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ABSTRACT 

 

Pyrogeography of California: A Study of Wildfire-Climate Dynamics 

 

by 

 

David E. Rother  

 

Annual area burned has increased in California over the past three decades as a result 

of rising temperatures and a greater atmospheric demand for moisture, a trend that is projected 

to continue throughout the 21st century as a result of climate change. However, the impacts of 

climate on the size, severity, and seasonality of wildfire activity are strongly influenced by 

ecosystem, predominant vegetation types, weather patterns, topography, and human activity. 

The individual wildfire burned perimeter and ecoregion-level spatial scales adopted for this 

research increases the amount of local information, as well as the resolution with which fire 

and land managers can implement strategies and counter measures when addressing issues 

related to climate change. This research combines 18 years of wildfire burned area perimeter 

maps, high resolution land surface modeling, a suite of remote sensing datasets, and nearly a 

century of statistically downscaled climatological data in an effort to quantify the impact of 

wildfire on local meteorology, as well as the influence of climate change on extreme fire 

weather.  

This dissertation investigates the bi-directional climate-wildfire feedback system in 

California through a detailed examination of the impacts of wildfire on the surface energy 
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balance, an assessment of the influence of wildfire burn severity on the five-year postfire 

trajectory of three biophysical variables, and the quantification of the impacts of climate 

change on extreme fire weather. Results indicate that the largest changes to net radiation in 

the four months following ignition were primarily caused by decreases in latent heat flux 

following wildfire-induced vegetation removal. This vegetation removal, coupled with the 

lowering of albedo from ash deposition, also contributed to decreases in sensible heat flux. 

Further, vegetation abundance and land surface temperature did not return to prefire levels, 

for any burn severity class, after five years. Lastly, this work provides evidence that fire 

weather conditions conducive to large wildfires will become more extreme and extend later 

into the fall season in most areas of California by 2100. The methods of investigation used 

here may be applied to other regions of the world in an effort to inform the mitigation and 

suppression of large wildfires. 
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Chapter 1. Introduction 

Wildfire is one of the primary causes of ecosystem disturbance and is inextricably linked 

to climate on short- and long-term time scales (Zhong et al. 2021). Over long periods of time, 

regional climate shapes the bounds of weather and vegetation, thus directly and indirectly 

influencing the size, intensity, frequency, and mean annual area burned by wildfire (Zhong et 

al. 2021; Bradstock 2010; Keeley 2009). Over shorter periods, weather conditions such as low 

relative humidity, high wind speeds, and high temperatures can dry out fuels and increase the 

probability of wildfire ignition and spread (Flannigan et al. 2009). Additionally, the 

disturbances wrought by wildfire on the land surface contribute to substantial alterations to 

energy, water, and carbon flux, perpetuating a cycle where wildfire alternates between driving 

meteorological change and responding to it (Archibald et al. 2013; Hurteau et al. 2019). In 

other words, wildfire-induced modifications to the land surface results in changes to 

biophysical properties like albedo, surface roughness, leaf area index, and the partitioning of 

energy into latent and sensible heat flux, which not only impacts local meteorology, but the 

continuity and flammability of fuels for future burning (Keeley and Syphard 2016).  

The complex inter-connections between wildfire, vegetation, and weather conditions are 

further complicated by climate change. Over the last several decades, climate change has led 

to increases in fuel aridity, a longer fire season, and a growing number of extreme fire weather 

days each year, which have contributed to a greater total annual burned area (Goss et al. 2020; 

Abatzoglou and Williams 2016; Jolly et al. 2015). Furthermore, future climate change is 

projected to continue to impact fire intensity, the probability of extreme fire weather, and total 

annual burned area through the effects of drought and increased fuel aridity (Westerling and 

Bryant 2008; Miller and Schlegel 2006; Goss et al. 2020; Lenihan et al. 2008). However, 
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studies attempting to predict future wildfire activity are subject to significant uncertainty 

stemming from issues of climate and vegetation non-stationarity, the self-regulating nature of 

wildfire, and the emergence of novel ecosystem states that are likely to emerge as a result of 

a changing climate and wildfire-induced shifts in vegetation distribution (Hurteau et al. 2019; 

Parks et al. 2016; Stevens-Rumann et al. 2016; Williams et al. 2007). As global climate change 

continues to contribute to increases in temperature and atmospheric aridity, it is critical that 

we understand how the drivers of wildfire vary among fine-scale ecological contexts so that 

strategies for the management and suppression of wildfire may be adapted to fit unique fire 

regimes. 

This dissertation investigates the bi-directional climate-wildfire feedback system in 

California and has three primary objectives: (1) examine the impacts of wildfire on the surface 

energy balance in California; (2) assess the influence of wildfire burn severity on the five-year 

postfire trajectory of three biophysical variables: vegetation presence, land surface albedo, 

and land surface temperature; and (3) quantify and evaluate the past and expected impacts of 

climate change on the occurrence of extreme fire weather during an historical (1979-2014), 

mid-century (2041-2070), and late-century (2071-2100) period. This research combines 18 

years of wildfire burned area perimeter maps, high resolution land surface modeling, a suite 

of remote sensing datasets, and nearly a century of statistically downscaled climatological 

data in an effort to quantify the impact of wildfire on local meteorology, as well as the 

influence of climate and climate change on wildfire occurrence.  

The first objective of examining the impacts of wildfire on the surface energy balance 

after six historically large wildfires in California is described in Chapter 2 and is titled “Impact 

of wildfire on the surface energy balance in six California case studies.” The primary 
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methodology utilized in Chapter 2 is a land surface model that has been modified to simulate 

the removal of vegetation and the deposition of ash within wildfire perimeters. The second 

objective of assessing the influence of wildfire burn severity on the postfire trajectory of three 

biophysical variables is addressed in Chapter 3, titled “Impacts of burn severity on short-term 

postfire vegetation recovery, surface albedo, and land surface temperature in California 

Ecoregions.” In this chapter, a burn severity index, called the Relative Differenced 

Normalized Burn Ratio (RdNBR), was calculated at a 500-m spatial resolution for the entire 

state of California for 18 years. This burn severity index was used in conjunction with wildfire 

burned perimeters, vegetation abundance, land surface temperature, and surface shortwave 

albedo, to evaluate the temporal patterns of recovery after wildfires of varying degrees of 

severity. In Chapter 3, titled “Summer and Fall extreme fire weather projected to occur more 

often and affect a growing portion of California throughout the 21st century”, nearly a century 

of historical and projected meteorological data was bias-corrected and statistically downscaled 

for input into two fire weather indices, vapor pressure deficit (VPD) and the Canadian Fire 

Weather Index System (FWI). These two indices were used to investigate where and when 

California will likely experience increases in the occurrence of extreme fire weather. Lastly, 

Chapter 5 includes a summary of results, critical findings, and concluding remarks. 
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Chapter 2. Impact of Wildfire on Surface Energy Balance in Six California 

Case Studies 

2.1 Introduction 

Wildfires are a destructive, costly, and sometimes fatal cause of ecosystem disturbance, 

and the expanding wildland-urban interface is placing a greater number of people at risk for 

being directly impacted by the negative effects of catastrophic wildfire (Westerling et al. 2006; 

Bendix and Commons 2017; Havel et al. 2018; Hostetler et al. 2018; Flint et al. 2019). In fact, 

wildfire activity in the western United States has increased in both frequency and total area 

burned, an increase that is often attributed to climatic changes such as warming temperatures 

and decreasing levels of precipitation (Westerling et al. 2006; Westerling and Bryant 2008; 

Abatzoglou and Kolden 2013; Arnold et al. 2014; Jensen et al. 2018; Flint et al. 2019). The 

effects of these changes can lead to a greater likelihood of high severity fire by increasing fuel 

aridity and subsequently leading to wildfires of greater intensity (van Mantgem et al. 2013; 

Abatzoglou et al. 2017). The impacts of recent wildfire activity have become increasingly 

evident in California, where nine of the ten largest wildfires in the state have occurred since 

2000, and approximately 56,000 square kilometers have burned (Jin et al. 2015; CAL FIRE 

2022; Flint et al. 2019). 

The abundant diversity of California’s ecosystems, topography, climate, and fuel 

characteristics contribute to a broad range of fire regimes. In southern California, the primary 

driver of wildfire is Santa Ana winds, which peak in December but can impact wildfire activity 

year-round (Dennison et al. 2008). Following on the tail of seasonal drought, high wind speeds 

coupled with low live fuel moisture content create conditions conducive to rapid spread of 
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wildfire (Dennison et al. 2008; Jin et al. 2015; Williams et al. 2016). These clear climate-fire 

relationships often influence the size and severity of California wildfires, with larger, longer-

lasting fires typically burning in autumn, while spring fires are, in general, more easily 

contained due to vegetation’s higher fuel moisture content (Dennison et al. 2008; Keeley et 

al. 2009). However, not only do regional fire regimes affect annual area burned, the resulting 

disturbance to vegetation communities weakens resilience, alters species distribution, and 

changes regenerative patterns post-fire (Syphard et al. 2006). In fact, studies have shown that 

increases in fire frequency (i.e., short-interval fire recurrence of fewer than eight years) can 

lead to the proliferation of non-native species, as well as widespread loss of native vegetation 

(Syphard et al. 2006; Lippitt et al. 2013; Meng et al. 2014).   

The most immediate effect of wildfire on the land surface is the removal of vegetation and 

the subsequent deposition of a layer of charcoal or ash (De Sales et al. 2018). Vegetation loss 

reduces transpiration and canopy interception while simultaneously increasing sensible heat 

flux, an effect that is magnified by the seasonality of vegetation growth, especially in the 

summer (Liu et al. 2018). The subsequent changes in surface roughness directly affects 

interactions between the land surface and the atmosphere by reducing the amount of 

turbulence at the surface, suppressing convection, and reducing net radiation (Chambers et al. 

2005). Furthermore, the deposition of ash on the land surface lowers albedo, which alters the 

partitioning of energy into latent and sensible heat (Intergovernmental Panel on Climate 

Change (IPCC) 2001; Jin and Roy 2005). Impacts on post-fire surface albedo are complex, as 

burn severity, pre-fire vegetation structure (including density and height), soil moisture, and 

post-fire vegetation recovery all play a role in the degree of change (Jin and Roy 2005). In 

addition, albedo changes are directly linked to the distribution of net radiation and land surface 
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temperature (Chambers et al. 2005; Liu et al. 2018). The period of time that ash remains on 

the surface varies widely, as its dispersal is almost entirely dependent on the erosive power of 

wind and rain (Bodí et al. 2014).  

The wildfires investigated in this study range in size from approximately 660 to 1105 

square kilometers. Burned scars of this size reduce surface roughness, decrease turbulent flow 

in the surface boundary layer, and increase wind speeds (Anthes 1984). These effects are 

amplified among California’s varied topography where the removal of vegetation combined 

with steep slopes can contribute to stronger Santa Ana and offshore winds. In contrast, 

vegetated land surfaces decrease wind speeds and promote convective precipitation because 

of the greater turbulence intensity (Anthes 1984). As other large wildfires occur around the 

world (e.g., Thomas Fire in Santa Barbara, 2018; Amazon rainforest fires in 2019; Australia 

bushfires in 2020), the resulting burn scars can potentially alter boundary layer dynamics and 

diurnal cycles of turbulent fluxes (Stull 1988; Chambers and Chapin 2003; De Sales et al. 

2016). The effect of wildfire burn scars on the land surface is similar to that of desertification. 

California’s seasonal drought, coupled with warm and dry Mediterranean summers, puts the 

state at risk of entering a feedback loop in which newly burned scars contribute to the 

suppression of rainfall and the exacerbation of existing aridity (Anthes 1984; Dennison et al. 

2008).  

In general, studies investigating the impact of wildfire on albedo and radiation balance 

have not utilized land-surface modelling tools. However, these models’ ability to simulate 

critical biophysical processes allows for comprehensive representation of wildfire impacts on 

the land surface (Jin and Roy 2005). The goal of this study is to explore the effects of six 

historic California wildfires on surface radiation balance (expressed through latent, sensible, 
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and ground heat fluxes) through a series of land surface model simulations. The third version 

of the Simplified Simple Biosphere (SSiB3) vegetation biophysical model, along with daily 

burned area fraction derived from the MODIS approximate date of burning dataset (MCD64), 

were used to investigate the differences between a burned and unburned scenario. For each 

wildfire, a control experiment (undisturbed vegetation) and a burned experiment (vegetation 

removal and recovery, ash deposition and removal) were performed in order to assess the 

physical changes to local land surface processes caused by wildfire. 

2.1.1 Study Area 

The general area of interest in this study is California, where climate varies widely on a 

north-south and east-west gradient, with cool and wet conditions in the north-west that 

gradually transitions to warmer and drier conditions in the south-east, resulting in diverse land 

cover type distributions (Figure 1a). The northern and north-western portions of the state are 

predominantly covered by forests, while shrublands are widespread in the south and south-

east.  Similarly, vegetation cover fraction is greatest in the north-west and lowest in the south-

east (Figure 1b). Three major mountain ranges traverse sections of the state of California, 

including the Sierra Nevada, the Coastal Range, and the Transverse Range (Figure 1c). 

California’s diverse climate, coupled with large variability in vegetation cover and 

topography, has a strong influence on fuel moisture, relative humidity, surface roughness, and 

wind speeds (Dennison et al. 2008; Williams et al. 2019). 

Six of the largest wildfires in California’s recorded history were selected for closer 

examination as individual case studies (Table 1). The primary criterion for selection (apart 

from total area burned) was date of occurrence, as each simulation required four years of 

forcing data extending beyond the ignition date. 
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Table 1. Wildfire name, location (county), date of ignition, and area burned (CALFIRE 
2022). 

 

Each case study is characterized by different predominant vegetation type, vegetation 

cover fraction, and topography (Hansen et al. 2000; Davis et al. 2019). While the Zaca, Witch, 

and Cedar case studies’ primary vegetation type is shrubland, the Rim and Basin Complex 

case study areas are characterized by a combination of evergreen trees and shrub land cover. 

On the other hand, the Rush case study’s vegetation distribution is predominately comprised 

of a mixture of shrublands, grasslands, and bare ground.  In general, vegetation cover fraction 

is larger in the wetter northern fire sites and decreases southward where the climate is drier. 

The Rush fire is the exception, as its location on the leeside of the Sierra Nevada contributes 

to a drier climate, and therefore, low vegetation cover fraction.  

 

Figure 1. Study area map with wildfire case studies outlined: (a) Predominant vegetation 
category, (b) vegetation cover fraction, and (c) topography. In (a) the forest category 
includes needle-leaf evergreen and broadleaf deciduous trees, while non-forest includes 
grasslands, shrublands, and urban areas. Rectangles locate the six California case 

Fire Location Date Area Burned [km!] 
Zaca Fire Santa Barbara July 2007 972.08 
Witch Fire San Diego October 2007 801.24 
Rim Fire Tuolumne August 2013 1041.31 
Cedar Fire San Diego October 2003 1105.79 
Rush Fire Lassen August 2012 1100.38 
Basin Complex Fire Monterrey June 2008 658.90 
	1	
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studies. From north to south: Rush fire, Rim fire, Basin Complex fire, Zaca fire, and 
Cedar and Witch fires. 

2.2 Data and Methods 

2.2.1 Burned-Area Fraction 

Burned area fraction (BAF) information for this study was obtained from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) MCD64A1 product, which is available 

through the University of Maryland website (http://modis-fire.umd.edu). The dataset provides 

500-m resolution maps of the approximate date of burning, which are retrieved by locating 

the occurrence of rapid changes in daily surface reflectance time series as described by Roy 

et al. (2002, 2008). The methodology used to generate the BAF maps from MCD64A1 is 

described in De Sales et al. (2016). In short, binary burned-unburned maps are aggregated to 

the model’s resolution using a grid-cell averaging function, and subsequently implemented 

into the model’s forcing data and onto the model’s grid. In this way, monthly burned area 

fraction is interpolated to daily values and relayed to the model at regular intervals. Burned 

area fraction for the years 2003 to 2017 were calculated using this method.    

Burned area fraction is largest in 2003, 2008, and 2012, with specific individual large fires 

accounting for large percentages of each year’s total burned area (Figure 2a).  
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Figure 2. (a) Monthly total burned area within the California state boundary for 
January 2001 through December 2017. (b) Spatial distribution of total burned area 
including the recurrence interval for each pixel. Scale bar indicates the percentage of 
the total months that each pixel burned. Rectangles locate the six California case studies. 
From north to south: Rush fire, Rim fire, Basin Complex fire, Zaca fire, and Cedar and 
Witch fires. 

From 2001 through 2017, wildfire is observed throughout California except the south-east 

area, where large swaths of sparsely vegetated desert ecosystems inhibit the occurrence of 

large fires. Small regions in southern, central, and northern California burned repeatedly 

(Figure 2b). It is not unusual for wildfires to reburn extensive areas affected in previous years. 

For example, the Witch fire in San Diego (2007) reburned approximately 300 km2 of 2002, 

2003, and 2004 burned scars (Keeley et al. 2009).   

 Wildfires burn more area within the forest land cover group than non-forest or 

agriculture (Figure 3).  
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Figure 3. California state-wide average BAF extent per land cover type between 2001 
and 2017. 

Additionally, 2008 and 2017 were the only years that burned more than 2.5% of any 

combination of forest, non-forest, or agriculture types, with the greatest amount of forested 

land cover burned than any other year. The greatest percentage of wildfires occur in August 

in northern and central California, and October in southern California (Figure 4). 
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Figure 4. 2001-2017 monthly burned area fraction climatology. Left side axis represents 
percentage of wildfire burned area that occurred in each month in California between 
2001 and 2017. Right side axis represents the cumulative percentage of area burned over 
the seven months shown.  

Southern California’s low levels of precipitation (4.7 mm mo-1) and high summertime 

temperatures (approximately 27 °C on average), coupled with strong Santa Ana winds, drive 

intense autumn wildfires that are difficult to contain (Daly et al. 1997; Keeley et al. 2009). 

