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1. Introduction

1.1. General context

This project takes place in the general framework of planets formation, and more precisely focus on
the growth of grains at the dust-rich midplane in protoplanetary disks. There are many scales, and many
physical processes at stake in the context of growing grains : from the tiny scales (sub-mm) where chemical
bonds and sticking play a major role, to the biggest scales (km to planet-size) which is the domain of gravity.
In the intermediate scale (from cm to m or km) sticking is not efficient anymore, and even though the gravity
of individual grains is negligible, it is reasonable to try to focus on collective gravitational processes to form
bigger grains.

There are two thresholds to cross in order for the gravitational instability to occur in a protoplanetary
disk. First, an incompressible fluid at a distance r from a star of mass M? can resist the tidal disruption
from a star if its density is greater than the Roche value : ρ ≥ ρRoche = 3.5M?

r3 . This density is 2 to 3 orders
of magnitude greater than typical densities in protoplanetary disks, but there is an even more stringent
condition for the gravitational instability to occur: the Toomre criteria. The Toomre parameter is a good
indication of whether the gravitational instability can occur. It reads:

Q =
cΩ

πGΣ
(1)

If Q < 1, the collapse can occur ! Translated in density values, it gives:

ρQ ≥ 10−7(
r

a.u.
)−3 g.cm−3 (2)

ρdisk ' 2.7× 10−9(
r

a.u.
)−

39
14 g.cm−3 (3)

Is there any means to reach such high densities ? Figure 1 summarizes four mechanisms helping to
get denser and denser densities. The tidal gravity perpendicular to the disk enables the settling of dust
particules on the equatorial plane (a). The radiation from the star can increase the relative density of the
dusty layer compared to the gas (b). It can then be even more concentrated through radial pileup due to
the radial Keplerian shear (c), and streaming or drag instabilities (d). [7] and [3] studied these phenomena
and concluded those densities approaching the density threshold could be attained thanks to these processes
(approaching meaning still a factor 10 to 20 to go).

Nevertheless, and as pointed out after by [9], as the dust settles in a thiner and thiner (and denser and
denser) layer, at some point the turbulence and/or the Kelvin-Helmholtz instability will destroy this layer,
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Figure 1: Four mechanisms for metal enrichment, none of which involving self-gravity (from [2]).

and as a consequence make it impossible to reach the density threshold presented in equation (2). An insight
of what is the Kelvin-Helmholtz instability can be found in the Appendix A.

One can wonder if this physical and qualitative insight has any physical meaning, or in other words,
at what point the layer becomes instable, and if it occurs before it’s thin enough to reach the previously
highlighted density thresholds. In order to tackle this point, let’s rewrite these two conditions in terms of
height of the layers. Be Hg the total (half-)height of the gas, and zd the (half-)thickness of the dust. The
two conditions reads:

(
zd
Hg

)Q<1 ≤ 10−4(
r

a.u.
)

3
14 (4)

(
zd
Hg

)KHI stable ≥ 10−2(
r

a.u.
)

2
7 ) (5)

Thus, the layer should become KH instable two orders of magnitude before it can collapse under the action
of the collective gravity.

1.2. Dust and gas

The differential rotation in the vertical direction arises because the dusty layer rotates at a different
speed than the dust-free layer.

The dust-free layer (gas layer) revolves slightly slower than the Kepler velocity, because the pressure
gradient in the radial direction supports the gas.

On the other hand, the dust particules don’t feel this pressure support, and are assumed to rotate at the
full Kepler velocity. Then, provided their stopping time1 is small enough, they are well coupled to the fluid
and drag the layer (dust + gas) revolve as a whole. The velocity is given by:

Ω = ΩK(1− ρg
ρ0
η) (6)

The non dimensional parameter η is a measure of centrifugal support by pressure:

η =
−1

2ρgΩ2
Kr

∂P

∂r
(7)

1The stopping time τs is one key parameter in the study of the growth of grains. It varies according to the size of the grains,
and the radius, because different physical processes can dominate (Epstein regime, Stokes regime, etc.). A detailed study can
be found in [10].
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Figure 2: The local Cartesian coordinates system.

