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Abstract.

We derive the family of testsfor a unit root with maximal power against a point alternative when an arbitrary
number of stationary covariates are modeled with the potentially integrated series. We show that very large
power gains are avail able when such covariates are available. We then derive tests which are simple to
construct (involving the running of vector autoregressions) and achieve at a point the power envelopes
derived under very general conditions. These tests have excellent propertiesin small samples. We also
show that these are obvious and internally consistent tests to run when identifying structural VAR's using
long run restrictions.
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1. Introduction.

Dueto the effects of the assumption of aunit root in avariable on both the econometric method used and
the economic interpretation of the model examined, it is quite common to pre-test the datafor unit roots.
Thisistypically done by either (or both) testing variables one by one for unit roots or by examining

cointegrating rank using Johansen (1988) tests or their asymptotic equivalent.

In testing variables one by one, commonly the t-test method of Dickey and Fuller (1979) isemployed. This
hypothesis test is asymptotically optimal when the datais stationary and is anatural statistic to consider.
However in the unit root case there are many other tests available that have greater power. Elliott et. al
(1996) (denoted ERS in the remainder of the paper) showed that thereis no uniformly most powerful test for
this problem and derived tests that were approximately most powerful in the sense that they have

asymptotic power close to the envel ope of most powerful tests for this problem.

This paper considers amodel where thereis one series that potentially has a unit root, and that this series
potentially covarieswith some available stationary variables. In amodel similar to the one examined here,
Hansen (1995) demonstrated in amodel with no deterministic terms that no uniformly most powerful test for
aunit root in the presence of stationary covariates exists and that power gains are to be had from using
these covariates. He suggested covariate augmented Dickey Fuller (CADF) tests and showed that these
tests had greater power than tests that ignored these covariates®.

This paper extends the results in Hansen (1995) in a number of ways. First, we show that the point optimal
testsimplicit in the power envelope derived in Hansen (1995) and computed when all nuisance parameters
are known are feasible when these parameters are not known. We also extend the results by deriving the
power envelope in the more empirically relevant cases of where constants and/or time trends are also
included in the regression. We propose tests that are feasible to construct with data and attain the power
envelope at apoint. These tests have good power at other points aswell. We then show that these are
natural teststo report in justifying the unit root assumption in the popular method of identifying structural
vector autoregressions (VAR's) from long run restrictions (as suggested by Blanchard and Quah (1989)).

The paper isset up asfollows. Inthe next section the model isintroduced, and the power bounds for the
problem are established. In the third section, tests which feasibly attain these power bounds at a point are
derived and discussed. Section four examines the tests empirically using Monte Carlo methods. A fifth

section discusses the tests as they relate to identifying structural VAR’ sfrom long run restrictions. The

! Thereisalso adiscussion of thiswork in Caporale and Pittis (1999).



final section concludes. All proofs are contained in a separate appendix, available from the authors upon

reguest.
2. Model and Power Envelopes.

Consider the model

z, =b,+bt+u, t=1..T @
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where z=[yXT', % isan mx1 vector, yis 1X1, by =[byo 0], b1 =[by1 0]’ U =[uy; Uy ] and A(L) isamatrix
polynomial of finite order k in the lag operator L. For the constructed test statistics we will assume that

A1l. |A(2)|=0 hasroots outside the unit circle.
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A.2 E.4(e)=0. E.1(e€)=S and sUp, ||eI || "< ¥ (as.) for some d>0, where S is positive definite and

E..1(.) denotes conditional expectation with respect to {q_ 116 21ee } .

A3. UgU.y,...,uare Oy(1).

Define U, (') = |_(l- rbu,, u, 'J' with spectral density at frequency zero (scaled by 2p) W, so we have

W= A(1) *SA(1) "' wherewe can partition this after the first column and row so that
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(we partition S similarly). Wewill further define R* =w_ \w,_ W w ', the frequency zero correlation
wy Y yx o yx

between the shocks to x, and the quasi differences of y,. The R? value represents the contribution of the
stationary variables- it is equal to zero when there is no long run correlation and one if there is perfect
correlation. We impose that R?<1, hereby ruling out the case under the null where the partial sums of x,
cointegrate with y,. If thereissuch acointegrating relation, this should be modeled in the system taking the
model outside this framework (unless the coefficients of the cointegrating vector is known, in which case

the model can be rotated back into this framework, see Elliott et. a. (2002)).



We consider five cases indexed by superscript i (i=1,2,3,4,5) for the deterministic part of the model (where

parameters are free unless otherwise stated)

Casel: b, =b, =0adb,, =b, =0.
Case2: b, =0andb,, =b, =0.
Case3. b, =0andb,, =0.

Cased: b, =0.

Case 5: Norestrictions.

Each of these cases can be characterized by the restriction (I ame) T S )b =0 whereb=[by' b,], Sisa

2(m+1)x2(m+1) matrix where S,=0 Sz-gi 09 Ss-gbm” 09 _gim 09 d S is the identit
m XZ(Im matrix where o5,=0, - =, - =, - —an IS the 1aentity
0 Oy 0 05 © &0 Oy

matrix.

