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This dissertation seeks to enable intelligent vehicles to see, to predict intentions, to

understand and to model the state of driver.

We developed a state of the art vision based non-contact gaze estimation framework by

carefully designing submodules which will build up to achieve continuous and robust estimation.

Key modules in this system include, face detection using deep convolutional neural networks,

landmark estimation from cascaded regression models, head pose from geometrical correspon-

dence mapping from 2-D points in the image plane to 3-D points in the head model, horizontal

gaze surrogate based on geometrical formulation of the eye ball and iris position, vertical gaze

surrogate based on openness of the upper eye lids and appearance descriptor, and finally, a 9-class

gaze zone estimation from naturalistic driving data driven random forest algorithm.

We developed a framework to model driver’s gaze behavior by representing the scanpath

over a time period using glance durations and transition frequencies. As a use case, we explore the
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driver’s scanpath patterns during maneuvers executed in freeway driving, namely, left lane change

maneuver, right lane change maneuver and lane keep. It is shown that condensing temporal

scanpath into glance durations and glance transition frequencies leads to recurring patterns based

on driver activities. Furthermore, modeling these patterns show predictive powers in maneuver

detection up to a few seconds a priori and show a promise for developing gaze guidance during

take over requests in highly automated vehicles.

We introduce a framework to model the spatio-temporal movements of head, eyes and

hands given naturalistic driving data of looking-in at the driver for any events or tasks performed

of interest. As a use case, we explore the temporal coordination of the modalities on data of

drivers executing maneuvers at stop-controlled intersections; the maneuvers executed are go

straight, turn left and turn right. In sequentially increasing time windows, by training classifiers

which have the ability to provide discriminative quality of its input variable, the experimental

study at intersections shows which type of, when and how long distinguishable preparatory

movements occur in the range of a few milliseconds to a few seconds.

We introduce one part of the Vision for Intelligent Vehicles and Applications (VIVA)

challenge, namely, the VIVA-face challenge. VIVA is a platform designed to share naturalistic

driving data with the community in order to: present issues and challenges in vision from real-

world driving conditions, benchmark existing vision approaches using proper metrics and progress

the development of future vision algorithms. With a special focus on challenges from looking

inside at the drivers face, we provide information on how the data is acquired and annotated,

and how methods are benchmarked, compared and shared on leaderboards.

Finally, we propose de-identification filters for protecting the privacy of drivers while

preserving sufficient details to infer driver behavior, such as the gaze direction, in naturalistic

driving videos. We implement and compare de-identification filters, which are made up of a

combination of preserving eye regions and distorting the background, to show promising results.

With such filters, researchers may be more inclined to publicly share deidentified naturalistic

driving data. The research community can then tremendously benefit from large amounts of

naturalistic driving data and focus on the analysis of human factors in the design and evaluation

of intelligent vehicles.
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Chapter 1

Introduction

Intelligent vehicles of the future are that which, having a holistic perception (i.e. inside,

outside and of the vehicle) and understanding of the driving environment, make it possible for

occupants to go from point A to point B safely, comfortably and in a timely manner. This may

happen with the human driver in full control and getting active assistance from the robot, or the

robot is in partial or full control and human drivers are passive observers ready to take over as

deemed necessary by the machine or humans. Therefore, the future of intelligent vehicles lies in

the collaboration of two intelligent systems, one robot and another human [74, 9]. Specifically,

intelligent vehicle is an entity composed of intricately connected modules (see Figure 1.1) as listed

here:

• Holistic Sensing: The driving environment is made up of many components including

the driver, ego-vehicle, surround-vehicle, pedestrians, traffic lights, traffic signs, roads,

vegetation, curbs, etc. For an intelligent vehicle to traverse safely through the dynamic

environment, sensors are required to perceive the components and their characteristics;

sensors such as camera array, radars, lidars, GPS, CAN bus. etc. Intelligent vehicles need

to be instrumented with a suite of such sensors to allow holistic sensing, where holistic

sensing represents sensing the state within the vehicle, around the vehicle and of the vehicle

simultaneously and synchronously.

• Semantic level Perception: This stage derives semantically meaningful information from

the output of sensors. For example, when a camera sensor outputs an image, a computer

sees a matrix of numbers while humans see objects, their orientations, their interactions with

other objects and may even predict the state of the object in near future, etc. Therefore, a

critical milestone for intelligent vehicles is to extract semantic information from raw sensory

data. Semantic information such as head pose, eye movement, hand position, foot gesture,

headway distance, lateral position with respect to lane, etc. Extracting such semantic

1
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Figure 1.1: The backbone of intelligent vehicle is an intricately connected set of modules.

information requires developing computer vision techniques, machine learning approaches,

large datasets with annotations and calibration methods, to name a few.

• Models: Models are required to represent the state of an entity. There are three broad

models of interest, driver models, surround models and vehicle models. For example, what

kind of driver models will be useful? It will be useful to model driver’s attention to the

forward driving direction, level of alertness/fatigue, engagement in non-driving secondary

tasks, “normal”/safe driving behavior, driving style, etc. For the surround environment,

it will be useful to model trajectories of surrounding vehicles/pedestrians, lane deviations,

traffic conditions, etc. Finally, for representing the state of the vehicle, it will be useful to

model tire frictions, brake response, seat belt tension, air bag deployment, etc.

• Cognition, Decision, Human-Vehicle Interface: Using models representing the state

of the driver, surround and ego-vehicle, this stage encompasses everything short of taking

an action. It includes predicting the action of driver and elements in the surrounding

environment. For example, predicting whether a pedestrian will cross traffic, predicting

whether a surrounding vehicle will change lanes, predicting whether the ego vehicle will

make a turn, etc. Other modules include intent, risk assessment, reaction, state/affect,
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preference/style, to name a few.

• Action: Whether the driver is control, some level of autonomy is used or in the transition

state between driver and system, when there is an impending danger, an intelligent vehicle

should take appropriate action in collaboration with the humans. For example, an intel-

ligent vehicle should alert drivers to unseen objects (e.g. pedestrians, traffic signs), give

suggestions (e.g. how to merge), and at times intervene (e.g. auto braking). Furthermore,

even in the absence of impending danger, actions such safe, smooth handover/takeover and

safe, comfortable travel from point A to point B is some among many actions necessary in

intelligent vehicle.

• Feedback: Every intelligent system requires a feedback. For example, when the intelli-

gent vehicle takes an action, how did the driver react? The driver’s reaction will factor

into future actions and intentions of drivers. Another use of feedback is in managing com-

putational resources in the semantic level perception based on risk assessment from the

cognitive/decision module.

This dissertation focuses on looking-inside the vehicle at the driver, especially the driver’s

face, and in so doing has contributions in the holistic sensing, semantic level perception, driver

modeling and cognitive/decision logic modules. With respect to holistic sensing, we present

a distributed camera framework for head movement analysis, with emphasis on the ability to

robustly and continuously operate even during large head movements. The proposed system

tracks facial features and analyzes their geometric configuration to estimate the head pose using a

3-D model. For the semantic level perception modules, we developed a state of the art vision based

non-contact gaze estimation framework by carefully designing submodules which will build up

to achieve continuous and robust estimation. Key modules in this system include, face detection

using deep convolutional neural networks, landmark estimation from cascaded regression models,

head pose from geometrical correspondence mapping from 2D points in the image plane to 3D

points in the head model, horizontal gaze surrogate based on geometrical formulation of the

eye ball and iris position, vertical gaze surrogate based on openness of the upper eye lids and

appearance descriptor, and finally, a 9-class gaze zone estimation from naturalistic driving data

driven random forest algorithm.

