3.5 µm Xbridge C18
column (Waters). Solvent A consisted of 10 mM ammonium hydroxide (Sigma-
Aldrich) in water, pH 10 and solvent B consisted of 10 mM ammonium hydroxide,
90% acetonitrile (ACN) in water, pH 10. Peptides were fractionated across a
60-min gradient, and collected fractions were concatenated to yield a total of 21
fractions.

LC-MS/MS. Fractionated peptides were separated using a Dionex 3000 Ultimate
HPLC equipped with a NCS3500RS nano- and microflow pump (Dionex). Trap-
ping and separation were carried out using a 100 µm × 20 mm Acclaim PepMap
C18 trap column (Thermo Scientific) and a 75 µm × 120 mm pulled-emitter
nanocolumn (Nikkyo Technos), respectively. Solvent A was 0.1% formic acid in
water and solvent B was 0.1% formic acid, 80% ACN in water. All LC-MS solvents
were of Optima grade and purchased from Fischer. The HPLC was connected to a
Q-Exactive HF mass spectrometer (Thermo Scientific) operating in positive ion
DDA mode. The MS2 resolution was set to 60 k.

Data analysis. Raw data were searched using MaxQuant v. 1.6.6.085 using standard
settings. Spectra were queried against the Mus musculus proteome (obtained from
uniprot.org on February 2019, 54185 sequences) with a false discovery rate (FDR)
of 1% applied on PSM, peptide, and protein level. Ratio compression from co-
fragmentation was minimized by requiring a minimum peptide interference factor
(PIF) of 0.75. Further data analysis was performed within the Perseus framework86.
T test difference (KO/WT) was calculated by averaging signals for all KO samples
and subtracting (because the data is log2 transformed) the average signal from all
WT samples. An FDR-corrected Student’s t test (FDR= 1%) was used to test for
significant changes between the two conditions. The standard deviation was cal-
culated by selecting three random, but non-repeating replicates from each group
and taking the average from them. A simple standard deviation was calculated
between the two averages.

Metabolomic profiling of amino acids. For unbiased metabolomic profiling of
amino acids, 10–20 mg of fresh frozen cortical tissue was homogenized on ice in
80% methanol with heavy amino acid mix standards (Cambridge Isotope
Laboratories MSK-A2-1.2 mix). After centrifugation at 4 °C, the supernatant was
placed into a new tube and dried using a SpeedVac before storage at −80 °C for
later processing.

Pre-sample analysis. Dried polar samples were resuspended in 60 µl pre-chilled 50%
acetonitrile, vortexed for 10 s, centrifuged for 10 min at 4 °C, and 13,200 resolution
per minute, then 5 µl from each sample was transferred to create a pooled sample.
This pooled sample was further diluted with 1:3 and 1:10 dilution factors, 5 µl of
1:1, 1:3, 1:10 dilution were injected onto LC-MS system from low to high con-
centration to get a dynamic range for detection. Polar metabolites were separated
on a SeQuant® ZIC®-pHILIC 5 µm polymer (150 × 2.1 mm) column (EMD Milli-
pore) connected to a Thermo Vanquish ultra high pressure liquid chromatography
instrument coupled to a Q Exactive Plus Hybrid Quadrupole-Orbitrap mass
spectrometer (Thermo Fisher Scientific) with a heated electrospray ionization
source. Chromatographic separation was achieved by mixing mobile phase A
consisted of 20 mM ammonium carbonate with 0.1% (vol/vol) ammonium
hydroxide (adjusted to pH 9.3 with formic acid) and mobile phase B of acetonitrile
in the following gradients: 90–40% B (0–22 min), held at 40% B (22–24 min),
40–90% B (24–24.1 min), and reequilibrated at 90% B (24.1–30 min) at a flow rate
of 0.15 ml/min. Mass spectrometric data were acquired in polarity switching mode
for both MS1 (full MS) and MS2 (data-dependent acquisition) with the following
parameters: spray voltage, 3.0 kV; capillary temperature, 275 °C; source tempera-
ture, 250 °C; sheath gas flow, 40 a.u.; auxiliary gas flow, 15 a.u. The full MS scans
were acquired with 70,000 resolution, 1 × 106 ACG target, 80 ms max injection
time, and a scan range of 55–825m/z. The data-dependent MS/MS scans were
acquired at a resolution of 17,500, 1 × 105 ACG target, 50 ms max injection time,
1.6 Da isolation width, stepwise normalized collision energy of 20, 30, and 40 units,
with 8 s dynamic exclusion and a loop count of 2. Relative quantification of amino
acids (heavy and endogenous) was performed in Skyline Daily (v.20.2.1.315) with
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the maximum mass error and retention time tolerance set to 2 ppm and 12 s,
respectively, referencing in-house retention time for amino acids.