Thisrepresents afairly general set of modelsin which we haveaVAR in the model of x and the quasi
difference of y. We wish to test that the parameter r isequal to one (y. has aunit root) against alternatives
that thisroot islessthan one. Following the general methods of King (1980, 1988) we will examine Neyman-
Pearson tests for this hypothesis. Following the application of these methods to testing for unit rootsin
ERS and Elliott (1999) we will examine Neyman-Pearson tests for this hypothesis under simplifying
assumptions, and then in the following section we will derive general tests that are asymptotically

equivalent to these optimal tests.

With the assumption that A(L)=I (so that W=S) and assuming the e are normally distributed and u,,=0 we
will examine tests against the local alternativethat c= T <Owhere r =1+C/T and T =1+ T/ T with

¢, C fixed (wewill suppressthe dependence of r on T in the notation).

The system likelihood ratio test statistic for the hypothesisis given by
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wherewe haveforr= 1 ,1 that

G (r)=z(r)- d, (r)b'(r)



where 7, (r) =[(1- rL)y,, x| for>1and 2, (r) = [y;, %, ],
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of D. Thetest hasrejection regions of the form {yt X L'@r)-ct< b} where bisacritical value.

Theorem 1%

For the model in (1) and (2) with A(L)=1, e independent N(0,S) random variables and A3 holding then
with r =1+c¢/T and T =1+ T/ T withc, T fixedasT® ¥ the most powerful test of Hy: c=0vs. Hy:

c= C <0 has asymptotic power functions
P(c,c,R?) = Prly '(c,c,R?) < b(T,R?%)|
wherey '(¢,C, R?) = ¢ (C,T) + (€% - 2cQ)QQIWL.) +20QY> VLW, +h' (¢, T, R?),
b(t, R?) isaconstant, Q = R* /(1- R?), W. =W, W =W,_ - OV, for i=2,3,4 and
W =W, - (4- 6s)IV,. - (12s- 6)pW,, . 9'(C,T) =T* M2 - TW, (1) for i=1,2,3 and
g'(c,©) =T*VZ +(1- TW, (1)’ - k'l[(l- W, (D) + EZC‘p\NlC]Z fori=4,5, h'(c,T, R?) is
zero except for h*(c,C,R?) = k'l[(l- C)W, (1) +¢? @ch]z -
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andk =1- T+T?/3. Allintegralsare 0to 1 over swith s suppressed, so e.g. oM = QlNlc (s)dsand

S
W (s) = CQ e W (1 )dl +W,(S), W and W, are independent univariate standard Brownian

motions.

In case 1 thisis apart from ascale factor the same as that reported in Hansen (1995)°. A number of features

are noteworthy. Firstly, the dependence of thetest on T indicates that no uniformly most powerful test is

2 Proofs are availablein a UCSD discussion paper version of this paper.



available for this problem, power depends on the choice of the alternative. Second, the distribution of the
test isnonstandard. Third, the optimal test statistic depends on S and its distribution depends on the
parameter R%. When R?=0theny ' (C,T, R?) = @' (C,T) whichisequivalent to the asymptotic limits of
the tests derived in ERS, thus the most powerful tests coincide asymptotically with tests with the relevant
invariance properties with respect to deterministic terms which do not use the information in the covariates
(Cases 1-3 equate to the constant included case, Cases 4-5 are the time trend included result). When R?is
nonzero the optimal univariate and system tests are different, indicating that information islost when

information in the covariatesisignored.

Theresultsin the Theorem give the local power for any choice of C at any local alternative c. When we set
C =c, we obtain by construction the test that has the highest attainable power. By evaluating the powers
setting c=C we obtain the envelope of greatest asymptotic power, which we call the power envel ope.
Figure 1 examines the power envelopes for various R°. The power envelope when R?=0 has the lowest
power - thisisthe relevant envelopeif no covariate information is employed. When R?is greater than zero,
the power attainable increases considerably above thislower bound. Hence, use of covariates hasthe
potential to greatly increase the power of testsfor aunit root, asindicated by Hansen (1995). Thelargeris
R, the more powerful the optimal test'. These results are true for each of the various assumptions on the
deterministic terms®. Comparing the first two panelsin Figure 1 we see the effect of estimating the constant
terms. Thiseffect issmall, e.g. when R>=0.5 and c=-5 the power envelope in the constants known case is
70% whilst when the constants are unknown this power is 62%. Both of these powers are substantially

above that of the case where no covariates are employed, where the envel ope attains a power of 32%.

Asinthe case where there are no covariates, the effect on the power envelopes for the case where the trend
terms (coefficients on time trends) are not known is quite large. In the case mentioned above, where R>=0.5
and c=-5the maximal power in case 5 is 33%, far below the 62% when only coefficients on the constants are
known. Notice though that the maximal power in this case even when constants and coefficients on the time
trend are estimated is (just) above that for the case where stationary covariates are ignored and the
coefficient on the time trend isknown. In general the power losses from not knowing the coefficient on the
trendsin the x regressionsis small (differences between cases 4 and 5, not pictured in the figures), between

zero (when R? issmall) and 6% or so (when R%islarge). Thereisclearly the potential for much to be gained

¥ We also have anotational differencein that our R? isdefined in Hansen (1995) as 1-R%. We changed the
notation to accord with the usual use of R%

* The asymptotic results are not appropriate at R>=1, which is readily seen from the limit expression which
would not befinite at this point.