Furthermore, warm spring and summertime temperatures, coupled with dry conditions, during 

and preceding the fire season, decrease fuel moisture and are the primary drivers of wildfire 

activity in northern and central California forests (Trouet et al. 2006; Keeley and Syphard 

2016). In contrast, from November to March, California experiences no significant amount of 

wildfire. With some exceptions (i.e., Thomas Fire, Santa Barbara, December 2017 – January 

2018), relatively moist winter conditions aid fire suppression and act as a deterrent to the 

growth of large wildfires. 
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2.2.2 Vegetation Recovery and Ash Deposition 

All MODIS enhanced vegetation index (MOD13A1) and the surface albedo (MOD43A3) 

products are utilized to calculate the vegetation recovery and ash residence time for the model 

experiments. The enhanced vegetation index (EVI) product is a 16-day, 500-m spatial 

resolution dataset that has improved sensitivity over the Normalized Difference Vegetation 

Index in both densely and sparsely vegetated areas due to the detachment of the canopy from 

the soil background (Jin et al. 2012; Didan 2015; Dintwe et al. 2017). The enhanced vegetation 

index reduces atmospheric background noise while retaining details concerning canopy 

structure, land cover, and vegetation seasonality and biophysics (Kinoshita and Hogue 2011). 

The dataset is used in this study to calculate post-fire vegetation recovery for the different 

case studies, as described in this section.   

The MODIS surface albedo model product is a daily, 500-m resolution dataset that 

contains black and white-sky albedo for MODIS bands 1-7 and the visible, near infrared, and 

shortwave bands (Schaaf and Wang 2015). The shortwave albedo product was chosen for this 

study because it has been used successfully in previous research to obtain values for post-fire 

albedo recovery (Lyons et al. 2008; Samain et al. 2008; Jin et al. 2012; Gatebe et al. 2014; 

Huang et al. 2015; Dintwe et al. 2017).  

A similar methodology to that described in Dintwe et al. (2017) is used to obtain the 

average recovery period for vegetation and surface albedo within each case study domain 

(Figure 5).  
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Figure 5. Diagram depicting the methodology used to obtain the average recovery 
interval for EVI and shortwave albedo within each case study domain. 

First, an arbitrary number of burn pixels distributed throughout each burned area are 

selected. A 1-km buffer is applied to each selected pixel so that the EVI or albedo value at 

multiple points are included in an average, which is done to increase the representativeness of 

the burned pixel samples and to decrease the noise in the data. Next, neighbouring unburned 

pixels are selected from outside the burned area. Unburned pixels were considered valid if 

they displayed similar EVI or albedo signals as the burned pixels over a period of two years 

prior to the fire (Gatebe et al. 2014). Time series comparisons of burned and unburned points 

indicate a clear date of burn (𝑡#) as well as a date at which EVI and albedo values return to 

within 90% of the unburned pixel (𝑡!#), which are used to calculate the recovery time (𝑡$%&):  

𝑡$%& = 	𝑡!# −	𝑡#      (1) 

The average recovery period was obtained using Eq. 1 for all selected burned points for 

both EVI and surface albedo (Table 2). The interval of time that land surface albedo is 
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disturbed ranges from 46 to 279 days. The Zaca case study has the shortest albedo disturbance 

period of 46 days, while the Rush case study has the longest, with 279 days. Vegetation 

recovery periods are generally longer and range from 221 to 890 days. The Rim case study 

has the longest vegetation recovery period of 890 days, and the Rush case study has the 

shortest, with 221 days (Table 2). 

Table 2. Ash removal and vegetation recovery period for each case study. Units: day. 

 

2.2.3 Simplified Simple Biosphere Model 

The Simplified Simple Biosphere land surface model (SSiB) is used to calculate the effects 

of wildfires on the surface heat fluxes. The model employs satellite-derived leaf area index 

and vegetation cover fraction as surface boundary conditions for all simulations, and to 

describe the seasonal state of vegetation (Xue et al. 1991; Xu et al. 2014). The satellite-based 

vegetation classification map has a resolution of approximately 5-km and contains 12 distinct 

land cover types that are generated from Advanced Very High Resolution Radiometer satellite 

measurements (Hansen et al. 2000).  The North American Regional Reanalysis dataset is used 

as forcing and initial conditions for all simulations (Mesinger et al. 2006).  

In addition to a California-wide 10-km resolution domain, which is used to assess the 

model’s performance, separate 1-km resolution domains are created for each individual fire 

in the case study and used to assess post-fire impacts on the surface energy balance. 

Fire Name Ash removal  Vegetation recovery 
Zaca Fire 46 ± 32.8 695 ± 170.5 
Witch Fire 51 ± 36.6 328 ± 159.8 
Rim Fire 183 ± 61.4 890 ± 212.4 
Cedar Fire 60 ± 26.4 338 ± 144.9 
Rush Fire 279 ± 66.9 221 ± 83.9 
Basin Complex Fire 171 ± 66.9 664 ± 279.9 
	1	
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2.3 Experimental Design 

Two different experiments were conducted to examine the effects of burned area on 

radiation balance after six historic California wildfires. The first experiment was treated as a 

control simulation, with no disturbances to vegetation or surface albedo following the fire. 

The conditions in this simulation are meant to represent unburned, observable conditions and 

are a baseline with which the burned experiments are compared. This experiment is referred 

to as the unburned or control simulation.  

The defining components of the second experiment (referred to as the burned experiment) 

are the removal and recovery of vegetation, as well as the deposition and removal of a layer 

of ash on the land surface. The burning of vegetation is simulated by depleting the leaf area 

index (LAI) and vegetation cover fraction every 24 hours, following Eq. 2, where 𝐿𝐴𝐼', BAF, 

and SR represent the unburned LAI, burned area fraction, and the vegetation survival rate, 

respectively. Values of SR are listed in De Sales et al. (2016). A similar equation is used to 

degrade vegetation cover fraction: 

   LAI = 𝐿𝐴𝐼' [1 – BAF (1 – SR)]                                          (2) 

Ash deposition is represented in the model through a darkening of the land surface in the 

model grid cells registering burned area, which is in accordance with the changes in surface 

reflectance associated with albedo decrease post-fire (Govaerts et al. 2002; De Sales et al. 

2018). In the interval of time after a fire and before the removal of ash, shortwave and near-

infrared surface albedo are arbitrarily set to 0.1 to simulate the decrease in surface reflectance 

caused by charcoal and ash (De Sales et al. 2016, 2018). After each fire’s unique albedo 

recovery time has elapsed, the albedo of the land surface transitions to that of bare ground 

until vegetation recovers, a methodology used to imitate the removal of ash deposition by 

wind and rain (Bodí et al. 2014). Vegetation recovery and ash residence time (obtained using 
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the methodology describe in section 2.2.2) for each individual wildfire inform the model and 

provide a more accurate and complete picture of vegetation dynamics, as well as the 

biophysical processes characterizing each location (Dintwe et al. 2017). 

2.4 Results 

2.4.1 Model Performance 

Before analyzing the impacts of fire, we evaluate the model’s performance under 

unburned conditions. A 7-year SSiB simulation for the entire state of California is validated 

here against the North American Land Data Assimilation (NLDAS) dataset (Mesinger et al. 

2006). Monthly averages of temperature and net radiation are compared to NLDAS for the 

time period of March 2005 through December 2012. These climate variables were chosen for 

validation because they are the focus of this burned area impact assessment. It is important to 

establish the SSiB as a reliable tool with which to run experiments, while simultaneously 

gaining a better understanding of meteorological patterns and possible areas of uncertainty in 

the model.  

The SSiB is able to simulate temperature throughout the state of California, with the 

greatest difference from the NLDAS average appearing in the high elevation areas of the 

Sierra Nevada Mountains, located in the eastern portion of central California, where 

temperature tends to be overestimated (Figure 6a). 
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Figure 6. Average annual (a) temperature and (b) net radiation difference between 
control simulation and the NLDAS dataset for March 2005 – December 2012.  

This area also exhibits positive biases in surface net radiation, while the south-eastern 

region is underestimated to roughly the same degree. These discrepancies between the model 

and NLDAS could potentially be caused by differences in the resolution of each respective 

topography and land cover representation (Xia et al. 2012).  
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Figure 7. NLDAS and SSiB datasets for the entire state of California for the period of 
March 2005 through December 2012. (a) temperature (red) (b) net radiation (green). 
Solid lines represent the NLDAS dataset, while the dashed lines represent the SSiB 
simulation.  

Time series comparisons of the two datasets show slight overestimation of temperature in 

the summer and underestimation in the winter, while net radiation is very well simulated 

throughout the duration of the test period (Figures 7a, b).  

California-average monthly bias, root-mean-square error, and correlation coefficient 

between SSiB and NLDAS were calculated to further test the model’s performance (Table 3).  

Table 3. Bias, root-mean-square error, and correlation for NLDAS data and SSiB 
control simulation. 

 

On average, the model overestimates temperature and net radiation by 1.83 K and 3.91 W 

m-2, respectively. The annual cycles of both variables are well simulated by the model (𝑟(  = 

0.99, p < 0.001).   

Overall, these results indicate that the SSiB land surface model is capable of accurately 

simulating the net radiation balance and temperature of California and can be used to reliably 

assess the impact of wildfire burned area on the region’s energy balance. 

2.4.2 Wildfire Impacts 

Burned simulations, characterized by the removal and recovery of both vegetation and a 

layer of ash, were performed for each of the six historic California wildfires. In an effort to 

understand the impacts that wildfire burned area have on land surface-atmosphere energy 

Variable Metric  
Temperature [ K ] Bias 1.83 
 RMSE 1.87 
 Cor 0.99 
Net Radiation [ W m-2 ] Bias 3.91 
 RMSE 5.12 
 Cor 0.99 
	1	
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exchange, the partitioning of radiation into sensible and latent heat flux is analyzed for each 

fire. The mean difference between burned and unburned simulations provides information on 

whether the overall change in energy balance was positive or negative, while maximum and 

minimum difference indicates the general range of the fluctuation from the control. A spatial 

and temporal difference between burned and unburned LAI aids in the analysis.   

Spatial distributions of monthly average latent heat flux spanning the duration of the 

vegetation recovery period shows a decrease in all of the burned areas within each case study 

domain, except for the Rush Fire where there was an average increase of 0.5 W m-2 and a 

minimum difference of -5.0 W m-2 (Fig. 8e). The prevalence of non-forest type vegetation 

(including groundcover, broadleaf shrubs with bare soil, and broadleaf shrubs with ground 

cover), a small mean change in LAI, and low vegetation cover fraction may contribute to the 

distinct patterns of change in the Rush case study. 
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Figure 8. Difference between the burned and unburned latent heat flux (a) Zaca, (b) 
Witch, (c) Rim, (d) Cedar, (e) Rush, and (f) Basin Complex fires. 

The Witch and the Cedar fires have similar minimum differences of -16.6 and -10.2 W m-2, 

respectively, while the Zaca, Rim, and Basin Complex fires have larger minimum differences 

of -18.4, -24.0, and -25.2 W m-2, respectively (Table 4). The Witch and Cedar burned areas 

have similar vegetation type distributions, however, the Witch study has a larger percentage 
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of needle-leaf evergreen tree cover.  The Zaca, Rim, and Basin Complex studies contain the 

largest amount of forest-type vegetation covers. 

Table 4. Mean, maximum, and minimum values obtained from the monthly average 
difference of latent heat flux, sensible heat flux, net radiation, and leaf area index for the 
burned and unburned experiments during each wildfire’s unique vegetation recovery 
period. Spatial categories represent the difference between means of the burned and 
unburned simulations for the vegetation recovery period (as in Figures 8, 10, 12). 
Temporal categories represent the mean differences between the burned and unburned 
time series (as in Figures 9, 11, 13).  

 

 Zaca  Witch Rim Cedar Rush Basin 
Complex 

Spatial       
Latent Heat Flux        
     Mean -5.8 -1.8 -8.9 -0.7 0.5 -7.6 
     Min -18.4 -16.6 -24.0 -10.2 -5.0 -25.2 
     Max 0.02 0.02 1.7 0.3 3.0 0.1 
Sensible Heat Flux       
     Mean -1.3 -0.4 -3.0 1.5 12.7 -3.0 
     Min -15.5 -10.8 -19.7 -39.3 -0.03 -22.7 
     Max 20.6 15.1 22.4 18.1 36.8 19.6 
Net Radiation       
     Mean -7.0 -2.2 -11.9 0.9 13.2 -10.5 
     Min -25.4 -23.3 -35.8 -41 -1.0 -29.3 
     Max 18.8 6.9 22.0 18.1 39.3 4.8 
LAI       
     Mean -0.5 -0.3 -3.5 -0.6 -0.2 -0.9 
     Min -1.5 -1.0 -7.1 -6.6 -2.6 -2.1 
     Max -1.2 -1.4 0 0 0 0 
Temporal       
Latent Heat Flux       
     Mean -7.0 -2.3 -9.8 -0.7 0.5 -7.2 
     Min -17.6 -4.3 -49.9 -3.7 -0.6 -28.8 
     Max -1.3 2.0 6.4 1.3 3.6 7.1 
Sensible Heat Flux       
     Mean -2.8 -2.9 -8.0 -0.1 12.7 -5.9 
     Min -18.2 -8.3 -47.8 -5.0 0.5 -38.5 
     Max 5.1 4.6 17.3 7.7 26.5 16.2 
Net Radiation       
     Mean -9.7 -5.2 -17.8 -0.7 13.2 -13.0 
     Min -21.3 -12.0 -41.7 -4.1 -0.7 -31.6 
     Max 0.5 2.7 4.2 6.8 26.5 -0.01 
LAI       
     Mean -0.6 -0.4 -3.9 -0.6 -0.2 -1.0 
     Min -0.8 -0.5 -4.6 -0.9 -0.2 -1.4 
     Max -0.1 -0.1 -0.6 -0.4 -0.1 -0.6 
	1	
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The Zaca burned scar shows the most uniform distribution of latent heat flux change, with 

the greatest decreases occurring in the middle of the scar and little to no change on the outside 

of the fire perimeter (Figure 8a). According to the model’s vegetation map, the greatest 

changes in latent heat flux within the Zaca study’s domain occur in the same areas as needle-

leaf evergreen trees, while the smaller changes on the outside of the burned area occur where 

broadleaf trees with ground cover are located. In contrast, the Cedar fire displays little to no 

change in large portions of its burn scar, with concentrated areas of decreased latent heat flux 

in the northern and central sections, where broadleaf shrubs with bare soil is the predominate 

vegetation type (Figure 8d). The Witch fire burned much of the same territory of San Diego 

county as the Cedar fire and displays similar patterns of latent heat flux change, including 

several areas of concentrated latent heat flux decrease (where needle-leaf evergreen trees are 

found), however, the Witch fire has a greater mean decrease of -1.8 W m-2 (Figure 8b). The 

Rim fire burn scar shows distinct regions that did not change within larger areas that show 

significant reductions in heat flux (Figure 8c). In the Rim study, needle-leaf evergreen trees 

are found in the areas with the greatest amount of latent heat flux change.  

Time series analyses also indicate decreases in average monthly latent heat flux in all six 

fires except for the Rush fire, which had an average increase of 0.5 W m-2 (Figure 9e). 
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Figure 9. Average unburned latent heat flux (solid line) and the post-fire change in the 
flux (grey line) for the (a) Zaca, (b) Witch, (c) Rim, (d) Cedar, (e) Rush, and (f) Basin 
Complex fires. 

The Zaca, Rim, and Basin Complex fires experience the largest minimum differences 

between burned and unburned experiments, with -17.6, -49.9, and -28.8 W m-2, respectively. 

The Zaca and Basin Complex fires have periods when the latent heat flux was greater than the 

unburned simulation, both occurring during the summer of the third year (Figures 9a, f). The 

latent heat flux in the Basin Complex burned simulation, while greater than the unburned, still 
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follows the decreasing trend of the unburned during this time, however, the Zaca burned 

simulation increases relative to the control. Furthermore, the Zaca fire’s increase in latent heat 

flux relative to the unburned occurs after the vegetation recovery period, while the Basin 

Complex occurs during. While the greatest changes occur during the vegetation recovery 

period for the Witch, Cedar, Rush, and Basin Complex fires (after which the burned scenario 

becomes roughly equal to the unburned), the Zaca and Rim fires experience differences in 

latent heat flux throughout the duration of the simulation (Figures 9a, c). 

The impact of burned area on sensible heat flux results in spatial heterogeneity of change 

in each of the six case studies (Figure 10). 



 

 26 

 

Figure 10. Same as Figure 8 except for sensible heat flux. 

The Rush fire and the Cedar fire are the only cases that did not experience an average 

decrease in sensible heat, in fact, they average an increase of 12.7 and 1.5 W m-2, respectively. 

Furthermore, the Rush fire was the only burn scar that experienced increases in sensible heat 

flux across the entire burned area with no decreases (Figure 10e). The Cedar fire case study 
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displayed similar spatial patterns, however, there was a large patch of sensible heat decrease 

in the northern part of the domain (consequence of the Mataguay fire, July 2004, which burned 

approximately 35 km2 and was predominately needle-leaf evergreen tree vegetation type), 

where the large minimum difference of -39.3 W m-2 occurred (Figure 10d).  The Zaca fire 

experienced average decreases in the eastern and northern portions of the burned area and 

increases in the western and southern portions (Figure 10a). The Zaca fire’s single largest 

point of sensible heat increase relative to the unburned simulation is along the coastline in the 

southern portion of the domain. Changes in sensible heat flux within the Rim fire perimeter 

display a similar spatial distribution as latent heat flux (Figure 10c). In fact, the Rim fire shows 

decreases in sensible heat in the same areas where latent heat flux decreased and increases in 

sensible heat where there was no substantial change in latent heat flux. There are several points 

within the Rim fire perimeter where sensible heat increased significantly, with the maximum 

change of 22.4 W m-2. Similarly, the Basin Complex fire displays several points of large 

sensible heat increase, with a maximum change of 16.2 W m-2 (Figure 10f). Overall, there was 

wide variability in the impact of burned area on sensible heat flux, with the largest increase 

relative to the unburned scenario after the Rim fire (36.8 W m-2), while the largest decrease 

occurred in the Cedar fire case study (-39.3 W m-2). 