Sample analysis. On the same day, after acquiring data for detection of amino acids,
a 30 µl sample volume was transferred to another centrifuge tube accordingly, and
samples were diluted further with 1:3.8 dilution factor, given the final resuspension
volume of 114 µl. From each sample, 14 µl was transferred to the sample vial and
14 µl was transferred to create another pooled sample. This pooled sample was also
diluted with 1:3 and 1:10 dilution factors. Both samples and pooled samples were
injected onto LC-MS system, as described above, with the same settings at 5 µl.
Relative quantification of amino acids (heavy and endogenous) was again per-
formed in Skyline Daily (v.20.2.1.315) in the same manner. The pooled samples
data from both pre-sample analysis and sample analysis were employed for the
heavy amino acids calibration curve describe below.

Data analysis. Amino acid levels in the samples (i.e., endogenous) were normalized
to the averaged factor of heavy amino acids against the pooled sample at 1:1
dilution from sample analysis data. The endogenous amino acids were further
normalized to sample tissue weights by setting one of the sample weights as a factor
of 1. Conversion of relative quantification of amino acid levels to concentration was
done using simple linear regression formula such as, y ¼ αþ βx; where y denotes
integrated MS1 area, α denotes y intercept and β denotes slope, hence solving x for
concentration. Cysteine was the only amino acid (of the 20 canonical amino acids)
that was unable to be measured due to high reactivity. Amino acid level fold
changes between KO and WT were calculated and P values were obtained using
individual unpaired two-tailed t tests for each amino acid with FDR correction
using the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli
without assuming a consistent SD and with q= 1%.

Heavy amino acids calibration curve. Heavy amino acid metabolite levels of pooled
samples were arranged from low to high concentration from pre-sample analysis
and sample analysis data yielding eight concentrations; 1.10, 3.29, 4.17, 10.96,
12.50pmol, 21.93, and 41.66 pmol. Simple linear regression was employed to
determine α and β of each heavy amino acid, only those concentrations (at least
five points) that gave the “best” R-squared value were used to generate a prediction
of endogenous amino acid concentrations.

Codon content analysis. To estimate changes in translation efficiency in response
to Nsun2 knockdown, for every gene, we normalized changes in protein expression
by changes in RNA levels. We used the resulting value (logTER, log of translation
efficiency ratio), to assess the extent to which codon and/or amino acid contents
were associated with translation efficiency. For this, we performed two analyses: (i)
for codons or amino acids of interest, we calculated the Pearson correlation
coefficient and its associated P value, and (ii) we selected the genes in the top
quartile of codon or amino acid contents and perform gene-set enrichment analysis
using our iPAGE package87. For a given gene-set, iPAGE reports a mutual infor-
mation value and its associated z score along with a heatmap visualizing the
enrichment/depletion pattern across the range of the input values (in this case,
logTER).

