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ABSTRACT OF THE THESIS

Modeling and Online Parameter Identification Methods for

Electrohydraulic Valvetrain Systems

by

James Gray

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2009

Professor Miroslav Krstić, Chair

We consider an Electrohydraulic Valve System (EHVS) model with uncertain pa-

rameters that may possibly vary with time. This is a nonlinear third order system

consisting of two clearly separated subsystems, one for piston position and the other

for the chamber pressure. The nonlinearities involved are flow-pressure characteristics

of the solenoid valves, the pressure dynamics of the chamber due to varying volume,

and a variable damping nonlinearity. We develop a parametric model that is linear

in the unknown parameters of the system using filtering. We deal with a nonlinear

parameterization in the variable damping term using the Taylor approximation. We

design two parameter identifiers which employs either a continuous-time unnormal-

ized least-squares update law with a forgetting factor or a gradient update law. These

update laws exponentially converges to the true parameters under a persistence of

excitation condition, which is satisfied due to the periodic regime of operation of

EHVS. We present simulation results that show good following of unknown param-

eters even with the presence of sensor noise. We also create a hybrid model of the

EHVS and apply the identifiers. In the presence of the unmodelled dynamics we find

there remains good following of the unknown parameters.

xii



1

Introduction

There is a continuous push to improve the operation of internal combustion en-

gines. Increasing power per mass or volume, increasing operating efficiency, and

decreasing emissions are a few areas which are important improvements in an en-

gine operation. Variable valve timing (VVT) is a technological improvement which

achieves the aforementioned improvements. Normally, internal combustion engines

use valves timed by cams rotating on a camshaft to allow intake of fuel and exhaust of

the waste. However, the profiles of the cams are optimized for certain engine speeds.

Because the valve timings are constrained to the motion of the camshaft, operation

at other speeds results in lower fuel efficiency, higher emissions, and reduced torque

performance. VVT systems seek to achieve optimum intake and exhaust at each

engine speed.

Even with a camshaft, there are VVT strategies that can improve fuel economy

at partial load. [10] investigate a simple variable cam phaser as a VVT strategy.

A variable cam phaser has the ability to shift the camshaft to retarded positions.

This valve timing variation proves itself to be an effective means of reducing specific

fuel consumption at partial load by reducing pumping losses. Work has been done

by [23] to optimize the spark timing and valve openings to achieve minimum fuel

consumption via extremum seeking. A method of both VVT and variable valve lift

using a modified camshaft has been explored in [16]. The addition of variable lift has

been shown to improve low-end-torque and maximum power. This method, using the

appropriate cam profiles, can achieve precise variable valve lift mechanically. Variable

1
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valve lift, coupled with a VVT scheme, offers even more improvement to engine

operation. Moving away from the camshaft allows even greater control and cycle to

cycle optimization of the valve train. The electro-hydraulic valvetrain system (EHVS)

developed by Bosch is one of the most flexible options for variable valve timing in

automotive engines.

1.1 What is the EHVS?

Hydraulic actuators are used throughout industry in a wide number of applica-

tions. With a small size and a high force-to-mass ratio the actuators have found

applications in electro-hydraulic positioning [9], flight control surfaces [18], and ac-

tive suspension control in automobiles [1]. Given the proven controllability, reliability

and force-to-mass ratio, a hydraulic system is a good replacement of the camshaft to

time and control lift of the valves.

EHVS is one of the most flexible options because EHVS valve timings are fully

independent of the crankshaft position. This flexibility allows cycle-to-cycle control of

fuel intake and waste exhaust which leads to the previously mentioned benefits. Ad-

ditionally, at low-to-moderate engine speeds, the timing can be optimized to improve

full load torque as discussed by [7]. To further add to the flexibility both gasoline

engines and Diesel engines can be fitted with the valve system. Figure 1.1 shows the

Diesel engine actuator V0.5 on the left and the gasoline engine actuator V0.7 on the

right. Both valves can cover the entire engine’s (either Diesel or gasoline) operat-

ing range, can be assembled individually on the engine, and stand alone tests of the

cylinder head are possible. In addition actuator V0.7 uses common engine valves and

has a variable valve brake to achieve soft seating of the valve.

An example of the complete EHVS actuation scheme on a four cylinder/sixteen

valve gasoline engine can be seen in Figure 1.2. This configuration has been tested

on an engine test bed since the end of 2002. [7] found benefits including: fuel savings

of up to 20% on automobiles, a decrease in emissions such as NOx, and torque

improvements at low speeds. Chapter 3 will discuss in detail the operation and

model of the EHV System.
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Figure 1.1: Two variations of the EHVS actuator [7]

1.2 Important Degrees of Freedom in EHVS

According to [7] there are many important degrees of freedom in EHVS when

compared to a camshaft driven valvetrain. The new options available to EHVS are

comprised of modifications in the exhaust cycle, intake cycle, and hydraulic system.

The following is a summary of the events and the associated benefits achieved

from modifying them. The aim of the exhaust opening parameter is the optimization

of the high pressure process by minimizing the expansion losses in the area of the

bottom dead center. The exhaust valve lift is a compromise on hydraulic dissipation

minimization by means of reduced lift and exhaust work and the internal residual gas

recirculation. The last exhaust event, the valve closing, is important in the setting

and control of the residual gas content in the cylinder at part load and optimizing

scavenging at full load.

Having intake control with EHVS provides the ability for optimization in the same

three events, opening, closing, and valve lift as the exhaust cycle. Though the intake

opening event has a similar purpose as the exhaust closing, mainly setting the residual

gas content in the cylinder at part load and optimizing scavenging at full load, the

intake closing and valve lift events offer different optimization options. The setting of

intake closing is required for setting the load at part load and necessary for optimizing

volumetric efficiency and the torque drop-off rate at full load. The valve lift of the

intake is the major fuel consumption factor of the engine at part load. At part load
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Figure 1.2: EHVS placement on a four cylinder/sixteen valve engine [7]

there are direct affects on charge motion, pumping losses and dissipation.

Last, within the EHVS two parameters can be modified in order to improve engine

operation. The closing ramp of the valve lift function, the variable damping, is able

to vary the closing ramp velocity independent of the hydraulic pressure. With this

pumping losses, charge motion, volumetric efficiency, and intake system acoustics can

be improved. Finally the hydraulic pressure of the system is the main parameter

for adapting the valve lift function to speed and load. Also, this can be adjusted to

reduce the parasitic losses of the valvetrain.

1.3 Alternatives to EHVS

As previously discussed, there is the mechanical solution to provide VVT and

variable valve lift in engines developed by [16]. However given the improvements

offered by a camless engine, there have been many alternate solutions proposed.
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Other methods of VVT include valve control with solenoid actuators [26], clapper

type solenoid actuators [15], pneumatics [14], electrical motors [19], piezo-electrics

[3], and other hydraulic actuators [6] and [24].

There has been extensive research in the electro-mechanical valve (EMV) which

is discussed in the paper by [26]. Like EHVS, with appropriate control schemes EMV

offers improvements to standard internal combustion engine performance as discussed

by [21]. Work has gone into modeling [5] the EMV to allow for better control. EMV

has also had extensive controls work applied to the system. For instance [8] achieved

sensorless control of the actuator, however there have been problems with soft seating

and high voltages associated with the operation of EMV.

[13] has developed permanent magnet actuator to improve the EMV, and reduce

the operating voltages. However, even with these improvements, there are many dif-

ficulties in achieving soft landings with the EMV actuator [26]. [20] address the high

impact velocities via an extremum seeking method based on microphone measure-

ments. In addition, [11] developed an iterative algorithm to achieve soft landings.

[4] has created a valve control method on clapper type solenoid actuators to address

soft seating with a non-linear observer. EHVS addresses the landing problems with

a variable damping mechanism that increases the damping as the valve comes to a

close.

1.4 Past Hydraulic Controls Work

Because of the wide range of industrial applications the past work in hydraulic

system control has utilized various control techniques. For instance [9] used linear

control theory and [25] utilized feedback linearization in their respective hydraulic

control problems. Recently quantitative feedback theory, in [18] and [17], and back-

stepping design technique [28] have been used to create robust controllers. However,

it is in [1] where nonlinear adaptive control is applied in the presence of parametric

uncertainties. They show, experimentally, how an active nonlinear adaptive control

scheme improves performance over a non-adaptive scheme. In addition [2] developed

simplifications to their control scheme without too much performance loss. Also [27]

utilized an adaptive robust control to overcome both parametric uncertainties and un-
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certain nonlinearities in a single rod hydraulic actuator. With their adaptive robust

motion control algorithm they achieved more than a order of magnitude reduction in

tracking errors over a PID motion controller.

There has also been work in automotive electro-hydraulic camless valvetrains con-

trols. In [6] creates a hydraulic system solely to achieve VVT. The hydraulic system

described by [6] is limited in valve lift and has a fixed seating velocity. Therefore the

main objective of the controller is synchronization of the valves to achieve optimum

timing. While this system achieves the benefits of VVT, the ability of variable valve

lift is lost. However, [24] creates an adaptive lift controller for an electro-hydraulic

system. The resulting controller, which models the system as a variable gain linear

system, experimentally proved more effective then a PID controller.