With respect to our contributions in the driver modeling and cognitive/decision logic

module, we developed a framework to model driver’s gaze behavior by representing the scanpath

over a time period using glance durations and transition frequency. As a use case, we explore the

driver’s scanpath patterns during maneuvers executed in freeway driving, namely, left lane change

maneuver, right lane change maneuver and lane keep. It is shown that condensing temporal

scanpath into glance durations and glance transition frequencies leads to recurring patterns based

on driver activities. Furthermore, modeling these patterns show predictive powers in maneuver



4

detection up to a few seconds a priori and show a promise for developing gaze guidance during

take over requests in highly automated vehicles.

Furthermore, we introduce a framework to model the spatio-temporal movements of

head, eyes and hands given naturalistic driving data of looking-in at the driver for any events

or tasks performed of interest. As a use case, we explore the temporal coordination of the

modalities on data of drivers executing maneuvers at stop-controlled intersections; the maneuvers

executed are go straight, turn left and turn right. In sequentially increasing time windows, by

training classifiers which have the ability to provide discriminative quality of its input variable,

the experimental study at intersections shows which type of, when and how long distinguishable

preparatory movements occur in the range of a few milliseconds to a few seconds.

All of these above described contributions and components rely heavily on vision based

techniques. The question is, how well do these vision techniques work in order to be used in

time and safety critical driving situations? Therefore, we introduce one part of the Vision for

Intelligent Vehicles and Applications (VIVA) challenge, the VIVA-face challenge. VIVA is a

platform designed to share naturalistic driving data with the community in order to: present

issues and challenges in vision from real-world driving conditions, benchmark existing vision

approaches using proper metrics and progress the development of future vision algorithms. With

a special focus on challenges from looking inside at the drivers face, we provide information

on how the data is acquired and annotated, and how methods are compared and shared using

leaderboards.

Finally, we propose de-identification filters for protecting the privacy of drivers while

preserving sufficient details to infer driver behavior, such as the gaze direction, in naturalistic

driving videos. We implement and compare de-identification filters, which are made up of a

combination of preserving eye regions and distorting the background, to show promising results.

With such filters, researchers may be more inclined to publicly share deidentified naturalistic

driving data. The research community can then tremendously benefit from large amounts of

naturalistic driving data and focus on the analysis of human factors in the design and evaluation

of intelligent vehicles.

Among the contributions of this dissertation:

• A state-of-the art machine vision based non-contact, end-to-end, continuous, gaze estima-

tion framework and extensive evaluation on naturalistic driving data. (Chapter 2).

• Gaze pattern modeling for inferring driver behavior and predicting actions using large scale

naturalistic driving data. (Chapter 3)

• A multi-cue, data driven framework to model the spatio-temporal movements of head, eyes

and hands using computer vision. (Chapter 4)

• Naturalistic Driving Studies (NDS) database for vision algorithm benchmarking and devel-
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opment. (Chapter 5)

• De-Identification filers for protecting the privacy of drivers while preserving sufficient details

to infer driver behavior in naturalistic driving videos. (Chapter 6)

• Systematic cost-benefit analysis of various camera configurations of a distributed multi-

ple camera framework to maximize system performance in terms of continuous head pose

estimation. (Appendix)



Chapter 2

End-to-End, Continuous Gaze

Estimation Framework

2.1 Introduction

A visually demanding driving environment, where elements surrounding a driver are

constantly and rapidly changing, it is important for an intelligent vehicle to know where or

at what the driver is looking. Vision-based systems are commonly used for deriving driver’s

gaze as they provide a non-contact and noninvasive solution. In literature, the driver’s gaze

has been approximated from head pose alone to head plus eye cues. At least four surrogate

ways to represent the driver’s gaze continuously are considered: head pose, horizontal eye-gaze

surrogate, vertical eye-gaze surrogate and gaze zones. The last representation, gaze zone, builds

upon the other modes of representation for a higher semantic level perception of where the driver

is looking (e.g. forward, rear-view mirror, center stack). In later chapters, different subsets for

representing the driver’s gaze will be used for modeling the state of the driver. In particular,

the next chapter will use the driver’s gaze estimation approach for gaze behavior modeling and

understanding, where as the chapter after that about multi-cue fusion with hand analysis will

use a lesser semantic representative cues about the driver’s gaze.

This chapter will describe modules which build up to achieving a continuous and (near)

robust gaze zone estimation. Key modules in this system include, face detection using deep

convolutional neural networks, landmark estimation from cascaded regression models, head pose

from relative configuration of 2-D points in the image plane to 3-D points in the head model, hor-

izontal gaze surrogate based on geometrical formulation of the eye ball and iris position, vertical

gaze surrogate based on openness of the upper eye lids and appearance descriptor, and finally, a

9-class gaze zone estimation from naturalistic driving data driven random forest algorithm.

6
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In developing the gaze estimation module and all the submodules within, there is a need

for robustness and continuous monitoring of the driver state in time and safety critical, and

constantly changing driving environment. However, the real-world, on-road driving environment

presents a lot of challenging vision problems when observing the driver’s face. Therefore, specif-

ically, any driver face analysis system, including a gaze estimator, for in vehicular application

and development should have the following capabilities:

• Automatic: There should be no manual initialization, and the system should operate with-

out any human intervention. This criterion precludes the use of pure-tracking approaches

that measure the driver’s state relative to some initial configuration.

• Fast: The system must be able to derive driver state while driving, with real-time opera-

tion.

• Wide operational range: The system should be able to accurately and robustly handle

spatially large and varying speed of head movements.

• Lighting invariant: The system must work in varying lighting conditions (e.g. sunny,

cloudy).

• Person invariant: The system must work across different drivers.

• Occlusion tolerant: The system should work in the presence of typical partially occluding

objects (e.g. eyewear, hats) or actions (e.g. hand movements).

Each of the submodules and the gaze estimator as a whole, as described in the following

sections, are designed with the above listed capabilities in mind. The sensitivity of each module

to the above listed criteria is either explicitly or implicitly discussed in respective sections. In

particular, the sensitivity of the gaze estimator to each of the above mentioned capabilities are

specifically addressed in the evaluation section towards the end of this chapter.

The performance evaluation in this chapter is given for the highest semantic level per-

ception module only, which is the gaze zone estimator, and we refer the readers to appropriate

publications, as mentioned in following sections, for performance evaluations of the submodules.

2.2 Related Research

Gaze zone estimation can be accomplished in one of two ways: first given an input image

or video sequence, learn a black box (e.g. deep CNN) which outputs the gaze zone and second

is in carefully designing the contents of the black box. The latter is the focus of our research for

at least two reasons. First, with a black box it is hard to control what the system is learning

especially with small dataset, and large datasets of sufficient variations for gaze zone estimation is

difficult to not only to obtain but also to annotate. Second, when designing each of the semantic
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modules leading up to the gaze zone estimator, these intermediate representations of gaze can

be used for other studies. Studies such as lane change intent prediction [24] and overtake versus

brake prediction [75] relies on a time window of head pose estimation, driver activity recognition

[30] relies on both head pose and vertical eye gaze estimation, pedestrian recognition detection

[96] relies on horizontal eye gaze, etc.