According to monthly averaged time series, the Rush fire (Figure 11e) was the one case 

study to average an increase relative to the unburned scenario (12.7 W m-2). 
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Figure 11. Same as Figure 9 except for sensible heat flux. 

This increase is evident during the first year of the simulation, peaking in the spring of 

2013, before returning to the unburned values with no further change (Figure 11e). The 

remaining fires all experienced a mean decrease in sensible heat flux. While the increase in 

heat flux at the beginning of the Rush fire simulation is the largest, the other fires display an 

initial increase in sensible heat flux as well, though, the differences were small. Additionally, 

the Cedar fire shows the smallest range of variability, fluctuating between -5.0 and 7.7 W m-
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2, while the Rim fire had the largest, -47.8 to 17.3 W m-2. Also, similar to latent heat flux, the 

most notable changes occur during the period of vegetation recovery immediately post-fire.  

Net radiation was calculated by adding latent, sensible, and ground heat flux. Spatial 

differences between burned and unburned simulations vary heterogeneously, with increases 

and decreases occurring in the same fire perimeter, although the distribution of change appears 

to be more uniform, as the partitioning of energy into sensible and latent heat flux is more 

balanced (Figure 12).  
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Figure 12. Same as Figure 10 except for net radiation. 

Variability from the control scenario was large in all the case studies, however, the largest 

differences were found in the Cedar and Rim case studies, whose minimum and maximum 

differences were -41.0 and -35.8 W m-2, and 22.0 and 39.3 W m-2, respectively (Table 4). 

Changes in net radiation in the Zaca case study appears to have equal contributions from 
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decreases in latent and sensible heat flux in the northern portion of the burned area, but there 

is a balance in the southern portion of the domain where overall change was small (Figure 

12a). The concentrated areas of decreased net radiation in the Witch case study are 

predominantly a result of decreased latent heat, and the areas where net radiation increased 

were caused by increases in sensible heat flux (Figure 12b). In the Rim case study, latent and 

sensible heat decreased in the same areas and contributed to large regions where net radiation 

changed significantly (Figure 12c). Since the Cedar fire did not display any substantial change 

in latent heat flux, changes in net radiation are clearly dominated by the partitioning of 

sensible over latent heat flux (Figure 12d). The Rush fire case study is similar to the Cedar 

study, as increases in sensible heat flux clearly contribute the most to changes in energy 

balance (Figure 12e). In fact, net radiation increased relative to the unburned simulation by as 

much as 39.3 W m-2. Furthermore, spatially averaged decreases in sensible heat flux are 

apparent in the northern portion of the Basin Complex fire, while decreases in both latent and 

sensible heat flux compound in the southern portion of the domain (Figure 12f).   

Time series displaying the difference between burned and control simulations indicate that 

the Rush fire was the one case study that averages an increase in net radiation (13.2 W m-2), a 

result of partitioning of sensible over latent heat flux (Figure 13e).  
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Figure 13. Same as Figure 9 except for net radiation. 

Among the other fires, the greatest maximum difference in net radiation was from the 

Cedar fire (6.8 W m-2), while the greatest minimum difference was the Rim fire (-41.7 W m-

2). Temporally averaged latent heat flux contributes a greater amount to the changes in net 

radiation than sensible heat flux for the Zaca, Rim, Cedar, and Basin Complex fires.   

An analysis of the difference in simulated burned and unburned LAI indicates that there is 

a relationship between sensible heat flux and vegetation cover. The largest spatially averaged 
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mean decreases in sensible heat are associated with the largest mean decreases in LAI (i.e., 

Rim, Basin Complex, Zaca). Here we refer to changes in LAI as the average amount of fire-

related vegetation degradation that occurs within the vegetation recovery period in each case 

study. However, this relationship is not apparent in the case studies that average an increase 

in sensible heat (Cedar, Rush), as different vegetation, albedo, and energy balance dynamics 

are at play. For context, the Rush fire had the lowest mean LAI change (-0.2), indicating that 

this region had the smallest variability in LAI values between the burned and unburned 

simulations, and that the average unburned LAI is low (Table 4). On the other hand, the Rim 

fire had the largest mean change in LAI (-3.5), indicating that there was significant variability 

in the amount of vegetation simulated in the burned and unburned simulations. Spatial analysis 

of LAI distribution in each of the domains shows that the greatest decreases in sensible heat 

flux occur in the same areas as the greatest fire-related vegetation loss, while increases in 

sensible heat are associated with smaller differences between burned and unburned vegetation 

cover (i.e., Rush fire). For example, the Cedar case study’s relatively large mean change in 

LAI (-0.6), as well as the large minimum difference in spatially averaged sensible heat flux (-

39.3 W m-2, are explained by this phenomenon, as these impacts are primarily a result of the 

burning of large amounts of vegetation in the north-eastern section of the domain (Figure 

10d). 

2.5 Discussion 

The partitioning of energy into sensible and latent heat flux is largely dependent on 

moisture availability and the presence of vegetation (Chambers and Chapin 2003). In 

California, where individual fires are capable of burning for tens of thousands of kilometers, 

the associated rapid removal of vegetation has the immediate effect of reducing 
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evapotranspiration and increasing sensible heat flux. In addition, the initial decrease in albedo 

due to ash deposition can increase the amount of energy available at the surface (Chambers 

and Chapin 2003). Here we show that it is possible to model the impact of wildfire burned 

area on surface climate, that the impact on radiation balance is climatologically significant, 

and that the disturbance can be quantified and used to inform future modelling endeavors.  

One of the most remarkable aspects of our results is the variability found in the spatial 

distribution of heat flux within the case study domains. For example, within a single burned-

area perimeter we find that there is significant variability in net radiation changes, particularly 

the sensible heat component (Figure 10). Average increases and decreases of sensible heat 

flux within close proximity likely result from differences in vegetation cover. Initially, as 

more heavily vegetated regions (with high LAI and lower relative albedo values) transition to 

char and subsequently bare ground, the reduction in evapotranspiration will dominant over 

the increase in sensible heat flux caused by the effects of ash deposition as in the Rim, Basin 

Complex, and Zaca fires (Table 4). However, over time, high LAI regions transitioning to bare 

ground might experience substantial decreases in sensible heat flux as the land surface 

coupling with the atmosphere is greatly diminished (Figure 11). Meanwhile, the conversion 

of vegetation types such as shrubland and groundcover to char and then bare ground can cause 

the increases in sensible heating to dominate, because the effect of ash deposition outweighs 

changes in canopy coupling to the atmosphere, as observed in the Rush and Cedar fires 

(Figures 10d, e). This behavior has been described in works by Chambers et al. (2005). So, 

varying with albedo recovery period, regions within each burn perimeter with higher LAI are 

more likely to experience spatially averaged decreases in sensible heat flux, whereas more 

sparsely vegetated areas show an increase. We see this phenomenon in the Rim fire, where a 
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distinct outline of relatively sparse vegetation exhibits sensible heat increase, while the 

surrounding forested region shows a decrease (Figure 10c). 

Immediately post-fire, the lowering of the albedo of the land surface, caused by char and 

ash deposition, is associated with greater radiation absorption at the surface and an increase 

in sensible heating. The degree of change in albedo varies based on pre-fire vegetation 

characteristics, soil reflectance, burn severity, and vegetation recovery (Jin and Roy 2005). 

Initial increases in sensible heat flux due to char and ash deposition are often balanced by a 

reduction in latent heat flux due to the removal of vegetation, however, the impact of ash 

deposition on sensible heat partitioning dominates where fire-related impacts on vegetation 

are low, as observed in the Witch, Cedar, and Rush fires (Figures 13b, d, e). Thus, increases 

in net radiation (primarily partitioned into sensible heat flux) at the beginning of simulations 

for fires in sparsely vegetated areas are likely caused by the deposition of ash on the surface 

immediately following the large fire (Figures 11 and 13).  

While ash deposition affects the partitioning of energy for a short period after a fire, the 

removal of vegetation displays its own unique signature. Initially, large reductions in biomass 

cause more energy to be partitioned into ground heat fluxes at the expense of latent heat, 

warming the surface (Figures 11). These results are corroborated by other studies that found 

that average net radiation increases more in non-forested landscapes compared to forest, as 

canopy properties (i.e., surface roughness) were impacted more strongly in forested 

landscapes, leading to a greater decrease in atmosphere-surface coupling (Anthes 1984; Andre 

et al. 1989; Chambers and Chapin 2003; Beringer et al. 2005; Chambers et al. 2005). In other 

words, where low-lying vegetation is common and there is little to no canopy, the increase in 

net radiation as a result of ash deposition and a lowered surface albedo dominates over the 
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decrease in latent heat flux (Rush, Cedar). We see this effect most strongly in the Witch, Rush, 

and Cedar fires, where a large proportion of the burned land surface has a low average LAI, 

and there is weaker surface-atmosphere coupling. In addition, vegetation recovery time varies 

broadly among the six chosen wildfires, and the fires with the shortest recovery time (Rush, 

Cedar), and the largest ratio of ash deposition to vegetation recovery, appear to generate more 

net radiation while the longer recovery times experience decreases (Rim, Basin Complex). 

This supports the notion that vegetation recovery and ash deposition periods of similar length 

can increase net radiation at the surface due to the overpowering effect of ash deposition over 

vegetation removal, especially where vegetation is sparse (Rush). 

2.6 Conclusion 

This study investigated the impacts of wildfire burned area on surface radiation budget 

and energy exchange, as well as the importance of vegetation recovery on land surface 

processes. A selection of six historic California wildfires were chosen and a burned and 

unburned simulation was performed for each. A 10-km control simulation for the state of 

California indicated that the model is capable of accurately reproducing temperature and net 

radiation in the study areas, and its results may be used as a benchmark against which the 

burned simulations can be compared. In the burned simulations, the albedo of the land surface 

is lowered to imitate the effect of ash deposition on the land surface and vegetation is removed 

for a period of time unique to each domain’s common vegetation index. This methodology 

highlights the role of post-fire vegetation recovery on the partitioning of energy into sensible 

and latent heat flux.  

Spatially and temporally averaged latent heat flux decreased in all the case studies except 

the Rush fire. The greatest changes occurred in the Rim, Basin Complex, and Zaca fires, with 
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spatially averaged decreases of 8.9, 7.6, and 5.8 W m-2, respectively. Spatially averaged 

decreases in latent heat flux comprised a greater proportion of the total change in net radiation 

for the Zaca, Witch, Rim, and Basin Complex fires, while the Cedar and Rush fires 

experienced a greater partitioning of energy into sensible heat. Every case study recorded a 

decrease in temporally averaged sensible heat flux except the Rush fire, which recorded a 

mean increase of 12.7 W m-2, accounting for the majority of its total change in net radiation 

(13.2 W m-2). We hypothesize that this increase in net radiation after the Rush fire is a result 

of small changes in mean LAI as well as an extended ash deposition period that leads to the 

dominance of sensible heating. Initial increases in sensible heating due to the effect of ash 

deposition were recorded after every fire, however, this change was balanced by decreases in 

latent heat flux (i.e., the removal of vegetation) in the Zaca, Rim, and Basin Complex burned 

areas. Finally, the greatest changes in temporally averaged net radiation occurred in the Rim 

(-41.7 W m-2), Basin Complex (-31.6 W m-2), and Rush (26.5 W m-2) fires.  

Results also indicate a clear relationship between fire-related degradations in LAI and heat 

flux. For example, wildfires that occur in areas of low-lying vegetation are associated with 

increases in sensible heat flux (an effect that is magnified by long albedo recovery times) 

(Rush), while the burning of heavily vegetated regions are associated with the largest 

decreases in sensible and latent heat flux (Rim, Basin Complex). This phenomenon is 

especially apparent in the Cedar fire case study, where a large amount of vegetation was 

burned in a single portion of the domain, leading to substantial decreases in sensible heat flux, 

and disproportionately influencing the spatially averaged minimum difference. Future work 

with the SSiB modelling tool can inform how wildfire and subsequent vegetation recovery 

alters critical biophysical processes across a spectrum of burn severities.  
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With this study the immediate impacts of wildfires on local meteorology become more 

apparent. Around the world, larger and larger burned areas will reduce the cooling effects of 

evapotranspiration, while simultaneously warming the land surface via sensible heat. These 

changes to the properties of the land surface have a strong influence on post-fire vegetation 

succession and planetary boundary layer development, making ecosystems more vulnerable 

to the impacts of wildfire and climate change (Syphard et al. 2006). 
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Chapter 3. Impacts of Burn Severity on Short-Term Postfire  

Vegetation Recovery, Surface Albedo, and Land Surface Temperature  

in California Ecoregions 

3.1 Introduction 

The annual burned area in California has grown since 2000, with dramatic increases in 

2017, 2018, and 2020 (Williams et al. 2019). The surge in wildfire activity in recent years is 

often cited as being a result of moisture deficits exacerbated by seasonal summer drought, 

reduced snowpack, early spring snowmelt, increased aridity, and accelerated vegetation die-

off (Westerling et al. 2006; Westerling et al. 2008; Spracklen et al. 2009; Williams et al. 2019). 

These wildfire risk factors are projected to worsen under Intergovernmental Panel on Climate 

Change (IPCC) warming scenarios and contribute to the growing amount of total annual 

burned area (Westerling et al. 2008; Westerling et al. 2011; Barbero et al. 2015; Williams et 

al. 2019). In California, the impacts of anthropogenic climate change on wildfire activity and 

wildfire related land cover change will likely vary seasonally and spatially due to the diversity 

of climate, topography, and vegetation distributions (Williams et al. 2019). Also, climate 

change is likely to have further impacts on biophysical response by influencing the moisture 

conditions that can determine the rate of vegetation recovery, the species, structure, and 

flammability of the succeeding flora, as well as the frequency of future wildfire occurrence 

(Westerling et al. 2011; Bright et al. 2019). 

Wildfire related land cover change on the scale of California’s large burned areas alters 

boundary layer climate and has a significant impact on surface energy balance through 

changes to net radiation (Rother and De Sales 2020). The immediate effect of wildfire on the 
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land surface is the deposition of a layer of charcoal, or ash, which decreases albedo and 

increases sensible heat flux (Veraverbeke et al. 2012; Dintwe et al. 2017; Rother and De Sales 

2020). The postfire change in albedo is highly dependent on the severity of the fire and is 

generally short-lived, as the ash is soon dispersed by wind and rain (Veraverbeke et al. 2012; 

Dintwe et al. 2017). At the same time, the removal of vegetation is more often associated with 

a decrease in latent heat flux and an increase in sensible heating, as decreased evaporative 

cooling can lead to increases in land surface temperature. Land surface temperatures can rise 

by up to 8 °C after wildfire events, with the duration of the change varying based on vegetation 

and ecosystem type (Bremer et al. 1999; Amiro et al. 2006; Wendt et al. 2007). Furthermore, 

the duration and magnitude of many of these wildfire-induced biophysical impacts are highly 

dependent on burn severity (Veraverbeke et al. 2012). 

Burn severity refers to wildfire-induced modifications to the soil surface and vegetation 

conditions, and is controlled by a suite of factors including terrain slope, pre-disturbance 

vegetation composition, weather and climate conditions, and fuel characteristics (Key and 

Benson 2005; Lutes et al. 2006; Gitas et al. 2009; Keeley 2009; Bright et al. 2019). High 

severity fires are defined by complete canopy mortality and the burning of the entire top layer 

of soil, while low severity fires tend to burn for a shorter period of time and result in the loss 

of ground and understory vegetation (Keeley 2009; Bright et al. 2019). Significant alterations 

to the land surface associated with high severity burns change the spectral reflectance of 

vegetation and underlying soil, making remote sensed datasets ideal for studying their 

patterns. A number of studies have used satellite-derived datasets to study the effects of land 

surface disturbances on the recovery of vegetation in Mediterranean ecosystems (Hope et al. 

2007; Meng et al. 2014; Petropoulos et al. 2014; Fernandez-Manso 2016). In addition, the 
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burn severity associated with any particular wildfire may have important implications for 

vegetation recovery (Meng et al. 2015; Bright et al. 2019). Furthermore, an ecoregion-level 

understanding of the biophysical response to wildfire will help land managers identify 

ecosystems and wildland-urban interfaces particularly at risk for the consequences of high 

severity fires and weakened vegetative resilience (Meng et al. 2015).  

Here we investigate the impact of burn severity on vegetation recovery, albedo change, 

and land surface temperature in California between 2003 and 2020. In addition, we analyze 

the amount or magnitude and distribution of burned area, EVI, surface albedo, and land 

surface temperature within California ecoregions, as well as the correlations between burn 

severity, EVI, and land surface temperature. Our metric for burn severity, a MODIS-derived 

relative differenced Normalized Burn Ratio (RdNBR) dataset, was used to stratify the early-

summer postfire averages for three biophysical variables into three burn severity classes. Our 

primary research objective was to quantify the impact of burn severity on vegetation recovery, 

albedo, and land surface temperature across the state in the first five years after fire. Through 

the ecoregion-specific calculation of burned severity thresholds and their use in the analysis 

of EVI, land surface albedo, and temperature, we hope to help land managers foresee 

consequences of, and determine areas at risk for, high severity fire. In addition, five-year 

postfire trajectories of EVI, albedo, and temperature will improve the reliability of land 

surface models when simulating the impacts of wildfire on the land surface.   

3.2 Materials and Methods 

Postfire EVI recovery, albedo change, and land surface temperature (LST), as well as all 

burn severity metrics, including relative differenced Normalized Burn Ratio (RdNBR), were 

analyzed using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. We 
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are aware that the coarse spatial resolution of MODIS imagery requires some sacrifice to 

spatial heterogeneity. However, the high temporal frequency and wide-area coverage of the 

MODIS data allow for a focus on the temporal patterns of vegetation recovery, albedo, and 

land surface temperature change.   