1.5 Contributions and Contents of the Thesis

Given the success of the prior nonlinear adaptive control schemes as well as pa-

rameters, such as the bulk modulus which is dependent on pressure and temperature

[29], which vary during operation we create an on-line parameter identification tech-

nique for EHVS. This thesis uses a more complex hydraulic system model to develop

a parameter identifier for use in future control schemes. We follow techniques found

in [12] to create an exponentially convergent least squares identifier with a forgetting

factor for the unknown parameters.

We first develop the theory behind the identifiers. We describe how to develop

a linear parametric model through filtering and then develop the least squares and

gradient identifiers. Finally we prove the stability and convergence rates of the algo-

rithms.

After the discussion of theory, we move to the model development of the EHVS.

We create a physics based model of the system and discuss its operation. In addition,

we create a mathematical representation of the variable damping term.

The identifiers of the EHVS model are then explicitly developed. In order to deal

with the non-linearities in the variable damping term, we create a Taylor expansion to

linearize the terms. Using the structure of the model, we create two three dimensional

identification problems and develop the update law.
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We present the results of the simulations. We show stable operation of the system

states and persistence of excitation of the signals which are important for the stability

of the identifier. We show the failure of a “pure” least squares to quickly adapt, and

the strong convergence properties of the least squares with forgetting factor in perfect

and noisy applications.

Lastly we create a hybrid model of the EHVS to more accurately simulate behavior

of the system when the valve is closed. We apply the least squares identifier, along

with a switching least squares identifier and achieve similar convergence properties to

the original case.

This chapter is in part an adaptation of material as it appears in J. Gray, M.

Krstic, N. Chaturvedi, P. Sungbae, A. Kojic, K. Mischker “Parameter Identification

for Electrohydaulic Valvetrain Systems,” which was submitted to the ASME Journal

of Dynamic Systems, Measurement and Control. The thesis author was the principle

researcher and author of this paper.
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Identifier Theory

2.1 Introduction

In this chapter we will first briefly introduce the background of the filtered lin-

ear parametric model in the general case. Secondly we introduce the unnormalized

continuous-time recursive least squares algorithm with forgetting factor. After de-

veloping the algorithm, we prove polynomial convergence of the “pure” least squares

and exponential convergence of the least squares with forgetting factor. Lastly we

give a gradient based identifier and prove an exponential convergence rate to the true

parameter. In all cases a persistence of excitation of the regressor vector is necessary

to guarantee convergence.

2.2 Parametric Modeling

Following the methods in section 2.4 of [12], we start from the general transfer

function description,

y =
Z(s)

R(s)
u (2.1)

in which Z(s) and R(s) can be represented as

Z(s) = bn−1s
n−1 + bn−2s

n−2 + . . . + b1s + b0 (2.2)

R(s) = sn + an−1s
n−1 + . . . + a1s + a0 .

8
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If Z(s) is of degree m < n−1 then the coefficients bi = 0 with i = n−1, n−2, . . . , m+1.

Taking equation (2.1) we can express it as the following nth-order differential equation

y(n) + an−1y
(n−1) + . . . + a0y = bn−1u

(n−1) + bn−2u
(n−2) + . . . + b0u . (2.3)

Then we collect all unknown parameters in (2.3) which can appear on both sides into

the parameter vector

θ = [bn−1, bn−2, . . . , b0, an−1, an−2, . . . , a0]
T

and collect the other inputs and output signals and their derivatives associated with

the unknown parameters in the regressor vector

φ =
[
u(n−1), u(n−2), . . . , u,−y(n−1),−y(n−2), . . . ,−y

]T

=
[
αT

n−1(s)u,−αT
n−1(s)y

]T

with αi(s) , [si, si−1, . . . , 1]
T
, we rewrite (2.3) in the compact form

y(n) = θT φ . (2.4)

The equation (2.4) is linear in θ, which is necessary for the designing the identifiers

developed in the next section. We can estimate the unknowns of θ from measurements

of y(n) and φ. However, most applications have only measurements available from the

input u and the output y. Since the use of differentiation is not desirable, higher

order signals should be avoided. To circumvent the need of such signals in y(n) and

φ, we filter each side of (2.4) with an nth-order stable filter 1
Λ(s)

to obtain

Y = θT Φ (2.5)

with

Y ,
1

Λ(s)
y(n) =

sn

Λ(s)
y

Φ ,

[
αT

n−1(s)

Λ(s)
u,−αT

n−1(s)

Λ(s)
y

]T

and with

Λ(s) = sn + λn−1s
n−1 + . . . + λ0
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being a Hurwitz polynomial in s. From this it can be seen that the scalar Y and

the vector signal Φ can be generated by filtering the input u and output y with

stable proper filters si

Λ(s)
, where i = 0, 1, . . . , n. In the event that certain parameters

are known beforehand the terms in equation (2.5) change appropriately. The known

values will be shifted into the scalar valued Y . For example if all the coefficients of

R(s) are known parameters Y is now

Y =
sn + an−1s

n−1 + . . . + a1s + a0

Λ(s)
y

and

θ = [bn−1, bn−2, . . . , b0]
T

Φ =

[
αT

n−1(s)

Λ(s)
u

]T

From this equation setup we can create the parameter identifier for the unknown

parameters in θ as described in the following sections.

2.3 Least-Squares Identifier

In this section we develop the unnormalized continuous-time recursive least-squares

algorithm with forgetting factor [12] based on the linear parametric model (2.5) de-

veloped in Section 2.2. As an overview the least squares algorithm will attempt to

estimate θ̂(t) of the unknown parameter vector θ(t) by fitting the mathematical model

to a sequence of observed data. It achieves this by minimizing the sum of the squared

difference between observed and computed data. The forgetting factor focuses the

algorithm on more recent data. To begin we consider the following cost function,

J
(
θ̂
)

=
1

2

∫ t

0
e−β(t−τ)

[
Y (τ) − ΦT (τ) θ̂ (t)

]2
dτ +

1

2
e−βt

(
θ̂ − θ̂0

)T
Q0

(
θ̂ − θ̂0

)
(2.6)

where Q0 = QT
0 > 0, β ≥ 0, and θ̂0 = θ̂(0). The design constant β acts as a forgetting

factor to focus estimation on the most recent data. The effect of the old data at

time τ < t is discarded exponentially when β > 0. The parameter θ̂(t) should be

chosen at each time t to minimize the integral square of the error on all exponentially

discounted past data. Additionally there is a term to penalize the initial parameter
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error. Assuming Y, Φ ∈ L∞, J(θ̂) is a convex function of θ̂ over Rn at each time t.

Therefore any local minimum is also global and satisfies

∇J
(
θ̂(t)

)
= 0, ∀t ≥ 0

which when expanded is

∇J
(
θ̂(t)

)
= e−βtQ0

(
θ̂(t) − θ̂0

)
−
∫ t

0
e−β(t−τ)Φ(τ)

[
Y (τ) − ΦT (τ) θ̂ (t)

]
dτ = 0 .

This yields the nonrecursive least-squares algorithm after isolating θ̂ as follows

θ̂(t) = Γ(t)
[
e−βtQ0θ̂0 +

∫ t

0
e−β(t−τ)Φ(τ)Y (τ)dτ

]
(2.7)

where

Γ(t) =
[
e−βtQ0 +

∫ t

0
e−β(t−τ)Φ(τ)ΦT (τ)dτ

]−1

. (2.8)

Since Q0 = QT
0 > 0 and ΦΦT is positive semidefinite, Γ(t) exists at each time t.

Calculation of the inverse can be avoided by using the identity

d

dt
ΓΓ−1 = Γ̇Γ−1 + Γ

d

dt
Γ−1 = 0 .

Rearranging the above expression and substituting in equation (2.8) yields

Γ̇ = −Γ
[
−βe−βtQ0 − β

∫ t

0
e−β(t−τ)Φ(τ)Φ(τ)dτ + ΦΦ

]
Γ

= −Γ
[
−βΓ−1 + ΦΦT

]
Γ ,

resulting in Γ satisfying the differential equation

Γ̇ = βΓ − ΓΦΦT Γ, Γ(0) = Γ0 = Q−1
0 . (2.9)

As such, we can calculate Γ as the solution to the differential equation (2.9). Next,

we differentiate (2.7) with respect to time which gives

˙̂
θ =Γ

[
−βe−βtQ0θ̂0 − β

∫ t

0
e−β(t−τ)Y (τ)Φ(τ)dτ + ΦY

]

+ Γ̇
[
e−βtQ0θ̂0 +

∫ t

0
e−β(t−τ)Y (τ)Φ(τ)dτ

]
,
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then substituting (2.9) for Γ̇ yields

˙̂
θ =ΓΦY − ΓΦΦT Γ

[
e−βtQ0θ̂0 +

∫ t

0
e−β(t−τ)Y (τ)Φ(τ)dτ

]
. (2.10)

Finally, substituting equation (2.7) into (2.10) and collecting terms results in the

update law

˙̂
θ = ΓΦ

(
Y − ΦT θ̂

)
, θ̂(0) = θ̂0 . (2.11)

Equations (2.9) and (2.11) are known as the continuous-time recursive least-squares

algorithm with forgetting factor.