However, while many works have used intermediary signals for predictions and activity

recognition, this does not diminish the importance of higher level semantic gaze zone labels. In a

study on the effects of performing secondary tasks in a highly automated driving simulator [59],

it was found that the frequency and duration of mirror-checking reduced during secondary task

performance versus normal, baseline driving. Alternatively, Ahlstrom et al. [3] developed a rule

based 2-second ‘attention buffer’ framework which depleted when the driver looked away from

the field relevant to driving (FRD); and it starts filling up when the gaze direction is redirected

toward FRD. In such a framework, parameters such as rate at which the depletion occurs and

whether the depletion should be delayed, etc. require higher level semantic labels as described

in this chapter.

Therefore, the end-to-end continuous gaze zone estimator described in this chapter is

made up of many submodules. Some of these modules, such as the face detector [121], continuous

head pose estimator [95, 65], and vertical and horizontal eye gaze surrogate [100], have been

developed and tested for robustness to the challenging driving environment. Other modules,

such as the facial landmark estimator [12, 117], have been incorporated without the full fledged

evaluation on driving data but it’s quantitative performance in non-driving datasets and visually

inspected performance in driving datasets are promising for in-vehicular application. Currently,

there is on going research on developing a deep CNN based facial landmark estimator to not only

handle the harsh lighting conditions and occlusion seen in driving conditions but also to provide

information on which landmarks, if at all, are occluded [120].

In literature, works on gaze zone estimation is relatively new and of those, there are

two categories: first is the geometric method and second is learning based method. The work

presented in [3] estimates gaze zones based on geometric methods where a 3-D model car is

divided into different zones and 3D gaze tracking is used to classify into gaze zones; however,

no evaluations on gaze zone level is given in [3]. Another geometric based method is presented

in [111], but the number of gaze zones estimated is very limited (i.e. on-road versus off-road)

and evaluations are conducted in stationary vehicles. In terms of learning based methods, there

are two prevalent works. Work by Tawari et al. [100] has the most similarity to the work

presented in this chapter in terms of the features selected (e.g. head pose, vertical gaze surrogate

and horizontal gaze surrogate), classifier used (i.e. random forest) and evaluation on naturalistic

driving data. The differences are this work introduces another feature to better represent the eyes

(i.e. appearance descriptor), has an increased number of gaze zones and performs evaluations on

a larger dataset. Another learning based method is the work presented by Fridman et al. [40, 39]
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(a) (b) (c) (d) (e) (f)

Figure 2.1: Process for augmenting training dataset with synthetic data of varying (b) rotation,
scale, (c) occlusion, (d) bright spot, (e) brightness, and (f) contrast-limited adaptive histogram
equalization. Since the images from AFLW cannot be published in this article, (a) an image from
the VIVA-Face test set is used to illustrate the process.

where the evaluations are commendably done on a large dataset but the design of the features

to represent the state of the head and eyes are what is causing their classifier to overfit to user

based models and causes sharp decrease in performance for global based models; furthermore,

the largest number of gaze zones defined and trained for is six.

To sum up the differences to previous works in literature, the gaze estimator described

in this chapter is purely learning based, is developed to classify gaze into nine zones, is designed

to better represent the state of the eye and is evaluated on naturalistic driving data.

2.3 Face Analysis: Algorithm Development

2.3.1 Face Detection

The study and formulation of face detection systems has populated literature for many

decades. Largely, the objective of face detection systems have been to find faces in arbitrary

images with minimal to no leverage on contextual information.

In the past decade, Viola-Jones’s adaboost casacade with haar features [112] and de-

formable parts model [122] have dominated the field of face detection. The Adaboost classifier

has especially been a favorite in the community of intelligent vehicles not only because of its

real-time processing speed but also because of its implementation in OpenCV which allows for

easy training and testing. Works as early as [10] and as late as [63] have used the boosted cascade

with haar feature in order to monitor driver vigilance and generate drive reports, respectively.

Viola-Jone’s face detector has also been a key stepping stone in estimating driver’s head pose [72],

predicting driver’s intent to change lane [24], monitoring driver’s alterness [78] and estimating

driver’s gaze [100, 111]. Evaluations of this face detector for faces from naturalistic driving in

these selected publications, however, is negligible

Benchmarking competitions like FFDB [53] and VIVA-face-off [64] give more in-depth

and comparitive results on state-of-the-art face detection schemes on general and driver-specific

domain, respectively. These benchmarks show that Viola-Jones face detector is not sufficient for

the robust performance required in driver assistance. Deformable parts model, comparatively,

shows better performance, but at the expense of computational time (i.e. the conventional DPM
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executes in the order of seconds).

In the computer vision field, there has been a rise in the use of deep convolutional neural

networks (DCNN) for training face detectors with top performing results such as DDFD [32],

Faceness [118], and CascadeCNN [58]. In DDFD, they fine-tune AlexNet [56] to train a face

detector by generating a score image and extracting detected faces. Faceness trains multiple

DCNN components tuned for individual components of the face (e.g. eyes, nose, mouth, etc.)

and combines the output responses to detect a face. CascadeCNN focuses on cascading multiple

CNNs for faster run times by rejecting background areas in the earlier stages of the detector.

While many studies have developed CNN based face detection for general application, this study

emphasizes the need for learning a model which is keen on challenges and advantages unique to

in-vehicular space.

This section gives a brief insight and description of our deep convolutional neural network

using the AlexNet network structure to detect faces (similar to DDFD). For the in vehicle domain

for driving safety where there are harsh lighting conditions and occlusions, it is critical that

the system is able to continuously monitor the driver’s face and behavior even under these

situations. Therefore, one of the key contributions of this module is heavily augmenting the

training samples to include more examples of faces under harsh lighting and occlusion to explore

improvements for handling these scenarios. More specifically, the training data augmentation

includes window sampling, superimposing objects from the SUN2012 dataset to occlude different

parts of the face, random bright spots on the face to mimic the effects of sunlight, brightness

variation and contrast-limited adaptive histogram equalization (CLAHE). Illustrative examples

of the augmented dataset is in given Figure 2.1 and more details on the algorithm development

and training dataset description can be found in [121].

2.3.2 Landmark Estimation

A total of 68 landmarks as defined originally in the CMU Multi-Pie dataset [45] and

2 iris locations [100] are estimated in the current framework. In this module, the landmarks

are estimated using a cascade of regression models as described in [12, 117] with more details

for iris localization given in [100]. The idea is given an initial estimate of the facial landmark

locations, say p0, which is generally a mean shape, and a learned sequence of regression models

(R1, ..., RK), facial landmark location at the kth iteration is computed as follows:

pk = pk−1 +Rk ∗ F (pk−1,M)

where k ∈ [1,K], M represents the image on which the landmarks are being estimated, and

F (pk−1,M) is a vector of features extracted at landmark positions found at the (k− 1) iteration

on image M .



11

Figure 2.2: Tracked facial feature/landmarks and their correspondences in 3D face image. Solid
red circles are the points utilized for the head pose calculation.

2.3.3 Head Pose

Given a 3-D model of an object, the pose from orthography and scaling (POS) [20] finds

the position and orientation of the camera coordinate with respect to the object reference frame.