Figure 3: The action of the Coriolis force in the KHI context.

1.3. The KHI in rotating disks

The picture drawn in the previous section is very general, but one has to take into account some refine-
ments in order to try and answer to the problem. The main point is that the problem is not two dimensional,
and the Coriolis force as well as the radial Keplerian shear play a critical role.

The local Cartesian coordinate system of interest is illustrated figure 2. It is a frame whose origin is at
a radius R, and comoving at the local Keplerian speed around the star (eg. coupled with the dusty layer):

x = r−R (8)

y = R[Φ− Ωt]
Φ

Φ
(9)

z = z (10)

with r, Φ and z the usual cylindrical coordinates.
In this context of the KHI in a rotating frame, the Coriolis force becomes one central physical process.

Indeed, and as pictured figure 3, it converts azimuthal motions excited by the KHI (the solid arrow in
figure 3) to radial motions (the inward vector in the same figure). Then, the radial shear dissipates the
non-axisymetric motions excited by the KHI by stretching them azimuthally (this is the qualitative picture,
as the Keplerian shear rate is at least of the order of the Brunt-Visl frequency | ∂ΩK

∂ ln r |>∼ωb).
As a consequence, the conclusion to draw from this is that the Richardson number, though relevant in

two dimensional common KHI, doesn’t take into account all the physics at stake in the problem of growing
grains through the Gravitational instability in dusty layers in protoplanetary disks. Thus, we shouldn’t use
the value of Ri = 1

4 blindly.
This has been seen in simulations from [6] that the correct criteria for marginal stability is not a constant

Richardson number, but depends linearly on µ0, the midplane dust to gas ratio.

µ0 =
ρdust(0)

ρgas
(11)

This is represented figure 4, and is the very motivation for this project: can we explain this behavior
through a semi-analytical model based on basic hydrodynamics.
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Figure 4: Several simulations (represented by black or red dots) of a 3D shearing box with Coriolis forces and tidal shear.
Black dots correspond to stable runs, whereas red dots correspond to unstable runs. Left: Richardson number as a function of
the metallicity, the dotted line corresponds to a fit of the marginally stable runs. Dotted line corresponds to Ri = 1

4
. Right:

Same data, in a different parameter space, say metallicity in function of the bulk (height-integrated) dust-to-gas ratio. The
dotted line corresponds to the solar bulk metallicity. These figures have been taken from [6], see their paper for a more precise
explanation of the making off.

1.4. Further motivation

The dependence of the stability on such parameters as the Richardson number and the metallicity (or
equivalentlye, the dependence of the Richardson number on the metallicity for marginal stability), is very
important in the context of planetesimal growth.

Indeed, according to equations (2) and (3), we need to achieve a density about 35 times greater than the
mean disk density to trigger gravitational collapse.

ρ

ρg
>∼ 35 (

r

a.u.
)
−3
14 (12)

In the relevant parameter space, it means µ0>∼ 35, and this is drawn on figure 4 on the right extrapolating
the linear relation between the Richardson number and µ0 to higher metallicities. This leads to the bulk
metallicity:

Σd
Σg
' 4× (

Σd
Σg

)solar (13)

2. Method

2.1. Physically driven approximations

This semi-analytical study is based on the work done by [5], who have performed a three-dimensional
linear perturbation analysis in the context of protoplanetary disks.

We use the previously described local Cartesian coordinate system at a radius R (see figure 2), rotating
around the central star with the Kepler angular frequency ΩK :

x = r−R (14)

y = R[Φ− Ωt]
Φ

Φ
(15)

z = z (16)
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We neglect self-gravity, but not the gravity of the central star, which leads to a radial force (competition
between gravity of the star and the centrifugal force) and a vertical force (due to the vertical tidal gravity :
Ω2
Kz.

We treat the dusty layer and the dust-free layer as a single (incompressible) fluid with different densities,
respectively ρd(z) and ρg.