2.4 Stability of Least-Squares Algorithm

In this section we will prove the stability and convergence properties of the unnor-

malized least squares algorithm in two different cases. The first case is when β = 0

in equation (2.9). Setting β = 0, θ̃ = θ− θ̂, and Y = ΦT θ we restate equations (2.11)

and (2.9) as

˙̂
θ = ΓΦΦT θ̃

Γ̇ = −ΓΦΦT Γ, Γ(0) = Γ0 (2.12)

which yields the algorithm often referred to as the “pure” least squares algorithm.

However, with the pure least squares algorithm there is a problem of covariance

wind-up. Looking at the derivative of Γ−1 shows

d

dt
Γ−1 = ΦΦT .

This implies that d
dt

Γ−1 ≥ 0 which implies that Γ−1 may grow without bound. In

some cases, this can cause Γ to become small and slow estimation in some directions.

However, even with this issue the algorithm guarantees parameter convergence to a

constant value. That constant value is exactly θ if Φ ∈ L∞ and described by the

following definition:



13

Definition 2.1 Persistence of Excitation (PE) A piecewise continuous signal

vector Φ : R+ 7−→ Rn is PE in Rn with a level of excitation α0 > 0 if there exist

constants α1,T0 > 0 such that

α1I ≥ 1

T0

∫ t+T0

t
Φ(τ)ΦT (τ)dτ ≥ α0I, ∀t ≥ 0 (2.13)

So while the matrix Φ(τ)ΦT (τ) is singular for every τ , equation (2.13) requires the

variation of Φ(t) in time such that the integral of the matrix Φ(τ)ΦT (τ) is uniformly

positive definite over any time interval [t, t + T0]. Using definition (2.1) we make the

following proposition:

Proposition 2.1 The pure least-squares algorithm (2.12) guarantees that

(i) ΦT θ̃, θ̂,
˙̂
θ, Γ ∈ L∞.

(ii) ΦT θ̃,
˙̂
θ ∈ L2.

(iii) limt→∞ θ̂(t) = θ̄, where θ̄ is a constant vector.

(iv) If Φ ∈ L∞ and Φ is PE, then θ̂ converges to θ as t → ∞

Proof:

From 2.12 we have that Γ̇ ≤ 0 or Γ(t) ≤ Γ0. Because Γ(t) is non-increasing and

bounded from below (i.e. Γ(t) = ΓT (t) ≥ 0, ∀t ≥ 0) it has a limit

lim
t→∞

Γ(t) = Γ̄ ,

where Γ̄ = Γ̄T ≥ 0 is a constant matrix. We now consider

d

dt

(
Γ−1θ̃

)
= −Γ−1Γ̇Γ−1θ̃ + Γ−1 ˙̃

θ .

Substituting (2.9) for Γ̇, and using ˙̃
θ = − ˙̂

θ the expression becomes

d

dt

(
Γ−1θ̃

)
= ΦΦT θ̃ − Φ

(
Y − ΦT θ̂

)
= ΦΦT θ̃ − ΦΦT θ̃ = 0 .

As such,

Γ−1(t)θ̃(t) = Γ−1
0 θ̃(0) ,
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and multiplying both sides by Γ yields

θ̃(t) = Γ(t)Γ−1
0 θ̃(0) . (2.14)

Taking the limit of θ̃ as t → ∞ results in

lim
t→∞

θ̃(t) = Γ̄Γ−1
0 θ̃(0) .

This in turn implies that

lim
t→∞

θ̂(t) = θ − Γ̄Γ−1
0 θ̃ , θ̄ .

Because Γ(t) ≤ Γ0 and θ̃(t) = Γ(t)Γ−1
0 θ̃(0) we have θ̂, θ̃ ∈ L∞, which, together

with Φ ∈ L∞, implies that ΦT θ̃ ∈ L∞. Let us now consider the Lyapunov function

V (θ̃, t) =
θ̃T Γ−1(t)θ̃

2
.

Taking the time derivative of V yields

V̇ = −θ̃T ΦΦT θ̃ +
θ̃T ΦΦT θ̃

2
= −(ΦT θ̃)2 +

(ΦT θ̃)2

2
= −

(
ΦT θ̃

)2

2
≤ 0 ,

which implies that V ∈ L∞, ΦT θ̃ ∈ L2. From (2.12) we have
∣∣∣∣
˙̂
θ

∣∣∣∣ ≤ ‖Γ‖ |Φ|
∣∣∣ΦT θ̃

∣∣∣ (2.15)

Because Γ,Φ,ΦT θ̃ ∈ L∞ and ΦT θ̃ ∈ L2, we have
˙̂
θ ∈ L∞

⋂L2. To prove that θ̃ → 0

as t → ∞, we will show that Γ(t) → 0 as t → ∞ when Φ is PE. Because Γ−1 satisfies

d
dt

Γ−1 = ΦΦT , we can use the PE condition of Φ
(
i.e.,

∫ t+T0

t Φ(τ)ΦT (τ)dτ ≥ α0T0I
)
,

for some constant α0, T0 > 0, to show that

Γ−1(t) − Γ−1(0) =
∫ t

0
ΦΦT dτ ≥ n0α0T0I ≥

(
t

T0
− 1

)
α0T0I , (2.16)

where n0 is the largest integer that satisfies n0 ≤ t
T0

which means n0 ≥ t
T0

− 1.

Therefore after rearrangement we find,

Γ−1(t) ≥ Γ−1(0) +
(

t

T0

− 1
)

α0T0I ≥
(

t

T0

− 1
)

α0T0I .

Taking the inverse of last expression yields

Γ(t) ≤
((

t

T0
− 1

)
α0T0

)−1

I, ∀t ≥ T0 . (2.17)
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Since Γ(t) ≥ 0 for all t ≥ 0 and equation (2.17) goes to zero as t → ∞ it follows

that Γ(t) → 0 as t → ∞. Therefore, θ̃(t) = Γ(t)Γ−1
0 θ̃ → 0 as t → ∞. However, only

a polynomial decay rate is guaranteed for the pure least squares algorithm with the

presence of PE.

In the second case, having β > 0, the problem of Γ(t) becoming arbitrarily small

in a direction no longer exists. With β > 0, Γ(t) appears to be able to grow without

bound since Γ̇ may satisfy Γ̇ > 0 because βΓ > 0 and ΓΦΦT Γ is only positive

semidefinite. One solution to this issue is to modify the algorithm by placing an

upper bound on Γ. However, such modifications to the algorithm are not necessary

when Φ ∈ L∞ and Φ is PE. The persistence of excitation property of Φ guarantees

that over an interval of time the integral of −ΓΦΦT Γ is a negative definite matrix

that counteracts the positive definite effect of βΓ.

Proposition 2.2 If Φ(t) is uniformly bounded and persistently exciting, i.e., there

exist constants α0 > 0 and T0 such that

1

T0

∫ t+T0

t
Φ(τ)ΦT (τ)dτ ≥ α0I, ∀t ≥ 0, (2.18)

then for all θ̂(0) ∈ R
m, the following holds:

∣∣∣θ̃(t)
∣∣∣
2 ≤ M

∣∣∣θ̃(0)
∣∣∣
2
e−βt (2.19)

where

M =

1

λmin (Γ0)
+

supt≥0 λmax

{
Φ(t)Φ(t)T

}

β

min
{
α0T0,

1
λmax(Γ0)

}
e−βT0

. (2.20)

Proof: Taking the inverse of (2.9) we have

Γ̇−1 = −βΓ−1 + ΦΦT (2.21)

with initial condition

Γ−1
0 = Γ−T

0 , (2.22)

which yields

Γ−1(t) = e−βtΓ−1
0 +

∫ t

0
e−β(t−τ)Φ(τ)ΦT (τ)dτ .
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Using the condition that Φ(t) is persistently exciting we can show that for all t ≥ T0

Γ−1(t) ≥
∫ t

0
e−β(t−τ)Φ(τ)ΦT (τ)dτ

=
∫ t

t−T0

e−β(t−τ)Φ(τ)ΦT (τ)dτ

+
∫ t−T0

0
e−β(t−τ)Φ(τ)ΦT (τ)dτ

≥e−βT0α0T0I . (2.23)

For t ≤ T0, we have

Γ−1(t) ≥ e−βtΓ−1
0 ≥ e−βT0Γ−1

0

≥ 1

λmax(Γ0)
e−βT0I . (2.24)

Conditions (2.23) and (2.24) imply that

Γ−1(t) ≥ γ1I (2.25)

for all t ≥ 0, with

γ1 = min

{
α0T0,

1

λmax (Γ0)

}
e−βT0 . (2.26)

For the upper limit we can use the boundedness of Φ and establish

Γ−1(t) ≤ Γ−1
0 + sup

t≥0
λmax

{
Φ(t)Φ(t)T

} ∫ t

0
e−β(t−τ)dτI

≤ γ2I (2.27)

where

γ2 =
1

λmin(Γ0)
+

supt≥0 λmax

{
Φ(t)Φ(t)T

}

β
. (2.28)

Combining (2.25) and (2.27) we get

γ1I ≤ Γ−1(t) ≤ γ2I (2.29)

with γ1 > 0,γ2 > 0 and therefore,

γ−1
2 I ≤ Γ(t) ≤ γ−1

1 I .
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This guarantees Γ, Γ−1 ∈ L∞.

With
˙̃
θ = − ˙̂

θ and Y − ΦT θ̂ = ΦT θ̃ we substitute into (2.11) to recieve

˙̃
θ = −ΓΦΦT θ̃ . (2.30)

Now we proceed with the following Lyapunov function

V = θ̃T Γ−1θ̃ . (2.31)

Taking the derivative of (2.31) in time yields

V̇ = 2
˙̃
θ

T

Γ−1θ̃ + θ̃T Γ̇−1θ̃ .