It minimizes the reprojection error using a weak perspective transform. Given a point on a 3-D

model, e.g., Mi, and its measured projection in the image plane, e.g., pi = (xi, yi), POS solves

the following linear system of equations:

M0Mi · αi = x0xi i = 1 · · ·Nc

M0Mi · αj = y0yi i = 1 · · ·Nc

where M0Mi represents the vector from the reference point on the 3D model M0 to Mi, α is the

scale factor associated with the weak perspective projection, and Nc is the number of 3D − 2D

point correspondences. Vectors i and j form the first two rows of the rotation matrix, and the

third row is given by vector k = i× j, which is a cross product. Note, however, that, although

k is perpendicular to i and j, vectors i and j are not necessarily perpendicular due to noisy

3D − 2D point correspondences. Therefore, the rotation matrix is projected into the SO(3)

space by normalizing the magnitude of the eigenvalues.

To solve this system of equations, POS requires at least four points of correspondences in

general positions. The cascaded regression algorithm (as described earlier), however, are trained

to output more than four fiducial points. In our current implementation, we use the following

fiducial points, i.e., four eye corners, two nose corners, and a nose tip, as they are comparatively

less deformable. Figure 2.2 shows these points (the red solid circle) on a test image and its

corresponding points on the 3-D mean face model.
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From the obtained rotation matrix, pitch (ψ), yaw (θ) and roll (φ) rotation angles in the

Euler coordinate system are computed as follows [93]. We assume that

R = Rz(φ)Ry(θ)Rx(ψ) =


R11 R12 R13

R21 R22 R23

R31 R32 R33


and compute

θ = −sin−1(R31)

ψ = tan−1(R32/R33)

φ = tan−1(R21/R11)

2.3.4 Eye Cues

Given landmarks around the eye, including iris centers, we compute two gaze-surrogate

measurements, one to account for horizontal eye gaze movement and another for vertical eye gaze

movement, and one appearance measurement. The first two measurements are more quantitative

and objective, while the latter is less quantitative and more subjective at this stage. For reasons

more clearly illustrated and described in the gaze zone estimation subsection, horizontal gaze

surrogate and vertical gaze surrogate are insufficient descriptors to represent the state of the eyes

and therefore insufficient to distinguish between certain zones of interest (e.g. speedometer vs.

closing eyes).

Horizontal gaze-direction computation is explained in a work by Tawari et al. [100], but

we describe mathematical details here for the sake of completion and the readers convenience.

The horizontal gaze-direction β with respect to head, see Figure 2.3, is estimated as a function

of α, angle subtended by an eye in horizontal direction, head-pose (yaw) angle θ with respect to

the image plane, and d1

d2
, the ratio of the distances of iris center from the detected corner of the

eyes in the image plane. The equations below show the calculation steps:

d1
d2

=
cos(θ − α/2)− cos(θ − β)

cos(θ − β) + cos(180− θ − α/2)

β = θ − arccos

(
2

d1/d2 + 1
sin(θ) sin(α/2) + cos(α/2 + θ)

)
Vertical gaze-direction with respect to head is inferred from the eye area. The eye area

is computed using only upper-eyelid contour. Unlike the horizontal gaze-direction measure, this

way of computing vertical gaze is sensitive to head pose; meaning eye area computed when driver
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Figure 2.3: Eye ball image formulation: estimating β, gaze-angle with respect to head, from α,
θ, d1 and d2 [100]

has his eyes fully open but the head is turned away from camera is similar in value to when

driver is facing toward camera but closing his or her eyes. Additionally, by using raw upper eye

lid area, this measure is sensitive to driver ethnicity and driver seating position.

The last measurement representing eyes cues is the appearance. In this work, appearance

of the eye is represented by computing HoG (Histogram of Gradients) in a 2-by-2 patch around the

eye. This descriptor can not only capture the appearance of the eye, which cannot be represented

by the horizontal and vertical gaze surrogates described above, it has the potential to substitute

the gaze surrogate measures. However, if the training data is not sufficiently diverse, it may have

the adverse affect of learning unintended attributes (e.g. driver specific). The evaluation section

covers the importance of each of the head and eyes cues in detail.

2.3.5 Multiple Camera Framework

Many existing state of the art face analysis systems, explicitly or implicitly, rely on a

portion of the face to be visible in the image plane to estimate head pose. This means that even

during large head movements, algorithms require the visibility of facial features to continuously

track the state of the head. With a single perspective of the driver’s head, however, large spatial

head movements induce self-occlusions of facial features as illustrated in the first two columns of

Figure 2.4. In Figure 2.4, each row of images are taken from a different camera perspective and

each column of images are time-synchronized. Clearly, the availability of multiple perspectives

decreases the severity of self-occlusions at any instant in time which translates to an increase in

the robustness of continuous head tracking.

Occlusions of facial features can also occur due to external objects (e.g. hand movements

near the face region, sunglasses). Depending on camera perspective, hand movements on steering
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Figure 2.4: Multi-perspective data collected during naturalistic on-road driving. Each row
of images shows images are from a particular camera location and each column of images are
time-synchronized. Locations of the camera: Camera 1 is near the left A-pillar, Camera 2 is
close to the dashboard, and Camera 3 is near the rear-view mirror. Notice, challenges (e.g.
external-/self-occlusion, shadows, illumination change) present in real world data.

wheel during vehicle maneuvers, to adjust sunshade, to point, etc. can cause occlusion. The

middle two columns in Figure 2.4 show examples of the latter two scenarios with hand movements.

Effects of lighting conditions are also highly dependent on the camera location. In Figure 2.4, the

last two columns illustrate the effects of lighting conditions. Therefore, a multiple perspective

approach with suitable camera placements, can mitigate the adverse effect of any one camera

perspective being unreliable to track the head.

For this, we propose a distributed camera framework inside the vehicle cockpit. The

CoHMEt (Continuous Head Movement Estimator) framework treats each camera perspective

independently, and a perspective selection procedure provides the chosen perspective by analyzing

temporal dynamics and the current quality of the estimated head pose in each perspective. The

block diagram in Figure 2.5 illustrates this process for a general setup of N cameras, where

the cameras are numbered in the increasing order from the leftmost position in the distributed

camera array setup. In the proposed system, we utilize two cameras, which are positioned one

each to the left and right of the driver. The system is initialized with the right camera and during

the tracking phase, transitions from one perspective to another is allowed based on the operating

range (ΩNc
− , ΩNc

+ ) of the selected camera and yaw movement direction. When tracking is lost,

due to either loss of facial point detection or rejection of the estimated points, re-initialization is

performed using a scoring criteria. More detail on CoHMet and systematic cost-benefit analysis

of various camera configurations to maximize system performance in terms of continuous head

pose estimation can be found in Appendix A.
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Figure 2.5: Perspective selection approach. Tracking phase utilizes head pose and dynamics to
switch between perspectives, while a scoring criterion during a lost track re-initializes with the
highest score camera.

2.3.6 Gaze Zone Estimation

In literature, driver’s gaze has been represented and interpreted in many ways. For

example, driver’s gaze can be approximated using head pose and eye gaze surrogates features,

as described in respective sections above. In this section, however, we develop an approach to

give a more semantic understanding of where or at what the driver is looking. Eight semantic

gaze-zones of interest are, far left, left, front, speedometer, rear view, center stack, front right and

right, as illustrated in Figure 2.6. Another class of interest, but not illustrated in the figure, is

the state of eyes closed. Therefore, in total, the gaze estimator in this study will learn to classify

between 9-classes of interest.

