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SUMMARY

We elucidated genomic and transcriptomic changes that accompany the evolution of melanoma 

from premalignant lesions by sequencing DNA and RNA from primary melanomas and their 

adjacent precursors, as well as matched primary tumors and regional metastases. In total, we 

analyzed 230 histopathologically distinct areas of melanocytic neoplasia from 82 patients. Somatic 

alterations sequentially induced mitogen-activated protein kinase (MAPK) pathway activation, 

upregulation of telomerase, modulation of the chromatin landscape, G1/S checkpoint override, 

ramp-up of MAPK signaling, disruption of the p53 pathway, and activation of the PI3K pathway; 

no mutations were specifically associated with metastatic progression, as these pathways were 

perturbed during the evolution of primary melanomas. UV radiation-induced point mutations 

steadily increased until melanoma invasion, at which point copy-number alterations also became 

prevalent.
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In Brief

Shain et al. show sequential MAPK pathway activation, telomerase upregulation, chromatin 

landscape modulation, G1/S checkpoint override, MAPK signaling ramp-up, p53 pathway 

disruption, and PI3K pathway activation during the evolution from pre-malignant lesions to 

melanoma, but no metastasis-specific mutations.

Graphical Abstract

INTRODUCTION

Melanocytic neoplasms range from benign lesions called melanocytic nevi to malignant 

lesions termed melanomas. Melanomas can metastasize at an early stage and the risk of 

death increases with the thickness of the primary tumor. While the somatic mutations and 

expression profiles of melanoma metastases and some advanced primary tumors have been 

cataloged (Cancer Genome Atlas Network, 2015), the molecular events during the early 

phases of melanoma evolution remain incompletely understood (Shain and Bastian, 2016). 

Characterizing the molecular alterations that drive melanoma evolution and progression 

could reveal biomarkers that assist in diagnosis and staging of patients and reveal critical 

barriers to transformation that become overrun during melanoma evolution.

We recently began to delineate the sequential order in which pathogenic mutations undergo 

selection during melanoma evolution by sequencing melanomas and their adjacent, intact 

precursor lesions (Shain et al., 2015a). However, that study was restricted to analyses of 

DNA and limited in sample size, precluding the establishment of the sequential order in 

which many critical mutations undergo selection. Here we extend this investigation to 

identify changes that accompany specific evolutionary stages during melanoma progression.
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RESULTS

We performed targeted sequencing of several hundred common cancer genes (Table S1) on 

230 histopathologically distinct areas of melanocytic neoplasia, microdissected from 82 

patients’ tumors (Figures S1A–S1C; Table S2)—48 patients’ tumors were newly sequenced 

and the remainder were reanalyzed from our prior work (Shain et al., 2015a). Matched RNA 

sequencing (RNA-seq) was performed on 42 areas representing different progression stages 

from 20 of these patients. The genetic evolution of each individual melanoma is detailed in 

our Mendeley Dataset (https://doi.org/10.17632/nrywwbx6fm.2). Here, we investigated the 

representative patterns in which genetic alterations arose during progression.

MAPK Signaling Amplifies during Melanoma Progression

Mutations predicted to activate the mitogen-activated protein kinase (MAPK) pathway were 

identified in all patients’ tumor areas, irrespective of their progression stage (Figures 1A and 

S2A), suggesting that constitutive MAPK pathway activation is necessary for a melanocytic 

neoplasm to establish. The two most common mutations in this pathway, BRAFV600E and 

NRASQ61(K/L/R), are known to occur in a mutually exclusive pattern in melanoma; however, 

multiple mutations in the MAPK pathway can be found in individual tumors. For example 

NF1, MAP2K1, or weakly activating BRAF mutations are commonly found together with 

alterations elsewhere in the MAPK signaling cascade in the same tumor (Cancer Genome 

Atlas Network, 2015; Krauthammer et al., 2015; Shain et al., 2015b). As another example, 

mutated genes in the MAPK pathway in melanoma can also be subjected to copy-number 

gains or allelic imbalance, increasing the absolute or relative gene dosage of the oncogenic 

alleles (Maldonado et al., 2003). We noted that the number of mutations per sample in genes 

known to activate the MAPK pathway increased along with the progression from pre-

malignant lesions to melanoma (Figure 1A, green bars with the specific combination of 

alterations iterated to the right; Figures S2B and S2C). We categorized mutations into 

strongly and weakly activating mutations based on published functional data (see the STAR 

Methods), and noted that combinations of MAPK pathway mutations inferred to result in 

strong pathway activation were confined to later progression stages (Figure 1A, striped 

green bars).

To corroborate that the intensity of MAPK signaling is ramped up during progression, we 

assessed the expression levels of mutant and wild-type alleles of oncogenes in the MAPK 

pathway. The relative expression of mutant BRAF, NRAS, and MAP2K1 transcripts 

correlated with the neoplastic cell content of the sample, as expected (Figure 1B); however, 

after accounting for this trend, melanomas consistently expressed proportionally higher 

levels of mutant transcripts than nevi (Figures 1B and 1C). Elevated expression of mutant 

oncogene transcripts was often found in samples with copy-number increases of the mutant 

allele, but even melanomas without such additional genetic alterations at the locus of the 

oncogene also showed this pattern (Figure 1C), possibly indicating preferential transcription 

of the mutant allele. We also inferred the activity of MAPK activation in each neoplasm by 

measuring the intensity of an MAPK transcriptional signature (Joseph et al., 2010). The 

intensity of the signature correlated with progression stage and the number of MAPK-
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pathway-activating alterations, corroborating the ramp-up of pathway activation, as 

suggested by the pattern of somatic mutations (Figures 1D and S2D).