This enables us to write the equations of hydrodynamics:

∇ · v = 0 (17)

∂ρ

∂t
+ v · ∇ρ = 0 (18)

v

∂t
+ (v · ∇)v = −1

ρ
∇P − 2ΩK × v − Ω2

Kz + 3Ω2
Kx (19)

In order to eliminate the Keplerian part of the velocity (vK = − 3
2ΩKx), we introduce the drift velocity

relative to the Keplerian velocity:

v̄ = v − vK (20)

2.2. Steady state

As we want to do a linear perturbation analysis, we have to define the steady state.
We thus assume an unperturbed state steady and uniform in x and y directions:

∂

∂t
=

∂

∂x
=

∂

∂y
= 0 (21)

We assume an unperturbed velocity in the azimuthal direction (y direction in the local coordinate
system):

u0 = w0 = 0 (22)

We then have from equations (17), (18) and (19):

1

ρ0

∂P0

∂x
= 2ΩK v̄0 (23)

1

ρ0

∂P0

∂z
= −Ω2

kz (24)

Given an initial density background ρ0(z) = ρd + ρg, and η, we calculate the azimuthal velocity:

v̄0 = − ρg
rho0

ηrΩk (25)

2.3. Linearization

We now linearize the equations (17), (18) and (19). In order to perform the Fourier transform in y and
x we introduce the shearing coordinate y′ = y + 3

2ΩKxt (same idea as previously with v̄). We assume that
perturbed quantities (velocities, density and pressure) are written:

f̃1(x, y, z, t) = f1(z, t)ei(kyy
′+kxx) (26)

where f1(z, t) is a complex function of z and t.
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The equations now read, with k′x = kx + 3
2kyΩKt:

ik′xu1 + ikyv1 +
∂w1

∂z
= 0 (27)

∂ρ1

∂t
+ iky v̄0ρ1 = 0 (28)

∂u1

∂t
+ iky v̄0u1 = −ik′x

P1

ρ0
+ 2ΩK

v̄0

ρ0
ρ1 + 2ΩKv1 (29)

∂v1

∂t
+ iky v̄0v1 = −iky

P1

ρ0
− dv̄0

dz
w1 +

1

2
ΩKu1 (30)

∂w1

∂t
+ iky v̄0w1 =

−1

ρ0

∂P1

∂z
− Ω2

kz

ρ0
ρ1 (31)

2.4. Boundary conditions

We consider solid-wall boundary condition at z = 0 (equatorial plane) and z = z0 (the end of the box).
We choose z0 large enough so that the modes decay sufficiently when reaching this boundary (in practice,
twice the height of the dusty layer seems to be enough). Thus, we have:

w1 = 0 at z = 0 and z = z0 (32)

∂P1

∂z
+ Ω2

Kzρ1 = 0 at z = 0 and z = z0 (33)

∂ρ1

∂z
+ iky v̄0ρ1 = 0 at z = 0 and z = z0 (34)

Adding another condition such as ρ1 = 0 at z = 0 and z = z0 for simplicity gives the final set:

ρ1 = 0 (35)

∂P1

∂z
= 0 at z = 0 and z = z0 (36)

2.5. Initial density background

The density profile we use is the same [6] used for their simulations. It has been derived by [8], based on
the basic assumption of a constant Richardson number in the dust layer. Other profiles can be used (such
as the one used in [5]), for example to compare and test our solutions.

The conditions Ri = constant,
∂ρg
∂z << ∂ρd

∂z and g = −Ω2
Kz yield:

ρ0 =

 1(
1

1+µ0

)2

+
(
z
zd

)2


1
2

(37)

where µ0 = ρd
ρg

, is the initial dust-to-gas ration at the midplane, and

zd = (Ri)
1
2 ηR (38)

is a characteristic dust height. The dust density decreases from the midplane until it reaches zero at zmax:

|zmax| =
√
µ0(2 + µ0)

1 + µ0
zd (39)

Figure 5 represents the density background (bottom) and the derived velocity background (top). The
subscript 2 stands for the smooth background we used in our simulations, to get rid of the discontinuity of
the first derivative of the density at the end of the dust layer (details can be found in ??).
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2.6. Numerical method

We follow the MAC method (Marker And Cell, [4]), where the pressure is determined by demanding that
the continuity equation is satisfied at the next step. Any other quantity is then updated using this value.