® Case 2 and case 1 are asymptotically identical, so we omit case 2. Case 4 has functions similar to Case 5
and is omitted.



in terms of power from exploiting stationary covariatesin constructing tests for aunit root. The

construction of tests that achieve these gainsis addressed in the next section.
3. Feasible Tests.

In this section we derive families of teststhat asymptotically attain the power bounds derived above at pre-
specified points, relaxing the normality and known nuisance parameter assumptions. The method for
constructing thetest is set out in 4 steps

(a) Estimate nuisance parameters for detrending and R?.

RunaVAR A(L)z(1) = deterministics + g including no deterministic termsfor case 1, constants for

cases 2 and 3, constants and time trends for cases 4 and 5. Using the residuals from the VAR®

.
& _T-18 ~2a1 VA= AM-1EA/T)-11 D2 & MRS T
construct S=T " q €6&', W= A1) "SA(D) ™ and R —WnyXX]Wyx /W, where

t=k+1
. & .
AQ) =1 +Q A andA,isthe(i+1)" matrix element of A(L).
i=1

(b) Construct detrended data under the null and alternative hypotheses, i.e. construct for r=(1, r)

G (r)=z(r)- d.(r’b' (r)

where
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(© RunVAR's(forr=1,7),i.e run A(L) 0 (r) = &(r) and construct the estimated variance
covariance matrices
_— T ~ ~
S =T*a&aa(r)

t=k+1

(d) Construct the test statistic

C'@r) =TS 'Sr)]- (m+r)

® In practice one can choose the lag length of the VAR through theory or a consistent lag length estimator
such asthe BIC information criterion.



Thistest will have asymptotic power that achieves the power bound at € under the assumptions.

Theorem 2.
For the model in (1) and (2) with assumptions A1, A2 and A3 holding and deter ministic terms correctly

specified for each casethenasT® ¥
L'@ar)byi(cc, R?)

where b denotes weak convergence.

Thusthe critical values for the test depend on the alternative chosen (T ) and R®. The feasible test
asymptotically achieves the highest power possible at C. We have chosen heretolet T =-7 for cases 1-3
and C =-13.5for cases4 and 5 (which follows the choice of ERS). In principle and practice we could choose
different valuesfor € depending on R?, however as R? rises above zero lack of power is becoming less

problematic so it seems reasonable to usto choose C for the worst case scenario.

Asymptotic critical values for the test for selected values of R* are givenin Table 1. Therelevant critical

valueis determined for the estimated R? . For values of R? between the ones givenin Table 1, interpolation

can be used to approximate the critical value.
4. Evaluation of the Tests.
4.1. Large Sample Evaluation.

Figure 2 examines the power of the feasible test for Cases 1, 3 and 5 in each panel respectively. Thefigures
give theresultsfor R*=0.3, 0.5 and 0.7. Accompanying the power curves are the power envel opes for
comparison. The feasible point optimal test has power that is close to the power envelope, suggesting that
thereislittle asymptotic power loss at points away from where the test is optimal, especially for lower values
for R%. Thisissimilar to results of ERS, where for R°=0 this was found to be true. When R*= 0.5 the
difference between the power envelope and the asymptotic power of the feasible test is small for alternatives
amoderate distance and further from the null, but alittle larger for alternatives close to the null. This
becomes more apparent for larger R%. To the extent that very large values for R? are probably not too
relevant empirically, this may not be too much of aproblem. The suggestion from these graphs appears to
be that the most useful choice of T in practice may depend on R®. We also examined the power curvesfor
the case where C =-7 to perhaps improve the closeness of the power curvesto the envel opes for these near

alternatives. When this alternative is chosen thisindeed happens, however the tradeoff is that the power



curves for R? small are not as close to the envelope for more distant alternatives. Thuswe recommend

choosing C =-13.5 as power is more of aconcern when R? issmall.

The power gains are clearly substantial for each of the cases for the deterministic terms (results for case 4
are similar to those in case 5). Consider the gains from using covariates when R>=0.5. At the local
alternative C = -5, in case 3 power rises by 30% and in case 5 power rises by 35%. Such gainsin power
substantially improve the odds of correctly distinguishing a process with a unit root from aslowly mean

reverting process.

4.2. Small Sample Evaluation.

We will examine various special case modelsin samples of 100 observations. Along with the above tests,
we report results for the commonly applied test of Dickey and Fuller (1979) and also the P; test of ERS as
well as the Hansen (1995) CADF test.

Table 2 reports results of simulations of the model in (1) and (2) for each of the cases 1, 3 and 5 respectively
where A(L)=I (and thisisknown), & is normally distributed with variances equal to 1 and R? as reported in
the Table. Sizeisgivenintherow correspondingtor =1 and (empirical) power against the indicated
alternativesin the following rows. When there are no deterministic termsin the model the DF and Py single
equation tests do similarly well (see ERS for adiscussion of thissimilarity). Inthetest proposed here, when
R?=0 power and size are comparable to the univariate tests indicating that even in small samples little may be
lost by including extraneous information and doing the system test. As R?increases, size remainswell
controlled whilst power rises considerably. Consider the case of thetruer being equal to 0.96, the P; test
has power around 23% whilst if R* =0.25 the system test has power equal to 34%, roughly a’50% gain.