Substituting (2.21) and (2.30) into the previous equation results in

V̇ = −2θ̃T ΦΦT ΓΓ−1θ̃ + θ̃T
(
−βΓ−1 + ΦΦT

)
θ̃

= −θ̃T ΦΦT θ̃ − θ̃T βΓ−1θ̃ ≤ 0 . (2.32)

Since −θ̃T ΦΦT θ̃ is negative definite and β is a positive scalar value we bound (2.32)

by

V̇ ≤ −βV (2.33)

which could be rewritten as

V (t) ≤ V0e
−βt, ∀t ≥ 0 . (2.34)

Now we take the original Lyapunov equation (2.31) and combine it with the results

of (2.29) to bound V (t) as follows

γ1

∣∣∣θ̃(t)
∣∣∣
2 ≤ V (t) ≤ γ2

∣∣∣θ̃(t)
∣∣∣
2

. (2.35)

Knowing that the upper bound of V (t) can be described with (2.34), from (2.35) we

get

∣∣∣θ̃(t)
∣∣∣
2 ≤ 1

γ1

V (t) ≤ 1

γ1

V0e
−βt . (2.36)

Finally, substituting γ2

∣∣∣θ̃(0)
∣∣∣
2

as the maximum value of V0 we get the result

∣∣∣θ̃(t)
∣∣∣
2 ≤ γ2

γ1

∣∣∣θ̃(0)
∣∣∣
2
e−βt .
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2.5 Gradient Algorithm

In this section we develop the gradient algorithm found in Section 4.3.5 of [12]

which will also be based on the linear parametric model developed in Section 2.2.

While the least squares with forgetting factor algorithm is an exponentially convergent

identifier, the calculation of the gain matrix Γ in addition to updating the estimate

θ̂ can be computationally intensive. The gradient method has a static gain matrix

thus eliminating the need for the calculations of Γ. The gradient algorithm relies on

minimizing an instantaneous cost function. It updates the estimate θ̂ based only on

the current error of the system as opposed to the sum of the squared differences. We

now consider the simpler cost function,

J(θ̂) = (Y − ΦT θ̂)2 . (2.37)

That we would like to minimize with respect to the estimate θ̂. Because J(θ̂) is convex

over the θ̂ at each time t the minimization is well posed. We want to choose θ̂ such

that it minimizes J . The trajectory of θ̂(t) is therefore generated by

˙̂
θ = −Γ∇J(θ̂) (2.38)

where Γ = ΓT > 0 is now a static scaling matrix often referred to as the adaptive

gain. From (2.37) we get

∇J(θ̂) = −ΦT
(
Y − ΦT θ̂

)
. (2.39)

Which, after substituting into (2.38) yields the update law

˙̂
θ = ΓΦT

(
Y − ΦT θ̂

)
. (2.40)

Equation (2.40) is known as the gradient algorithm.

2.6 Stability of the Gradient Algorithm

In this section we will prove the stability and convergence properties of the gradient

algorithm. From (2.39) we have that the minimum of J(θ̂) occurs when Y −ΦT θ̂ = 0

which implies
˙̂
θ = 0 thus ending adaptation of the identifier. It can be shown, using

a Lyapunov type of analysis, that θ̂ will converge to the actual value θ exponentially

fast in time.
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Proposition 2.3 The gradient adaptive law (2.40) guarantees that

(i) Y − ΦT θ̂, θ̂,
˙̂
θ ∈ L∞.

(ii) Y − ΦT θ̂,
˙̂
θ ∈ L2.

independent of the boundedness of the regressor vector Φ and

(iii) If Φ ∈ L∞ and Φ is PE, then θ̂ converges to θ

Proof: Taking ˙̃
θ = − ˙̂

θ and substituting into equation (2.40) we get

˙̃
θ = −ΓΦΦT θ̃ . (2.41)

Like before we chose the Lyapunov function

V (θ̃) =
θ̃T Γ−1θ̃

2
.

Taking the derivative of V in time yields

V̇ = −θ̃T ΦΦT θ̃ = −
(
ΦT θ̃

)2 ≤ 0 . (2.42)

Therefore V ,θ̃ ∈ L∞ which implies that
(
Y − ΦT θ̂

)
∈ L∞. In addition, from the

properties of V and V̇ we find that θ̃,
(
Y − ΦT θ̂

)
∈ L2. From (2.41) we have

∣∣∣∣
˙̃
θ

∣∣∣∣ =
∣∣∣∣
˙̂
θ

∣∣∣∣ ≤ ‖Γ‖
∣∣∣ΦΦT

∣∣∣
∣∣∣θ̃
∣∣∣ (2.43)

which, along with
∣∣∣ΦT

∣∣∣ ∈ L∞ and θ̃ ∈ L2
⋂L∞ implies that

˙̂
θ ∈ L2

⋂L∞.

To prove exponential stability we expand equation (2.42) into

V (t + T ) = V (t) −
∫ t+T

t

(
ΦT (τ)θ̃(τ)

)2
dτ (2.44)

for any t, T > 0. We express ΦT (τ)θ̃(τ) as,

ΦT (τ)θ̃(τ) = ΦT (τ)θ̃(t) + ΦT (τ)
(
θ̃(τ) − θ̃(t)

)

and noting the inequality (x + y)2 ≥ 1
2
x2 − y2 it follows that

∫ t+T

t

(
ΦT (τ)θ̃(τ)

)2
dτ ≥1

2

∫ t+T

t

(
ΦT (τ)θ̃(t)

)2
dτ

−
∫ t+T

t

(
ΦT (τ)

(
θ̃(τ) − θ̃(t)

))2
dτ . (2.45)
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Using the PE property of Φ, i.e.,
∫ t+T0

t
ΦT (τ)Φ(τ)dτ ≥ α0T0I

for some T0 and α0 > 0, we have
∫ t+T0

t

(
ΦT (τ)θ̃(t)

)2
dτ ≥ α0T0θ̃

T (t)θ̃(t) ≥ 2α0T0λmin (Γ)V (t) . (2.46)

For the second part of (2.45) we can write

θ̃(τ) − θ̃(t) =
∫ τ

t

˙̃
θ(σ)dσ = −

∫ τ

t
ΓΦ(σ)Φ(σ)T θ̃(σ)dσ

which leads to

ΦT (τ)
(
θ̃(τ) − θ̃(t)

)
=
∫ τ

t
ΦT (τ)ΓΦ(σ)Φ(σ)T θ̃(σ)dσ . (2.47)

Using the Schwartz inequality and (2.47) we find
∫ t+T

t

(
ΦT (τ)

(
θ̃(τ) − θ̃(t)

))2
dτ

≤
∫ t+T

t

(∫ τ

t

(
ΦT (τ)ΓΦ(σ)

)2
dσ

∫ τ

t

(
Φ(σ)T θ̃(σ)

)2
dσ

)
dτ

≤η4λ2
max (Γ)

∫ t+T

t
(τ − t)

∫ τ

t

(
Φ(σ)T θ̃(σ)

)2
dσdτ

where η = supτ≥0 |Φ(τ)|. We then change the sequence of integration to receive

∫ t+T

t

(
ΦT (τ)

(
θ̃(τ) − θ̃(t)

))2
dτ

≤η4λ2
max (Γ)

∫ t+T

t

(
ΦT (σ)θ̃(σ)

)2
∫ t+T

σ
(τ − t) dτdσ

≤η4λ2
max (Γ)

∫ t+T

t

(
ΦT (σ)θ̃(σ)

)2
[
T 2 − (σ − t)2

2

]
dσ

≤η4λ2
max (Γ) T 2

2

∫ t+T

t

(
ΦT (σ)θ̃(σ)

)2
dσ . (2.48)

Using (2.46) and (2.48) in (2.45) with T = T0 we get

∫ t+T0

t

(
ΦT (τ)θ̃(τ)

)2
dτ ≥ α0T0λ

2
min(Γ)V (t) − η4T 2

0 λ2
max(Γ)

2

∫ t+T0

t

(
ΦT (σ)θ̃(σ)

)2
dσ

which after rearrangement yields

∫ t+T0

t

(
ΦT (τ)θ̃(τ)

)2
dτ ≥

α0T0λ
2
min(Γ)

1 +
η4T 2

0
λ2

max(Γ)

2

V (t)

≥ κ1V (t) (2.49)
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where κ1 =
2α0T0λmin(Γ)

2+η4T 2

0
λ2

max(Γ)
. Using (2.49) in (2.44) with T = T0, it follows that

V (t + T0) ≤ V (t) − κ1V (t) = κV (t) (2.50)

where κ = 1 − κ1. Since κ1 > 0 and V (t + T0) ≥ 0, we have 0 < κ < 1. Since (2.50)

holds for all t ≥ 0 we can take t = (n − 1) T0 and use (2.50) successively to receive

V (t) ≤ V (nT0) ≤ κnV (0) , ∀t ≥ nT0, n = 0, 1, . . . .