Consider a set of feature vectors ~F = {~f1, ~f2, . . . , ~fN}, and their corresponding class

labels Y = {y1, y2, . . . , yN}, for N sample instances. In the context of our study, the class labels

are one of the nine gaze zones of interest, as illustrated in Figure 2.6, and the feature vector is
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Figure 2.6: Illustration of gaze zones of interest and their approximate regions in the vehicle
frame. Another gaze zone not illustrated but trained to classify is “Eyes Closed”.

a subset of head and eyes cues described in the previous sections. Given ~F and Y , we train a

random forest (RF) with an ensemble of 1000 decision trees on the entire corpus. The maximum

depth of each tree is restricted to 10 to prevent overfitting. The advantage in choosing RFs over

other feature selection techniques is three fold: First, we sidestep the entire process of tuning

hyper-parameters through cross-validation. Second, RFs make no assumption about the linear

separability of the data. Third, RFs are capable of handling different data formats like integers,

floats or labels. Thus, no standardization or regularization is necessary.

The creativity and sensitivity of this framework is in the design of the feature vector

~f . If head pose in pitch, yaw, and roll alone are represented in the feature vector, all instances

illustrated in Figure 2.7 would be classified as front. If head pose plus horizontal gaze surrogate

make up the feature vector, instances in Figure 2.7a and Figure 2.7b will be properly classified

as front and left, respectively, but instance in Figure 2.7c is equally likely to be classified as

any of the following classes: front, center stack, front right, speedometer. An addition of the

vertical gaze surrogate to the feature vector will correctly classify the instance in Figure 2.7c to

be speedometer. However, head pose, horizontal gaze surrogate and vertical gaze surrogate are

insufficient descriptors to classify the instance in Figure 2.7d as eyes closed instead of speedome-

ter. Therefore, the appearance of the eyes, as represented by HoG descriptor, is appended in

the feature vector, ~f . While the best performance of the gaze estimator is when all features

are reliably extractable (e.g. no occlusion of the eyes, proper estimation of the landmarks), the

framework has flexibility to balance the availability of information with the resolution of gaze

zones.

2.4 Face Analysis: Evaluation on Naturalistic Driving Data

2.4.1 Dataset Description

Data are collected from naturalistic and on-road driving using two different subject-

owned vehicles. The vehicle is instrumented with four cameras, two of which are mounted facing
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(a) (b) (c) (d)

Figure 2.7: Sample instances of drivers looking at various regions: (a) looking forwards, (b)
looking left, (c) looking at speedometer, (d) transitioning out of blink state. In realistic, on-road
driving scenarios, subtle difference in the appearance of the eyes represent semantically different
meanings.

Table 2.1: Naturalistic driving dataset description for evaluation of the end-to-end continuous
gaze zone estimator

Gaze-zones Trip No.
1 2 3 All

Front 5183 3280 1710 10712
Right 426 419 246 1091
Left 645 479 644 1768

Center Stack 392 214 288 894
Rear view 644 392 344 1400

Speedometer 448 480 253 1181
Far Left 423 282 66 771

Front Right 722 421 109 1252
Eyes closed 335 369 207 911

All 9238 6876 3867 19987

the driver, i.e., one camera near the A pillar on the side window, and one camera near the rear-

view mirror; the other two cameras are one for looking out and one for looking at the hands.

The camera suite is time synchronized and capture their respective views in a color video stream

at 30 frames/s and at a resolution of 1980 × 1240 pixels. Data for evaluation is meticulously

gathered from three different drives. Annotation of ground truth of which zone the driver is

looking at is done by visually inspecting the temporal sequence of inside and outside around the

instance under consideration. Table 2.1 shows distribution of annotated instances for each of the

gaze zones of interest with respect to each drive and overall. The evaluations reported in the

following section will be on this dataset, where the portions for training and testing are given in

more detail below depending on the criterion for testing.
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2.4.2 Performance Evaluation

Evaluation for each of the following experiments are given in three forms. First is the 9-

class confusion matrix where each row represents true gaze and each column represents estimated

gaze. The last column in the confusion matrix represents the unknown class, which occurs when

submodules (i.e., face detection, landmark estimation) do not produce a reliable output. Other

two forms of evaluation metrics are unweighted accuracy and weighted accuracy:

Unweighted Accuracy =

∑
i∈{gaze zones} (True Positive)i∑

i∈{gaze zones} (Total population)i

Weighted Accuracy =
1

No. of Gaze Zones
×

 ∑
i∈{gaze zones}

(True Positive)i
(Total Population)i


In the following sections, discussions are based on individual class accuracies and weighted

accuracy, and other accuracies are reported for the sake of completion. Weighted accuracy is pre-

ferred over unweighted accuracy in the discussion due to the unbalance nature of the dataset.

Multiple Camera Framework

One of the criteria initially stated as a desired property of a robust and continuous

gaze estimator, is its wide operational range. In this section, performance evaluation of our

end-to-end gaze estimator is conducted to show the indispensable nature of the multiple camera

framework as well as sensitivity of the system to camera placement/perspective. Our multiple

camera framework considers two perspectives, as described in the data description section, one

observing the driver from the left and another from the right.

In this section, we conduct three experiments to estimate drivers gaze zone. All ex-

periments are trained on data taken from Trip no. 2 and tested on Trip no. 1. In the first

experiment, the classifier is trained and tested on Right Perspective (i.e., from camera placed

right of the driver). In the second experiment, the classifier is trained and tested on Left Per-

spective (i.e., from camera placed left of the driver). In the third experiment, classifiers are

trained for both perspectives but during testing the perspective selection algorithm determines

the optimal perspective and therefore determines the class based on classifier trained for that

perspective. Confusion matrix for each of these experiments is shown in Figure 2.8.

From the weighted accuracy alone, it shows that the placement of the cameras has a

significant effect on the overall accuracy. This is likely because the Right Perspective is more

spatially centered for majority of the gaze zones. On the other hand, switching between perspec-

tives at optimal times derived by the perspective selection algorithm gives the highest weighted

accuracy of 94%, which is a 5% improvement from Right Perspective alone and a 30% improve-
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(a) Right Perspective only gives weighted accuracy of 78% and unweighted
accuracy of 89%.

(b) Left Perspective only gives weighted accuracy of 55% and unweighted
accuracy of 64%.

(c) Switching between both perspectives gives weighted accuracy of 90% and
unweighted accuracy of 94%.

Figure 2.8: Performance evaluation on multiple camera framework with full scale face descriptor
(i.e. head pose, horizontal gaze surrogate, vertical gaze surrogate and eye appearance descriptor).

ment from Left Perspective alone. Comparing the confusion matrix of the best perspective (i.e.,

Right Perspective) to switching between two perspectives, the improvement in accuracy comes

from gaze zones furthest from the camera perspective, Left and Far Left. Full transcript of
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the Continuous Head Movement Estimator (CoHMEt) with extensive evaluation on naturalistic

driving data can be found in Appendix A.

Subset of Face Descriptors

Another one of the criteria initially stated as a desired property of a robust and con-

tinuous gaze estimator, is the operability of the system under varying lighting conditions and

occlusions. In this section, performance evaluation of our end-to-end gaze estimator is conducted

to show effects on performance based on availability of information. For instance, what is the

accuracy when eyes are occluded (e.g. sunglasses) and only head pose is available?