Slice electrophysiology. Nsun2 KO and WT mice (~3 months old) were sacrificed
and their brains rapidly removed and placed in saturated (95% O2 and 5% CO2),
ice-cold artificial cerebrospinal fluid (ACSF) containing 126 mM NaCl, 2.5 mM
KCl, 2.5 mM CaCl2, 1.2 mM MgCl2, 25 mM NaHCO3, 1.2 mM NaH2PO4, and 11
mM D-glucose. Coronal slices (300 μm) containing the medial prefrontal cortex
(mPFC) (1.54–2.8 mm anterior to the bregma) were sectioned on a Leica VT1200
Vibratome and immediately transferred into an incubation chamber (Harvard
Apparatus) containing oxygenated ACSF. Slices were recovered in the chamber for
at least 1 h at room temperature (21–23 °C) before recordings. Slices were then
transferred to a recording chamber and continuously perfused with heated (32 °C)
ACSF equilibrated with 95% O2 and 5% CO2. All recordings were performed with
100 μM picrotoxin in the ACSF to block GABAA receptor-mediated inhibitory
synaptic responses. Glass recording pipettes (3–4MΩ) were filled with a solution
containing 142 mM Cs-gluconate, 8 mM NaCl, 10 mM HEPES, 0.4 mM EGTA,
2.5 mM QX-314 [N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium
bromide], 2 mM Mg-ATP, and 0.25 mM GTP-Tris, pH 7.25. Data were collected
with a MultiClamp 700B amplifier (Molecular Devices), digitized with a Digidata
1322 A data acquisition system (Molecular Devices), and analyzed with pClamp
Software (version 10.7; Molecular Devices).

Miniature EPSCs. AMPAR-mediated mEPSCs were recorded from individual L5
pyramidal neurons in the anterior cingulated (ACC) cortex and the prelimbic (PrL)
cortex. Pyramidal neurons were identified morphologically by infrared differential
interference contrast microscopy. Whole-cell recordings were performed under
voltage-clamp mode (holding at −70 mV) in the presence of 1 μM tetrodotoxin
(TTX; Sigma) in ACSF. Series resistance was monitored throughout the recordings
and data were discarded if the resistance changed by more than 15%. Signals were
filtered offline at 2 kHz and analyzed with Mini Analysis 6 (Synaptosoft). Average
mEPSC amplitude and frequency, as well as cumulative probability for mEPSC

amplitude and inter-event interval for each cell, was calculated by collecting
mEPSCs recorded during the initial 5-min period after whole-cell access and stable
series resistance was achieved.

Behavior. For Nsun2 overexpression studies, four separate cohorts of mice were
used for behavioral experiments and testing commenced in order as follows:
Cohort 1: Open field, Light/dark box, Forced Swim, Tail Suspension. Cohort 2:
Elevated Plus Maze. Cohort 3: Y-maze Cohort 4: Fear conditioning. For Nsun2
knockout studies, 2–3 cohorts of mice were used for anxiety- and behavioral
despair tests and all experienced testing in order as follows: Open field, Light/dark
box, Elevated Plus Maze, Tail Suspension, Forced Swim. In addition, two separate
cohorts of mice were used for only fear conditioning studies and one separate
cohort was used for Y-maze. All behavioral testing was conducted during the
animals’ light cycle and took place ~21 days after viral injection for Nsun2 over-
expression studies or at an identical age in Nsun2 KO and WT mice (13–16 weeks
of age). For all behavioral tests, mice were allowed to habituate in the testing room
for 30 min prior to testing, and testing was conducted in normal fluorescent
room light.

Open field. The open-field chamber consisted of a white Plexiglas box (40 × 40 ×
30 cm high). Mice were placed individually into the box for 20 min. Locomotor
activity and time spent in an imaginary center square (15 × 15 cm) of the open field
were recorded using the Fusion 5.0 Superflex system.

Light/dark box. The light–dark box consisted of the open field chamber (described
above) with a black insert dividing the arena into dark and light components. Mice
were placed in the dark compartment and able to explore freely between both
halves of the chamber through a small opening in the divider for 10 min. The
activity was recorded with Fusion 5.0 Superflex system. Latency to enter the light
compartment, duration of time spent in the dark and light chambers, and distance
traveled in the chambers were measured.

Elevated plus maze. The apparatus consisted of a plus-shaped maze elevated 65 cm
off the ground with two arms containing high black walls and two open arms with
no walls. At the start of testing, mice were placed in the center of the maze (5 × 5
cm) and allowed to freely explore for 8 min. We measured time spend in the open
arms vs. closed arms and total locomotor activity using Ethovision (v.14) software.