We have:

∇ · v = ik′xu1 + ikyv1 +
∂w1

∂z
(40)

Using: (29)×ik′x, (30)×iky and taking the partial derivative of (31) with respect to z, we obtain:

∂(∇ · v)

∂t
=− iky v̄0(∇ · v)− 2iky

dv̄0

dz
w1 −

1

ρ0

(
−k
′2
x − k2

y +
∂2

∂z2

)
P1 +

1

ρ2
0

dρ0

dz

∂P1

∂z

+ 2iΩKk
′
x

v̄0

ρ0
ρ1 + 2iΩKk

′
xv1 + iΩKkyu1 + Ω2

K

d

dz

(
− z

ρ0
ρ1

)
(41)

Using first order approximation (∂(∇·v)
∂t ' (∇·v)n+1−(∇·v)n

∆t = −(∇·v)n

∆t ), we finally get:(
−k
′2
x − k2

y +
∂2

∂z2

)
Pn1 = ρ0

{(
(∆t)−1 − 2iky v̄0

)
(∇ · v)n − 2iky

dv̄0

dz
wn1 + 2iΩKk

′n
x v

n
1

+ iΩKkyu
n
1 + 2iΩKk

′n
x

v̄0

ρ0
ρn1 + Ω2

K

d

dz

(
− z

ρ0
ρn1

)}
(42)

From this equation, we compute Pn1 , which we use to update every other quantity:

ρn+1
1 = ρn1 + ∆t

{
−iky v̄0ρ

n
1 −

dρ0

dz
wn1

}
(43)

un+1
1 = un1 + ∆t

{
−iky v̄0u

n
1 − ik

′n
x

Pn1
ρ0

+ 2ΩK
v̄0

ρ0
ρn1 + 2ΩKv

n
1

}
(44)

vn+1
1 = vn1 + ∆t

{
−iky v̄0v

n
1 −

dv̄0

dz
wn1 − iky

Pn1
ρ0

+
1

2
ΩKv

n
1

}
(45)

wn+1
1 = wn1 + ∆t

{
−iky v̄0w

n
1 −

1

ρ0

∂Pn1
∂z
− Ω2

Kz

ρ0
ρ1

}
(46)

2.7. Second order accuracy

2.7.1. In time

In order to reach second order accuracy in time, we need to use a corrector-predictor as a method. To
do this, we first replace n-th quantities on the right-hand side of equation (42) by:

f
n+ 1

2
1 =

fn+1
1 + fn1

2
(47)

We then solve for P
n+ 1

2
1 .

Using now the quantities f
n+ 1

2
1 , we compute the new and more accurate (up to the second-order) per-

turbed velocities and density (equations (43) to (46)):

fn+1
1 = fn1 + ∆t{Fn+ 1

2
1 } (48)

where F
n+ 1

2
1 stands for any variable expressed at time n+ 1

2 .
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2.7.2. In space

We use a discretized grid in z of N cells. Each quantity is defined at the grid points.
We have to solve at each time step equation (42), written as:

AnX = Bn (49)

where An is an N ×N tridiagonal (or band) matrix, X the vector (Xi = P1(i)) to solve for, and Bn is the
right-hand side of the equation.

We use an LU decomposition, which means that we don’t explicitly solve for the inverse of A, but the
solution X is a given function of Lij and Uij . Writing everything (derivative) up to second order gives the
following expression:

Ai,i = −[2 + (k
′2
x + k2

y)(∆x)2] (50)

Ai,i+1 = 1− 1

2ρ0(i)

dρ0(i)

dz
(51)

Ai+1,i = 1 +
1

2ρ0(i)

dρ0(i)

dz
(52)

and the boundary conditions, given by using a ghost cell (i = 0 or i = N + 1) and enforcing ∂P1

∂z = 0 at the
two borders2:

A1,2 = 2 (53)

AN,N−1 = 2 (54)

2.8. Dimensionless quantities

In order to work with dimensionless, order of unity equations, we use dimensionless variables by setting:

Hg = 1 (55)

ΩK = 1 (56)

ρg = 1 (57)

cs = 1 (58)

We also define:

vmax = ηRΩK = η
R

Hg
cs (59)

Each simulation is then characterized by the choice of the density background, three free parameters(
Ri, µ0,

vmax
cs

)
and an initial perturbation (u1, v1, w1, ρ1, P1).