Therefore, in this section, we conduct three experiments to test the sensitivity of the

system as a function of available information. All experiments are trained on data taken from

Trip no. 2 and tested on Trip no. 1. First experiment is with head pose information alone, second

experiment is with both head and partial eye cues (horizontal gaze-direction and vertical gaze

direction), and third experiment is with both head and full eye cues (horizontal gaze-direction

and appearance of the eye).

From weighted accuracy alone, it shows that there is a significant improvement when

using any information representative of the eyes in addition to the head cues; an almost 40%

improvement when augmenting with gaze surrogate features and an additional 5% improvement

when augmenting with appearance descriptor. This observation can be further explored in the

confusion matrix (see Figure 2.9) where neighboring gaze zones requiring more eye movements

than head movements are often confused (e.g. front vs. speedometer, front right windshield

vs. rear view mirror). When comparing the confusion matrix for including partial (Figure 2.9b)

versus full eye descriptor cues (Figure 2.9c), predictably the improvements are in gaze zones

which are spatially situated inside the vehicle (i.e. Speedometer, Center Stack and Eyes Closed).

Number and Spatial Distribution of Gaze Zones

In this section, the performance evaluation deals with accuracies as a function of resolu-

tion in gaze zones. The intention of exploring different resolutions in gaze zones is based on the

observation that different gaze related application require different information. So far, this chap-

ter has considered estimating gaze-zone as one of 9-classes and has shown to achieve a weighted

accuracy of 90%. What if the sole purpose of this gaze estimator was to determine whether the

driver is looking on-road or off-road. For such instances, our end-to-end gaze estimator achieves

a weighted accuracy of 98% (see Figure 2.10a). Here on-road encompasses front and front right

windshield and off-road contains the other 7 classes. Another organization of gaze-zones is the

spatial locations with respect to the car: front, left, right, back and inside. Such a distribution

of gaze zone results in a weighted accuracy of 96% (see Figure 2.10b). Therefore, depending on

system requirement, the number and spatial distribution of the gaze zones can be adjusted for
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(a) Head pose only gives weighted accuracy of 46% and unweighted accuracy
of 52%.

(b) Head pose plus horizontal and vertical gaze surrogate gives weighted
accuracy of 85% and unweighted accuracy of 93%.

(c) Head pose plus horizontal gaze surrogate plus appearance descriptor gives
weighted accuracy of 90% and unweighted accuracy of 94%.

Figure 2.9: Performance evaluation on the subset of a full scale face descriptor (i.e. head pose,
horizontal gaze surrogate, vertical gaze surrogate and eye appearance descriptor) with robust
switching of multiple cameras.

higher accuracy at the expense of lower gaze resolution or higher gaze resolution at the expense

of reduced accuracy.
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(a) A two class gaze zone estimator gives weighted and unweighted accuracy
of 98%.

(b) A five class gaze zone estimator gives weighted accuracy of 96% and
unweighted accuracy of 97%.

(c) A nine class gaze zone estimator gives weighted accuracy of 90% and
unweighted accuracy of 94%.

Figure 2.10: Performance evaluation on the number of gaze zone classes with the full scale face
descriptor (i.e. head pose, horizontal gaze surrogate, vertical gaze surrogate and eye appearance
descriptor) and with the multiple camera framework.

2.5 Concluding Remarks

Gaze zone estimation is still a new area of research in literature. While there are many

ways to design a gaze zone estimator, the focus of this research is in carefully designing submod-



23

ules which will build up to achieve a continuous and robust gaze zone estimation. Key modules

in this system include, face detection using deep convolutional neural networks, landmark esti-

mation from cascaded regression models, head pose using relative configuration of 2D points in

the image plane to 3D points in the head model, horizontal gaze surrogate based on geometrical

formulation of the eye ball and iris position, vertical gaze surrogate based on openness of the

upper eye lids and appearance descriptor, and finally, a 9-class gaze zone estimation from nat-

uralistic driving data driven random forest algorithm. In addition to the contributions in each

of these submodules, this chapter also gives an extensive analysis of the system as a whole on

naturalistic driving data.

The gaze estimator described in this chapter is based on static features, which means

no information in time window previous to the instance is leveraged. Near future work will

extend this framework to dynamics features and therefore show significant improvement in current

framework’s sensitivity to occlusions and generic models.
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Chapter 3

Gaze Dynamics, Modeling and

Behavior Understanding

3.1 Introduction

In the age of self-driving and highly automated vehicles, the roles and responsibilities of

human driver and “system” are still in the making. The Society of Automotive Engineers (SAE)

International [88] has reduced some confusion and provided common terminology for automated

driving by identifying six levels of driving automation from “no automation” to “full automation”.

In addition, as show in Table 3.1, SAE also outlines who bares responsibility, human drivers or

system, in three well defined categories: execution of steering and acceleration/deceleration,

monitoring of driving environment, and fallback performance of dynamic driving task. Some

examples of automated system capabilities which have already penetrated consumer vehicles and

their corresponding level of automation include: blind spot alert and lane deviation alert which

are considered to be a part of driver assistance, and adaptive cruise control and lane keep assist

which are considered to be a part of partial automation. Higher levels of automation are still in

their infancy.

Up to the level of partial automation, human drivers are expected to continuously mon-

itor the driving environment and therefore the sole responsibility of safety lies with the humans.

From the level of conditional automation and up, however, human drivers are not required to con-

tinuously monitor the driving environment until there arises a situation that the system cannot

handle (e.g. system boundaries due to sensor limitations or ambiguous environment). In higher

levels of automation, not requiring human drivers to monitor the driving environment is equiv-

alent to giving human drivers permission to increasingly engage in non-driving secondary task.

In which case, what if the driver is not ready to take-over control? Or what if the drive requires

24
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Table 3.1: SAE identifies six levels of automation from “no automation” to “full automation”
in order to provide common terminology for automated driving (for full table with definitions
see [88]).

SAE
level

Name Execution of
Steering and
Acceleration/
Deceleration

Monitoring of
Driving Environ-
ment

Fallback Per-
formance of
Dynamic Driving
Task

System Capa-
bility (Driving
Modes)

0 No Automation Human
driver

Human driver Human driver n/a

1 Driver Assistance Human
driver and
system

Human driver Human driver Some driving
modes

2 Partial Automa-
tion

System Human driver Human driver Some driving
modes

3 Conditional Au-
tomation

System System Human driver Some driving
modes

4 High Automation System System System Some driving
modes

5 Full Automation System System System All driving modes

treq seconds to get ready, but system will reach its limit in tgiven seconds, where tgiven < treq?

A recent study on how long it takes to get the driver back into the loop [44], attempted to

address the question of “at what point in time, prior to the occurrence of a system boundary, does

the automation-system have to engage the attention of the driver in order to ensure a successful

take-over process”. In that study an experiment was conducted in a dynamic driving simulator,

where two take-over times (i.e. 5-seconds and 7-seconds) were examined and compared with

manual driving. The conditions of the experiment was such that during automation, drivers

were engaged in secondary task and therefore inattentive to and disengaged from the task of

driving. There are at least two interesting findings from this study. First is that with shorter

TOR (take-over request) time, while the reaction was faster, the quality was worse. The quality

here is measured based on reaction type (i.e. brake, steering or both), reaction time, gaze behavior

(i.e. mirror checking), etc. This leads to the second interesting finding that in manual mode and

automation with both TOR (take-over request) times, in the advent of unexpected incidents in

the roadway, among the drivers who reacted by changing lanes, only a minor part of the subjects

checked their blind spots. Such negligence can be overlooked in a driving simulator but during

real, on-road driving it could lead to collisions or near-crashes.