In aggregate, both the genetic and transcriptomic data indicate that MAPK signaling 

becomes activated at the earliest stage of neoplasia but progressively ramps up as malignant 

transformation proceeds.

Telomerase Is Expressed Early during Progression

While absent in nevi, TERT promoter mutations became evident in most intermediate 

neoplasms and were present in nearly all melanomas, irrespective of their tumor thickness 

(Figure 2A). TERT alterations typically succeeded MAPK-pathway-activating mutations 

(Figure S3A), but preceded other progression-associated mutations (Figure S3B). In the 

samples with available RNA-seq data, TERT expression was significantly elevated in 

samples harboring promoter mutations (Figure 2B)—this was intriguing because the 

melanoma study by The Cancer Genome Atlas noted only a modest increase in TERT 
expression when they compared melanomas with and without TERT promoter mutations 

(Cancer Genome Atlas Network, 2015). Our comparison was different in that we compared 

pre-malignant lesions without promoter mutations to the melanomas they formed and which 

had acquired promoter mutations during this transformation. This analysis revealed an 

unequivocal rise in telomerase expression in tumor areas with promoter mutations compared 

with their respective pre-malignant lesions that did not harbor TERT promoter mutations.

The Chromatin-Remodeling Landscape Shifts at the Transition to Melanoma

The human switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex, 

commonly abbreviated SWI/SNF, is composed of approximately 15 distinct subunits 

encoded by different genes, which act as tumor suppressors in a broad range of cancers 

(Shain and Pollack, 2013). In melanoma, inactivating mutations preferentially affect ARID2 
and, to a lesser extent, ARID1A, ARID1B, PBRM1, and SMARCA4 (Cancer Genome Atlas 

Network, 2015; Hodis et al., 2012). The SWI/SNF complex antagonizes polycomb 

repressive complex 2 (PRC2), which silences gene expression by tri-methylation of lysine 

27 on histone H3, to modulate expression of target genes (Wilson et al., 2010). In melanoma, 

activation of PRC2 can also occur via gain-of-function EZH2 mutations, the enzymatic 

subunit of PRC2 (Cancer Genome Atlas Network, 2015).

Somatic alterations that inactivate SWI/SNF or activate PRC2 became evident at the 

melanoma in situ progression stage and increase in frequency during later stages (Figure 

3A). In several particularly informative cases, the emergence of these mutations could be 

pinpointed precisely to the transition to the melanoma state (Figure S4). These genetic 

findings indicate that the balance of chromatin-remodeling activity shifts in favor of PRC2 

over SWI/SNF when pre-malignant lesions progress to melanoma.

Unsupervised hierarchical clustering of the RNA-seq data from areas of different 

progression stages also supported this shift, revealing a differentially expressed cluster of 

genes heavily enriched for PRC2 targets and downregulated in malignant lesions (Figures 

3B, S5A, and S5B). This expression pattern is thus consistent with the increased frequency 

of mutations disabling SWI/SNF complexes or activating PRC2 complexes during 
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progression (Figure 3C). Notably, melanomas without mutations in chromatin remodeling 

genes also showed this expression signature. Our methods of classifying chromatin 

remodeling aberrations as pathogenic were conservative and took into account the overall 

high mutation burden with numerous passenger mutations in melanomas, which may have 

led us to inadvertently under-call the mutation frequency in chromatin remodelers (see the 

STAR Methods). It is also possible that the balance of chromatin remodeling activity is 

affected by mechanisms other than mutations affecting the SWI/SNF or PRC2 genes covered 

by our assay. In summary, both genetic and transcriptomic data suggest that PRC2 reshapes 

the chromatin and expression landscape at the transition to melanoma.

Impaired Cell-Cycle Regulation at the Transition to Invasive Melanoma

Somatic alterations known to disrupt genes involved in the G1/S cell-cycle checkpoint 

emerged in intermediate progression stages and incrementally increased in frequency in 

subsequent progression stages (Figures 4A and S6A–S6C). While the somatic alterations in 

intermediate and melanoma in situ stages were typically heterozygous and spared one allele, 

invasive melanomas commonly had biallelic inactivation of critical cell-cycle checkpoint 

genes or combinations of somatic alterations affecting different genes involved in checkpoint 

function (Figure 4A, green bars).

The most common somatic alterations affected the CDKN2A gene, which encodes two 

protein products, p16INK4A and p14ARF, operating in the Rb and p53 pathways, respectively 

(Sharpless and Chin, 2003). We distinguished their individual transcripts using reads 

containing transcript-specific splice junctions (Figures 4B and 4C). For samples with 

somatic point mutations, we determined the proportion of reads mapping to the mutant or 

wild-type transcripts (Figures 4B and 4C, striped versus solid bars). We inferred the relative 

transcriptional contributions from stromal cells using information from the eight samples 

harboring homozygous deletions of CDKN2A or hemizygous mutations affecting CDKN2A, 

reasoning that in these samples any transcripts of wild-type p16INK4A or p14ARF would be 

derived from stromal cells. The highest stromal expression of p16INK4A or p14ARF found in 

these eight samples is indicated by the dotted lines in Figures 4B and 4C, suggesting that 

stromal cells only minimally contribute to the overall abundance of these transcripts in 

tumor samples.