When aconstant is included, the P; statistic gainsin power over the Dickey and Fuller (1979) t test are very
large. Again, when R°=0 the test proposed here has similar size and power to the P; statistic indicating that
little islost adding extraneous stationary covariates. In general, sizeislesswell controlled, especially for R®
close to one (where the asymptotic theory would no longer be relevant, however it would not be expected
that such models would be appropriate for real world data) . Thereis some evidence of power lossesfrom
not knowing the constant term. At avalue of r = 0.96 the power when the constant is known (or zero)
power is 49% compared to the unknown constant power of 45% when R*=0.49. Even so, power for the test
with the constant unknown is quite high in many cases, and is far beyond that achievable when covariates

are not employed.



Similar results are found for the detrended (case 5) model. In both of these cases power when using
covariatesis substantially greater than when relevant covariates are ignored (for example, in case 3 whenr
=0.9, power of the test proposed here when R?=0.25 is 20% for the Dickey and Fuller test and is 49% for the
test with covariates employed. There are as usual power lossesinincluding atimetrend. Inthecaseof r =

0.96 and R?=0.25 the power drops from 36% in case 3to 13% in case 5.

The effect of estimating R? in the computation of the test is examined in Table 3 (for cases 3 and 5 in each of
the panels respectively). Here the resultswhen R? is estimated are repeated from Table 1 on the right hand
side panels, whilst the same results using the critical value chosen using the true R? are given in the left
hand panels. Thereisvery little difference, even in asample of 100 observations. Most of the differencesin
sizeand power are at the third decimal place. Itisonly for case 5 when R?isalittle larger that thereis much

of an effect, but the effect isminor (in these cases there is asmall power loss from estimating R?).

Table 4 compares the CADF test of Hansen (1995) with the feasible test derived here (again for the leading
cases 3 and 5 respectively). The CADF test augments the usual Dickey and Fuller (1979) test with lags,
leads and the contemporaneous values of x. In thistable, with no serial correlation, this amounts to
including x, as aregressor in the ADF regression and then constructing the t-test of the unit root hypothesis
asnormal. Asshown in Hansen (1995) this test also depends on R% In the comparison we use the same
value of R? to compute critical valuesfor each of thetests. In the first column of the CADF results, where
R?=0, we have essentially the same results as the Dickey and Fuller (1979) test in Tables 3 and 5 that ignores

the covariates. This should be the case, the included x, variable in the ADF regression has a population
coefficient of zerointhiscase. Likewise, thefirst column of the L (1, T) test matcheswith the P test for
the reasons we have described. Thisgivesaninsight into the difference in the two approaches, the

difference between the CADF and L (1,F) issimilar to the difference between the Dickey and Fuller (1979)

approach and the ERS approach. When R%>0, we see that the L (1,7) test outperforms the CADF test in
terms of power, although is slightly worse in size performance. The increasesin power can be quite large.
In the case 3 when R*= 0.09 the power of the L (1,7) test istwo to three times that of the CADF test. For

case 5 the effects are not as dramatic, but still power gains of 50% or so are available from using the

covariates test proposed here over the CADF test.

5. Unit Root Tests and Long Run Structural VAR Estimation.
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Blanchard and Quah (1989) derive amethod for identifying structural VAR’ s from restrictions placed on the
spectral density of the data at frequency zero when there are known unit roots in the system. Consider the

bivariate version of the model considered in this paper when we impose that the rootr isequal to unity,

Dy, U
A(l—)é tl,'J:et-
exXu

Inverting the lag polynomial gives us

V8- C(L)e, = C(L)KK e, = D(L)h,

e

e enl e

where C(L)=A(L) * and E[h;h,"]=I. Thismodel is not identified in the usual sense as for any of the infinite
possibleinvertible matrices K we obtain a different structural model. In this bivariate system werequire a
single restriction so that the rotation K is unique for the model to be identified (this would be the order

condition).

In such systems, y, is permanently affected by shock(s) sinceit isan integrated process. On economic
grounds, it may be interesting to identify the model such that only one of the structural shocks has a
permanent effect ony, . In Blanchard and Quah (1989) this argument meant that demand shocks could not
have a permanent effect. InKing et. al (1991) cointegration was used to imply a smaller number of
permanent shocks than total shocks. In such casesit is possibleto identify the model as the cumulated sum
of the structural impulse responses, D(1), will be triangular as only one of the shocks has along run effect

ony,

For the model above, the identification scheme would set the (1,2) component of D(1) equal to zero. Since

the spectral density of the data at frequency zero (scaled by 2p) is W= D(1) D(1)" this amounts to taking

the choleski decomposition of the estimated matrix W. Such arestriction isonly interesting and useful in

identification when the off diagonals for W are indeed nonzero, i.e. when R*0.