Therefore, V (t) → 0 as t → ∞ exponentially fast implying that θ̃(t) → 0 as t → ∞
exponentially fast.

With the development of the theory behind the identifiers and proof of their

stability, we now move towards modeling the actual EHV System.

This chapter is in part an adaptation of material as it appears in J. Gray, M.

Krstic, N. Chaturvedi, P. Sungbae, A. Kojic, K. Mischker “Parameter Identification

for Electrohydaulic Valvetrain Systems,” which was submitted to the ASME Journal

of Dynamic Systems, Measurement and Control. The thesis author was the principle

researcher and author of this paper.
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Model Development of EHVS

3.1 Introduction

In this chapter we introduce the model of the EHV System. We discuss the system

operation, parameter assumptions and introduce a model for the variable damping

nonlinearity. The model contains an unknown parameter that appears non-linearly,

which creates a problem for the linear parametric model. Therefore, we develop a

Taylor expansion of the variable damping to facilitate creating the linear parametric

model.

3.2 Model of EHV System

Consider the model of the EHVS system based on the Figure 3.1 given by two

differential equations,

Mtẍp = Ap1
P1 − Ap2

Ps − Fo − Bẋp − RB (3.1)

Q1 − Q2 = V̇1 +
V1

βe

Ṗ1 (3.2)

and three algebraic equations,

V1 = Vo1
+ Ap1

xp (3.3)

Q1 = Cd1w1xv1sgn (Ps − P1)

√
2 |Ps − P1|

ρ
(3.4)

22
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Figure 3.1: Schematic of the EHVS

Q2 = Cd2w2xv2sgn (P1 − Pr)

√
2 |P1 − Pr|

ρ
, (3.5)

where the model variables are defined in the list of symbols. The system has three

states, P1, xp, ẋp, two inputs which are available to the designer, xv1
, xv2

, three inputs

that are not available to the designer, Ps, Pr, F0, three variables that algebraically

depend on the states V1, Q1, Q2 and the remaining are system parameters. Of these

equations it is assumed that only the parameters V01
, Mt, Ap1

, and Ap2
are known

precisely.

This model is physics based. Equation (3.1) is the kinematic equation for motion in

the engine valve. The other differential equation (3.2) relates the fluid flow into the top

chamber and the effects on displacement and pressure. The three algebraic equations

are conversions for equation (3.2). Equation (3.3) is a position to volume conversion,

while equations (3.4) and (3.5) govern the flow from xv1
and xv2

respectively. The

solenoid valves have dynamics, which [22] have done work in modeling, however in

this model those input dynamics are neglected. In our model the solenoid valves xv1

and xv2
are considered to be the discrete inputs of the system. Solenoid valve xv1

is

normally closed and the other solenoid valve is normally open. This leaves the valve

in fail safe “engine valve closed” position since P1 is exposed to Pr.

Figure 3.2 displays the operation of the EHV System through the major solenoid

valve events. In order to create movement in the system, valve xv2
closes while xv1

opens letting high pressure (Ps) into the top chamber. The difference in surface area
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Figure 3.2: Operation cycle of the EHVS

(Ap1 > Ap2) creates downward movement in the system. After reaching the desired

lift xv1 closes. With both valves closed, the lift settles to a steady state. To close the

valve xv2
opens exposing the top chamber to the reservoir pressure (Pr) and forcing

upward movement. Since the valve hits a mechanical stop when it closes, xv2
is left

open until the beginning of the next cycle. There is an inclusion of variable damping

term RB which is responsible for the soft seating of the valve. This term will be

introduced in Section 3.3.

It may appear that there are seven uncertain physical parameters, βe, B, Cd1
, Cd2

,

w1, w2, ρ. However, only four can be identified independently from the measured

signals. The identifiable terms are the compressibility coefficient βe, the damping of

the valve piston B, and the “combination” coefficients Cd1
w1

√
2
ρ

and Cd2
w2

√
2
ρ

which

contain the solenoid valve discharge coefficients, area gradients of the solenoid valve

ports, and the density of the hydraulic fluid.
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3.3 Model of Variable Damping Nonlinearity

Equation (3.1) contains the variable damping term RB. Since the effect of the

variable damping is a swift increase of damping as the valve comes to close, we take

the following representation

RB(xp, ẋp) =
ẋp − |ẋp|

2

D

Db + x2k
p

. (3.6)

With this model the nonlinear force acts as damping, as it is velocity dependent. In

addition the damping value is a function of position. Looking at figure 3.3 the gain

moves from a zero value when away from the origin to a large final value as the valve

comes to a close creating the desired affect.

The velocity term ẋp−|ẋp|
2

ensures that the variable damping force is only active

during the closing of the valve. The remainder of the terms (D, Db, and k) offer

flexibility in the approximation of variable damping. Figure 3.3 shows the effects of

varying D, Db, and k. Increasing Db increases the distance from zero that variable

damping goes into effect. The maximum gain approaches the ratio of D
Db

. Finally, a

larger k creates a more step-like response.

3.4 Taylor Expansion of Variable Damping

With these terms equation (3.6) gives great flexibility in the modeling of RB.

However, since the unknown parameter Db appears non-linearly, creating a linear

parametric model for estimation of Db poses a problem. To create a model of RB

that is linear in Db, we take a Taylor expansion of RB about Db at the estimate D̂b,

which yields

RB ≈ ẋp − |ẋp|
2

D




1

D̂b + x2k
p

+
−Db + D̂b(
D̂b + x2k

p

)2




≈ ẋp − |ẋp|
2

D




2D̂b + x2k
p − Db

(
D̂b + x2k

p

)2




≈ ẋp − |ẋp|
2

D




2D̂b + x2k
p(

D̂b + x2k
p

)2 − Db(
D̂b + x2k

p

)2


 . (3.7)
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The system is now linear in the unknown term Db, noting that D̂b is an estimate of

that parameter. Substituting equation (3.7) into equation (3.1) yields

Mtẍp =Ap1
P1 − Ap2

Ps − Fo − Bẋp

− ẋp − |ẋp|
2


D




2D̂b + x2k
p(

D̂b + x2k
p

)2 − Db(
D̂b + x2k

p

)2





 . (3.8)

So now for estimation we have the unknown terms B, D, and DDb in the piston

subsystem. We use (3.8) in the parametric model for our identifier design in Chap-

ter 2 since Db is unknown. However, for our simulation tests we use the nonlinearly

parametrized model (3.1) and (3.6) to create the soft landing of the system.

This chapter is in part an adaptation of material as it appears in J. Gray, M.

Krstic, N. Chaturvedi, P. Sungbae, A. Kojic, K. Mischker “Parameter Identification

for Electrohydaulic Valvetrain Systems,” which was submitted to the ASME Journal

of Dynamic Systems, Measurement and Control. The thesis author was the principle
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researcher and author of this paper.



4

Identifier Development

4.1 Introduction

In this chapter we apply techniques developed in Chapter 2 to the EHV System

to develop an identifier for the unknown parameters. We use the two differential

equations of the system and create two identifiers for the six unknown parameters.

We filter each differential equation and create two linear parametric models. We use

the parametric models to define the parameter vectors θ, regressor vectors Φ, and the

quantities Y for each differential equation. We then apply the terms to create the

least-squares and gradient identifiers for the EHV System. Therefore we have two

three dimensional identifiers for each algorithm used.

4.2 Parametric Model

The system’s two differential equations which we use for identification, (3.2) and

(3.8), are linear in the parameters βe, B, D, Db, Cd1
w1

√
2
ρ

and Cd2
w2

√
2
ρ
. However

(3.2) and (3.8) involve the derivative signals ẍp, ẋp, Ṗ1, and V̇1 which are noisy. Unfor-

tunately, ẋp appears nonlinearly (and non-smoothly) in equation (3.8) and therefore

must be treated as measurable in the parametric model. Filtering (3.2) and (3.8)

with a stable first order low-pass filter of the form 1
s+λ

creates a suitable parametric

model for identification.

28
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After filtering (3.8) we get the parametric model

Mt

(
λ

s + λ
ẋp − ẋp

)
+

1

s + λ
(Ap1

P1 − Ap2
Ps) =

B

(
λ

s + λ
xp − xp

)
+

1

s + λ
Fo

+D

(
1

s + λ

)



(ẋp − |ẋp|)
(
D̂b + x2k

p

)

2
(
D̂b + x2k

p

)2




−DDb

(
1

s + λ

)
ẋp − |ẋp|

2
(
D̂b + x2k

p

)2 . (4.1)

In the absence of any information on F0, we treat 1
s+λ

Fo as stochastic noise, otherwise

it can be moved to the left as a known signal. Aside from B, D, and Db all the signals

in the model (4.1) are available and linear in the unknown parameters.