There is a longstanding debate as to the relative importance of p16INK4A and p14ARF 

(Sharpless and Chin, 2003) during melanoma progression, and our data implicate p16INK4A 

as the predominant tumor suppressor acting at the transition to invasive melanoma. This is 

because p16INK4A expression was significantly decreased in melanomas compared with nevi 

(p = 1.1 × 10 4, Wilcoxon rank-sum test), whereas there was no significant difference for 

p14ARF expression levels (Figures 4B, 4C, S6D, and S6E). For most melanomas, decreased 

p16INK4A expression occurred even in the absence of genetic alterations affecting both 

alleles of CDKN2A, suggesting that other factors such as epigenetic alterations can 

contribute to the suppression of p16INK4A. There was a small subset of melanomas for 

which p16INK4A expression was relatively high, and these melanomas tended to harbor 

mutations in other cell-cycle checkpoint genes downstream of p16INK4A (Figure 4B). In 
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aggregate, the genetic and transcriptomic data indicate disruption of the G1/S checkpoint at 

the transition to invasive melanoma.

The Evolution of Advanced Primary Melanomas and Regional Metastases

Invasive melanomas can be stratified by the thickness of the primary tumor, which is 

correlated with prognosis (Balch et al., 2009). Mutations in genes operating in the p53 or 

phosphatidylinositol 3-kinase (PI3K) pathways were each found in approximately 25% of 

thick melanomas (i.e., invasive melanomas with a tumor thickness exceeding 1 mm), but 

were rare in earlier stages of melanoma progression, suggesting that that these mutations 

undergo positive selection later during the progression cascade (Figures 5A–5D). We did not 

note other differences between thin and thick primary melanomas.

Our cohort included 12 primary melanomas from which the matching regional metastases 

were also analyzed. We sought to identify whether any specific pathogenic mutations could 

be associated with the transition to metastatic disease. Most of the pathogenic mutations 

were shared between primary tumors and metastases, placing them on the trunk of their 

respective phylogenetic trees (Figure S7). By contrast, five of the metastases and seven of 

the primary melanomas each had private pathogenic mutations (Figure S7), placing them on 

branches of their respective trees. The most recurrent branchial mutations were inactivating 

mutations of PTEN and genetic alterations that resulted in increased gene dosage of 

oncogenic MAPK mutations; however, these mutations were equally distributed over the 

branches of primary melanomas and metastases, indicating that their selection was not 

specifically associated with metastatic spread to regional lymph nodes. Overall our study did 

not yield any mutations that were specifically associated with primary tumors or regional 

metastases.

The Mutagenic Forces that Shape Melanomas throughout their Evolution

The types of mutations that accumulate during melanoma progression can illuminate the 

mutational processes operating at various phases of progression. The point mutation burden 

in melanoma in situ was ten mutations per megabase, and this mutational burden only 

marginally increased in invasive melanomas (Figure 6A). This finding indicates that most 

point mutations accumulate before melanomas become invasive, consistent with the notion 

that UV radiation is the dominant mutagen but, likely due to its limited cutaneous 

penetration, contributes less to the mutagenesis of invasive melanoma cells. In contrast, the 

fraction of the genome affected by copy-number alterations (CNAs) increased significantly 

at the transition to invasive melanoma and thereafter (Figure 6B). Furthermore, CNAs had a 

strong tendency to affect certain chromosomal regions in a stereotypic sequential order 

(Figure 6C).

Our study included advanced primary melanomas or metastases that evolved from four types 

of precursor lesions—nevi, intermediate neoplasms, in situ melanomas, and invasive 

melanomas. We constructed phylogenetic trees that were representative of these four 

progression trajectories by calculating the median trunk and branch lengths from all the 

individual trees corresponding to each of these four progression routes (Figure 6D).
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For the most part, nevi did not possess any private mutations, reflected by the absence of a 

branch emerging from the precursor node in the first tree of Figure 6D. This observation 

indicates that neoplastic cells within nevi are likely the result of a single dominant wave of 

clonal expansion. By contrast, intermediate neoplasms and melanomas in situ did contain 

private mutations, as indicated by the short branches emanating from the precursor nodes in 

the second and third trees. Invasive melanomas and their matched metastases shared the 

majority of their somatic alterations—i.e., point mutations and copy-number changes—

resulting in a proportionally longer trunk (fourth three of Figure 6D).

When we compared the mutational signatures between mutations situated on the trunks and 

branches of the different progression trajectories, we found that UV radiation-induced 

mutations were ubiquitous at every evolutionary time point (Figure 6D, lower panel). The 

predominance of UV signature mutations in the private mutations of metastases, which are 

not exposed to UV radiation, indicates that these mutations likely arose in a UV radiation-

exposed subclone of the primary melanoma that subsequently spawned the metastasis.

DISCUSSION

In a simple model of tumor progression, a series of binary events activate or inactivate 

critical signaling pathways in a sequence that leads to a fully transformed state. Our analysis 

of DNA and RNA from melanocytic neoplasms, spanning multiple evolutionary stages of 

the same neoplastic process, reveals a more complicated pattern, in which pathways are 

incrementally perturbed by multiple, independent genetic alterations. For example, nevi 

typically showed only a single activating mutation in the MAPK pathway, but melanomas, 

particularly in the advanced stages, typically had multiple such alterations (Figure 7). This 

may indicate that high levels of MAPK signaling are not tolerated and/or do not confer an 

advantage to nevus cells before additional pathways are disrupted. Combinations of multiple 

activating mutations in the MAPK pathway have been described in melanomas that become 

resistant to targeted therapy (Shi et al., 2014), but our data indicate that they already arise 

and undergo positive selection during the natural evolution of primary melanomas. It 

remains to be determined whether the multiple activating mutations are a requirement for the 

melanoma state, or whether they simply represent a positive selection of cells with a higher 

proliferation rate, while equally transformed malignant cells with only singular pathway 

alterations remain present in the background. A scenario in which multiple subclones with 

different genetic states of pathway activation coexist is daunting from a therapeutic 

perspective, as it facilitates outgrowth of those clones that can maintain pathway activation 

in the presence of inhibitory drugs.