3.2.1 California Ecoregions and Land Cover Types 

The study area is California, where the U.S. Environmental Protection Agency has defined 

seven ecoregions used here for analysis: Southern California Mountains (SCM), Southern 

California Coast (SCC), Central California Foothills (CCF), Klamath (K), Cascades (C), 

Eastern Cascades (EC), and Sierra Nevada (SN) (Griffith et al. 2016) (Figure 14). It is 

important to note that three ecoregions within California were excluded from the analysis. The 

Marine West Coast Mountains region was removed from the analysis because it experienced 

significantly fewer fires than the other ecoregions (~2500 total burned pixels; 3% burned 

area). Also, the North American Desert (i.e. southeast and northeast California) rarely 

experiences wildfire (~15000 total burned pixels, 2% burned area). In fact, only one large 

wildfire occurred in this region between 2003-2020 (i.e. the Rush Fire, Lassen County, August 

2012) and so does not provide a comprehensive view of the entire ecoregion over the duration 

of the study period, as the study of a single fire is outside the scope of this project. Following 

this, the California Central Valley, a major agricultural hub in the United States, is removed 

from analysis due to the predominance of crop land cover types and irrigated agriculture that 

does not experience vegetation recovery in a comparable way to other land cover types. 

Additionally, the Central Valley experiences a high frequency of small fires of low severity 

that are filtered out after the application of burn severity thresholds. 
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Figure 14. Ecoregions of California, including Southern California Mountains (SCM), 
Southern California Coast (SCC), Central California Foothills (CFF), Klamath (K), 
Cascades (C), East Cascades (EC), and Sierra Nevada (SN). Areas in white represent 
coastal zones, Central Valley agriculture and desert areas. The coastal zone in northwest 
California and the desert zone in the south and northeast are removed from analysis due 
to rare occurrence of wildfire. The Central Valley was removed from the analysis due to 
the predominance of crop land cover, irrigated agriculture, and the high frequency of 
low severity fires that are filtered out after the application of burn severity thresholds. 
Ecoregions of California (Griffith, 2016): https://doi.org/10.3133/ofr20161021. 

We used the MODIS Version 6 MCD12Q1 500-m Land Cover Type to analyze the pre- 

and postfire characteristics of the land surface (Friedl et al. 2002; Friedl et al. 2010). This 

product is derived from supervised classifications of reflectance data and provides 17 global 

land cover types, including needleleaf forest, broadleaf forest, closed shrublands, woody 

savanna, grasslands, and others (Friedl and Sulla-Menashe 2019). We calculated the 

percentage of each vegetation type that remained unburned for the duration of the study 
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period, as well as the mean early-summer EVI for five predominant land cover types (Table 

5). 

Table 5. Land Cover characteristics for the unburned regions of each ecoregion 
averaged for 2003 - 2020.

 
Overall, the prevailing land cover type within the unburned areas of the Klamath ecoregion 

is needleleaf forest (63%); the Eastern Cascades ecoregion is mostly grassland (78%); the 

Cascades are most substantially needleleaf forest (37%) and closed shrublands (46%); the 

Central California Foothills ecoregion is mostly grasslands (51%) (Table 5). For our purposes 

of land cover analysis, the closed shrubland category includes both closed shrublands and 

woody savanna vegetation types. 

 Southern 

California 

Mountains 

Southern 

California 

Coast 

Central 

California 

Foothills 

Klamath 

Mountains 

 

Cascades Eastern 

Cascades 

Sierra 

Nevada 

Total Land 

(total 500 m 

pixels) 

89263 117026 446343 201138 84997 107530 305702 

Burned Area 

(%)a 
46 25 16 31 6 7 17 

Nonburned Areas  

(number of 500 

m pixels) 

47861 88028 376989 138994 79548 99845 253509 

Percentage of 
Land Cover 
Types (%) 

       

Needleleaf 3 0 3 63 37 2 21 

Closed 

Shrublandsb 

14 8 13 23 46 6 21 

Open Shrublands 20 4 3 0 0 0 5 

Savanna 28 12 17 3 9 8 21 

Grasslands 33 23 51 6 6 78 27 

Mean Early-
Summer EVIc 

       

Needleleaf 0.36 0.32 0.42 0.42 0.36 0.32 0.39 

Closed 

Shrublands 

0.24 0.22 0.3 0.34 0.29 0.24 0.33 

Open Shrublands 0.18 0.16 0.18 0.28 0.17 0.14 0.15 

Savanna 0.24 0.27 0.27 0.31 0.3 0.26 0.27 

Grasslands 0.23 0.18 0.19 0.29 0.23 0.19 0.23 

 1 
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3.2.2 Fire History 

The location and approximate date-of-burn information for California wildfires that 

occurred between January 2003 and December 2020 was obtained from the MODIS 

MCD64A1 product (Giglio et al. 2015). Additionally, this burned area product was also used 

to calculate the total annual burned area within the seven ecoregions of California for the years 

2003-2020. MODIS identifies burned areas by measuring changes in surface reflectance (Roy 

et al. 2002). The majority of land surface areas that burn each year are a consequence of large 

wildfire events, and MODIS pixels classified as burned more than once within the study period 

were not included in the calculation of total burn pixels.  

3.2.3 MODIS Enhanced Vegetation Index and Albedo 

To analyze the presence of vegetation on the land surface, we used the MOD13Q1 Version 

6 Enhanced Vegetation Index (EVI) 16-day, 250-m resolution product. MOD13Q1 can 

discriminate between canopy and canopy background and has an improved atmospheric 

correction for cloud and aerosol contamination (Jin et al. 2012; Didan 2015). Here we use EVI 

as a measure of vegetation productivity and refer to vegetation recovery synonymously with 

EVI recovery to describe the trajectory of postfire EVI towards prefire values. Mean early-

summer EVI was calculated for individual vegetation types within each ecoregion (Table 5). 

Mean EVI was highest for all vegetation types within the Klamath region. Overall, the SCM 

and the EC had the lowest average mean early-summer EVI. In addition, needleleaf forest had 

a higher mean early-summer EVI within each ecoregion than any other vegetation type.  

For the analysis of land surface albedo, we used the 500-m resolution MCD43A3 Version 

6 White-Sky shortwave albedo model product at a 3-day temporal resolution (Schaaf and 

Wang 2015). MODIS shortwave albedo (0.3 – 5.0	𝜇m) has been successfully used to measure 
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albedo response to wildfire in previous studies (Lyons et al. 2008; Samain et al. 2008; Jin et 

al. 2012; Gatebe et al. 2014; Huang et al. 2015; Dintwe et al. 2017).  

3.2.4 MODIS Land Surface Temperature 

Collection 6 MODIS MYD21A2 Land Surface Temperature (LST) data were used for this 

study to calculate five-year postfire recovery patterns within pixels of varying levels of burn 

severity. MYD21 is an 8-day 1-km product that is derived through a Temperature/Emissivity 

Separation technique using thermal infrared bands 29 (8.4 - 8.7 𝜇m), 31 (10.78 - 11.28 𝜇m), 

and 32 (11.7 – 12.27 𝜇m), as well as land surface temperature (Hulley 2017). In addition, a 

Water Vapor Scaling correction is applied to account for biases during warm and humid 

weather. MYD21 has been evaluated against ground-based measurements and is shown to 

have a bias of -0.2 °C (Jin and Liang 2006; Wang et al. 2007; Wang and Liang 2009; Ma et 

al. 2019).  

3.2.5 Burn Severity 

We calculated Normalized Burn Ratio (NBR, eq. 1) using MOD13Q1 surface reflectance 

band 2 (841-876 nm) and band 7 (2105-2155 nm). NBR is a spectral index that has been 

widely used to analyze the post-disturbance effect of wildfire on the land surface (French et 

al. 2008; Soverel et al. 2010; Veraverbeke et al. 2010; Jin et al. 2012; Parks et al. 2014; Hislop 

et al. 2018; Shvetsov et al. 2019), and studies evaluating NBR against on-the-ground estimates 

of burn severity have found strong correlations (Van Wagentendonk et al. 2004; Key 2006; 

Hudak et al. 2007; Keeley 2009; Bright et al. 2019). NBR uses differences in reflectance 

between the near infrared and shortwave infrared wavelengths, normalized by the sum of the 

two bands, to measure changes to the land surface after wildfire events, such as deposition of 



 

 47 

char and ash, removal of vegetation, decreased moisture content, and exposed soil (Vlassova 

et al. 2014; Bright et al. 2019; Shvetsov et al. 2019). We calculated an early-summer NBR 

(June 26 - August 12) for California for each year within the time period January 2002 through 

December 2020.  

𝑁𝐵𝑅 = 	 ((*+,-	()0(*+,-	1))
((*+,-	()2(*+,-	1))

     (3) 

Healthy vegetation displays strong reflectance in the near infrared band (band 2) and low 

reflectance in the shortwave (band 7), while recently burned areas show the opposite (Keeley 

2009). Therefore, low NBR values indicate recently burned areas (or low vegetation), while 

high NBR values indicate healthy vegetation. Prefire NBR was calculated as the average NBR 

within burned area perimeters in the year before the fire, while postfire NBR was calculated 

by measuring average NBR in the same burn perimeter the year after the fire.  

We also calculated the differenced Normalized Burn Ratio (dNBR) by subtracting average 

postfire NBR from average prefire NBR (dNBR=prefireNBR - postfireNBR). dNBR time 

series were generated for the early-summer period for each year from January 2002 - 

December 2021. While dNBR utilizes pre- and postfire imagery to calculate an absolute 

change, the relative differenced Normalized Burn Ratio (RdNBR) measures burn severity 

relative to prefire surface reflectance (Miller and Thode 2007), and is calculated as:  

     𝑅𝑑𝑁𝐵𝑅 = 	 -3*4
5|7$%89$%3*4|

                (4) 

RdNBR assesses changes in near infrared and shortwave infrared radiation in the context 

of post-disturbance variations in vegetation and soil moisture (Jin et al. 2012). RdNBR has 

been shown to be more robust when comparing fires across landscapes, and more accurately 

differentiates levels of burn severity within heterogeneous landscapes (Miller and Thode 

2007; 2010). Values typically range from –1.5 to +1.5, with positive numbers indicating 
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varying degrees of burn severity (when postfire NBR is negative), while negative values 

indicate varying levels of vegetation recovery (when postfire NBR is positive). Burn severity 

thresholds for low, moderate, and high severity were derived for each ecoregion from the 

cumulative distribution of RdNBR for 20%-45%, 45%-75%, and >75% percentiles. These 

percentile groups span a different range of RdNBR values for each ecoregion, and thus are 

more dynamically suited to regions with varying prefire surface reflectance, which allows for 

a more standardized and informed classification of burn severity across landscapes compared 

to a single set of thresholds applied to all ecoregions. It is important to note that burned pixels 

with RdNBR values below the 25th percentile were considered recovered, or unchanged, and 

are not included in this study, as the surface reflectance values in the postfire image returned 

to roughly that of the prefire image after one year. 

Statistical testing involved calculating the correlation coefficient for pre- and postfire 

NBR with RdNBR, as well as ΔEVI and ΔLST with RdNBR (change refers to the difference 

between the pre- and first year postfire images unless otherwise specified). Pearson correlation 

values were found using cortest() function in the R programming software. In order to obtain 

the correlations for each ecoregion, the pre- and postfire early-summer average of NBR, 

RdNBR, EVI, and LST was calculated within each year’s burned area. The temporal 

correlation, using one average for each variable for 2002-2021 was then obtained for the pairs 

listed above. This correlational analysis provided a useful metric with which to analyze the 

dominant controlling factor in the calculation of RdNBR (pre- or postfire NBR). It was also a 

useful tool for understanding the relationship between postfire biophysical response and burn 

severity. In addition, by comparing the biophysical changes that occur between the first-year 
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pre-fire and the first-year post-fire (i.e. differenced indices), we could quantify the largest 

changes between a burned and unburned land surface.  

3.2.6 Fire-Year Postfire Averages 

We focused on the temporal dimension of burn severity’s impact on biophysical variables 

by analyzing the early-summer averages for EVI, shortwave albedo, and land surface 

temperature within seven ecoregions and three burn severity classifications during the first 

five years after fire. Burned areas were considered for the years 2003-2020, which allowed 

for the inclusion of one year pre-fire (2002) and one year post-fire (2021) at the beginning and 

end of the time series (i.e. five years of postfire data were not required for a given year of 

burned area data to be included in the analysis). Early-summer averages were obtained for 

each biophysical variable by calculating their mean value within annual ecoregion specific 

burned areas between approximately June 26 and August 12 in each year from 2002 to 2021. 

We chose early-summer because California’s vegetation tends to peak annually during this 

season and this time period represents the beginning of the state’s fire season. A single early-

summer average from each year allows for the efficient calculation of RdNBR across multiple 

years, as well as a clear indication of the recovery pattern over five years post-fire. For each 

variable and burn severity classification we plotted postfire response for the five years 

following the wildfire. In addition, the pre-fire early-summer average was calculated for each 

variable. We understand that by calculating burn severity with surface reflectance imagery 

one-year post-fire, we incorporate an entire year of postfire recovery, which may vary within 

ecoregions. However, the high temporal frequency of the sampling in the MODIS datasets, as 

well as the inclusion of seven ecoregions with different predominant vegetation types and 

climates, provides important detail to this temporal study of biophysical response. 
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3.3 Results 

3.3.1 Burned Area and Burn Severity Analysis 

The spatial distribution of wildfires indicates that many of the large fires that occurred in 

the northern California ecoregions burned in the summer months of July, August, and 

September (Figure 15a). However, in southern California, fires burned predominantly in 

August, September, and October. In fact, the Thomas Fire, which burned in Santa Barbara 

and Ventura counties of southern California in 2017 was the only large wildfire to burn in 

December. Burn severity maps indicated that average RdNBR in the SCC and CCF ecoregions 

is predominately categorized as low severity, while the K and SCM experienced more fires of 

moderate and high severity (Figure 15b). 

Total burned area for the entire study area during the 2003-2020 study period was 66807 

km(, which is ~20% of the study area. The average early-summer RdNBR falls within the 

low burn severity range for each respective ecoregion (Table 6). However, the K, C, and SN 

ecoregions show the highest prefire NBR values, indicating larger amounts of prefire 

vegetation (Table 6).  
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Figure 15. All burned areas by month for the time period of January 2003 - December 
2020 (a) and all burned area by burn severity class for the time period of January 2003 
- December 2020 (b). The seven ecoregions are larger polygons represented in low 
saturated colors (as in Figure 14). For panel (a), a binary burned-unburned mask was 
generated for each month of the MCD64A1 Monthly Burned Area product and the sum 
for each month calculated. For panel (b), RdNBR was derived from MOD13Q1 surface 
reflectance data, burn severity thresholds were applied, and the spatial distribution of 
burn severity plotted (see Methods).  
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Table 6. Burned area characteristics for each ecoregion averaged for the period 2003-
2020. 

 

The CCF ecoregion recorded the most burned area (17339 km(), while the Cascades 

ecoregion recorded the least (1362 km() (Table 6). Roughly 17600 km(	burned in the 

southern California ecoregions of SCM and SCC combined, while over 30000 km( burned in 

the northern California ecoregions of K, C, EC, and SN (Table 6). Warm and dry late spring 

and summertime meteorological conditions drive northern California fires in the months of 

 Southern 
California 
Mountains 

Southern 
California 
Coast 

Central 
California 
Foothills 

Klamath 
Mountains 
 

Cascades Eastern 
Cascades 

Sierra 
Nevada 

Burned Area 
(square 
kilometers) 

10351 7250 17339 15536 1362 1921 13048 

Number of 
500 m pixels 

41402 28998 69356 62144 5449 7685 52193 

        
Summer 
EVI 
(prefire)a 

0.24 (±0.3) 0.19 (±0.02) 0.25 (±0.05) 0.4 (±0.05) 0.29 
(±0.07) 

0.27 
(±0.13) 

0.31 
(±0.04) 

Summer 
EVI change 
(first year 
after fire)b 

-0.07 (±0.04) -0.02 
(±0.03) 

-0.06 
(±0.03) 

-0.15 (±0.04) -0.1 
(±0.05) 

-0.04 
(±0.04) 

-0.1 
(±0.04) 

        
Summer 
RdNBR 

0.46 (±0.21) 0.29 (±0.55) 0.34 (±0.14) 0.44 (±0.11) 0.32 
(±0.34) 

0.24 
(±0.25) 

0.47 
(±0.14) 

Summer 
dNBR 

0.26 (±0.12) 0.07 (±0.08) 0.17 (±0.08) 0.33 (±0.1) 0.27 
(±0.16) 

0.1 (±0.1) 0.3 
(±0.12) 

Summer 
NBR 
(prefire) 

0.21 (±0.08) 0.05 (±0.06) 0.23 (±0.1) 0.58 (±0.11) 0.37 
(±0.14) 

0.22 
(±0.19) 

0.4 
(±0.11) 

Summer 
NBR (first 
year after 
fire) 

-0.01 (±0.06) -0.01 
(±0.07) 

0.07 (±0.07) 0.24 (±0.1) 0.14 
(±0.12) 

0.12 
(±0.21) 

0.1 
(±0.07) 

Summer 
Albedo 
(prefire) 

0.13 (±0.02) 0.14 (±0.01) 0.15 (±0.02) 0.11 (±0.01) 0.11 
(±0.01) 

0.13 
(±0.02) 

0.11 
(±0.01) 

Summer 
Albedo (first 
year after 
fire) 

0.15 (±0.02) 0.15 (±0.01) 0.15 (±0.02) 0.1 (±0.01) 0.11 
(±0.02) 

0.13 
(±0.02) 

0.11 
(±0.01) 

Summer 
LST 
(prefire) 

314.6 
(±4.07) 

316.68 
(±2.26) 

316.68 
(±3.77) 

305.4 
(±2.97) 

308.42 
(±3.09) 

314.47 
(±5.48) 

308.24 
(±2.54) 

Summer 
LST (first 
year after 
fire) 

320.33 
(±2.73) 

3.19 (±2.64) 320.65 
(±2.97) 

309.26 
(±2.86) 

313.11 
(±4.52) 

317.44 
(±6.02) 

313.26 
(±3.24) 

 1 
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June through August, while low levels of precipitation (4.7 mm mo0:) and high summertime 

temperatures (~27 °C on average), along with Santa Ana winds, drive southern California fires 

in August through October (Daly et al. 1997; Keeley 2009; Jin et al. 2014).   