3. Results

The goal is to sample the space parameter in Ri versus µ0. To do this, we have chosen to use the value
of the first peak after an exponential growth for a given perturbed quantity: ρ1. An example of what it
gives is shown figure 6, in the case µ0 = 1, and vmax = 0.025, for a bunch of different Richardson numbers.

The choice of the value of the first peak is motivated by its simplicity, and stability, contrary to an
expected criteria for stability at very long time. In later studies, we seek for a better and more physically
justified parameter to measure in the simulations.

2It then gives: 2P1(1) − (2 + (k
′2
x + k2y)(∆x)2)P1(0) = (∆x)2 × RHS(i) at z = 0, and a similar expression at z = zmax.
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Figure 6: Example of the given run, at fixed µ0 = 1 and vmax = 0.025, for a bunch of Richardson numbers. The value of the
first peak (at about T = 3) is used in further studies. The normalized value of ρ1 is plotted in function of the number of Kepler
times.

Because we carry out linear perturbation analysis, it’s difficult to give a precise value for stability (or
marginally stable runs). As a consequence, we don’t give any typical value for stability, but we prefer to try
and find iso-stable parameters. In detail, we use the raw value of the first peak in ρ1, we normalize it to
the initial total density (ρg + ρd) at the midplane to have a scale-free value, and we then multiply it by the
same total density to take into account the fact that we perturb the middle always with the same strength
regardless of the density3. This is justified figure 7, where we plot two different runs with two different
initial kicks.

3.1. Initial conditions

To carry out a simulation, we need to specify the background, as highlighted previously, but also to
give the initial perturbation. We first chose to study only odd modes in w1, and then to choose any other
quantity the most simple way. Thus, we choose ρ1 = u1 = 0, and v1 is given by equation (27):

w1 = Cw1(sin(kzz) + i sin(kzz)) (60)

v1 = Cw1
kz
ky

(− cos(kzz) + i cos(kzz)) (61)

These initial conditions are then updated through the process we described in the previous section.
Figure 8 shows two snapshots at t = 0 and a later (t = 3Ω−1

K ) time.

3.2. The answer

We now are ready to answer the initial question, by sampling the space Ri/µ0.

3A very dense midplane will be relatively less disturbed by the perturbation than a dust-free midplane.
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Figure 9 is the semi-analytical answer to figure 4 of [6]. What is important to notice is the dependence of
Ri with µ0 at low µ0 < 10, which confirms what has been seen in three-dimensional simulations by [6]. The
behavior at larger metallicity (µ0 > 10) is qualitatively different: a constant Richardson number seems to be
the right criteria to assess the stability of the layer. This doesn’t contradict entirely previous simulations:
the high-µ0 runs in [6] might not have reached convergence yet (blue triangles figure 4 are values for marginal
stability with twice the resolution, and have lower critical Richardson number.

3.3. Another criteria ?

This study supports the fact that the Richardson number is not the (only) relevant criteria to assess of
the stability of the dust-rich midplane, as it had been foreseen by [6] and [1]. Following [6], we can try to
derive a better fitted parameter, say the Shearing number, defined by analogy with the Richardson number
as the square of the stabilizing effect (Kepler shearing frequency) over the vertical shearing rate:

Sh =
| ∂ΩK
∂ ln r |

2

(
∂vφ
∂z )2

∝ (
∆z

∆vφ
)2 ∝ Ri1 + µ0

µ0
(62)

If we assume that a marginally stable layer has a constant shearing number (we assume this number is
the right criteria to use), then we get:

Ricrit ∝ µ0 for µ0 << 1 (63)

Ricrit ∼ constant for µ0>∼ 1 (64)

and this is what is seen figure 9 !