A similar pattern of incremental independent “hits” on the same pathway was observed in 

tumor suppressor pathways. Intermediate melanocytic neoplasms and melanomas in situ 
often had mono-allelic mutations of genes involved in cellcycle checkpoints, suggesting that 

these genes are haploinsufficient, in that loss of a single allele already confers some selective 

advantage. In contrast, the phenotype of invasive melanoma was associated with multiple 

aberrations, typically biallelic inactivation of CDKN2A. Functional data corroborate this 

association, as CDKN2A deletions, engineered into primary human melanocytes, confer 
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migratory, invasive, and metastatic phenotypes (Zeng et al., 2018 [this issue of Cancer 
Cell]).

A feature distinguishing benign and malignant melanocytic neoplasms arose from our 

genomic and transcriptomic analyses. Mutations in SWI/SNF chromatin remodeling genes 

emerged at the transition to melanoma, thereby shifting the balance of chromatin remodeling 

activity in favor of PRC2. Our genetic and transcriptomic observations are concordant with 

published functional data, as it has been shown that ablation of EZH2, which encodes the 

enzymatic subunit of PRC2, has no discernible effect on normal melanocyte biology or 

nevus melanocyte biology, yet EZH2 is essential for the maintenance of the melanoma state 

(Zingg et al., 2015). In addition, EZH2 is upregulated in the presence of immune infiltration, 

and its expression in melanoma cells silences immunogenicity and antigen presentation 

(Zingg et al., 2017). These findings may explain the high activity of EZH2 in melanomas 

without SWI/SNF mutations, and they further underscore the critical role of PRC2 in driving 

melanoma.

Our study also shows that certain alterations in advanced melanomas appear comparatively 

later during melanoma progression. Somatic alterations affecting the p53 and PI3K 

pathways were more prevalent in thick melanomas (invasive melanomas of tumor thickness 

over 1 mm) and also enriched in the terminal branches of phylogenetic trees. These 

observations suggest that in melanoma these alterations do not confer a selective advantage 

until several other pathways have been perturbed, and may explain why germline variants 

that disrupt these signaling pathways confer little to no increased risk of melanoma 

(Kleihues et al., 1997; Tan et al., 2012).

While some primary melanomas and matching regional metastases did have pathogenic 

mutations in only one of the compartments, there were no mutations exclusively found in 

metastases across cases. Other studies that have profiled primary melanomas and their 

matched metastases have also failed to identify recurrent mutations specific to the metastatic 

areas (Ding et al., 2014; Gartner et al., 2012; Sanborn et al., 2015; Shain and Bastian, 2016). 

These observations suggest that primary melanomas and metastases tend to select for the 

same set of pathogenic mutations.

In addition to the findings reported here, we also reproduced the salient findings from earlier 

studies of melanoma progression (Shain and Bastian, 2016; Shain et al., 2015a). In 

particular, we confirmed that TERT expression as a consequence of promoter mutations 

arises in early stages of melanocytic neoplasia, and we further demonstrate here that this 

coincides with upregulation of TERT expression. We also confirm that different subtypes of 

melanoma evolve in distinct trajectories.

In conclusion, our study offers insights into the genetic alterations and their transcriptional 

consequences as melanomas evolve from pre-malignant lesions. The data reveals candidate 

biomarkers to be validated for clinical utility in staging of melanocytic neoplasms and also 

illuminates the barriers to transformation that become disrupted during melanoma 

progression.
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STAR⋆METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Hunter Shain (Alan.Shain@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We selected melanocytic neoplasms from 82 patients. Two cases were from the Dermatology 

Research Centre in Queensland Australia and the remaining were from the UCSF 

Dermatopathology Archive. In total, we sequenced 230 histopathologically distinct areas 

from these patients’ tumors. The histopathologic spectrum of all areas is shown in Figure S1 

and described in Table S2. Briefly, from 52 patients, biopsies included intact precursor and 

descendent areas that could be clearly separated by microdissection. We also sequenced 

matched primary and metastatic melanomas (all regional metastases) from 12 patients. 

Finally, we sequenced standalone lesions from 18 patients. 45 cases were newly sequenced, 

and 37 cases were previously sequenced (Shain et al., 2015a) and reanalyzed here. This 

study was approved by the UCSF human research protection program, and all tissues were 

collected in accordance with the institutional review board with regard to informed consent.

METHOD DETAILS

Histopathologic Evaluation—Histopathologic areas from each tumor were 

independently evaluated by a panel of 5–8 dermatopathologists. The median and 

interquartile range of assessments are indicated in Figure S1 and Table S2. For comparisons 

across patients’ tumors, microdissected areas were grouped into the following categories 

based on the extent of their progression: nevi, intermediate lesions, melanomas in situ, thin 

invasive melanomas, thick invasive melanomas, and metastatic melanomas. In several 

instances, disagreement in staging arose between benign and intermediate areas. When the 

median assessment was ‘benign’ but the interquartile range extended into the intermediate 

category, areas were classified into the intermediate category. Invasive melanomas less than 

1 mm in thickness (Stage T1 disease) were categorized as ‘thin invasive’ and melanomas 

greater than 1 mm in thickness (Stage T2+ disease) were categorized as ‘thick invasive’.

Microdissection—Tissues were microdissected with a scalpel under a dissection 

microscope from 10 μm unstained FFPE sections. Dissections were supervised by a 

pathologist with the intent to maximize neoplastic cell content (i.e., limit stromal cell 

contamination). For cases in which matched RNA-seq was also performed, every other level 

was utilized for RNA-seq. Genomic DNA was isolated using the Qiagen DNA FFPE Tissue 

Kit (p/n 56404). Total RNA was isolated using the Agencourt FormaPura Kit (A33341).