California ecoregion specific total annual burned area was plotted for 2003-2020 (Figure 

16). Total burned area, including all seven ecoregions, was high in 2008, 2017, 2018, and 

2020 when 6382 km(, 6710 km(, 9165 km(, and the remarkable 22764 km( of land area 

were burned, respectively.  

 

Figure 16. California ecoregion specific total annual burned area for 2003-2020 based 
on MODIS MCD64A1 approximate date-of-burn product. Ecoregions are split into 
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roughly southern (top) and northern (bottom) California. Total burned area each year 
represented in square kilometers.  

In 2008 and 2018, the most land area burned within the Klamath ecoregion; however, in 

2017, more land burned in the CCF, SCM, and SCC ecoregions compared to the northern 

California regions. More land burned in SCM, SCC, and CCF ecoregions than in the K, C, 

EC, and Sierra Nevada ecoregions in eleven of the eighteen years of the study period, 

however, between 2012 and 2015 more area burned in K, C, EC, and Sierra Nevada. The CCF 

saw a steady increase in total annual burned area between 2015 and 2018, a decrease in 2019, 

and a dramatic increase in 2020. In fact, 2018 and 2020 each broke the previous record for 

annual burned area, with 2020 totals of 6904 km(, 6402 km(, and 5192 km( of burned area 

in the CCF, K, and SN ecoregions respectively (total of 18498 km( combined in a single 

year).  

RdNBR frequency distributions were plotted for each ecoregion and for several dominant 

land cover types found throughout California, including needleleaf forest, closed and open 

shrubland, savanna, and grassland (Figure 17). RdNBR derived burn severity threshold ranges 

were recorded below (Table 7). The lower limit of the low burn severity threshold ranged 

from 0.13 in the SCC to 0.44 in the SCM. The lower limit of the moderate burned severity 

threshold ranged from 0.33 in the SCC to 0.63 in the SCM, while the lower limit of the high 

burn severity threshold ranged from 0.65 in the SCC to 0.82 in the SCM (Table 7). The upper 

limit of +1.5 for the high burn severity threshold was chosen because RdNBR values start to 

reach their asymptote in this range, and values above this limit are likely caused by 

misregistration, clouds, or other non-land cover related anomalies (Key and Benson 2005).  

Table 7. RdNBR low, moderate, and high burn severity thresholds for each ecoregion 
derived from RdNBR cumulative distributions. 
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The cumulative frequency distribution of RdNBR values within ecoregions indicates that 

the SCC, CCF, and EC have the greatest frequency of RdNBR values <0.4, thus the lower 

limits to the low burn severity thresholds are lower than in other ecoregions (Figure 17, Table 

7). Conversely, the SCM, SN, and K ecoregions have the lowest frequency of RdNBR values 

<0.4, thus the lower limit to these region’s low burn severity thresholds are comparably 

higher. According to the cumulative distribution, a greater number of pixels of RdNBR <0.4 

will decrease the limit of the low burn severity class (i.e. SCC), while a distribution skewed 

towards higher RdNBR values will increase the lower limit (i.e. SCM). So, in this way, 

regardless of the variation in size of each ecoregion and the total number of burned pixels, it 

is the distribution of RdNBR values across the burn severity spectrum that determines each 

threshold.  

RdNBR Thresholds Low  Moderate High 
So. CA Mountains 0.44 – 0.62 0.63 – 0.81 0.82 – 1.5 
So. CA Coast 0.13 – 0.32  0.33 – 0.64 0.65 – 1.5 
Central CA Foothills 0.21 – 0.4 0.41 – 0.63 0.64 – 1.5 
Klamath 0.33 – 0.48 0.49 – 0.72 0.73 – 1.5 
Cascades 0.32 – 0.49 0.5 – 0.69  0.7 – 1.5 
East Cascades 0.23 – 0.4 0.41 – 0.66  0.67 – 1.5 
Sierra Nevada 0.35 – 0.53 0.54 – 0.77 0.78 – 1.5 

 1 
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Figure 17. Histograms for RdNBR averaged for the entire study period of 2003-2020. 
Symbols mark the lower limits of low, moderate, and high burn severity class 
respectively; (a) RdNBR by ecoregion, and (b) RdNBR by individual vegetation type. 
Burn severity thresholds for each ecoregion were calculated from the cumulative 
frequency distribution of RdNBR pixel values (see Methods).  

Similar analysis of the RdNBR histogram by vegetation type indicates that grasslands burn 

at low severity more than other ecoregions, while needleleaf forest and open shrub experience 

a greater frequency of RdNBR >0.8 (Figure 17b). While closed shrub burns at a greater 
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frequency compared to savanna, their distributions of RdNBR values are similar until ~0.3, at 

which point the closed shrub distribution increases more rapidly through the moderate burn 

severity (0.4-0.6) range compared to savanna. Overall, grassland and closed shrub yielded the 

greatest number of pixels affected by some level of burn severity one-year post-fire (Figure 

17b).  

Correlations between average early-summer burn severity (RdNBR) and postfire NBR 

were all negative, with the strongest correlations in the SCM (-0.89) and SCC (-0.76) (Table 

8). In addition, early-summer RdNBR and ΔEVI were highly negatively correlated for each 

ecoregion, indicating that high burn severity is associated with wildfire-induced vegetation 

removal (i.e. more vegetation burned by wildfire). Strong correlations between RdNBR and 

ΔEVI are expected because both indices are sensitive to infrared reflectance (Key and Benson 

2005; Jin et al. 2012). 

Table 8. Pearson temporal correlations (r values) between average early-summer burn 
severity (RdNBR) and burned area averages of six biophysical variables within each of 
the seven ecoregions of California.  

 

In addition, correlations between ΔLST and burn severity are all positive and significant 

(except for SCC), ranging from 0.69 (CCF) to 0.89 (SN) (Table 8). This positive relationship 

implies that larger increases in postfire land surface temperatures are associated with higher 

burn severity. These increases in postfire temperature associated with high severity fires have 

severe implications for ecosystem health and vegetation recovery.  
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3.3.2 Vegetation Recovery 

The highest prefire EVI values and the greatest decrease of EVI after one-year post-fire, 

regardless of burn severity class, were found in the K, C, and SN ecoregions (Figures 18d, e, 

g). Early-summer EVI decreased in the year following wildfire due to vegetation removal, and 

high severity fires were associated with the largest decrease and lowest value of EVI one year 

later (Figure 18). Decreases in EVI for low severity fires after one year ranged from 0.02 in 

the SCC to 0.14 in the K, while decreases in EVI after high severity fires ranged from 0.06 in 

the SCC to 0.25 in the K (Figure 18).  

 

Figure 18. Prefire EVI and five-year early-summer postfire trajectory (a-g). Average 
early-summer postfire EVI for one year pre-fire through five-years post-fire for each 
ecoregion SCM, SCC, CCF, K, C, EC, and SN. Prefire and postfire EVi are burned area 
averages.  
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The rate at which EVI recovered towards the prefire value was different for each 

ecoregion. EVI did not recover to prefire levels after five years post-fire for any burn severity 

class in any ecoregion. However, during the first two years post-fire, EVI recovery occurred 

more rapidly after high severity burns in all ecoregions. Overall, the SCC exhibited the least 

amount of wildfire-induced EVI change while the K ecoregion had the largest. In addition, K 

had the fastest rates of recovery for all burn severity classes relative to the prefire averages. 

The comparatively quick recovery of EVI towards a plateau in the SCM, SCC, and CCF (~1-

3 years) may be associated with the more rapid recovery of their predominant grassland and 

savanna vegetation types, as these ecoregions experienced a large proportion of low and 

moderate severity burns (Figure 18b). Also, five-year average early-summer EVI after high 

severity fires remained lower than all other burn severity classes.  

3.3.3 Albedo Change 

Average prefire albedo was highest in the SCM, SCC and CCF ecoregions (0.123 - 0.144) 

and lowest in the K, C, EC, and SN (0.101 - 0.124) (Figures 19a, b, c). The East Cascade 

ecoregion had the largest variation in average prefire albedo among burn severity classes 

(0.01). Prefire albedo values were lowest in high severity burned areas in the SCM, SCC, 

CCF, C, and EC ecoregions.  

In the first year after fire, albedo decreased below prefire levels in all three burn severity 

classes in the K, C, EC, and SN ecoregions, but increased above prefire levels in the SCM, 

SCC, and CCF. In the K, C, EC, and SN, albedo levels generally increased continuously for 

five years post-fire, and albedo values in the fifth-year post-fire were above prefire levels in 

the C, EC, and SN.  
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Figure 19. Prefire albedo and five-year early-summer postfire trajectory (a-g). Average 
early-summer surface shortwave albedo response for the first-year post-fire through 
five-years post-fire for each ecoregion SCM, SCC, CCF, K, C, EC, and SN. Prefire and 
postfire albedo area burned area averages. 

Postfire trajectories in the SCM, SCC, and CCF displayed different behavior relative to 

the northern California ecoregions. Whereas the K, C, EC, and SN ecoregions experienced 

one-year postfire decreases, albedo values increased up to 0.02 in the SCM and 0.01 in the 

SCC after the first year, with the largest increases in the most severely burned areas (Figures 

19a, b). However, albedo in the CCF did not change substantially in any burn severity class 

after one year, but both the moderate and high burn severity class had an increase between 

year one and two (Figure 19c). In the ecoregions that experienced decreases after the first-

year post-fire, albedo values tend to exceed prefire values by years two and three (Figures 

19d-g).   
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3.3.4 Land Surface Temperature 

Average prefire LST is lowest in the K ecoregion (305.4 K) and highest in the SCC 

(316.68 K) (Figure 20, Table 6). The greatest prefire LST difference among burn severity 

classes within a single ecoregion is 1.9 K in the CCF. However, prefire LST in regions that 

experienced high severity fires was higher than it was in regions of low and moderate severity 

in K, SN, SCM, and SCC ecoregions. LST increased in the first-year post-fire in all ecoregions 

regardless of burn severity, and the greatest increases in LST were associated with high 

severity fires (Figure 20). Increases in LST after low severity fires ranged from 3.1 in the CCF 

to 5.8 K in the SCM, while increases in LST after high severity fires ranged from 5.5 K in the 

EC to 8.6 K in the SCM.  

 

Figure 20. Prefire land surface temperature and five-year early-summer postfire 
trajectory (a-g). Average early-summer land surface temperature first-year pre-fire 
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through five-years post-fire for each ecoregion SCM, SCC, CCF, K, C, EC, and SN. 
Prefire and postfire LST are burned area averages.  

The rate at which LST recovered towards prefire levels was different for each ecoregion, 

however, overall, postfire LST did not return to prefire temperatures after five years in any 

ecoregion in any burn severity class. Furthermore, LST after high severity fires rose to a higher 

temperature and remained elevated over temperatures in low and moderate burn severity areas 

in the SCM, SCC, K, C, and SN. Across all ecoregions and burn severity classes, the trajectory 

of postfire temperature over five years tended to remain stable, with minimal increases and 

decreases in temperature after the initial postfire increase in the first year.  

3.4 Discussion 

3.4.1 Role of Burn Severity in Vegetation Recovery  

We found that three features account for most of the covariation between vegetation 

recovery response and burn severity in California’s ecoregions. First, the largest decreases in 

first year postfire EVI, regardless of burn severity class, occur in the same ecoregions that 

have the highest mean prefire early-summer EVI (i.e. K, C, and SN) (Table 5, Figure 18). This 

pattern indicates that all fires, regardless of burn severity level, tend to result in greater 

amounts of vegetation removal in ecoregions with high prefire EVI (e.g. high biomass areas). 

For example, the average prefire EVI value for low severity fires in the Klamath ecoregion is 

0.4, and the average ΔEVI one-year post-fire is 0.14. So, even though ΔEVI is greatest for 

high severity fires across ecoregions, the SCC ecoregion, with one of the lowest average 

prefire EVI values for high severity fires (0.2) experiences a 0.06 one-year postfire decrease 

- less than half of the Klamath ecoregion’s low severity ΔEVI. Our results that show strong 

correlations between RdNBR and	ΔEVI, as well as large prefire EVI in northern California 
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ecoregions that experience the greatest first-year ΔEVI, are consistent with studies that found 

that higher prefire EVI in the Cascade and Klamath regions of northern California were 

associated with a greater likelihood of high severity fires (Yang et al. 2017; Parks et al. 2018; 

Meigs et al. 2020). Furthermore, Parks et al. (2018) found that low severity fires were more 

likely to occur in areas with lower prefire EVI, which is similar to what we found in the spatial 

distribution of RdNBR derived burned area in southern California (2018a) (Figure 15b). In 

addition, the impact of wildfire on NDVI, a similar vegetation index as EVI, was greater for 

needleleaf trees than it was for shrubs, an effect that was corroborated with satellite imagery 

and aerial photos (Thompson and Spies 2009).  

Second, fires that burned at high severity are associated with greater ΔEVI across all 

ecoregions compared to less severe fires (Figure 18). In other words, changes in the amount 

of live fuel between the prefire and one-year postfire images increases with burn severity. This 

relationship, demonstrated by the strong negative correlation between ΔEVI and RdNBR (i.e. 

large changes in EVI after higher severity fire), is expected, as both indices are primarily 

influenced by the magnitude of change between near and shortwave infrared wavelengths. 

However, the high correlation observed between ΔEVI and RdNBR may also be a result of 

the previously mentioned association between vegetation type and degree of EVI or NDVI 

change (Yang et al. 2017).  

The third feature that describes the relationship between postfire vegetation recovery and 

burn severity is the rate at which EVI approaches prefire levels over the course of five years. 

Throughout the five-year postfire interval, relative to average prefire EVI values, EVI 

recovers faster after high severity fires in all ecoregions. Rapid recovery of vegetation in the 

first years after wildfire is likely due to the growth of shrubs and other herbaceous vegetation. 
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Furthermore, our results are corroborated by other studies that show that, while NDVI (a 

vegetation index similar to EVI) recovers fastest during the first two to three years post-fire, 

the effects of high severity burns can still be observed five or more years later, and lower 

NDVI values were found after high severity fires (Collins and Roller 2013; Crotteau et al. 

2013; Meng et al. 2015). Further, in the ecoregions that had smaller ΔEVI after the first year 

(i.e. SCM, SCC, CCF, EC), EVI trajectories for low, moderate, and high burn severity tended 

to converge by the third-year post-fire (Figures 18a-c, f). By identifying which ecoregions are 

more likely to experience high severity burns, land and fire management can focus resources 

on areas experiencing high degrees of postfire ecological change and erosion, or are at an 

increased risk for habitat endangerment (Miller and Thode 2007; Keeley 2009). 

3.4.2 Burn Severity and Albedo Change 

One of the most immediate effects of wildfire on the land surface is the removal of 

vegetation and the deposition of ash (De Sales et al 2018; Rother and De Sales 2020). By 

definition, high severity fires are often stand replacing disturbances that lead to rapid changes 

in the biophysical characteristics of the land surface. Abrupt changes to the partitioning of 

energy from latent to sensible heat flux (associated with the removal of vegetation) can 

increase the amount of net radiation available at the surface (Chambers et al. 2005; Rother 

and De Sales 2020).  

Postfire albedo change may be highly dependent on plant type, phenology, and burned 

severity, as a predominantly forested region will likely experience a different postfire albedo 

trajectory than a grassland or savanna (Figures 19c-d). Postfire albedo may decrease after high 

severity fire in a biomass rich area like the K, C, or SN ecoregion for a year or more because 

forest recovers at a slower rate than grassland and shrub (Figures 19d-e, g). On the other hand, 
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ecoregions that contain predominantly grassland and savanna land cover types (i.e. SCM, 

SCC) are more likely to experience initial increases in postfire albedo, as one year is a 

sufficient amount of time to remove all traces of ash deposited on the surface and for 

vegetation to start recovering (Figures 19a-b). It is important to note that ash residence time 

varies widely, and decreases in albedo caused by ash deposition can be offset by the regrowth 

of early successional plants like shrubs and grasses, which tend to have higher albedos (Lyons 

et al. 2008; Jin et al. 2012; Bodi et al. 2014; Meng et al. 2014). In fact, one study found that 

albedo increases in the first postfire summer are likely related to exposure of bare ground after 

ash is dispersed in the winter, while subsequent increases each year following are due to the 

regeneration of vegetation (Veraverbeke et al. 2012). This effect was observed within the 

SCM, SCC, and CCF ecoregions, where albedo in the first-year post-fire increased, while the 

K, C, EC, and SN ecoregions experienced decreases (Figure 19).  

Prefire albedo levels were lower, and fires of all severity levels resulted in greater 

decreases in the K, C, and SN ecoregions relative to the SCM, SCC, CCF, and EC, likely due 

to the differential effects of fire on vegetation with higher EVI values. In addition, ecoregions 

with an abundance of live fuel (i.e. high EVI), tend to have lower albedos. Thus, greater 

average pre-fire EVI and lower average pre-fire albedo are both associated with high severity 

fires. Additionally, seasonal differences in albedo may also be responsible for some of the 

variation in first-year postfire values, as soil moisture content and plant growth during and 

after the rainy season has a direct effect on albedo (Samain et al. 2008; Veraverbeke et al. 

2012).  
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3.4.3 Burn Severity and Land Surface Temperature 

To our knowledge, a small number of studies have investigated the connections between 

burn severity and land surface temperature, and only a few for regions within the state of 

California (Harris et al. 2011; Veraverbeke et al. 2011; Veraverbeke et al. 2012; Zheng et al. 