Tail suspension. Mice were suspended in mid-air by their tail using laboratory tape
and allowed to move freely for 5 min. Video recordings of each session were
recorded and total time immobile was measured. After each session, mice were
immediately placed back in the home cage. All mice in each cage were tested
simultaneously.

Forced swim. Mice were placed in a transparent glass 5-liter beaker filled with ~3
litems room temperature tap water (~23–25°C) and allowed to swim freely for
5 min. Video recordings of each session were recorded and total time immobile was
measured. After each session, mice were immediately dried of excess water and
placed back in the home cage. All mice in each cage were tested simultaneously.

Y-maze spontaneous alteration. Mice were gently handled for 2 days prior to testing
and habituated to the testing room for 1 h the day of testing. Mice were placed in
one arm of a traditional Y-maze and allowed to roam freely for 8 min. Video
recordings of each session were recorded with an overhead camera, and the order
of entries into arms was scored by hand. The total number of alternations was
divided by total arm visits to achieve an alternation percentage score.

Contextual and cues fear conditioning. Mice were gently handled for 4 days and
habituated to the fear-conditioning room for 2 days prior to training and testing.
All fear conditioning took place in Med Associates conditioning chambers (VFC-
008) and freezing was assessed using Med Associates Video Freeze Software (Med
Associates, St Albans, Vt). Animals were initially administered three tone-shock
pairings (20 s, 75 dB white noise co-terminating with a 2 s, 0.5 mA shock). A 3-min.
baseline period preceded the first tone, and there were 2 min. between each tone
shock pairing, as well as after the final pairing before being taken out of the
chamber. Initial conditioning was performed in a chamber with distinct lighting
(500 Lux white light), flooring (grid floor), and scent (5% simple green solution).
The day after conditioning, animals were placed back into this chamber in order to
assess contextual fear during a 10-min. test. In order to assess fear of the tone in the
absence of pre-tone freezing differences, animals were placed in an alternative
conditioning chamber over the course of 5 days, 20 min. each (dark chamber, solid
acrylic floor, 1% acetic acid scent). On a final 6th day, at a point where there were
no group differences in baseline freezing in the chamber, animals were exposed to
the tone three times using the same time intervals used during initial training.

Statistical analyses. Statistical analyses were performed using Graphpad Prism
8.4.3 software. For western blot results quantifying protein expression of Nsun2
and RT-qPCR results quantifying Nsun2 gene expression, unpaired t tests were
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used to compare genotypes or treatment groups. For electrophysiology experi-
ments, average mEPSC amplitude and frequency were compared between WT and
KO by unpaired two-tailed t tests. For behavioral tests, two-way ANOVAs (gen-
otype or AAV injection × sex) and two-tailed t test with Bonferroni correction as
posthoc tests were used when appropriate. For fear conditioning, we used two-way
repeated-measures ANOVAs (genotype × CS presentation or context) and two-
tailed t-tests with Bonferroni correction as post hoc tests when appropriate. All
unpaired t tests were two-tailed except for Neurogranin protein expression in
synaptosomes (Fig. 4b), which was one-tailed due to the confirmatory nature of the
experiment based on the previous proteomics (LC-MS/MS) result for that protein.
Simple linear regression was performed to calculate the relationship between two
variables (and if the slope was significantly non-zero) for protein vs. RNA
expression and Pearson correlation was used for codon content vs. logTER. Sta-
tistical significance was denoted by P < 0.05. All bar graphs are presented as the
mean with error bars representing the standard error of the mean (SEM) and
include all individual data points.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw and processed mouse RNA sequencing data generated in this study have been
deposited in the Gene Expression Omnibus database under accession code GSE165202.
The mass spectrometry proteomics data used in this study are available through the
ProteomeXchange Consortium via the PRIDE72 partner repository under accession code
PXD023437. All other data generated in this study are provided in the Supplementary
Information and Source Data file. Source data are provided with this paper.
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