The crux of this approach to identification clearly isthat y, indeed does have aunit root. |If instead there
were no permanent effects then we would interpret D(1) differently and would have no reason to make this
matrix triangular. Soin practice auseful hypothesis test to report in undertaking this method would be a test
for aunit rootiny,. Further, when theimposed restriction isindeed informative, then R>0 and hence we are
exactly in the cases where the tests of this paper yield power gains over univariate testing. Typically, such

testsfor aunit root to provide evidence of the validity of thisrestriction are undertaken using Dickey Fuller

11



(1979) tests (see Gali (1999) for example), which neither use the full information in the model nor are they the
most powerful univariate tests. The tests derived in this paper provide a natural test of the basic

identification assumption of the Blanchard and Quah identification scheme.

We apply the tests derived here and other common tests to the Blanchard-Quah dataset. The datais
quarterly data on income and unemployment for the US from 1950:2 to 1987:4, where unemployment isthe
stationary variable x, and income isthey, variable. We include constants and time trendsin both
unemployment and income’ (so the tests are from case 5) and follow Blanchard and Quah in choosing eight

lags. The DF statistic is-1.78 and the DF-GL S statistic of ERSis-1.37. Neither iscloseto rejecting for a5%
or 10% test. The L° (L, F") test is 17.93. For the estimated R of 0.76 the critical valueis 16.56, so we have a

p-value of 0.07 and fail (but only just) to reject at 5% and so find some support for the Blanchard and Quah

assumption®.
6. Conclusion.

Typically in economics correlation between the variablesis the rule rather than the exception. Often these
areimplied by theory. Either way, thisinformation can be extremely valuablein testing assumptionsthat are
ancillary to the modeling process. This appearsto be especially truein the case of testing for aunit root.
Hansen (1995) showed this with tests he devel oped based around the statistic of Dickey and Fuller (1979).
In arelated paper Horvath and Watson (1995) showed that power gains are available when there are known
cointegrating relationships (which are then stationary variables). We have shown here that even greater
gainsare possible. The statistics are simple to implement and yield extremely large gainsin power when the

covariates are relevant.

The statistics we generate, useful in many areas, are directly applicable to testing the unit root assumption
in theidentification of structural VAR'sfrom long run restrictions. These restrictions do not make sense
unlessthere is a process with aunit root in the model, yet typically very low power tests are used to examine
thisassumption. The tests derived here will have much better power at detecting the mistaken use of this

procedure.

" Blanchard and Quah included atime trend in unemployment on the grounds that it was increasing over the
sample. They had the equivalent of atime trend with abreak for the oil shocksinincome. We do not
include a'known' break such asthis, however not including the break if it were truly there (tests which
search for such abreak typically fail to reject the hypothesis of no break) biases us away from rejecting the
unit root.

8 We do reject for 7 lags, but not for shorter lags than this.
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Figure 1: Power Envelopesfor Cases 1,3 and 5 respectively.
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Note: Envelopesfor R?=0,0.3,0.5,0.7 and 0.9 where power isincreasing in R
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Figure 2: Power Envelopes and Power curvesfor Cases 1,3 and 5
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Note: Unbroken lines are Envelopes for R?=0.3,0.5 and 0.7 and broken lines are power of Point Optimal tests
for each R? where power isincreasing in R,
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Table 1: Asymptotic Critical Vaues (Distribution in Theorem 3)
R 0 01 02 03 04 05 06 07 08 0.9

Cases1,2 334 341 354 376 415 479 588 784 1212 25.69
Case3 334 341 354 370 3% 441 512 637 917 17.99
Case4 570 579 598 638 69 797 963 126 1903 39.62
Case5 570 577 600 640 707 815 1000 1336 2035 41.87
Notes: Critical values were computed using 1500 steps as approximations to the Brownian Motion termsin
thelimit theorem representations and 60000 replications. The critical values reported are for tests of size 5%
with T =-7for cases 1, 2and 3and C =-13.5for cases4 and 5.

Table 2: Small Sampleresuitsfor L' (1, )

k- Cn)

R= 0 0 0 0.09 0.25 0.49 0.81
r

Case 1: No Determinstic Terms

1 0.05 0.048 0.051 0.049 0.05 0.05 0.044
0.98 0117 0.113 0.119 0.132 0.153 0.195 0.306
0.96 0.237 0.229 0.239 0.276 0.342 0.493 0.848
094 0.407 0.39%6 0.407 0.463 0.576 0.782 0.992
0.92 0.594 0.581 0.59 0.655 0.774 0.926 0.999

0.9 0.758 0.744 0.748 0.807 0.89%6 0.977 1
0.88 0.878 0.865 0.867 0.905 0.954 0.993 1
0.86 0.947 0.939 0.936 0.957 0.981 0.998 1

Case 3: Constants in each Regression
r

1 0.054 0.059 0.064 0.061 0.06 0.054 0.039
0.98 0.075 0.138 0.145 0.1%4 0.167 0.192 0.254
0.96 0.105 0.273 0.285 0.308 0.355 0.445 0.716
0.94 0.159 0.453 0.466 0.499 0572 0.709 0.946
0.92 0.235 0.64 0.648 0.685 0.739 0.875 0.991