2016). Further investigation into the relationships between burn severity, vegetation recovery, 

and LST may lead to the use of LST as indicators of burn severity, as postfire increases in 

temperature were found to change proportionately with NDVI and slowly return to pre-fire 

levels as vegetation recovers (Harris et al. 2011). Additionally, the analysis of postfire 

recovery patterns of land surface temperature will strengthen our understanding of the impacts 

of fire on surface energy balance and improve the reliability of simulated land surface 

processes within models. 

Albedo and land surface temperature are closely related biophysical characteristics of the 

land surface that are impacted by wildfire and burn severity (Vlassova et al. 2014; Zheng et 

al. 2016). Wildfire-induced alterations to the land surface can persist for years, leading to 

increased aridity, as well as changes to diurnal energy and temperature fluctuations. In fact, 

there may be significant seasonal variation in the wildfire related impact on land surface 

temperature, with large changes during the summer and small changes during the winter 

(Veraverbeke et al. 2012). However, the initial decrease in albedo and increases in radiation 

absorption and surface temperature associated with post-fire ash deposition tends to be short-

lived, as the gradual process of plant regeneration contributes to the return of land surface 

temperatures to their pre-disturbance levels.  

Here, the relationships between ΔEVI, ΔLST, and burn severity are less clear, as LST 

increased post-fire in all ecoregions, but remains elevated for the duration of the postfire years, 
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regardless of the amount of EVI recovery (Figures 18 and 20). For example, the K, C, and SN 

had the greatest ΔEVI in the first-year post-fire, as well as the fastest rate of recovery towards 

prefire levels, however, increases in LST in these ecoregions remain mostly stable, only 

gradually diminishing towards average prefire LST over five years. A study extending further 

than five years post-fire would be necessary in order to investigate the length of postfire 

temperature change in California ecoregions. 

The projected impacts of climate change on California ecosystems, including increasing 

temperatures and vapor pressure deficit, may significantly alter existing fire regimes (Zhang 

et al. 2020; Zhong et al. 2021). In general, warmer temperatures and drier conditions increase 

the risk for wildfire (assuming the presence of vegetation), and the addition of further postfire 

increases in temperature may push already stressed ecosystems past their ability to adapt 

(Johnstone et al. 2016).  

3.5 Conclusions 

We analyzed the influence of burn severity on vegetation recovery, albedo, and land 

surface temperature in seven California ecoregions between the years 2003 and 2020 based 

on MODIS satellite data derived products. Normalized Burn Ratio datasets were used to 

calculate RdNBR for the entire state for the duration of the study period. Early-summer 

averages were stratified into three burn severity classes and their prefire average and trajectory 

for the first five years post-fire plotted. Strong negative correlations were found between 

postfire NBR and RdNBR, as well as ΔEVI and RdNBR. We found that the largest decreases 

in EVI after one-year post-fire occur in the ecoregions with the highest prefire EVI values (i.e. 

K, C, SN). In addition, the greatest decrease in EVI and the fastest recovery towards prefire 

values occurred after high severity fires (in all ecoregions). Also, EVI did not recover to 
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prefire values after five-years post-fire in any burn severity class in any ecoregion. We found 

that the lowest prefire albedo values occurred in the same ecoregions with the highest prefire 

EVI. First-year postfire albedo decreased in the K, C, EC, and SN ecoregions, but increased 

after one year in the SCM, SCC, and CCF. Differences in first-year postfire change are likely 

due to variations in the duration of ash residence times, rate of plant regeneration, and average 

albedo of early successional plants (such as grasses and shrubs). After five years post-fire, 

albedo values were larger than prefire values in all ecoregions except K. We found that first-

year postfire increases in LST were greatest within high severity burned areas. All ecoregions 

experienced a postfire increase in LST that remained relatively stable throughout the five-

years post-fire with only gradual decreases towards prefire levels.  

An improved understanding of the biophysical response to large-scale wildfires becomes 

increasingly important as California’s high summertime temperatures and seasonal summer 

droughts continue to drive record-breaking fire seasons. Furthermore, the spatial distribution 

of burn severity, along with a comprehensive understanding of postfire response of important 

indicators of ecosystem health (like the presence of vegetation and large changes in LST), can 

inform fire and land management in their efforts to effectively mitigate and suppress large 

wildfires in key areas. In addition, the temporal analysis of postfire EVI, albedo, and 

temperature may improve the accuracy and inform the conceptualization of future modeling 

of wildfire impacts on land surface processes. 
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Chapter 4. Summer and Fall Extreme Weather Projected  

to Occur More Often and Affect a Growing Portion of California 

throughout the 21st Century 

4.1 Introduction 

Numerous research studies indicate that wildfire activity in the western United States has 

increased over the past few decades due primarily to increases in temperature, decreases in 

precipitation, and increases in atmospheric aridity (Abatzoglou and Williams 2016; Keeley 

and Syphard 2016; Williams et al. 2019; Goss et al. 2020; Dong et al. 2021). Furthermore, by 

the end of the 21st century, anthropogenic global warming will contribute to increased risk of 

extreme fire weather through the effect of rising temperatures (Touma et al. 2021). However, 

the impacts of climate on fire regime vary dramatically by ecosystem, predominant vegetation 

types, topography, and human activity. These complex relationships between climate and 

wildfire are apparent in California, where climate, vegetation, and topography vary 

significantly from east to west and north to south. 

For example, large parts of southern California experience near continuous high fire 

danger in the summer and fall, as high temperatures, seasonal drought, and the onset of the 

Santa Ana wind season combine to increase the risk of severe wildfire. In these areas, wildfire 

is rarely limited by weather conditions governing fire spread, but by availability of fuel to 

burn. On the other hand, in forested ecosystems, where deep rooted vegetation is less 

susceptible to short-term variations in moisture, the limiting factor may be fire spread potential 

or dried fuel available to burn (Bonan 2008; Bradstock 2010). Therefore, the effects of climate 

change on wildfire in California, specifically projected increases in temperature and aridity, 
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will not impact all ecosystems equally, but will be strongly dependent on vegetation 

distribution and will be more likely to place flammability-limited ecosystems (i.e., forested) 

at a greater risk for catastrophic wildfire (McKenzie and Littell 2017; Littell 2018). 

Furthermore, understanding the broad range of outcomes regarding the impacts of climate 

change on extreme fire weather risk is critical because climate change may lead to the loss of 

existing climate regimes and the emergence of novel ecosystem states, impacting the 

distribution of biomass (i.e., continuity and flammability), fire spread potential, and ignition 

(Williams et al. 2007; Johnstone et al. 2016). 

One of the most valuable tools for assessing historical and projected climate variability, 

especially the meteorological variables that govern wildfire on a regional scale, are global 

climate models, or GCMs (Abatzoglou and Brown 2012). The Coupled Model 

Intercomparison Project (CMIP) provides a standardized platform for the collection and 

analysis of GCM model output with the intent of studying natural and anthropogenic climate 

variability. The most recent release of GCM output for the CMIP Phase 6 provides a new suite 

of climate model data for use in a wide range of disciplines. While GCMs are often used for 

the evaluation of long-term variations in climate, there are significant limitations to their use 

for the study of wildfire impact assessment and fire weather potential. The main limitation is 

that climate model output is typically of coarse resolution and is subject to significant bias 

(Abatzoglou and Brown 2012). The mismatch between the spatial scale at which key 

variability in fire weather variables fluctuate (<10-km), and that of GCM output (>100-km), 

creates a need to account for these spatial differences. 

One method of adjusting the resolution of available GCM output to that which is needed 

for the evaluation of fire weather variables is statistical downscaling. These methods allow 
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for the reduction in systematic biases inherent to numerical weather prediction systems, as 

well as an enhancement of grid cell resolution in order to account for the effects of topography 

and other land surface features (Li et al. 2010). One method of statistical downscaling for use 

in wildfire risk assessment is bias correction and spatial downscaling (BCSD) (Abatzoglou 

and Brown 2012). BCSD is a two-step process that involves the bias correction of coarse-

scale GCM data using local observations that have been aggregated to the model’s resolution 

(Abatzoglou and Brown 2012). Bias correction techniques include scaling, delta methods, and 

empirical quantile mapping. In addition, spatial downscaling utilizes techniques such as linear 

or multiple regression to apply statistical relationships (e.g., slope, y-intercept) derived from 

high resolution observational data to coarse resolution GCM data in order to improve the 

resolution (Zhang et al. 2020). The major assumption made with statistical downscaling 

methods is that of climate stationarity. It is assumed that the relationships between the coarse 

and fine scale historical datasets, calculated by the statistical model, will stay the same in the 

future (with climate change), and that when these models are applied to projected datasets the 

outcomes will be valid (Li et al. 2010; Abatzoglou and Brown 2012; Zhang et al. 2020). 

In order to track changes in, and probability of, extreme fire weather over time, fire 

weather indices are often calculated using weather station, reanalysis, or global climate model 

data. Two commonly used fire weather indices are vapor pressure deficit (VPD) and the 

Canadian Fire Weather Index System (CFWIS) (van Wagner 1987; Lawson and Armitage 

2008). The CFWIS relies on regular inputs of noon-day temperature, 24-hr precipitation 

accumulation, 10-m wind speed, and relative humidity, and is comprised of six components: 

three fuel moisture codes and three fire behavior metrics, with the primary purpose of 

assessing the effect of weather on fuels and potential fires. In general, higher values indicate 
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a more severe risk for ignition or spread of large wildfire (Lawson 1977; Lawson and 

Armitage 2008).  

On the other hand, VPD, defined as the difference between saturation vapor pressure and 

actual vapor pressure, is a commonly used metric for the quantification of atmospheric aridity 

in relation to wildfire risk assessment, and is highly correlated with annual area burned (Seager 

et al. 2015; Abatzoglou and Williams 2016; Williams et al. 2019). VPD accounts for the non-

linear (exponential) relationship between saturation vapor pressure and temperature, thus 

better representing moisture stress and flammability (Seager et al. 2015). In fact, maximum 

VPD in the entire United States is found each year in the desert southwest region, not only 

affecting agricultural production via crop health but increasing the risk of wildfire ignition 

and spread (Seager et al. 2015). Furthermore, two-thirds of historical (2001-2018) increases 

in extreme VPD in the western United States is attributable to anthropogenic warming 

(Zhuang et al. 2021). 

The objective of this research is to utilize bias correction and statistical downscaling to 

enhance the spatial representations of CMIP6 simulations for the purposes of assessing the 

potential impacts of climate change on the occurrence of extreme fire weather. Bias corrected 

and statistically downscaled daily CMIP6 data (~4-km spatial resolution), covering an 

historical (1981-2010), mid-century (2041-2070), and late-century (2071-2100) period, will 

be used as input for two fire weather indices, including the Canadian Fire Weather Index 

(CFWIS; now referred to as FWI) and vapor pressure deficit (VPD). In order to determine the 

effects of climate change on the occurrence of extreme fire weather in California ecoregions, 

we investigate the frequency at which daily index values exceed the average daily historical 

95th percentile. We also calculate the extent of each ecoregion that is likely to experience 
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values greater than the 30-year average spatial 95th percentile value for each time period. In 

addition, time series analysis includes fire weather anomalies relative to an historical period, 

as well as 30-year Julian-day averages. The diversity of factors that influence fire regime in 

California, as well as the immense range of biophysical characteristics, require an ecoregion 

scale analysis. The effects of climate change on extreme fire weather will not be 

homogeneous, however, our fine scale analysis will allow policy makers and land managers 

to anticipate changes in climate and determine the areas that are most likely to experience the 

consequences of increased fire potential. 

4.2 Materials and Methods  

4.2.1 Study Area 

The primary study area is California (Figure 21). We chose to analyze the effects of 

climate change on extreme fire weather within ten ecoregions of California (Griffith et al. 

2016; Level III and IV Ecoregions of Continental United States 2021). These regions include 

the Southern California Mountains (SCM), Southern California Coast (SCC), Central 

California Foothills (CCF), Central Valley (CV), North American Desert (NAD), Sierra 

Nevada (SN), Klamath (K), Cascades (C), East Cascades (EC), and Marine West Coast 

Mountains (MWCM). 
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Figure 21. Ecoregions of California, including the Southern California Mountains 
(SCM), Southern California Coast (SCC), Central California Foothills (CCF), Central 
Valley (CV), North American Desert (NAD), Sierra Nevada (SN), Klamath (K), 
Cascades (C), East Cascades (EC), and Marine West Coast Mountains (MWCM).  

Each of these regions is characterized by different dominant ecosystem types that give rise 

to California’s diverse fire regimes, including vegetation, climate, soil types, land use, and 

hydrology (Griffith et al. 2016). An ecoregion specific analysis will allow for a nuanced 

understanding of how climate change may impact extreme fire weather relative to historical 

conditions within homogeneous regions of particular climate and vegetation types. 
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4.2.2 Statistical Downscaling Method 

Daily near surface maximum air temperature, 24-hr precipitation accumulation, 10-m 

wind speed, and 2-m relative humidity were acquired for three CMIP6 models (including 

MIROC6, EC-Earth3, and MRI-ESM2-0), for an historical (1981-2010), mid-century (2041-

2070), and late-century (2071-2100) period, from the data repository at the Earth System Grid 

Federation (https://esgf-node.llnl.gov/search/cmip6/, accessed on 1 January 2021). We 

derived daily relative humidity from specific humidity, sea level pressure, geopotential height, 

and near surface air temperature. Future climate projections for a mid- and late-century period 

were obtained for the Representative Concentration Pathway (RCP8.5), “high emissions” 

scenario. All bias correction and downscaling methods were completed using a 4-km gridded 

meteorological climate dataset called gridMET (Abatzoglou 2013). We used the entirety of 

the gridMET historical period (i.e., 1979-2014) to train the bias correction algorithm, and in 

order to avoid training and testing our BCSD output with the same data (i.e., gridMET), we 

validated the results of the BCSD methodology with two independent observational datasets 

(see Section 4.3.1). 

A bias correction technique known as empirical quantile mapping was applied separately 

to the four climate variables for each of the three CMIP6 model outputs. This algorithm 

adjusted the simulation’s (i.e., CMIP6) empirical distribution based on observed patterns (i.e., 

gridMET) and was used to correct both historic and future climate projections generated by 

the CMIP6 models (Li et al. 2010). Bias correction methods are often applied to GCM output 

in order to address inherent biases that arise when modeling earth system processes. The bias 

corrected GCM data was interpolated to the high-resolution observational grid (i.e., gridMET) 

using a thin plate spline function and the relationship between the two grids were then 
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estimated to generate regression functions for each grid cell (Hancock and Hutchinson 2006). 

The linear regression models were then applied to the bias corrected and interpolated GCM 

data to complete the downscaling.  

To elaborate, this spatial downscaling methodology uses regression functions to estimate 

the linear relationships (in this case the slope and intercept) between the original, high-

resolution gridMET data and a “smoothed” estimate, before applying those statistical 

parameters to the bias corrected CMIP6 data in a simple linear model to obtain the final 

downscaled, high-resolution output (Hoar and Nychka 2022). For this research, the study area 

domain was comprised of approximately 70-100 grid cells in the CMIP6 simulations, whereas 

the gridMET observational data has ~81,000 locations over the same area. In the first step, a 

thin plate spline interpolation was used to predict CMIP6 values at the gridMET scale, with 

no addition of topographic or climatological information. This resulted in “smoothed” CMIP6 

data that is identical to the original data but sampled at a much greater frequency. In the next 

step, a linear regression function was derived from the raw and smoothed gridMET datasets 

at each grid cell location, for each month of the year (~81,000 grid cells × 12). These month-

specific linear regression models were applied to the “smoothed” CMIP6 data to obtain the 

final downscaled product for each variable. 

A square-root transformation was applied to the precipitation data before downscaling to 

account for its skewed distribution (Juras 1994; Fu et al. 2010). The final bias corrected and 

downscaled product of each variable was averaged to obtain an ensemble mean and used in 

the calculation of the two fire weather indices. Daily maximum temperature, 24-hr rainfall, 

10-m wind speed, and daily minimum relative humidity were used to calculate FWI, while 

daily maximum temperature and daily minimum relative humidity are used to calculate VPD. 
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Due to the fact that maximum temperature and minimum relative humidity are used for the 

calculation of VPD, we make it clear that VPD may be considered “maximum VPD”. 

4.2.3 Climate Model Simulations of Extreme Fire Weather in California Ecoregions 

The BCSD CMIP6 GCM data were used for three primary analyses of extreme fire 

weather in California, as well as an additional analysis of Julian-day climatology. We used 

maximum daily surface temperature, minimum relative humidity, and 2 pm wind speed, as 

daily noon-time data requirements were not available for all models. Prior to the analysis, 

1979-2014 BCDS product was validated against two observational analysis datasets, the North 

American Regional Reanalysis (NARR, psl.noaa.gov/data, accessed on 1 March 2022) and 

TerraClimate (Mesinger et al. 2006; Abatzoglou et al. 2018). 

Analysis of extreme fire weather consisted of four main components. First, we calculated 

the June, July, August (JJA) and the September, October, November (SON) seasonal-mean 

FWI and VPD averages for each ecoregion, as well as for the entire state of California, for an 

historical (1981-2010), mid-century (2041-2070), and late-century (2071-2100) time period. 

The historical mean, calculated individually for each ecoregion and for each season, was used 

as a baseline with which the mid-century and late-century anomalies were calculated. In 

addition, the relative change (relative to the historical time period) of FWI and VPD in the 

mid- and late-century periods was calculated. We consider a unique baseline for each 

ecoregion, in addition to a California state-wide assessment, for each season, in order to 

properly account for the entire range of climate conditions found across California, and to 

assess projected changes in each zone relative to their particular local historical climate.  