Conversion of the pressure flow equation, (3.2), into a linear parametric model

requires us to first rewrite it as

d

dt
P1 + βe

d

dt
ln V1 =

βeCd1w1

√
2

ρ
xv1sgn (Ps − P1)

√
|Ps − P1|

V1

−βeCd2w2

√
2

ρ
xv2sgn (P1 − Pr)

√
|P1 − Pr|

V1

. (4.2)

Note that the signals P1, V1, Ps, Pr, xv1
, and xv2

are available (either measured,

or available as control inputs). Therefore the model (4.2) is linear in the unknown

parameters βe, βeCd1
w1

√
2
ρ
, and βeCd2

w2

√
2
ρ

but again requires some filtering due to

the unavailability of the time derivatives of P1 and ln V1. Applying the stable low-pass

filter 1
s+λ

to (4.2), we create the parametric model

P1 −
λ

s + λ
P1 = βe

(
λ

s + λ
ln V1 − ln V1

)

+βeCd1w1

√
2

ρ



 1

s + λ



 xv1sgn (Ps − P1)

√
|Ps − P1|

V1









−βeCd2w2

√
2

ρ



 1

s + λ



 xv2sgn (P1 − Pr)

√
|P1 − Pr|

V1







 (4.3)
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4.3 Identifier Design

The parameter identification problem is separated into two three-dimensional

identification problems, (4.1) from which we estimate B, D, and DDb, and (4.3)

from which we estimate βe, βeCd1
w1

√
2
ρ
, and βeCd2

w2

√
2
ρ
.

Both problems involve vector parameterizations. First we introduce the parameter

vectors

θ1 =




θ11

θ12

θ13




=




B

D

DDb




(4.4)

and

θ2 =




θ21

θ22

θ23




=




βe

βeCd1
w1

√
2
ρ

βeCd2
w2

√
2
ρ




. (4.5)

The regressor vectors Φ1 and Φ2 are defined as

Φ1 =




λ
s+λ

xp − xp

(
1

s+λ

) (
ẋp−|ẋp|

2

) [
2D̂b+x2k

p

(D̂b+x2k
p )

2

]

−
(

1
s+λ

) (
ẋp−|ẋp|

2

)
1

(D̂b+x2k
p )

2




(4.6)

and

Φ2 =




λ
s+λ

ln V1 − ln V1

1
s+λ

[
xv1sgn (Ps − P1)

√
|Ps−P1|

V1

]

1
s+λ

[
xv2sgn (P1 − Pr)

√
|P1−Pr|

V1

]




. (4.7)

Combining the regressor and the parameter vectors we get the quantity

Y = ΦT θ (4.8)

which for the two respective problems is defined as

Y1 = Mt

(
λ

s + λ
ẋp − ẋp

)
+

1

s + λ
(Ap1

P1 − Ap2
Ps) (4.9)

and

Y2 = P1 −
λ

s + λ
P1 . (4.10)
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Figure 4.1: Least-Squares Estimator Block Diagram

4.3.1 Least-Squares Update Law

To estimate the parameter vectors, we employ the unnormalized least-squares with

forgetting factor update law developed in Section 2.3 rewritten for convenience,

˙̂
θ = ΓΦ

(
Y − ΦT θ̂

)
(4.11)

Γ̇ = βΓ − ΓΦΦT Γ (4.12)

where the equation (4.12) is the Riccati equation for the gain matrix Γ(t). An initial

condition Γ(0) is chosen to be a positive definite and symmetric matrix. β is a design

constant which is chosen as β ≥ 0, where β = 0 makes the algorithm the “pure”

least-squares update law. Clearly, for our two parametric models, we employ two

identifiers,
˙̂
θ1 = Γ1Φ1

(
Y1 − ΦT

1 θ̂1

)
, Γ̇1 = β1Γ1 − Γ1Φ1Φ

T
1 Γ1 (4.13)

and
˙̂
θ2 = Γ2Φ2

(
Y2 − ΦT

2 θ̂2

)
, Γ̇2 = β2Γ2 − Γ2Φ2Φ

T
2 Γ2. (4.14)

Looking at Figure 4.1 the identifier has four main parts: the filter which provides

the values for Φ and Y , the estimation error, the Riccati equation which determines

the values for Γ, and the update law which provides the estimate θ̂.
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4.3.2 Gradient Update Law

In addition to the least-squares update law we also separately employ the gradient

update law developed in Section 2.5 as an alternative to the least-squares method.

˙̂
θ = Γ̄Φ

(
Y − ΦT θ̂

)
(4.15)

There is no Riccati equation to calculate making this a simpler algorithm to compute.

Γ̄ is chosen to be positive definite and symmetric. However, we seek to incorporate

the correlation of the signals. In larger dimensional systems, such as the EHV System,

choosing the appropriate correlation values offhand is difficult. Simulating with the

least squares algorithm will yield a gain matrix that includes the correlation of all the

signals in the system. Therefore Γ̄ is chosen as the averaged settling value of the gain

matrix from the least squares simulation. With our parametric models the gradient

identifiers are
˙̂
θ1 = Γ̄1Φ1

(
Y1 − ΦT

1 θ̂1

)
, (4.16)

and
˙̂
θ2 = Γ̄2Φ2

(
Y2 − ΦT

2 θ̂2

)
, (4.17)

where Γ̄1 and Γ̄2 are the averaged settling values of Γ1 and Γ2 respectively.

Looking at Figure 4.2 the identifier only has three main parts: the filter which

provides the values for Φ and Y , the estimation error, and the update law which

provides the estimate θ̂. Since Γ̄ is static, there is no longer a need for the Riccati

equation which updated Γ.

We have shown in Section 2.3 and Section 2.6 that both update laws guarantee that

θ̂(t) converges to the true value θ (in the absence of noise) if the regressor vector Φ(t)

is “persistently exciting.” The square-wave character if the input signals in the EHVS

application helps ensure persistence of excitation. With persistence of excitation we

can choose either the “pure” least-squares algorithm, the least-squares algorithm with

forgetting factor, or the gradient algorithm to achieve parameter convergence.

This chapter is in part an adaptation of material as it appears in J. Gray, M.

Krstic, N. Chaturvedi, P. Sungbae, A. Kojic, K. Mischker “Parameter Identification

for Electrohydaulic Valvetrain Systems,” which was submitted to the ASME Journal
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Figure 4.2: Gradient Estimator Block Diagram

of Dynamic Systems, Measurement and Control. The thesis author was the principle

researcher and author of this paper.
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Simulations

5.1 Introduction

With the identifiers defined in Chapter 4 and the system model given in Chapter 3

we can begin simulations of the EHV System. Before simulating the identifiers, we

first verify stable system operation and if the signal Φ is PE. Then after ensuring

those conditions are fulfilled, we apply the identifiers to the system. We show the

convergence properties of the “Pure” least-squares in an idealized case. We then

show the improved convergence of the identifier with forgetting factor. After showing

parameter convergence in an idealized case, we then corrupt signal inputs for the

identifiers with noise and introduce un-modelled dynamics. We also show the various

trade-offs in the choice of the forgetting factor. Following this we introduce a hybrid

model of the EHV System and compare the system states to the original model. In

addition we compare the estimation of the hybrid case in both an ideal case and with

noise injected. Finally we show improved estimation performance with a switching

identifier on the hybrid system.

5.2 System States

We now present the simulations done of the plant (3.1)-(3.5). In the following

simulation, initial conditions were set to be xp(0) = 0, ẋp(0) = 0, and P1(0) =
Ap2Ps

Ap1
. The parameter values used in the simulation are given in Table 5.1. These

34
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Table 5.1: Parameter values used in the simulation.

Parameter Values
Mt 1
Ap1 20
Ap2 10

xv1, xv2 1
V01 5
Ps 250
Pr 10
Cd1 10
Cd2 10

w1, w2 5
ρ 10
B 50
βe 250
D 6 × 10−9

Db 1 × 10−12

k 5

parameter values differ from the actual system parameter values given by Bosch due

to confidentiality issues. However, the values presented were chosen to provide a

qualitatively similar system response.

The equations of the plant as given are suitable for when the system is operating

within the limits of the device. However, during simulations we have placed a lower

saturation limit at xp = 0 because there is a physical stop of the system at that

point. Figure 5.1 displays the results from simulations without variable damping

(Fig. 5.1 (A)) and with variable damping (Fig. 5.1 (B)). The position of the piston

(Fig. 5.13 (A.1)) and velocity (Fig. 5.13 (A.2)) show the necessity for variable damping

in the EHV System. The rapid stop creates a hard landing on the valve which will

significantly reduce the life-span of the system. Figure 5.13 (B) shows improved

closing with variable damping included. The states show the soft seating of the valve

is achieved. The impact velocity is greatly reduced before the valve comes to a close.