09 0.332 0.795 0.797 0.825 0.879 0.951 0.998
0.88 0.448 0.899 0.897 0914 0.943 0.981 1
0.86 0573 0.956 0.951 0.959 0.974 0.992 1

Case 5: Constants and Time Trends in each Regression
r

1 0.057 0.039 0.053 0.053 0.051 0.044 0.021
0.98 0.062 0.049 0.065 0.069 0.076 0.085 0.08
0.96 0.078 0.076 0.099 0111 0131 0172 0.262
094 0.106 0.119 0.152 0.173 0.223 0.32 0.599
0.92 0.147 0.184 0.226 0.267 0.345 0511 0871

09 0.204 0.27 0.325 0.379 0.488 0.699 0971
0.88 0.277 0.377 0441 0.507 0.634 0.834 0.993
0.86 0.365 0.503 0.564 0.635 0.758 0.919 0.998

Notes: Based on 20000 replications of the model with T=100, normal errors as discussed in thetext. The
system test isimplemented with R? estimated.
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Table 3: Effect of estimating R?

R known Estimated R?

R= 0 0.09 0.25 049 0.81 0 0.09 0.25 049 0.81

Case 3: Constants in each equation
r

1 0063 0.06 0061 0056 0.053 0.064 0.061 0.06 0.054 0.039
098 0144 0152 0167 0193 0.29 0.145 0154 0167 0.192 0.254
096 0283 0305 0.356 045 0.758 0.285 0308 0.355 0.445 0.716
094 0465 0497 0573 0716 0.967 0.466 0499 0572 0.709 0.946
092 0647 0634 0761 0882 0.997 0.648 0685 0.759 0.875 0.991

09 07% 0824 0881 0956 1 0.797 0825 0879 0.951 0.998
08 0951 0.958 0975 0994 1 0.951 0959 0974 0.992 1

Case 5: Constants and Time Trends in each equation
r

1 0053 0052 0052 0048 0.05 0.053 0053 0051 0.044 0.021
098 0065 0.068 0076 0087 0131 0.065 0069 0.076 0.085 0.08
09 0099 0109 0131 0176 0342 0.099 0111 0131 0.172 0.262
094 0152 0172 0221 0327 0.686 0.152 0173 0223 0.32 0.599
092 0225 0265 0345 0522 0923 0.226 0267 0345 0511 0.871

09 0323 0377 0489 0714 0.989 0.325 0379 0488 0.699 0971
08 0562 0633 0.764 0.93 1 0.564 0635 0.758 0.919 0.998

Notes: As per Table 2.

Table4: CADFand L' (1, )

CADF Ei (1' T_)

R = 0 0.09 0.25 049 0.81 0 0.09 0.25 049 0.81

Case 3: Constants in each equation
r

1 0053 0055 0056 004 0051 0.064 0.061 0.06 0.054 0.039
098 0075 0082 0098 0135 0321 0.145 0154 0167 0.192 0.254
09 0107 0123 0162 0272 0675 0.285 0308 0.355 0.445 0.716
094 016 0.188 0262 045  0.885 0.466 0499 0572 0.709 0.946
092 0234 028 03% 0639 0.965 0.648 0685 0.759 0.875 0.991

09 0332 04 0.542 079 0901 0.797 0825 0.879 0.951 0.998
08 0566 064 0798 0947 0.999 0.951 0959 0974 0.992 1

Case 5: Constants and Time Trends in each equation
r

1 0057 0058 0057 0053 0046 0.053 0053 0051 0.044 0.021
098 0061 0.067 0079 0106 0219 0.065 0069 0076 0.085 0.08
09 0079 0.093 0121 0197 0525 0.099 0111 0131 0172 0.262
094 0105 0131 0182 0327 0.78 0.152 0173 0223 0.32 0.599
092 0147 0186 0268 0479 0916 0.226 0267 0345 0511 0.871

09 0203 0257 0375 0635 0973 0.325 0379 0488 0.699 0971
08 0363 0451 0613 0861 0.998 0.564 0635 0.758 0.919 0.998

17



Notes: As per table 3. The CADF refersto the test procedure in Hansen (1995). In each case the same R?
estimate is used to determine the critical value.

Appendix.
Lemmal. Distribution results.

Under the Assumptions of the model in (1) and (2) with A1, A2 and A3 we have that
T23 a e[ p SM[V\/1 ¢t V(>)']' , where Wi(.) is a univariate standard Brownian Motion on

C[0,1], V(.) isand mx1 standard Brownian Motion and so

a) T'”zuy[T,} P le;Z\Nm(>)

D =8 (S e )P g0 ) vay]

W

whered 'V (I ) = 1/ —— W, (1), d"'=w, "W W% W, =W, - W, 'W W,
e (1)

W() = ) are univariate independent standard Brownian Motions on C[0,1] and
SN ( )LJ

W (1) = CC)9°(' W (s)ds+W(1).

Proof: (a) followsas U, =r U, ; +V, where v, =5 A(L) " g(r). Thepartial sum
T Y2 é [lT'] v, b g\/\/”zg 1(()) —Wi,)/,ZV\/1 (.) wheres; =[1 0] isan 1xm+1 vector with partition after
a

the first column. Theresult then follows settingr =1+c/T from Phillips (1987). Part (b) follows from Chan
and Wei (1988), Park and Phillips (1988). The relationship between V(I) and W (1 ) follows from the

RZ

relationd 'd = )
1- R?