Inferring MAPK Activity from Transcriptional Profiles—Phospho-ERK is 

commonly used to measure MAPK activity for in vitro studies, but it is a not a good marker 

for in situ studies of melanoma (Houben et al., 2008). Therefore, we estimated MAPK 

signaling activity in each neoplasm from the intensity of a MAPK expression signature, as 

previously defined (Joseph et al., 2010). In Figure S2D, the samples (columns) are rank-

ordered by the strength of their MAPK gene expression signature. The gene expression 
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levels for each gene known to be downregulated upon MAPK-pathway stimulation were 

multiplied by negative one and then averaged with gene expression levels of each known 

known to be upregulated upon MAPK-pathway stimulation (Figure S2D) – this produced a 

single value for each sample that attempts to capture the strength of pathway activation 

(Figures S2D and 1D).

Classifying ‘Strong’ and ‘Weak’ MAPK Mutations—We differentiate between ‘weak’ 

and ‘strong’ MAPK-activating mutations, as indicated in Table S3 (also listed on the right 

portion of Figure 1A). To define the strength of each mutation, we first consulted studies that 

directly compare the activities of these mutations (Krauthammer et al., 2015; Monsel et al., 

2010; Nikolaev et al., 2012; Wan et al., 2004), and we defined a mutation as strongly 

activating if its activity is comparable to levels of BRAFV600E or NRASQ61(R/K/L).

Unfortunately, not every mutation has been functionally characterized, but many are instead 

known to occur in patients with RASopathy syndromes, a set of phenotypically overlapping 

syndromes caused by germline alterations known to activate the MAPK pathway. We 

reasoned that these are likely to be weakly-activating mutations because they are found in 

the germline and therefore are tolerated during development into adulthood. Notably, the 

activity of some RASopathy mutations has been also investigated, confirming that they are 

comparatively weak in their activity (Krauthammer et al., 2015; Wan et al., 2004).

Finally, we scrutinized the remaining mutations that could not be classified by either of these 

criteria and grouped them as follows. (Overall, these mutations occurred in a small number 

of samples, and our conclusions would not be influenced if they were removed from the 

analysis.) The GNA11R183C mutation is an uncommon hotspot mutation thought to be 

weaker than mutations affecting codon 209 of GNA11 (Van Raamsdonk et al., 2010) – 

though the GNA11R183C mutation has not been directly compared to BRAF or NRAS 
mutations, we reason that it is likely to be a weak activator of MAPK signaling. We 

classified the KRASQ61R mutation as strongly activating because of its similarity to NRAS 
codon 61 mutations. We categorized the RAF1 fusion as strongly activating because of its 

similarity to BRAF fusions, which are thought to be comparable to BRAFV600E in their 

signaling strength (Botton et al., 2013). The MAP2K1IK103del and MAP2K1K57E mutations 

have not been functionally investigated, but the more common MAP2K1 codon 124 

mutations have been shown to be weakly activating (Nikolaev et al., 2012); therefore, we 

classify these other MAP2K1 mutations as also being weakly activating. The CCND1 and 

RAF1 amplifications only affected wild-type copies of those genes, and thus we classified 

these alterations as weakly activating.

Classifying Pathogenic Chromatin Remodeling Mutations—In Figure 3, we report 

the frequency of pathogenic SWI/SNF and PRC2 mutations at each phase of melanoma 

progression. These two chromatin remodeling complexes are composed of nearly thirty 

subunits encoded by genes with a considerable genomic footprint. Considering the high 

mutation burden of cutaneous melanoma, we elected to only consider those mutations that 

are bona fide pathogenic alterations to avoid overcalling spurious mutations reflecting the 

high background mutation rate. For PRC2, we considered EZH2 hotspot mutations affecting 

codon 641 as pathogenic. EZH2 is the catalytic subunit of PRC2 responsible for histone H3 
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lysine 27 methylation, and these mutations have been functionally characterized to confer 

gain-of-function to the complex. For SWI/SNF, we considered any mutation affecting 

ARID2 and truncating mutations affecting SMARCA4, ARID1A, ARID1B, and PBRM1 as 

pathogenic. These five subunits are the main mutational nodes affecting SWI/SNF across all 

cancers (Shain and Pollack, 2013). In melanoma, ARID2 is a bona fide tumor suppressor, 

because it harbors a high frequency of mutations heavily skewed towards loss-of-function 

mutations (Hodis et al., 2012; Krauthammer et al., 2012). The mutation burdens of 

SMARCA4, ARID1A, ARID1B, and PBRM1 are also skewed towards loss-of-function 

mutations, albeit to a lesser degree, and for this reason, we only considered truncating 

mutations affecting these genes in our study. SWI/SNF genes are frequently contained in 

regions affected by large deletions in melanoma, but to avoid overcalling of genetic 

alterations, we only considered deletions that were focal (only a single case had a focal 

homozygous ARID1B deletion).

Assessing Point Mutation and Copy Number Burdens—The fraction of the 

genome affected by copy number changes was determined from the segmented copy number 

data (Table S4). Two criteria were used in order to filter out segmentation artifacts (false 

positives) and subclonal copy number alterations. First, we required that the segment be 

supported by 25 or more probes. Second, the amplitude of the copy number alteration was 

required to exceed a threshold of 75% of the theoretical value for a single copy gain or loss 

in a pure sample with a fully clonal copy number change, which was specifically determined 

for each tumor area based on the proportion of neoplastic cells in that tumor area. The point 

mutation burden of each tumor area was calculated from the number of single-nucleotide 

somatic mutations and the genomic footprint sequenced. To supplement the numbers of 

thick melanomas and metastatic melanomas, we also include the point mutation burdens and 

copy number burdens from TCGA melanoma cases (Cancer Genome Atlas Network, 2015).