11



Figure 8: Solid lines represent the real part of each quantity, and dashed lines the imaginary part. Left: initial perturbation
(t = 0Ω−1

K ). Right: later time (t = 3Ω−1
K ).
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Figure A.10: Left: illustration of the Kelvin-Helmholtz instability in a numerical simulation. Right: illustration of the buoyancy,
the stabilisation of two layers of different density against the shear.

4. Conclusions and work in progress

We have studied the stability of the equatorial, dust-rich midplane in protoplanetary disks, and found
two trends. At low µ0, the critical Richardson number goes linearly with µ0, while at high µ0, the critical
Richardson number is constant.

The underlying consequence of this result for the formation of planetesimals is that a constant Richardson
number for high µ0 would lead to a requirement even lower than four times the solar nebula’s bulk metallicity
in order to trigger the gravitational instability in the dust-rich midplane (four times is what gives the linear
fit on figures 4).

Achieving supersolar bulk metallicities can be done locally, for example through radial pileup ([11]).
There are also other promising ways to achieve greater density (maybe up to the Toomre threshold !) with
the streaming instability or turbulent concentration of particules, but they have not been studied here.

In the near future, we are going to continue this study, and try to represent in real coordinates the
behavior of a particule (drawing the field lines).
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Appendix A. Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability (hereafter KHI) occurs in parallel shear flows, and is not to be mistaken
as turbulence. This instability is not only of interest in astrophysics, but in almost any hydrodynamical
process : clouds in earth, flows in pipes, or the giant vortex in Saturn. Basically, it is a competition
between a destabilization: the shear between the two fluids which tends to mix them in a single fluid; and a
stabilisation: either the buoyancy (see figure A.10 on the right) in the classical KHI, or another stabilizing
effect such as the Keplerian shear in other contexts.

A good indicator for the stability of the layers against the KHI is the squared ratio of the Brunt-V äisl
frequency (ωb = ( gzρ

∂ρ
∂z )

1
2 ) over the shearing rate (ωshear =

dvφ
dz ): the Richardson number.

Ri = (
ωb

ωshear
)2 =

gz
ρ
∂ρ
∂z

(
dvφ
dz )2

(A.1)

For parallel two dimensional shear flows, the Richardson number is a good criteria to assess of the
stability of the flows: the necessary condition for instability is Ri < 1

4 . Nevertheless for non parallel, three
dimensional flows in a rotating frame, it is not obvious that the same criteria should apply !

14



Appendix B. Smooth density background

Sekiya’s ([8]) profile is discontinuous in the first derivative at the end of the dust layer. In order to make
it continuous, with a Richardson number strictly increasing, various smoothing functions can be used. Two
solutions based on powerlaws functions are implemented in the code.

The idea is to replace Sekiya’s profile by a given function from a fixed height zl to zup. We use the
following function:

ρ̃0 = 1 + a(zup − z)b (B.1)

keeping one over the three parameters (a, zup, b) fixed. This function guaranties a strict decrease in ρ0, and
the needed boundary conditions at z = zup:

ρ0(zup) = 1 (B.2)

∂zρ0(zup) = 0 (B.3)

We can solve for the two free parameters, using the fact that ρ0−1
∂zρ0

=
zup−z
−b and the given boundary

conditions:

ρ0(zl) = ρ̃0(zl) (B.4)

∂zρ0(zl) = ∂z ρ̃0(zl) (B.5)

Case 1: zup = zl is fixed. We have in that case:

b =
(zup − zl)ρ3

0

(ρ0 − 1)z2
d

zl (B.6)

a = (ρ0 − 1)(zup − zl)−b (B.7)

with ρ0 = ρ0(zl).

Case 2: b = 3 is fixed. In this case, the upper limit of the smoothing is not fixed. We now have:

zup =
3(ρ0 − 1)z2

d

zlρ3
0

+ zl (B.8)

a =
1− ρ0

(zl − zup)3
(B.9)
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