Therefore, one of the major challenges in highly automated vehicles is ensuring the driver

is able to intervene or take-over in a timely and safe manner. It is a challenge for at least three

reasons. First, what does “able” to intervene or “readiness” to take-over mean? Second, how

to measure “readiness” objectively? Third, how are “readiness” and time correlated? Unlike

in manual driving, vehicle control based measures as a performance indicator cannot be used in

highly automated vehicles; other metrics must be explored. As such, looking-in at the driver, their

state and their behavior is key to developing readiness metrics for highly automated vehicles. For

instance, the alertness of the driver to the changing road conditions, their engagement with other
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passengers, their interactions with object are all useful indicators for deriving driver’s readiness.

Driver’s gaze is of particular interest because if and how the driver is monitoring the

driving environment is the first step towards assuring safe and timely take-over. Literary works

have addressed the problem of estimating driver’s awareness of the surround in a few different

ways. Ahlstrom et al. [3], with an underlying assumption that the driver’s attention is directed

to the same object as the gaze, developed a rule based 2-second ‘attention buffer’ which de-

pleted when driver looked away from the field relevant to driving (FRD); and it starts filing up

when the gaze direction is redirected toward FRD. One of the reasons for a 2-second buffer is

because eyes off the road for more than 2 seconds significantly increases the risk of a collision

by at least two times that of normal, baseline driving [54]. Tawari et al. [96], on the other

hand, developed a framework for estimating the driver’s focus of attention by simultaneously

observing the driver and the driver’s field of view. Specifically, the work proposed to associate

coarse eye position with saliency of the scene to understand on what object the driver is focused

at any given moment. Li et al.[59], under the assumption that mirror-checking behaviors are

strongly correlated with driver’s situation awareness, showed that the frequency and duration

of mirror-checking reduced during secondary task performance versus normal, baseline driving.

Furthermore, mirror-checking actions were used as features (e.g. binary labels indicating presence

of mirror checking, frequency and duration of mirror checking) in driving classification problems

(i.e. normal versus tasks/maneuver recognition). However, the classification problem had as it’s

input, features from CAN signal and external cameras, whereas the classification and recognition

problem addressed in this chapter is purely based on looking at the driver’s gaze.

3.2 Related Research

Two of the main contributions and objectives in this work is: first, modeling the gaze

behavior, and therefore the driver’s behavior, using unique and well representative features;

second, modeling it from and evaluating it on naturalistic driving data. Therefore, in the following

paragraphs, we present related works with respect to our objectives.

Gaze behavior modeling described in this chapter features the importance of glance dura-

tion and glance transition frequency as a stepping stone. To compute glance durations and glance

transition frequency relies on the gaze zone estimation work presented in the previous chapter;

glance duration is defined as the time driver spent looking in a specific gaze zone of interest in a

given time window and glance transition frequency is the number of times driver went between

two gaze zones of interest, respective or irrespective of the order, depending on preference, in a

given time period. In literature, works that feature automatic gaze zone estimation very rarely

go further to infer gaze behavior. Tawari et al. [100] use a similar approach for gaze zone esti-

mation as presented in the previous chapter but only applied the estimator as a proof of concept

to recreate the AttenD buffer [3]. AttenD buffer refers to a rule based 2-second ‘attention buffer’
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framework referenced to earlier in this chapter. AttenD models the drivers attention to FRD but

does not model behavior like the work presented in this chapter. Fridman et al. [40] presented

learning based framework for gaze zone estimation and evaluations are commendably done on

a large dataset. Interestingly, [40] defined an overall driver behavior metric where drivers were

categorized as either ”owl” or ”lizard”. The objective was to classify drivers based on how they

looked at gaze zones, using their heads like owls or with their eyes like lizards, in order to build

more customized gaze zone estimators. Our work here differs in that it is in modeling of gaze

behavior for on-line performance of predicting driver’s likelihood of exhibiting one of many gaze

behaviors (e.g. right-lane-change-gaze-behavior, interacting-with-center-stack-gaze-behavior).

In terms of gaze modeling and behavior understanding, literary works have mainly con-

ducted studies in a driving simulator but few recent works on on-road have emerged. In one

on-road study, Birrell and Fowkes [11] explore the effects of using in-vehicle smart driving aid

on glance behavior. The study is similar to ours in that it uses glance durations and glance

transition frequencies to show difference in glance behavior between baseline, normal driving and

when using in-vehicle devices. It differs in that no model is build and compared to new instance

for prediction because the study was not intended for that purpose. In another on-road study,

Li et al. [59] show that drivers exhibit different gaze behaviors when engaged in secondary tasks

versus baseline, normal driving by using mirror-checking actions as indicators for differentiating

between the two. Our work differs from [59] in two ways, first the latter study simplifies gaze

classification into whether driver is mirror-checking or not and second when training to detect

secondary tasks and maneuvers, features other than gaze are used (e.g. CAN bus, road cam). In

our study, glance durations and frequencies are computed upon the nine classes and maneuver

prediction is done using gaze relate features alone.

3.3 Naturalistic Driving Dataset

A large corpus of naturalistic driving dataset is collected using subjects’ personal vehicles

over the span of six months. Individual vehicles are instrumented with four Hero4 GoPro cameras:

two for looking at the driver’s face, one for looking at the driver’s hands and one for looking

at the forward driving direction. One of the driver facing camera is mounted on the windshield

near the rear view mirror, while the other one is mounted on the left window near the A pillar

without obscuring the view to left rear view mirror or obstructing the path of potential side

airbag deployment; the hand viewing camera is positioned to have an over the shoulder view of

the wheel and center stack region and the forward facing camera is mounted on the windshield

near the rear view camera looking out. In this study, the focus is in analyzing the driver’s face,

while the forward view provides context for data mining; the hand looking camera is instrumented

for future studies of holistic modeling of driver behavior.

All cameras are configured to capture data with 1080p resolution at 30 frames per second
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Table 3.2: Dataset description of naturalistic driving for gaze modeling and behavior classifica-
tion

Full drive Left Lane Change Right Lane Change Lane Keeping
Trip Duration Frames No. of Duration No. of Duration No. of Duration
No. [min] Events [sec] Events [sec] Events [sec]

1 81.2 14621 11 1650 16 2400 104 15600
2 88.5 159300 14 2100 15 2250 92 13800
3 89.6 161338 16 2400 17 2550 112 16800
4 93.9 169082 14 2100 15 2250 179 26850

All 353.3 635931 55 8250 49 9450 487 73050

(fps). While GoPro smart remote can start recoding of multiple cameras simultaneously, manual

synchronization across all cameras, for example using a light source, is necessary at least once in

the beginning; over a 90 minute drive, such a synchronization drifts only a couple of frames. With

exact camera configuration and similar camera placements, the subjects captured data using their

instrumented personal vehicles during their long commutes. The drives consisted of some driving

in urban settings, but mostly in freeway settings with lanes ranging from a minimum of two up

to six lanes. The data is especially collected in their personal vehicles in order to retain natural

interaction with vehicle accessories and during the subjects’ usual commutes in order to study

driver behavior under some constraints (e.g. familiar travel routes) with certain variables (e.g.

traffic conditions, time of day/week/month).