Proof of Theorem 1.

Throughout we user for resultsgeneral forr , T and 1.

First, define 0! (1) = z,(r) - d, ()B' (1) =& (r)- d, (r)(B'(r)- b), and & (r) = AL (r).
From the algebraof GLS

T

adgrysum=aer)ystear- (SN ()(sb-nNs) (SN:(r))

t=1 t=1
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where

L8 i o
N.(r) = YTlga d,(r)S™e(r)*
et=1 g

D, (1) = Y88 d, (NS e, () ;*
(%]

et

and
a2 0 0 0 0
¢ T
¢ 0 TYwWi* 0 0o =
Yr=¢ - 12, ,-1/2 +
é 0 0 THw® 0 o
32\ U2,
0 0 0o TTWLHE

Thus,

L'AM) =4 e()s’e(M- ae®'s’e®

t=1 t=1

+(SN, @)(SD; ®S) (SN; (@) - (SN (M)(SD; (MS ) (SN (7))

Noticethat for t>1

1/2 12

S et(r):et +(r - r)S_ Slluy,t-l

(and ise for t=1) where @, = S"'?e, . Using theresults 5,S°'s,'= (1+d_d_)NWl and

SlS_llz'=W;,;/2[1 - d"]" then in case 1 where S=0 we have

1 — g ] g -1
L'@r)=ae(r)Se()-ae®Sed

t=1 t=1

=2 _ = -1 1 3

=(C°- 2cC)(1+d d)WWFta_‘l Uy s
14 i -
- ZC?a [uyyt_lwwl’z[l -d ]et]
t=1

From thelimit resultsin lemma 1
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L' )b (C*- ZCC)Q 2—@/\/1C(I )dl - ZCe(}’Vlc(I )awq(l ) - Jidlvlc(l YAW, (I )u

where the right hand side of this expression equalsy 1(C, C, RZ) + T . For the other cases, extraterms
arise from the final two termsin equation (A1). Defining ¢,=T(r-1) we have

o
. ) a2 ¢0 0 4
im 16y (YTldl(r)S 1/2) gO 0 : =0
% 03
and
3 T
¢ - w2). ¢ O 'm
M ¢ gwpzmsﬂ (Tl/zYTld[TS](r)S v ) g’_l. ¢s - (1- ¢c,9d
¢ § o g,

Using these two results and the continuous mapping theorem (S D; (r)S ) ® (S D(c. ,d)S )
where

8&+cT'd_ 0 (1 )d 0 9
¢ 0 i 2o, 7
Die.d)=¢ - < 1+%- ) +d'd) -(—2- Sl
o 1, -5 i

Using the continuous mapping theorem, equation (A2) and results from lemma 1 we have

N, (r) P N(c,c,,d)where

? ey,l-d_lex,l 9
V(@ d V.. (s)d +
NGo.d=f ®- (- ¢, )d I (s)ds :

¢fL- ¢ 9)dWy(s) - V(9] + (c- ¢ )L+d T L- ¢, W, (s)ds_
g OsaV(s) - (c- c,)d YV (s)ds P

(al integralsare zero to one). Applying theseresultsto (A1) yields

L'@7) by *(c.c,R)+(SN(cod))(spod)s) (SNcod))
- (sNeed)) (spEd)s) (SN Td)+c

The individual resultsfollow by using the relevant S; and rearranging.
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In case 2, we have
(SN(ec . D) (sDE . d)s) (SNe.c, d)=@+d'd) (e, - d'e,,)?

thus the terms offset giving the result in the Theorem.

In case 3, we have

8‘ +d'd)* 0 0 09

— .}y ¢ O |, 0 0+
D(c,.,d " -
(spe.ds) =¢ o
é 0 0 0 04

and so

(SN(ec . D) (sDc . d)S) (SN(.c, d)=@+d'd) (e, - d'e,,)> +VO'V(D)
+(c- ¢ )2@ AW, [ - 2(c- ¢) AV W,

Pluggingin 0 and C for ¢, and taking the difference yields the result.

Case4.

Here (S,D(c, . d)S,) =(S,D(c,.d)S,) +——~

DAO
o
o
Sk o+ F O

Where h(r) = 1+—- C

Theresult follows after some rearrangement.

(i 121R2'
Caseb.
gl+d'd)’ 0 0 008 20 &0
¢ 0 a, 0-6l,+ 1¢d ¢d -
H D(c,,d)S,) = : Ry : :
ere(55 (c, )Ss) c 0 0 0 0 an& 1 % 17
% 0 -6l 0 121, 5 g Crd_g' cd

Where a(r) =1+ 0—5 -C.