QUANTIFICATION AND STATISTICAL ANALYSES

DNA-seq and Analysis—Due to the small size of some of the tumor areas and formalin 

fixation of every tumor, many samples had low library complexity, as would be expected 

(Hedegaard et al., 2014; Kerick et al., 2011; Palescandolo et al., 2012). The primary goal of 

our study was to pinpoint the emergence of known pathogenic alterations during the 

evolution of melanoma, so we elected to perform targeted sequencing (Table S1 for baits) in 

order to ensure high sequencing coverage (average of 271X).

Two panels of baits were used – the first batch of cases was sequenced on a 293-gene panel, 

and the second batch of cases was sequenced on a 538-gene panel. The specific genes on 

each panel are indicated in Table S1. Both panels contain established melanoma genes. The 

latter panel includes many additional genes, involved in other cancers, but none of them 

were implicated as driver genes during the course of melanoma progression in this study. 

This finding supports our decision to sequence more samples at higher coverage, increasing 

the sensitivity of detection, rather than fewer samples with a larger gene panel (e.g. whole 

exome). The high sequencing coverage allowed us to identify genetic alterations, even in the 

presence of stromal cells, which contributed to 10–90% (median 45%) of sequencing reads.
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The tradeoff for using a panel of fewer genes is that the reduced footprint tends to yield too 

few somatic mutations per sample, hampering the analysis of mutational signatures. We 

addressed this by performing mutational signature analyses on aggregated mutational data 

from similar samples (Figure 6).

DNA-seq was performed as previously described (Shain et al., 2015a). Briefly, 20–250 ng of 

genomic DNA was prepared for sequencing using the KAPA Hyper Prep Kit (Cat# 

KK8504). Target enrichment with customized baits (Table S1) was performed using SeqCap 

EZdeveloper library (Ref #: 06471706001). Sequencing was performed on an Illumina 

HiSeq 2500 instrument. Alignment, grooming, mutation calling, and copy number calling 

were performed with the following software packages: Burrows-Wheeler Aligner (BWA) (Li 

and Durbin, 2009), Genome Analysis Tool-Kit (GATK) (DePristo et al., 2011), Picard 

(https://broadinstitute.github.io/picard/), MuTect, and CNVkit (Talevich et al., 2016).

Estimation of Tumor Cell Content—Tumor purity was calculated bioinformatically for 

each sample. When possible, multiple bioinformatic approaches were used. The specific 

approaches utilized to make this calculation for each sample are iterated in the “Estimation 

of Tumor Cell Content – Orthogonal Methods” column of Table S2, and detailed 

descriptions of each approach are as follows:

Germline SNP Del.: Allelic imbalance over germline, heterozygous SNPs is introduced 

when a heterozygous deletion occurs in a tumor cell. In sequencing reads derived from 

tumor cells, the percentage of reads mapping to each allele shifts to 100/0, but it remains 

50/50 from sequencing reads derived from stromal cells. The extent of allelic imbalance in 

the overall sampling of reads spanning SNPs on deleted chromosomes is therefore indicative 

of tumor purity (Shain et al., 2015a). This approach assumes these deletions are fully clonal 

and heterozygous.

Clustered Heterozygous Mutations: Somatic mutations can be stratified by their mutant 

allele frequencies (MAFs), which are dictated by the clonality and the zygosity of the 

mutation. Here, we used the median MAF of somatic mutations occupying portions of the 

genome without copy number alterations to infer tumor purity. This approach assumes those 

mutations are fully clonal and heterozygous.

Driver Mutation: Some samples had few mutations, precluding the ‘clustered heterozygous 

mutation’ method of inference described above, but every sample had at least one driver 

mutation. The mutant allele frequency of the driver mutation was used to estimate tumor 

purity under the assumption that the mutation was heterozygous and fully clonal – before 

making these assumptions, we checked for loss-of-heterozygosity or a copy number 

alteration affecting the locus of the driver mutation.

Hemizygous Somatic Mutations: Some somatic mutations sometimes occurred on 

hemizygous chromosomes, meaning there was a deletion of the other allele. The mutant 

allele frequency of sequencing reads derived from tumor cells should be 100%, whereas 

sequencing reads from stromal cells do not contribute any mutant reads. The observed 

mutant allele frequency of the somatic mutation can therefore be used to infer the relative 
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proportions of tumor and stromal cells (Shain et al., 2015a). This approach assumes these 

mutations are fully clonal.

Somatically Gained Mutations: Some somatic mutations occurred on chromosomes with a 

gain, meaning that there two mutant alleles and one non-mutant allele in each tumor cell. 

The mutant allele frequency of sequencing reads derived from tumor cells should be 66%, 

whereas sequencing reads from stromal cells do not contribute any mutant reads. The 

observed mutant allele frequency of the mutation can therefore be used to infer the relative 

proportions of tumor and stromal cells (Shain et al., 2015a). This approach assumes these 

mutations are fully clonal and there are 2 mutant alleles along with one wild-type allele in 

the tumor cells.

X-Chr. Mutations: In a male sample, a somatic mutation on the X chromosome will have a 

mutant allele frequency 100% from sequencing reads derived from the tumor cells. 

Sequencing reads from stromal cells will not contribute any mutant reads. The observed 

mutant allele frequency of the mutation can therefore be used to infer the relative 

proportions of tumor and stromal cells (Shain et al., 2015a). This approach assumes these 

mutations are fully clonal.