However, the inclusion of saturation on xp introduces some model errors. The

velocity is reported as negative even when xp = 0 and saturated in Figure 5.1 (A.2).
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In addition, the pressure in Figure 5.1 (A.3) does not settle to the reservoir pressure

(Pr) while xv2
remains open. The variably damped case is a more accurate reflection

of the EHV System. While velocity does not settle to a zero value during closing, it

is close enough that we will assume this model is still valid.

Another important aspect to verify is the boundedness of the signals Y and Φ.

Figure 5.2 displays the values of Y for both subsystems. It appears to be a bounded

cyclical measurement that satisfies the earlier assumption of Y ∈ L∞ necessary to

insure the cost function J(θ̂) is a convex function. In addition Figure 5.3 shows the

values of both regressor vectors Φ1 and Φ2. These satisfy Φ ∈ L∞, completing the

other assumption necessary to have J(θ̂) be a convex function of θ̂ over R3 at each

time t.

5.3 Persistence of Excitation

After verifying the stable operation of the system equations (3.1)-(3.5) and con-

firming the convexity of the cost function J(θ̂), we now move to verify the condition

(2.18) for exponential convergence of the identifier. We numerically check if the re-

gressor Φ of each identifier is PE. Taking (2.18) and shifting the bounds of integration
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results in

1

T0

∫ t

t−T0

Φ(τ)ΦT (τ)dτ ≥ α0I (5.1)

which is satisfied if the following sufficient condition is satisfied:

λmin

{∫ t

t−T0

Φ(τ)ΦT (τ)dτ

}
> 0 . (5.2)

Figure 5.4 contains the result of the numerical simulation of (5.2) with both re-

gressors. Both regressors satisfy the condition of (5.2). Given that PE holds, the

identifiers will converge, without forgetting factor polynomially and exponentially in

the other cases, to the true parameters in the absence of noise.
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5.4 Initial Condition Limitations

After verifying PE and guaranteeing the convergence of the identifier, we begin

to employ the various update laws developed in Section 2.3. The regressor vectors

Φ1 and Φ2 are defined by (4.6) and (4.7) and the quantities Y1 and Y2 are defined by

(4.9) and (4.10) respectively. In every simulation all true parameters except D and

Db are allowed to vary with time. After forty cycles there is a gradual 20% variation

in the true parameters.

Of the various initial estimates only the initial value for the estimate D̂(0) must

be chosen with care. Since the regressor vector Φ1 relies on the estimate D̂b, we take

D̂b =
D̂Db

D̂

because the parameter vector (4.4) has no explicit estimate of D̂b. This implies that

as D̂ approaches 0 the value D̂b will approach infinity. Therefore if D̂(0) is chosen

too small there can be a failure in the identifiers due to division by zero. The same

care is not necessary for the initial conditions of other estimates.

5.5 “Pure” Least-Squares Estimation

We will first look at the case of the “Pure” least algorithm described by equations

(4.11) and (4.12) with β = 0 and no noise. Looking at Figure 5.5 shows convergence of

the estimator to 5% in about twenty cycles. However problems arise when θ11 begins

to vary. While θ̂11 (i.e B) continues to adapt to the true parameter, the convergence

is at a rate much slower than the system variation. This is evidence of the “covariance

wind-up” described in Section 2.3. Figure 5.6 (B) displays the reason behind the slow

adaptation. There is a reduction of the gain matrix diagnols by at least two decades

within the first twenty cycles. This greatly reduces the ability of the identifier to

adjust to variations. In addition, the off-diagonal terms adjust but quickly return

back to zero as the estimator achieves convergence. In summary, this may be a good

algorithm to use in a static parameter identification, however Figure 5.5 reveals that

either a forgetting factor or a constant gain matrix is needed to estimate the dynamic

parameters present in this system.
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5.6 Least-Squares with Forgetting Factor Estima-

tion

The second case we will look at is the least-squares algorithm with β > 0. Looking

at a case with no noise in Figure 5.7 we find good parameter estimation with dynamic

parameters. Even with the addition of an unknown zero mean force (Fo) being applied

in equation (3.1) Figure 5.7 (A) shows the estimate θ̂1 converging to the true value

θ1 within approximately twenty cycles. When the system parameters change at forty

cycles the estimate (θ̂11) continues to adapt and converges to the true value after

variation ends. Figure 5.7 (B) displays both a slower convergence rate and a slight

downward offset in the estimation. The offset is due to modeling errors in the pressure

state, mentioned in Section 5.2. It directly affects the estimate θ̂23 but also slightly

propagates through the other estimates in θ̂2. However, even with the simulation

errors, the estimates converge to within 5% of the true value in θ̂21 and θ̂22 and

within 10% of the true value in θ̂23.

5.6.1 Examination of the Gain Matrix

The gain of the identifiers show the value of the algorithm’s forgetting factor.

Figure 5.8 demonstrates the adjustment of gain matrices Γ1 and Figure 5.9 shows the
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adjustments on Γ2. Both matrices have a period of self-adjustment from the initial

condition, after which the values settle to an averaged equilibrium. The off-diagonal

terms of the gain matrices grow symmetrically. They self-adjust to the excitation

levels of the different channels of the regressor vectors as well. These off-diagonal

terms represent the correlation of terms in identifier signals and estimates. For ex-

ample, in Figure 5.9 the off-diagonal terms in Γ2 display a high level of correlation.

Each estimate (θ̂2) relies on βe and each element of the regressor vector Φ2 relies on

measurements of V1, with two elements (Φ22, Φ23) relying on P1. There is a similar

correlation in θ1 with every element relying on xp . After an initial transient (due

to poorly chosen initial conditions) the off-diagonal terms of Γ1 settle to a nonzero

value.

5.6.2 Effects of Noise

In addition to the parameter variation, sensor noise is injected into the state

measurements which is on the order of 1% of the maximum of the state measurement.

Despite these violations of the idealized conditions of the theory (noise and non-

constant parameters), most estimates converge to within 5% of the true value within

forty cycles. As the true parameters change, the estimates still follow the variation.

These results are shown in Figure 5.10 (A) and Figure 5.10 (B).

5.6.3 Forgetting Factor Considerations

We now look at Figure 5.11 to see the trade-off in the choice of the forgetting

factor β. A larger β increases the speed of convergence at the cost of an increased

sensitivity to noise. Therefore, depending on the tolerance of future controllers, β

could be tuned appropriately to allow the quickest convergence while still remaining

in tolerance.

In addition to the trade-off in the parameter estimates, Γ is also affected by the

choice of β. A larger β will reduce the time it takes Γ to settle into stable oscillations,

however a larger β will also increase the mean value of the stable oscillations.
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Figure 5.8: Γ1 evolution on a system with no noise and β > 0

5.7 Gradient Method

Looking at Figure 5.12 reveals that the gradient method holds many of the same

properties of the least-squares algorithm. For instance, even in the presence of system

noise and parameter variation the estimate still converges to a value within about 5%

of the true value. In certain cases convergence is achieved in fewer cycles with the

gradient method. However, the same downward bias that affects the estimates in θ̂2

with the least-squares algorithm remain present in the gradient algorithm’s estimates.
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Figure 5.9: Γ2 evolution on a system with no noise and β > 0

5.8 Hybrid System

The “Pure” least-squares, least-squares with forgetting factor, and gradient al-

gorithms are estimation methods we explored in these past sections. Of the three,

least-squares with forgetting factor and the gradient algorithms were both success-

ful with varying parameters, and also with noisy measurements. While the gradient

method is the least computationally complex while still providing equivalent results,

it relied on the results from the least-squares algorithm. Without the implementation

of the least-squares with forgetting factor algorithm, a gain matrix for the gradient

method that included signal correlation would have been difficult to find. After ana-
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Figure 5.11: Forgetting factor’s effect on estimation and gains. (A) Piston Subsystem
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lyzing the methods and showing convergence of the estimates, we now move to include

un-modelled dynamics into the system such with a hybridization of the system.

As mentioned in Section 5.2 the non-hybrid case shows that a lower saturation

limit on xp does not propagate the correct response through the other states ẋp and

P1. To address this issue and more accurately represent the actual physical system’s

behavior we will modify the plant differential equations. We take the following hybrid
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model,

If {xp > 0}

Mtẍp = Ap1
P1 − Ap2

Ps − Fo − Bẋp − RB

V̇1 +
V1

βe

Ṗ1 = Q1 − Q2

If {xp = 0} x+
p = 0, ẋ+

p = 0, P1 = Pr

If {ẍp < 0}

Mtẍp = Mtẍp

V1

βe

Ṗ1 = Q1

If {ẍp ≥ 0}

Mtẍp = Ap1
P1 − Ap2

Ps − Fo

V1

βe

Ṗ1 = Q1 .

(5.3)

This set of equations has three different cases. The first case is original plant

presented in Chapter 3. In the second case the valve is closed and the valve housing

is acting in an equal and opposite direction of the piston. There is no velocity and

the chamber pressure is exhausted to the reservoir pressure. In the true system the

top chamber pressure chamber will eventually reach reservoir pressure if xv2 is open.

However in simulations not setting P1 = Pr at closing requires a prohibitively small

time step to reflect that dynamic. So in simulation P1 is set to Pr when xp hits zero

in the hybrid system. The final case is when there is enough pressure to force the

valve open. After the opening the valve returns to the original plant.