We have
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8@ 0O 0 O 9
N(C,C“d—)-QO 41, 0 - 6l :N(CC @)= éagOiV(S)O&m - 6l fdjv(s)o
© 0 0 0 goadv(s)—g | KOFV(9)7,
€ -6, 012,
t(o- o)z e O G4 - 6@ QM. 2
ECFWE)*% 6 12 FPW,.)
- 2(c- ¢,)¢ & Ve %§e4 - Gfgid V(s)?
SOW,.) 56 6 12 &epdd V(9
and also
e 0 0
¢ J -
g 1 :N(CC d) = (1 ¢ )W, (D) +c B,
(é- Crd_é

Theresult follows from straightforward algebra.

Proof of Theorem 2.

First, note that
C'ar) =TkSw (Sm) - Sw))- <
so we need to show that T(tr[g(l)'l(gr) - §(1))J) Py '(c,c,R%) +T. Toshow thiswewill show

@ Aa&(MeE)-aame=asg@eam- asem-+o,Q

where & (r) = A(L)T/ ().

® t_é;éi (ryS™&(r)- t_ézﬂel(r)'s*el(r) p -(sNEc, D)spe.ds) (SN, )
© té:ﬂet(r_)'s'le(r_)- ae S’ @by '(cc,R?)

We take part (b) first.

We have



&)= AL)z(r) - d,(r)B' ()]
=e(r)- AL, ()'S (S& (W, (r)'s ) (S& d.(Wy(n)

SO

S8(rysa(m = 4 a(r)'sar)

t=k+1 t=k+1

+(SN:(N)(SD; (NS ) (8 Y724 [ALd, ]S ALY, (N]V;'S )8 D; (NS) (SN (1)
)(sD;(NS) (8Y:1& [AL)d (1S e (1) +0, M

where N+(r) is defined as before replacing e(r) by u(r) and S by W and similarly for D+(r) (these are the
generalizationsto A(L)* I) and the 0,(1) term arises from replacing the estimated W with its true value.

Using the Beveridge Nelson decomposition A(L)=A(1)+A*(L)(1-L) we have

ALY, (1) Y5 = A, (1) Y7+ A* (LD, ()Y,
= A, (r)'Y;+0(T~?)

SO

sY;'a [ALd, )]s ALY ()Y ™S =S D, (r)S +o()
and also

Y18 d(NAQD'S e (r)=Y;'Q d,(NAQD'S ALy, (r)
=Y A d W () + YA d, (1) AQ)'S T A* (L)Du, (1)
=Y;*Q d, (W (r) +o, @

Thisgivestheresult

S80)sam =4 a(rysia®- (SN, (N)(SD, (NS ) (SN, (n)+0,()

t=k+1 t=k+1

Finally, following steps analogous to those in the proof of Theorem 1 we have that
(SN, (O (SD; ()S) (SN, )P (SN(ec, @)} (s D, .d)S) (SN, @).
Part (c) follows from noting that

S™e()=e +(r- NS ALY, ,

so using the Beveridge Nelson decomposition and results above
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1/2

de()Sle(n=4ae'e+(r-n’sW's'@ul,+2(r - Na u,, ,sW"%,

Thus
g — 1 — g 1 —=2 = J' 7 1 1 g 2
ae(sSe-ae®'Se@®=("- 200)(1+d'd)\N;yT—2a Ubia
t=1 t=1 t=1

i 1 g -1/2 q
- Zc?a [uy’t_lwyj [1-d ]et(r)]
t=1
Applying the convergence resultsin lemma 1 compl etes the result.

Findly, it remains only to show part (a), that estimating the VAR coefficients assuming the largest root for y,
isr does not matter asymptotically.

We have that
&' (r) = A(L,NT, ()
=8 (8 VL0800 N ULOULO) UL
where U, 1(r) |_Ut 1(r) (r) ...... Gti-k(r) .J.

(i.e. theregressorsin the VAR to be run). Note that
€ogr - )y,.,0U

L0 EL00 EE o 5
é u é a g : u
Ut.l(r)—g ﬂ=g 3+§ G=U () +(r - 1)y,
é u é a € u
81k(r)u al(r)ﬁ & - Wtkl
& o

where Vi =, - sldt'k;(r) (i.e.y, detrended under the hypothesis that r =r).

Now,
4 MF (= A 4R

(T2 U EMTAULOUL0)) T2 U LMmEm)
and

(M8 U UL ) = (T UL OUL )+ T2 - 1T P8 vy,
+2T(r - T2V, U,y (r)
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.30 ~
The second of thesetermsiso,(1) astypical termsinvolve T 3 a ytz_i . These convergeto zero as

T Y2§! is0,(1). Thisfollowsas

T—llzyti :T_llzuy,t-l_ SlT—llzdt(Ei ) bi)
=T V2, , - sTV2d,Y;Y(SD; (1)S) (SN(1))
=T V2u,,, - W, 2(T)s,(SD;(r)S) (SN;(r))+0,(2)

yy

where s; is (2m+2)x1 with the (m+2) element one and is zero everywhere else. Similar resultsfollow for the
cross product terms. So we have

S i =i (= g~i ~i 1y g"i—"i—- g"i Al 1\
agmeE(MN-agew=aé&meEr-ade
t=k+1 t=k+1 t=k+1 t=k+1

(T2 UL O8O A ULOUL ) T4 U8 1)
T 23U L ME N ULV L)) T2 UL (E () +o,)

and the third and fourth terms cancel obtaining the result in (a).
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