Second, the seasonal, ecoregion specific, daily FWI and VPD averages were used to 

calculate a 95th percentile value (FWI!"; VPD!"), which was then used as a threshold for the 
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mapping of the frequency with which fire weather indices exceed that 95th percentile value 

during the historical, mid- and late-century periods. The maximum occurrence of a given 

index value above the 95th percentile is 91, or, in other words, all the days in that season in a 

given year. In order to evaluate the spatial distribution of extreme fire weather throughout the 

21st century, the difference in the total number of days per year that exceed the 95th percentile 

was taken between the mid- and late-century and the historical period. In addition, the 

ecoregion average number of days per year that exceed the 95th percentile was calculated.  

Third, 30-year JJA and SON seasonal average FWI and VPD were calculated for each 

ecoregion. Considering all grid points within each ecoregion for that 30-year average, the 95th 

percentiles are calculated and subsequently used as thresholds to determine the extent within 

each region that will experience FWI and VPD exceeding those values. Frequency 

distributions of 30-year spatial average FWI and VPD values were plotted for each ecoregion. 

Finally, Julian-day averages spanning the entire 30-year periods were calculated for FWI 

and VPD. Daily climatologies intend to show changing peaks in average maximum values, as 

well as the lengthening or shortening of each ecoregion’s fire season. 

4.3 Results  

4.3.1 Validation of Historical Simulations 

Before investigating the impacts of climate change on extreme fire weather, we evaluate 

the CMIP6 Raw and BCSD ensembles against an observational ensemble that includes NARR 

and TerraClimate. However, TerraClimate has not released a minimum relative humidity 

dataset, so in this case, CMIP6 was validated exclusively with NARR. Spatial statistics, 

including correlation, bias, and root-mean square error (e.g., sCor, sBias, sRMSE) were 
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calculated after resampling all observations and Raw CMIP6 data to the high resolution BCSD 

(~4-km). In this way, the improved skill of the bias correction and downscaling was 

demonstrated against a basic resampling. Temporal statistics (tCor, tBias, tRMSE) were 

calculated using monthly averages spanning the entire historical period (1979-2014). The 

difference in resolution between the TerraClimate observations (~4-km), raw MIROC6 (1.4° 

× 1.4°), and BCSD ensemble (~4-km) are shown below for annual average maximum 

temperature in 1979 (Figure 22). 

 

Figure 22. Average maximum temperature for 1979 (a) TerraClimate (b) Raw MIROC6 
(c) BCSD Ensemble. Units: °C. 

Spatial correlations between CMIP6 BCSD and the observations were high for all 

variables, especially for maximum temperature, precipitation accumulation, and minimum 

relative humidity, with 0.97, 0.88, and 0.87, respectively—all of which were higher relative 

to the CMIP6 Raw (Table 9). Furthermore, sRMSE and sBias were higher for the CMIP6 

BCSD relative to the CMIP6 Raw for all variables except temperature, which showed a higher 
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sBias in the CMIP6 Raw. A substantially higher sCor and sBias in the wind speed resulted 

between the Raw and the BCSD, with sCor increasing by 0.4 and sBias by 0.38 (Table 9). 

Table 9. Spatial statistics (i.e. sCor) evaluating a 36-year average historical period (1979-
2014) of the raw CMIP model ensemble and the bias corrected and spatially downscaled 
CMIP model ensemble, against the NARR/TerraClimate validation dataset. Temporal 
statistics (i.e. tCor) are based on 36 years of monthly averages. Standard deviation is 
shown in parentheses. Spatial correlations are significant at p < 0.001.  

 

tCor stayed the same for maximum temperature, daily precipitation accumulation and 

minimum relative humidity, but was higher for wind speed in CMIP6 BCSD relative to the 

CMIP6 Raw. Similar to the spatial statistics, maximum temperature’s tBias was the only 

metric that was not lower in the CMIP6 BCSD.  

In addition to the statistical metrics, a monthly climatology of each variable was generated 

for the CMIP6 Raw, CMIP6 BCSD, and the observational ensemble (Figure 23). BCSD 

successfully shifted the summertime temperatures downwards towards the observations, 

however, temperatures were slightly overestimated in the winter months (Figure 23a). Both 

the CMIP6 Raw and BCSD overestimated daily rainfall accumulation in the winter, however, 

the BCSD more closely approximated the observations throughout the year (Figure 23b). 
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Figure 23. State-wide average monthly climatology (1979-2014) for the CMIP6 Raw and 
BCSD model ensembles. Observational data are an ensemble of NARR and 
TerraClimate. (a) Maximum temperature; (b) Daily Rainfall accumulation; (c) 
Minimum relative humidity; (d) 10-m wind speed. 

The NARR minimum relative humidity fell between the CMIP6 Raw and BCSD monthly 

climatology, however, even though BCSD slightly underestimated winter relative humidity, 

the difference was smaller in all months than it was for CMIP6 Raw (Figure 23c). CMIP6 

BCSD 10-m wind speed was very well simulated in California compared to CMIP6 Raw 

(Figure 23d). 

4.3.2 Fire Weather Anomalies and Relative Change 

FWI time series anomalies indicated increasing trends in both the mid- and late-century 

periods in all ecoregions, except the MWCM, which displayed a decrease in average FWI 

relative to the historical period (Figure 24). JJA relative change during the mid-century period 

ranged from −21.62 in the MWCM to 19.41 in the Central Valley, while late-century change 
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ranged from −20.9 in the MWCM to 21.88 in the Central Valley. Furthermore, mid-century 

SON relative change ranged from −7.73 in the MWCM to 21.69 in the Cascades, and −8.23 

in the MWCM to 25.44 in the Cascades during the late-century period. 

 

Figure 24. Canadian Fire Weather Index anomaly relative to the historical period of 
1981-2010. Solid black line represents the summer season of June, July, and August 
while the solid red line represents the fall season of September, October, November. The 
dashed vertical black line represents the end of the historical period, while the dashed 
vertical blue and red lines represent the breaks between the mid- and late-century 
periods, respectively. The black and red text within the figure is the relative change (%) 
for the mid- and late-century periods (relative to the historical period) in the JJA and 
SON seasons, respectively. (a) California; (b) Southern California Mountains; (c) 
Southern California Coast; (d) Central California Foothills; (e) Klamath; (f) Cascades; 
(g) East Cascades; (h) Sierra Nevada; (i) Central Valley; (j) Marine West Coast 
Mountains; (k) North American Desert. 

Overall, JJA and SON anomalies showed increasing average FWI between 2041-2100 

(except MWCM), however, relative change during the SON season was greater than JJA in 

all ecoregions except the Central Valley during the mid-century period. FWI in the MWCM 

decreased relative to the historical baseline in both seasons, however, decreases during the 

SON were of much smaller magnitude, and are basically a continuation of historical 
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conditions. In both the mid- and late-century periods, the central and northern California C, 

EC, SN, and Central Valley ecoregions experienced greater relative change in FWI compared 

to the southern California ecoregions SCC and SCM. 

JJA and SON vapor pressure deficit increased relative to an historical baseline in all 

ecoregions during both the mid- and late-century time periods (Figure 25). Relative change of 

VPD during the fall was greater than in the summer in all ecoregions. JJA VPD during the 

mid-century period ranged from 14.96 in the SCC to 25.14 in the EC, and 22.08 in the SCC 

to 39 in the K during the late-century. On the other hand, mid-century SON vapor pressure 

deficit ranged from 15.68 in the SCC to 27.46 in the K, and from 26.16 in the SCC to 41.91 

in the K ecoregion, during the late-century period. 

 

Figure 25. Vapor pressure deficit anomaly relative to the historical period of 1981-2010. 
Solid black line represents the summer season of June, July, and August while the solid 
red line represents the fall season of September, October, November. The dashed 
vertical black line represents the end of the historical period, while the dashed vertical 
blue and red lines represent the breaks between the mid- and late-century periods, 
respectively. The black and red text within the figure is the relative change (%) for the 
mid- and late-century periods (relative to the historical period) in the JJA and SON 
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seasons, respectively. (a) California; (b) Southern California Mountains; (c) Southern 
California Coast; (d) Central California Foothills; (e) Klamath; (f) Cascades; (g) East 
Cascades; (h) Sierra Nevada; (i) Central Valley; (j) Marine West Coast Mountains; (k) 
North American Desert. 

Similar to FWI, JJA and SON relative change in VPD in the mid- and late-century periods 

increased more in the central and northern California ecoregions of the K, C, EC, SN, and 

Central Valley compared to the southern California ecoregions SCC and SCM (Figure 25). 

While FWI decreased in the MWCM ecoregion relative to its historical baseline (Figure 24j), 

VPD increased in both the mid- and late-century periods (Figure 25j). Differences between 

JJA and SON seasonal changes in VPD were greater than for FWI, however lower average 

historical values during SON led to comparable relative change (to the JJA season) in the mid- 

and late-century periods. Overall, both JJA and SON vapor pressure deficit is expected to 

increase linearly throughout 2041-2100, in all ecoregions. 

4.3.3 95th Percentile Exceedance Maps 

To further investigate the impact of climate change on extreme fire weather, we calculated 

the number of days that FWI and VPD were greater than or equal to the 95th percentile 

(calculated using a time series of daily average values for each ecoregion, not per pixel) 

(Figure 26). On average, JJA VPD!" increased substantially in all ecoregions in both the mid- 

and late-century periods (Table 10).  
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Table 10. Ecoregion average number of 𝐕𝐏𝐃𝟗𝟓 and 𝐅𝐖𝐈𝟗𝟓 days per year in each time 
period. 

 

The average number of days per year with VPD greater than the 95th percentile doubled 

in all ecoregions by 2100. In fact, from 2071-2100, over half the total number of summer days 

in the CCF, C, EC, CV, and NAD ecoregions had a VPD greater than the historical 95th 

percentile. 



 

 86 

 

Figure 26. Average frequency (in days/yr) with which VPD and FWI exceed the 
ecoregion specific daily average JJA 95th percentile in the mid-century (left) and late-
century (right) relative to the historic period. Higher values indicate more JJA days each 
year that exceeded the 95th percentile. (a,b) Vapor pressure deficit (c,d) Fire Weather 
Index. 

The largest increases in VPD!" days occurred in the desert southwest region of California, 

particularly in the late-century period, where some areas are expected to experience historical 

VPD!" on nearly two-thirds of all summer days. Other areas expected to experience large 

increases in VPD!" days are the SCC ecoregion east of Los Angeles (34°N, 117°W), the 

southern portion of the Central Valley and the Central California Foothills, the western border 

of the Sierra Nevada, and scattered areas of the northern California Klamath, Cascades, and 

Eastern Cascades regions (Figure 26a-c). 
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JJA FWI!" days increased in both the mid- and late-century in all ecoregions except the 

MWCM, which experienced an average decrease in FWI!" days (Table 10). While the 

increase in average number of days with FWI!" is smaller than that of VPD!", the SCM, C, 

EC, and CV double the number of FWI!" days by 2100. In addition, the greatest magnitude 

of change of FWI!" days occurred between the historical and the mid-century periods; the 

total change between the mid- and late-century was much smaller (Table 10). The most 

substantial increases in FWI!" days occurred in the desert southwest, the CV, the southern tip 

of the SN, the CCF, and the C and EC in northern California. However, there was a clear 

pattern of decreased numbers of FWI!" and VPD!" days (particularly FWI) in the mid- and 

late-century periods along the coast of California where the ocean moderates temperature. 

Furthermore, there was an apparent influence of topography in northern California (K, C, SN 

ecoregions), where high elevation areas showed little or even negative change, while, for 

example, the lower elevation, western slopes of the Sierra Nevada showed pronounced 

positive change. The dramatic increase in VPD!" and FWI!" days in the NAD ecoregion is an 

important climatic signal for human health and well-being, as well as for agriculture, but these 

increases are not likely to translate into increases in annual area burned because of a near total 

lack of continuous and flammable vegetation. 

Historical 95th percentile thresholds were also calculated for each ecoregion for the SON 

season. The average number of VPD!" days increased in all ecoregions (Table 10). In fact, the 

average number of VPD!" days tripled by the end of the late-century period in the CCF, K, C, 

EC, and CV ecoregions, and doubled in the SCC, SN, MWCM, and NAD ecoregions (relative 

to the historical period). The average number of VPD!" days in the late-century period was 

substantially lower than it was in JJA, however, these results still imply that VPD is expected 
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to increase dramatically for the entire duration of the summer and fall in all ecoregions (Table 

10). Increases in the number of SON VPD!" days occurred in many of the same areas as JJA, 

including the NAD, the western and lower elevation portions of the Sierra Nevada, the 

southern region of the Central Valley, the Southern California Coast, and Central Foothills, 

as well as large portions of northern California’s ecoregions, including Klamath, Cascades, 

and Eastern Cascades (Figures 27a-c). 

 

Figure 27. Average frequency (in days/yr) with which VPD and FWI exceed the 
ecoregion specific daily average SON 95th percentile in the mid-century (left) and late-
century (right) relative to the historic period. Higher values indicate more SON days 
that exceeded the 95th percentile. (a,b) Vapor pressure deficit (c,d) Fire Weather Index. 

SON FWI!" days increased in all ecoregions except the MWCM, which decreased from 

an average of 7 days/yr between 1981-2010 to 3 days/yr between 2071-2100 (Table 10). The 



 

 89 

C, EC, and CV ecoregions doubled in the number of days experiencing FWI values greater 

than the historical 95th percentile. Overall changes in the occurrence of FWI!" days were 

smaller for the SON season compared to JJA, however, many of the same areas that were 

impacted in the summer show continued increases in extreme fire weather carrying into the 

fall, relative to the fall historical 95th percentile (Figure 27f). Some of the most affected areas 

include the region east of Los Angeles (34°N, 117°W), the south western region of the CCF 

(35-36°N, 120-121°W), western border of the Sierra Nevada, and the northern California 

Cascades and Eastern Cascades (Figure 27). Similar to the summer season, there was a 

moderating influence on FWI along the coast of California, as well as a topographic influence 

in the K and SN ecoregions. In fact, nearly the entire state of California, apart from the coastal 

and high elevation areas, displayed a positive signal in VPD!" by the end of the 21st century. 

4.3.4 Fire Weather Frequency Distributions 

The 30-year spatial averages of FWI and VPD were calculated for each of the 10 

ecoregions during the historical, mid- and late-century periods. The frequency with which 

each FWI and VPD value occurred was plotted (as an area), along with the ecoregion specific 

95th percentile value and the area that exceeded the threshold value in the three time periods 

(Figure 28). 

 

 



 

 90 

 

Figure 28. Frequency distributions depicting the area experiencing particular JJA FWI 
values. The dashed line represents the ecoregion specific 30-year average spatial 95th 
percentile value. The black, blue and red lines represent the historical, mid-century, and 
late-century time periods, respectively. The color-coded text are areal units (km2) 
experiencing greater than the 95th percentile value for that ecoregion. (a) California; (b) 
Southern California Mountains; (c) Southern California Coast; (d) Central California 
Foothills; (e) Klamath; (f) Cascades; (g) East Cascades; (h) Sierra Nevada; (i) Central 
Valley; (j) Marine West Coast Mountains; (k) North American Desert.  

The total land area that was projected to experience FWI greater than the 95th percentile 

value increased in all ecoregions apart from Klamath and the Marine West Coast Mountains 

(Figures 28e, j). The largest increases in area occurred in the Central Valley and the Cascades 

ecoregions (over seven and six times the historical area, respectively). Furthermore, the 

increase in area experiencing extreme fire weather in the SCM and the EC, followed by the 

SCC, CCF, and NAD ecoregions, increased by a factor of four and three, respectively. In 

many cases, including in the SCM, K, C, EC, SN, CV, and NAD ecoregions, the distribution 

of average FWI values shifted towards the 95th percentile threshold, indicating that mid- and 

late-century average FWI values could be closer to what is now considered extreme. The JJA 
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FWI!" percentile values ranged from 15.5 in the Cascades to 28.4 in the North American 

Desert, while the state-wide California JJA FWI!" was 26.5. 

The increase in the amount of land area likely to experience FWI greater than the historical 

95th percentile was even greater for SON than JJA, however, the MWCM ecoregion is 

projected to have a decline in the total land area with extreme fire weather (Table 11). The 

ecoregions projected to see the largest changes include the Central Valley, Cascades, and 

SCM, with ten, eight, and seven times the area under 95th percentile FWI by late-century, 

relative to the historical period. In addition, the NAD, EC, and SCC ecoregions increased by 

a factor of six, and the SN by a factor of five. Whereas the area within the Klamath ecoregion 

with FWI greater than the 95th percentile decreased in the summer, FWI!" area is projected to 

double in SON by the end of the 21st century. Additionally, the SON FWI!" percentile values 

ranged from 8.71 in the Cascades to 16.6 in the North American Desert, while the state-wide 

California SON FWI!" is 15.4. 

Table 11. The extent of each ecoregion experiencing SON FWI and VPD greater than 
the 95th percentile. Calculated from the ecoregion 30-year average. Units: km2. 

 

Ecoregion increases in JJA VPD!" area were even more substantial than FWI!" (Figure 

29). The increase in VPD is so significant that the distribution of JJA VPD values shifts in a 

way that the peak VPD value in the mid- and late-century will exceed that of the historical 

95th percentile threshold (Figures 29b-d, f, g, i, k). The largest increases in area exceeding 
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VPD!" occurred in the Central Valley and East Cascades, with a 17-fold increase, followed 

by the Cascades (13-fold), and the CCF and SCC (12-fold). The JJA VPD!" percentile values 

ranged from 3.12 in the MWCM to 6.98 in the North American Desert, while the state-wide 

California JJA VPD!" was 6.6. 

 

Figure 29. Frequency distribution depicting the area experiencing particular JJA VPD 
values. The dashed line represents the ecoregion specific 30-year average spatial 95th 
percentile value. The black, blue and red lines represent the historical, mid-century, and 
late-century time periods, respectively. The color-coded text are areal units (km2) 
experiencing greater than the 95th percentile value for that ecoregion. (a) California; (b) 
Southern California Mountains; (c) Southern California Coast; (d) Central California 
Foothills; (e) Klamath; (f) Cascades; (g) East Cascades; (h) Sierra Nevada; (i) Central 
Valley; (j) Marine West Coast Mountains; (k) North American Desert. 