5.8.1 State Comparison

Figure 5.13 (A) is a non-variably damped direct comparison of the original plant

(3.1)-(3.5) to the new hybrid system, equation (5.3). From this it is clear that hybrid

system better reflects actual system behavior. As expected, the initial behavior is

identical in both systems. When the valve closes the differences in both velocity and

pressure appear. As discussed before, the velocity is reported as negative even when

xp = 0 and saturated in Figure 5.13 (A.2) in the non-hybrid case. In addition, the
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Figure 5.14: Modelling effects on the quantity Y . (A) Y1 (B) Y2.

difference of the intermediate velocity and pressure values changes the transient of xp

in the second cycle.

Looking at Figure 5.13 (B) the main differences between the two system models

is in the velocity Figure 5.13 (B.2) and pressure states Figure 5.13 (B.3). At 0.4

cycles the hybrid velocity is set to zero, whereas the non-hybrid system remains at

a small non-zero constant. Looking at the inset on Figure 5.13 (B.3) the pressure

shows another slight difference, with P1 settling to Pr only in the hybrid case. From

Figure 5.13 it is clear that the hybrid model is a more accurate physical model of the

EHV System.

5.8.2 Identifier Comparison

Changing the model also has the potential to change the identifiers. To see the

effects of the changes on the identifiers we compare the differences on the various

regressor vectors and Y quantities. The graphs in Figure 5.14 shows a direct com-

parison of the quantities Y1 (Fig. 5.14 (A)) and Y2 (Fig. 5.14 (B)) of the two models.

Figure 5.15 shows the comparison of the behavior of regressors Φ1 (Fig. 5.15 (A)) and

Φ2 (Fig. 5.15 (B)) of the two representations. The velocity and pressure difference

cause Φ12 (Figure 5.15 (A.2)), Φ13 (Fig. 5.15 (A.3)), and Φ23 (Fig. 5.15 (B.3)) to differ

in the two representations. The difference between the two system representations
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is mainly in the duration of excitation of Φ12, Φ13, and Φ23. Since this is the case,

we assume that the regressors will still drive ΦT θ̂ to the quantity Y in the hybrid

representation without any identifier modifications. Looking at the actual values of

Y1 and Y2 in Figure 5.14 we find that they same in both hybrid and non-hybrid rep-

resentations. Because of these facts, we assume that the identifiers will drive the

estimates to the true parameters.

5.9 Estimation of the Hybrid System

We now present the results of parameter estimation on the hybrid system devel-

oped in Section 5.8. We examine the case of no sensor noise using the least square

with forgetting factor algorithm given in equations (4.11) and (4.12). Looking at a

direct comparison of the estimation with no noise, other then the zero mean force

(Fo), we find that the convergence is improved on hybrid system. Figure 5.16 (A)

shows the estimation of the piston subsystem is relatively unchanged, however Fig-

ure 5.16 (B) displays an improvement in the estimation on the pressure subsystem.

There is no longer a downward bias on the estimation of θ2. The bias stems from the

downward velocity affecting equation (3.2) the hybrid representation removes.

5.9.1 Effects of Noise

We now look at the effects of noise on the hybrid system estimation. The im-

provement in estimation in the ideal case is not realized when noise is injected into

sensor measurements. The noise on states xp and ẋp must be reduced by an order of

magnitude to provide reliable estimates of the system. Noise mainly effects the piston

subsystem, but after the reduction of noise Figure 5.17 (A) shows strong convergence

properties with a slight downward bias. The estimation of θ2 (Fig. 5.17 (B)) in the

hybrid case with noisy inputs is similar to the non-hybrid case with a downward bias

returning to the estimate.
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5.9.2 Switching Least-Squares Identifier

We modified the estimation scheme to accommodate the same levels of noise as

the non-hybrid system estimation. Since the main differences between the hybrid and

non-hybrid systems arise when xp is closed, we turn off estimation when xp is closed.

We modify the least-squares algorithm as follows:

If {xp > 0}
˙̂
θ = ΓΦ

(
Y − ΦT θ̂

)

Γ̇ = βΓ − ΓΦΦT Γ

If {xp = 0}
˙̂
θ = 0 .

(5.4)

This allows for adaptation only when the system matches the identifier model, as

opposed to trying to identify parameters when there is both an incorrect model and

only noisy activity. Figure 5.18 compares the results of this switching identifier on

the hybrid system to the original identifier on the non-hybrid representation. Both

identifiers have the same noise levels on the sensors. While estimates of θ1 (Fig. 5.18)

are similar, estimates of θ2 (Fig. 5.18) show an improvement in convergence to the

true value.

This chapter is in part an adaptation of material as it appears in J. Gray, M.

Krstic, N. Chaturvedi, P. Sungbae, A. Kojic, K. Mischker “Parameter Identification

for Electrohydaulic Valvetrain Systems,” which was submitted to the ASME Journal

of Dynamic Systems, Measurement and Control. The thesis author was the principle

researcher and author of this paper.
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Conclusion

6.1 Summary of Findings in this Thesis

The objective of this thesis is to design an online parameter identifier of an EHV

System in the presence of varying parameters. While designing the estimator, we

consider three algorithms and test their effectiveness in simulation. The results show

strong convergence properties which will be useful in future controls work on the

system.

The underlying theory of the identifiers are presented in Chapter 2. We introduce

the process of creating a linear parametric model of the system which is important

for the identifier design. After we develop the base functions of the least-squares

algorithms and prove convergence of both the “Pure” least-squares algorithm and

the least-squares with forgetting factor. Lastly we develop and prove exponential

convergence of the gradient algorithm. However, it is shown that PE of the input

signal is a necessity for convergence.

The modeling of the EHV System in Chapter 3 is important. We created a physics

based model of the system. In addition a model for the variable damping mechanism

was developed. That model was non-linear in an unknown parameter so in order to

achieve a linear parametric model we created a Taylor approximation of the variable

damping model. With this approximation we could represent the EHV System in a

linear parametric model.

The identifier for the EHV System was created in Chapter 4. A linear parametric

59
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model is created from the EHV System. The regressors, Φ, and quantities Y of

the identifiers are created from the EHV System’s two differential equations. The

least-squares and gradient update laws were introduced.

The EHV System and the identifiers are then simulated in Chapter 5. Stable

system operation and PE of the system was first tested to insure convergence. We

found that with varying parameter a “Pure” least-squares algorithm is insufficient

for identification. Least-squares with forgetting factor achieved convergence, though

it was biased in the presence of noise. We applied a gradient identifier using the

averaged gains of the least-squares algorithm as gain matrix. This exhibited similar

properties to the least squares algorithm while being less computationally complex.

Lastly we looked at the identifier’s performance on a hybrid model in Section 5.8.

We found that with the original least-squares identifier parameter convergence occurs.

However, the convergence is more sensitive to noise. To remove some model iden-

tifier discrepancies we simulated a switching least-squares identifier which turns off

adaptation when the valve is closed. The switching least-squares identifier estimating

the hybrid system has similar convergence properties to the least-squares identifier

estimating the non-hybrid system.

6.2 Future Work

The contents of this thesis represent the first step towards the goal of an adaptive

EHVS controller. The work presented here is a summary of tasks to be completed to

implement a successful controller.

6.2.1 Refine Variable Damping Model

This thesis provides one mathematical model of the variable damping present in

the EHVS. This method can be used to create approximations of the system, which

must be matched to experimental results. While this may be good for one setup, it

may vary with different configurations of the variable damping system.

An option to this is to create a physics based model of the variable damping

system. This may introduce hybrid dynamics in the model which may complicate
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the identifier. However this will make the actual model more accurate especially if

the variable damping varies during operation. It is of interest to find if the more

complicated model is necessary. It may be that the mathematical model is sufficient

for control purposes.

6.2.2 Reduce Sensors

As of now the inputs necessary for the identifiers include a pressure sensor, a

velocity sensor, and a position sensor. Each sensor adds an expense which will make

the EHV System cost prohibitive to implement on a wide scale. The velocity sensors

are mainly used in terms Φ12, Φ13, and Y1. In Y1, ẋp appears linearly, however in Φ12

and Φ13 it appears with an absolute value. There is a possibility that using a second

order stable filter on the valve piston subsystem and approximating valve closing can

eliminate the need for a velocity sensor. The removal of the pressure sensor poses a

more difficult problem. However, if possible the identifier could then be realized with

only a position sensor. This would greatly increase the viability of the EHV System

as it would considerably reduce costs associated with sensors.

6.2.3 Control Design

Looking at literature there are many benefits to having a valve system that is

fully decoupled from the engine camshaft. However, it must be able to reliably open

and close valves through many varying engine events such as acceleration and idling.

After creating a control algorithm for the EHV System timing and valve lift can then

be tuned to optimize the operation of the engine. For instance, an extremum-seeking

based algorithm could measure emission output of the engine and actively tune the

valves to reduce overall emissions. Then a variety of options could be analyzed to

create the optimum valve profiles for engine operation.

It is left to future persons involved with this project to determine the control

design of the EHV System.
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