Germline CNN LOH: Allelic imbalance over germline, heterozygous SNPs is introduced 

when copy-number-neutral (CNN) loss-of-heterozygosity (LOH) occurs in a tumor cell. In 

sequencing reads derived from tumor cells, the percentage of reads mapping to each allele 

shifts to 100/0, but it remains 50/50 from sequencing reads derived from stromal cells. The 

extent of allelic imbalance in the overall sampling of reads is therefore indicative of tumor 

purity (Shain et al., 2015a). This approach assumes the LOH is fully clonal.

Construction of Phylogenetic Trees—Copy number segments are included in Table 

S4, and point mutation calls are included in Table S5. A point mutation or a copy number 

alteration was counted as present in a sample (for the purposes of constructing a 

phylogenetic tree) only if they were more than 50% clonal. The expected mutant allelic 

frequency of a point mutation and the expected amplitude of a copy number amplitude was 

calculated for each sample after accounting for tumor purity. Clonality of a somatic 

alteration was determined by its mutant allele frequency (for point mutations) or amplitude 

(for copy number alterations) relative to this expected value. This cutoff ensured that 

somatic alterations, which are most likely subclonal or possibly arose from low-levels of 

cross contamination during microdissection, were not treated as shared, or truncal, events. 

After designating each somatic alteration as being ‘present’ or ‘absent’ in a sample, 

phylogenetic trees for individual progression cases were constructed from the shared (trunk) 

and private (branch) mutations.

RNA-seq and Analysis—One hundred nanograms of total RNA was prepared for 

sequencing using the KAPA stranded RNA-seq Library Preparation Kit (KR0934). This kit 

utilizes random priming for cDNA synthesis, resulting in preparation of both messenger 

RNA and ribosomal RNA. To enrich for mRNAs, target enrichment was performed using 

xGen Lockdown Reagents from Integrated DNA Technologies (IDT, Cat# 1072281) 

designed to capture the entire exome (Table S1). 100 bp, paired-end sequencing was 
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performed on an Illumina HiSeq 2500 instrument. Sequencing reads were aligned using 

STAR (Dobin et al., 2013), producing both genome and transcriptome alignments. Due to 

the low library complexity of each sample (discussed above) deduplicated alignments were 

also produced. Expected read counts were estimated for each gene and isoform from the 

deduplicated transcriptome alignments using RSEM (Li and Dewey, 2011). Expected read 

counts were normalized within each sample following the approach set forth by the cancer 

genome atlas RNA-seq Version 2 pipeline. The proportion of expressed mutant reads was 

determined using the Samtools mpileup function on the RNA-seq alignments to the genome.

Gene Expression Clustering—For clustering, sample-adjusted RSEM gene-counts 

were median centered across genes and converted to log scale. We performed centroid-

linkage clustering on genes filtered to include those with detectable expression in more than 

80% of samples and a minimal standard deviation of expression variability across samples of 

1. We attempted several iterations of clustering, using different linkage methods and filtering 

criteria without observing any meaningful changes in the resulting clusters – samples and 

genes clustered reproducibly by stage (benign vs malignant) and into a small number of 

biologically coordinated gene expression programs (as shown in Figure S5). Biologically 

coordinated gene expression programs were determined by performing Gene Set Enrichment 

analysis against all signatures from the molecular signature database (http://

software.broadinstitute.org/gsea/msigdb).

DATA AND SOFTWARE AVAILABILITY

Genomic Data—Raw sequencing data is available through dbGaP (phs001550.v1.p1).

Mendeley Dataset—The detailed evolution of each case can be downloaded from the 

Mendeley Dataset, accessible through the following link: https://doi.org/10.17632/

nrywwbx6fm.2. This dataset also includes large supplementary tables with bait intervals, 

mutation calls, copy number segments, and other information associated with each sample in 

the study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Evolution of melanoma from precursors revealed through sequencing of DNA 

and RNA

• MAPK pathway output progressively ramps up during progression

• The chromatin landscape is reconfigured at the transition to melanoma

• G1/S checkpoint override coincides with transition from in situ to invasive 

melanoma
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Significance

This study further delineates the sequential order in which signaling pathways become 

disrupted as benign and intermediate precursors evolve to melanoma in situ, invasive 

melanoma, and metastases. Activation of the MAPK pathway induces a benign nevus, 

constrained by replicative senescence, G1/S arrest, and chromatin organization. These 

barriers are incrementally overrun during melanoma formation, and melanomas continue 

to accumulate genetic alterations that ramp-up MAPK pathway signaling output and 

perturb the p53 and PI3K pathways. No mutations were specifically associated with 

metastatic dissemination to regional sites. Overall, we identify crucial steps in the 

development of melanoma, which can be subject to future treatments and can guide 

biomarker strategies to improve diagnosis and staging.
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Figure 1. Genetic and Transcriptomic Data Implicate Activation of MAPK Signaling at Initiation 
and Subsequent Amplification of Signaling during Melanoma Progression
For a Figure360 author presentation of Figure 1, see http//dx.doi:10.1016/j.ccell.

2018.06.005#mmc7.

(A) The fraction of mutations (y axis) predicted to activate the MAPK signaling pathway at 

each stage of melanoma progression. The green bars denote multiple mutations in the same 

sample with the specific combinations iterated to the right. Strong and weak activators of 

MAPK signaling are separately annotated (see the STAR Methods for details on classifying 

strong and weak mutations).

(B) The mutant allele fraction (MAF) of oncogenic MAPK mutations from RNA-seq data is 

plotted as a function of tumor purity (cellularity). The regression line indicates the expected 

relationship under a model in which the transcript level from the mutant allele is 

proportional to tumor purity.
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(C) Proportions of oncogenic transcript after accounting for tumor cell content (melanoma 

versus nevus, p = 10 3, t test). The specific driver mutations and their allelic status (loss-of-

heterozygosity [LOH] or not) are also annotated for each neoplasm.