The average projected area with extreme SON VPD was also large, implying that 

conditions in California will be conducive to wildfire for a minimum of half the year, 

extending the typical fire season into the fall, and contributing to the widespread desiccation 

of fuels. Unlike with patterns seen in the MWCM FWI values, VPD!" area was projected to 

increase in the MWCM in both the JJA and SON by a factor of seven and nine, respectively 
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(Figure 29j, Table 10). Additionally, the SON VPD!" percentile values ranged from 2.01 in 

the East Cascades to 4.28 in the North American Desert, while the state-wide California JJA 

VPD!" was 3.97. 

4.3.5 Fire Weather Index Julian Day Climatologies 

Climatologies ordered by Julian day of VPD indicated an increase in peak VPD in the 

summer, as well as an earlier start and a delayed end to the fire season in all ecoregions of 

California (Figure 30). For example, by 2100, the average onset of high spring VPD (defined 

here as VPD ≥ 3) is a month or more earlier in the SCC, CCF, K, C, SN ecoregions. 

Furthermore, the decrease of VPD below the critical value is delayed by a month or more in 

the C, EC and SN. Our results indicated that climate change will likely increase summer and 

autumn average VPD and lengthen the amount of time each year that conditions favor large 

wildfires in California (Figure 30). 
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Figure 30. Thirty-year average Julian day VPD value by ecoregion. The black, blue, and 
red lines represent the historical, mid-century, and late-century averages, respectively. 
The color-coded text shows the average date for each respective time period that VPD 
exceeds (left) and falls below (right) a value of 3. (a) California; (b) Southern California 
Mountains; (c) Southern California Coast; (d) Central California Foothills; (e) 
Klamath; (f) Cascades; (g) East Cascades; (h) Sierra Nevada; (i) Central Valley; (j) 
Marine West Coast Mountains; (k) North American Desert. Units: kPa.  

Climatologies ordered by Julian days of FWI indicated that the average summer peak FWI 

value will increase, and the fire season, defined here by the onset of average FWI greater than 

15, will begin earlier and end later in the mid- and late-century periods relative to the historic 

period. However, the effect of climate change on the growth of the fire season was greater for 

VPD than it was for FWI (Figure 31). The greatest impact was to the onset of the fire season, 

with late-century average FWI exceeding a value of 15 anywhere from 6 days (SCC) to one 

month (NAD) before the historical average. 

 

Figure 31. Thirty-year average Julian day Fire Weather Index value by ecoregion. The 
black, blue, and red lines represent the historical, mid-century, and late-century 
averages, respectively. The color-coded text shows the average date for each respective 
time period that FWI exceeds (left) and falls below (right) a value of 15. (a) California; 
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(b) Southern California Mountains; (c) Southern California Coast; (d) Central 
California Foothills; (e) Klamath; (f) Cascades; (g) East Cascades; (h) Sierra Nevada; 
(i) Central Valley; (j) Marine West Coast Mountains; (k) North American Desert. 

Studies show that the role of temperature and humidity are strongest in FWI, with 

precipitation and wind speed playing important, but secondary roles (Dong et al. 2022; Jain 

et al. 2022). However, our results indicated that the increase of VPD in the mid- and late-

century periods was much greater than FWI, especially in the MWCM, which experienced a 

decrease in summer FWI, implying that precipitation and wind patterns can play a strong role 

in FWI trajectory (Figure 31j). However, the sensitivity of the FWI to incremental changes in 

input variables is outside the scope of this study. 

4.4 Discussion 

4.4.1 Extreme Fire Weather in California’s Future Will Become More Severe and Last 

Longer 

California’s fire weather season length has increased in the past three decades due to 

increases in surface air temperature, decreases in relative humidity, and longer annual rain-

free periods (Jolly et al. 2015; Dong et al. 2022). Our results provide further evidence that fire 

weather conditions conducive to large wildfires will become more extreme and extend later 

into the fall season in most areas of California by 2100 (Goss et al. 2020; Dong et al. 2022). 

The peak effects of hot and dry summers will be extended by 30 days into late October and 

November. This timing will coincide with the Santa Ana wind season (which normally runs 

from October to March), as well as a projected delay in the onset of the rainy season—

producing a high risk period during a time that has normally been outside of California’s 

typical “fire season” for emergency preparedness (Swain 2021; Dong et al. 2022). The 

catastrophic consequences of severe fire weather towards the end of the typical California fire 
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season were seen in 2020, with the August Complex Fire (August 2020), SCU Lightning 

Complex (August 2020), Creek (September 2020), LNU Lightning Complex (August 2020), 

and the North Complex (August 2020)—together accounting for five of the 10 largest 

wildfires in California history (Parks et al. 2014; CALFIRE 2022). In addition, the increase 

in land area experiencing extreme VPD and FWI expected by the end of the mid-century 

(2070) and late-century (2100) period, as well as the extension of the fire season late into the 

fall, will prime large portions of California for the spread of large wildfires, given an ignition 

(Figures 30 and 31). 

4.4.2 Climate Change Impacts on California Ecoregions 

Several conceptual frameworks exist that seek to determine the biophysical controls on 

wildfire ignition and probability of spread. For example, wildfire has been shown to thrive in 

the middle of a continuum between aridity (dry) and productivity (wet) (Bonan 2015). Similar 

to the way that plants have evolved traits that reflect biotic tradeoffs in favor of various 

survival strategies, wildfire regime is commonly controlled by the abundance and moisture 

content of fuels (Meyn et al. 2007; Archibald et al. 2013; Parks et al. 2016). For example, the 

tropics experience large amounts of rainfall, have high biomass production, and contain the 

necessary fuels for large wildfires—however, they are rarely dry enough to burn (Meyn et al. 

2007; Parks et al. 2016). On the other hand, where moisture is limited and biomass production 

is low, wildfire does not have the necessary fuel to spread. Therefore, wildfire would be most 

likely to occur and spread in ecosystems that are dry for sufficient periods of time so that 

vegetation becomes water-stressed, but wet enough to support enough biomass that provide 

continuous fuels such that large wildfires may burn. These environmental gradients impact all 

aspects of fire regime, including fire frequency, occurrence, intensity, severity, and total area 
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burned (Meyn et al. 2007; Bradstock 2010; Parks et al. 2016). This phenomenon implies that 

the projected impacts of climate change on temperature and atmospheric aridity will have a 

more significant effect on northern California forested ecoregions sensitive to extended dry 

periods than on the more consistently hot and dry southern California regions that are adapted 

to such conditions, and are more likely to lack the necessary abundance and continuity of fuel 

for large wildfires (McKenzie and Littell 2017). These climate-fire relationships are critical 

for the interpretation of our results, as the most substantial changes to the amount of area 

experiencing extreme fire weather (Figures 28 and 29), as well as the time added to the onset 

and end of the fire season (Figures 30 and 31), are projected to occur in forested northern 

California, where they could have the most dire implications for annual area burned 

throughout the 21st century. 

In southern California, a large variety of topographies, vegetation types, climate regimes, 

and human populations contribute to a fire regime dominated by frequent wildfires. The 

precipitation season is confined to a few core months (Dec.-Mar.) with some rain occurring 

in the shoulder season of November and April, which in combination with the warm and dry 

summers, leads to an extended annual fire season (Jolly et al. 2015). In addition, annual Santa 

Ana winds advected from the eastern deserts towards the coast, move downslope at high 

speeds and increase the risk of severe wildfire during the fall season. Vegetation types are 

predominately herbaceous plants (chaparral), grasslands, shrubs, and patches of forest that 

recover relatively quickly following wildfire. The rapid re-generation of herbaceous fuels after 

wildfire are a factor in the frequent fire return interval throughout southern California (1-5 

years) (Meng et al. 2014). Studies show that the impacts of climate change on fire regime in 

southern California thus far are primarily a result of increasing temperatures and atmospheric 
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aridity, as well as changing patterns of precipitation, that in turn influence the state of the 

environmental constraints on wildfire activity discussed above (Krawchuk et al. 2011). 

Compared to forested regions of northern California, fire regime in non-forested regions of 

southern California are less susceptible to shifts in moisture availability and more so to 

availability of fuel, however, these chaparral and grassland ecosystems are sensitive to rainfall 

patterns in the year or two prior to fire occurrence because the influx of moisture promotes 

the growth of vegetation (Keeley and Syphard 2019; Williams et al. 2019). Our results indicate 

that while the increases in land area experiencing extreme fire weather are smaller than in 

northern California, and the extension of the fire season is not as substantial, changes to 

southern California JJA and SON extreme fire weather, in succession, still have the potential 

to tax vegetation-management and fire-fighting resources. 

Conceptual frameworks help to attribute controlling factors to different fire regimes, given 

the complex web of climate, human activity, topography, vegetation, hydrology, prior 

wildfire, fire suppression, and fire management, with their practically infinite combination. 

Our ecoregion specific results show a future consisting of more persistent extreme fire weather 

that occurs in a greater land surface area than in the past. Therefore, with the aid of climate-

fire frameworks, we may deduce the range of impacts that this increase in aridity and fire 

potential may have on sensitive ecosystems. While northern and southern California 

ecoregion’s fire regimes are controlled by different factors, the simultaneous increasing trends 

in atmospheric aridity and fire potential indicate a future in which fire suppression and 

management resources throughout the state are stretched thin. In order to offset the dangers 

of extended fire seasons throughout much of California by 2100, alongside the expansion of 
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the wildland urban interface, fire management must implement innovative combinations of 

new and existing strategies intended to limit the destruction of property and loss of life. 

4.4.3 Limitations 

Impact studies that utilize global climate model output generally require the use of many 

models, however, due to the recent release of CMIP6, limited availability of the fire weather 

variables required to perform the FWI and VPD calculations restricted our ability to increase 

the number of models used (Araya-Ossess et al. 2020). Despite this, the evaluation of the 

ensemble-mean of the three models chosen for this study showed good agreement with 

observational data. In addition, we acknowledge that all statistical downscaling methods are 

subject to issues of stationarity. To be clear, there are assumptions made regarding the 

application of historical climatic patterns to projected data, however, the thin plate spline and 

linear regression method employed here advantageously utilizes data surrounding each grid 

point in the calculation of its smoothed estimate. This interpolation technique works best with 

continuous data but it may be adapted to perform well with discontinuous climate variables 

such as precipitation, and to some extent wind speed. Additionally, it is important to consider 

the climate-wildfire-vegetation feedback when attempting to predict annual area burned, 

however, this work focuses on the impacts of climate on extreme fire weather, so the complex 

relationships among annual area burned, climate patterns, and vegetation distribution are 

outside the scope of this study (Hurteau et al. 2019). Lastly, it should be noted that projected 

increases in California’s summer and fall VPD and FWI are not synonymous with a 

corresponding increase in annual area burned, as wildfire is inherently dependent on an 

ignition source and flammable vegetation (Keeley and Syphard 2016). 
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4.5 Conclusions 

We analyzed the impacts of climate change on extreme fire weather in ten different 

California ecoregions throughout historical, mid- and late-century periods using two 

prominent fire weather indices. Climate model output from three CMIP6 models were bias 

corrected and statistically downscaled using empirical quantile mapping in addition to a 

simple thin plate spline interpolation method. Historical average baselines for each index were 

calculated for each ecoregion and used to generate anomalies for 2041-2100. Relative change 

analysis indicates that FWI and VPD are projected to increase in all ecoregions, except the 

MWCM, which displayed a decrease in JJA and SON FWI in the mid- and late-century 

periods. In addition, the average daily 95th percentile value for the historical period (for each 

ecoregion) was implemented as a threshold in order to calculate the number of summer and 

fall extreme fire weather days, and to evaluate the spatial distribution of these changes. The 

frequency of 95th percentile days for JJA and SON VPD and FWI is projected to increase 

significantly in all ecoregions, except the MWCM, which shows a decline in FWI 95th 

percentile days. Furthermore, we analyzed the 30-year spatial average of each index and 

generated frequency distributions to investigate the average change in land area projected to 

experience extreme fire weather, relative to the historical benchmark. We found that JJA VPD 

land area exceeding the 95th percentile will increase by a factor of 2 and 17 in different 

ecoregions by the end of 2100. Lastly, Julian-day climatologies of each index were generated 

to assess the changing duration of a typical California fire season. We found that the window 

of extreme fire weather will expand into the spring and late autumn in all ecoregions (apart 

from the MWCM), extending the amount of time vegetation is exposed to increased 
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atmospheric demand for moisture, and heightening the overall risk for the ignition and spread 

of large wildfire. 

The ecoregion-level spatial scale adopted for this study increases the amount of local 

information, as well as the resolution with which fire and land managers can implement 

strategies and counter-measures when addressing issues related to climate change. The spatial 

downscaling algorithm tested and implemented in this study was computationally inexpensive 

(compared to dynamical downscaling) and may be readily applied to further climate change 

scenarios in other Mediterranean and temperate regions (Abatzoglou and Brown 2012; Zhang 

et al. 2020). High resolution, daily meteorological data is not only useful for wildfire impact 

studies (and for investigating the post-fire environment), but can be implemented in the 

research of agricultural productivity, urban heat islands, hydrology, and human health. This 

intuitive, practical, and simple interpolation method will not only contribute to the improved 

understanding of the complexities of California’s climate-fire dynamics, but will provide the 

means for more efficiently obtaining climate model data of high spatial and temporal 

resolution. 
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Chapter 5. Conclusions 

5.1 Summary of Results 

The objectives of this dissertation research were to (1) investigate the impacts of wildfire 

on the surface energy balance in California; (2) assess the influence of wildfire burn severity 

on the five-year postfire recovery trajectory of three biophysical variables, including 

vegetation abundance, land surface temperature, and surface shortwave albedo; and (3) 

quantify and evaluate the impacts of climate change on the occurrence of extreme fire weather 

during an historical (1979-2014), mid-century (2041-2070), and a late-century (2071-2100) 

period. These objectives were met using a variety of research tools, methodologies, and 

techniques, along with a suite of climatological and remote sensing datasets. Each chapter 

provides a unique perspective on the bi-directional climate-wildfire feedback system, in which 

wildfire both drives, and responds to, meteorological changes. For example, the removal of 

vegetation and the deposition of ash following a large wildfire may lead to a decrease in 

evapotranspiration and an increase in land surface temperatures for more than five years after 

ignition. The suppression of latent heat flux after wildfires of sufficient size and severity may 

even impact precipitation patterns. On the other hand, climatic changes throughout the 21st 

century, such as increases in temperature and aridity, may lead to an increased occurrence of 

extreme fire weather.  

The research presented in Chapter 2 investigated the impact of wildfire on surface energy 

exchange through the assessment of six California wildfires that occurred since 2003. A 

burned-unburned binary mask was generated from monthly date-of-burn product and 

implemented into a land surface model for a series of simulations. Simulations show a 

decrease in latent heat flux in every case study except the Rush fire, which occurred in Lassen 
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county in August 2012. Post-fire changes in net radiation and sensible heat followed similar 

trends, decreasing in each of the domains except the Rush and Cedar fires - which was likely 

caused by the increase in sensible heat flux from ash deposition dominating over the decrease 

in latent heat flux from vegetation removal. Initial increases in sensible heat flux, caused by 

the decrease in albedo from ash deposition, are balanced by decreases in latent heat flux in the 

Zaca, Rim, and Basin Complex case studies. Overall, the largest changes to net radiation were 

primarily caused by decreases in latent heat flux following wildfire-induced vegetation 

removal.  

The vegetation recovery and surface albedo change components of Chapter 2 were 

developed in Chapter 3 through a more comprehensive investigation into the temporal patterns 

of biophysical change following wildfires of varying degrees of severity. In this study, a 

collection of MODIS datasets was used to investigate the impact of burn severity on 

vegetation recovery, albedo change, and land surface temperature in seven California 

ecoregions. A statewide MODIS-derived RdNBR dataset was generated using surface 

reflectance data and used to analyze the impact of burn severity on the five-year postfire early-

summer averages of each biophysical variable between the years 2003-2020. The highest 

prefire EVI and the greatest decrease of EVI after one year, regardless of burn severity, were 

found in the Klamath, Cascades, and the Sierra Nevada ecoregions. High severity fire was 

associated with the largest decreases in EVI one year later, and EVI did not recover to prefire 

levels after 5 years in any burn severity class in any ecoregion. Also, EVI recovered most 

rapidly during the first 2 years postfire after high severity fires. Furthermore, LST increased 

in the first year postfire in all ecoregions regardless of burn severity, and the greatest increases 
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in LST were associated with high severity fires. Similar to EVI, postfire LST did not return to 

prefire levels after five years in any burn severity class.  

In Chapter 4, a bias correction and statistical downscaling technique was implemented to 

obtain high-resolution, daily meteorological conditions for input into two fire weather indices: 

vapor pressure deficit and the Canadian Fire Weather Index System. The results from Chapter 

4 provide evidence that fire weather conditions will become more extreme and extend into the 

spring and fall seasons in most areas of California by 2100, extending the amount of time 

vegetation is exposed to increased atmospheric demand for moisture, and heightening the 

overall risk for the ignition and spread of large wildfires. 

5.2 Key Contributions and Findings 

The studies that comprise this dissertation contribute to the literature by detailing a land 

surface modeling technique that allows for the simulation of wildfire-induced vegetation 

removal, applicable anywhere in the world. Also, a computationally inexpensive bias 

correction and statistical downscaling technique is explained that may allow researchers to 

obtain high-resolution meteorological data, which may be useful for wildfire impact 

assessments, as well as in research areas such as agricultural productivity, urban heat islands, 

hydrology, and human health. Further, the biophysical response to wildfires of varying 

degrees of severity provide critical indications of ecosystem health and can inform fire and 

land management in their efforts to effectively mitigate and suppress large wildfires in key 

areas. Also, the quantification of postfire change in albedo and land surface temperature may 

improve the accuracy and inform the conceptualization of future modeling of wildfire impacts.  
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