(D) MAPK signaling output was inferred from an established MAPK gene expression 

signature (Joseph et al., 2010). Red and blue bars, respectively, denote a relatively more/less 

intense signature. The number of mutations in the MAPK pathway are indicated for each 

sample.See also Figure S2 and Table S3.
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Figure 2. Genetic and Transcriptomic Data Implicate Upregulation of Telomerase Early during 
Melanoma Progression
(A) The fraction of genetic alterations (y axis) affecting TERT at each phase of melanoma 

progression.

(B) TERT expression was inferred from RNA-seq data and plotted from highest to lowest 

(left to right) with stage and mutation status designated. p values were calculated by 

comparing TERT expression between groups with two-tailed t tests: melanoma versus 

nevus, p = 6.7 × 10 3; mutant versus wild-type, p = 10 3.

See also Figure S3.
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Figure 3. Genetic and Transcriptomic Data Indicate a Shift toward a PRC2-Modulated 
Chromatin Landscape at the Transition to Melanoma
(A) The fraction of pathogenic mutations in components of the SWI/SNF and PRC2 

chromatin remodeling complexes (y axis) at each phase of melanoma progression. To avoid 

obscuring our analysis with passenger mutations, we only considered bona fide pathogenic 

alterations (see the STAR Methods).

(B) Unsupervised clustering of samples (columns) and genes (rows) from RNA-seq data. 

The progression phase of each area and relative expression level of each gene are indicated. 

Two gene expression clusters are highlighted here (black bars). Gene sets significantly 

overlapping with the highlighted gene clusters are annotated alongside their q values (see the 

STAR Methods).

(C) A model summarizing the balance between SWI/SNF and PRC2 during melanoma 

evolution.

See also Figures S4 and S5.
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Figure 4. Genetic and Transcriptomic Data Implicates Impairment of the G1/S Checkpoint at 
the Transition to Invasive Melanoma
(A) The fraction of genetic alterations affecting genes involved in cell-cycle regulation (y 

axis) at each phase of melanoma progression. The green bars denote multiple mutations in 

the same sample with the specific combinations iterated to the right.

(B and C) p16INK4A (B) and p14ARF (C) expression levels were inferred from junctional 

read counts specific to each transcript and are rank ordered from highest to lowest (left to 

right). The stage of each neoplasm is indicated (x axis) along with the mutation status of 

p16INK4A or p14ARF. The upper range of stromal expression (dotted line) was inferred from 
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expression in tumors with loss of both alleles, a scenario in which all wild-type expression 

must derive from stromal cells. The asterisk (*) denotes samples with a point mutation in the 

CDKN2A, and proportion of mutant transcript is indicated by the striped bars.

See also Figure S6.
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Figure 5. p53 and PI3K Pathway Mutations Appear Comparatively Later during the Evolution 
of Melanoma
(A) The fraction of genetic alterations affecting genes involved in the p53 pathway (y axis) 

at each phase of melanoma progression.

(B) Phylogenetic tree for a select TP53-mutant case—the detailed evolution of this case is 

shown in the affiliated Mendeley Dataset. Pathogenic mutations are annotated with the TP53 
mutation highlighted in bold.

(C) The fraction of genetic alterations affecting genes involved in the PI3K pathway (y axis) 

at each phase of melanoma progression.

(D) Phylogenetic trees for select PTEN-mutant cases—the detailed evolutions of these cases 

are shown in the affiliated Mendeley Dataset. Pathogenic mutations are annotated with the 

PTEN mutations highlighted in bold.

See also Figure S7.
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Figure 6. Distinct Mutational Signatures Are Apparent at Specific Evolutionary Time Points
(A–C) The point mutation (A) and copy-number (B) burden at each phase of melanoma 

progression. Line, median; box, interquartile range (25%–75%); whiskers, 2 SDs above and 

below the median of the data; circles, outlier data points (C). The copy-number landscape at 

each phase of progression. Copy-number alterations reaching and remaining above a 

frequency of 10% are highlighted: red, gain; blue, loss.

(D) Canonical phylogenetic trees corresponding to the four main progression trajectories 

constructed from the median trunk and branch lengths of all the individual cases (upper). 

The fraction of UV radiation-induced mutations within the trunks and branches of each 

progression trajectory (lower): D, descendant;P, precursor, mean ± 95% confidence intervals 

are shown.
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Figure 7. Somatic Alterations in Key Signaling Pathways that Drive Melanoma Appear at 
Specific Points in the Melanoma Progression Cascade
Each heatmap reflects the frequency that a given pathway is activated (red) or inactivated 

(blue) at a specific point in the melanoma progression cascade.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Archival melanocytic neoplasms UCSF Dermatopathology Archive https://dermpath.ucsf.edu/services-overview/

Critical Commercial Assays

KAPA Hyper Prep Kit KAPA Biosystems p/n KK8504

SeqCap EZdeveloper Nimblegen p/n 06471706001

Deposited Data

Raw sequencing data This paper dbGaP phs001550.v1.p1

Burrows-Wheeler Aligner (BWA) Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Genome-Analysis Toolkit DePristo et al., 2011 https://software.broadinstitute.org/gatk/

Picard https://broadinstitute.github.io/picard/ https://broadinstitute.github.io/picard/

MuTect http://archive.broadinstitute.org/cancer/cga/mutect http://archive.broadinstitute.org/cancer/cga/mutect

CNVkit Talevich et al., 2016 https://cnvkit.readthedocs.io/en/stable/

Other

Case by case analyses This paper https://doi.org/10.17632/nrywwbx6fm.2
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