This study analyzes data from a subset of the large corpus, to be exact four drives, whose

details are as given in Table 3.2. From the collected data, with a special focus on freeway settings,

events were selected when the driver executes a lane change maneuver, by either changing left or

right, and when the driver keeps the lane. Table 3.2 shows the events considered, their respective

counts and total frames analyzed with respect to one vision sensor. The duration of executing

a maneuver varies depending on the traffic conditions, driving style, road conditions, etc. In

Section 3.5.1, we define epochs that consistently exist in lane change maneuvers. These epochs

are necessary to properly extract temporal features for analysis (see Section 3.5.2).

3.4 Modeling Scanpath for Driver Gaze Behavior

Recognition

What is a gaze behavior? One definition of behavior is the way in which a person acts

in response to a particular situation or stimuli. Then given a particular situation or stimuli,

gaze behavior is more than where the driver is looking. Gaze behavior is derived from where the

driver has been looking over a period of time. For example, when interacting with the center

stack (e.g. radio, AC, navigation), the manner in which the driver looks at the center stack can

be vastly different. One may perform the secondary task with one long glance away from the

forward driving direction and at the center stack. Another time one may perform the secondary
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task via multiple short glances towards the center stack, etc. However, while individual gaze

patterns are different, together it is associated with an action of interest. Therefore, we define

any individual gaze pattern as scanpath and the collection of scanpaths associated with a task

performed by driver is what we define as gaze behavior.

3.4.1 Temporal Feature Descriptor

Figure 3.1 illustrates fourteen different scanpaths during a 20-second time window cen-

tered on lane change event, seven scanpaths during left lane change events and seven scanpaths

during right lane change events. In the figure, the x-axis represents time and color displayed

at a given time t represents the estimated gaze zone; note, frame number 300 represents when

the car is half way in between the source and destination lane (let’s call this SyncF ). Visually,

5-seconds before the SyncF there is some consistency observed across the different scanpaths

within a given event (e.g. left lane change); consistencies such as the glance duration and glance

transitions between gaze zones. For example, in the scanpaths associated with right lane change,

the driver glances at the rearview and right gaze zones for a significant duration. However,

the start point or the end point of the glances is not the same across the different scanpaths.

Therefore, we represent the scanpaths using features called glance duration and glance transition

frequency, which remove some temporal dependencies but still capture sufficient spatio-temporal

information to distinguish between different gaze behaviors.

Both glance durations and glance transition frequencies are computed over a time win-

dow. First, we define signals necessary to compute them. Let Z, represent the set of all nine

gaze zones as Z = {Front,Right,Left,Center Stack,Rearview,Speedometer,Far Left,Front Right,

Eyes Closed} and let M = |Z| represent the total number of gaze zones. Then, let the vec-

tor G = [g1, g2, . . . , gN ] represent the estimated gaze for an arbitrary time period of T , where

N = fps× T , gn ∈ Z, and n ∈ {1, 2, . . . , N}.
Glance duration is a function of the gaze zone. Given a gaze zone, glance duration for

that gaze zone is the amount of time driver spends looking at the gaze zone within time period;

which is then normalized by the time window for relative duration calculation. Glance duration

then is calculated for each of the gaze zones, zm, where zm ∈ Z and m ∈ {1, 2, ...,M}, as follows:

Glance Duration (zm) =
1

N
×

N∑
n=1

1(gn == zm)

Glance transition frequency is a function of two gaze zones. Given two gaze zones,

glance transition frequency is the number of times the driver glanced from one gaze zone to the

other sequentially, in a time period; this value is normalized by the time window for determining

transition frequency with respect to time. The algorithm to compute a matrix, FGT , of glance

transition frequency for all combinations of transitions is outlined in Algorithm 1. The matrix
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(a) Left Lane Change Events

(b) Right Lane Change Events

Figure 3.1: Illustrates fourteen different scanpaths during a 20-second time window centered
on lane change event, seven scanpaths during left lane change and seven scanpaths during right
lane change event.

FGT is a transition frequency matrix, which means the diagonals are by definition 0:

FGT (d, k) =

0 d == k

fdk d 6= k
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input : G = [g1, g2, . . . , gN ]
W , a positive time window threshold for consistency check, < N

output: A matrix, FGT , of glance transition frequency for all combination of
transitions

LastGazeState= g1
for i←W to N do

if gi 6= LastGazeState then
if gi == gi−1 == · · · == gi−W then

FGT (LastGazeState, gi) + +;
LastGazeState = gi

end

end
i++;

end
Algorithm 1: To compute a matrix of glance transition frequencies given estimated
gaze zones over a time period.

where fdk is the number of transitions from zd, the gaze zone representing the dth column,

to zk, the gaze zone representing the kth column. Furthermore, in order to remove the order of

transition, FGT is first decomposed into its respective lower, LGT and upper, UGT , triangular

matrix:

LGT (d, k) =

0 d ≥ k

fdk d < k

UGT (d, k) =

0 d ≤ k

fdk d > k

The decomposed triangular matrices are then combined by adding the upper triangular

matrix to the transposed lower triangular matrix and normalized to produce the new glance

frequency transition matrix:

F ∗GT (d, k) =
1

T
×

0 d ≤ k

fdk + fkd d > k

The final feature vector representing a scanpath then is made up of two components.

First is the glance durations over all gaze zones. Second is upper triangular matix of the new

glance transition frequency matrix, F ∗GT in vectorized form. Both these components are appended

to produce the final feature vector ~h.
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3.4.2 Gaze Behavior Modeling

Consider a set of feature vectors ~H = {~h1,~h2, . . . ,~hN}, and their corresponding class

labels Y = {y1, y2, . . . , yN}. For instance, the class labels can be: Left Lane Change, Right Lane

Change, Merge, Secondary Task. Given ~H and Y , we compute the mean of the feature vectors

within each class. Figure 3.2 illustrates mean of the vectors for the four above listed classes are

illustrated. Note that the mean feature vector ~h is composed of glance durations and glance

transition frequency. Therefore, in Figure 3.2 the glance durations are represented by the solid

green circles and glance transition frequencies are represented by the blue lines. The area of the

circle is relatively proportional to the percentage of glances to the respective gaze zone within a

time window and the thickness of the connecting lines are relatively proportional to the number

of transitions between gaze locations also within the same time window. As expected in all

the classes, the driver spends a significant portion of the time looking forward. An interesting

observation occurs when comparing the glance duration and transition frequency decomposition

between left lane change and merge because a merge is similar to a left lane change. However,

the designed feature vector of glance duration and transition frequencies allows to differentiate

between the two. In the rest of the study, only the following three classes are considered: Left

Lane Change, Right Lane Change and Lane Keep.

In this work we model the gaze behaviors of respective events, tasks or maneuvers, using

a multivariate normal distribution (MVN). An unnormalized MVN is trained for each behaviors

of interest:

Mb(~h) = exp

(
−1

2
(~h− ~µb)

T Σ−1b (~h− ~µb)

)
where b ∈ B = {Left Lane Change,Right Lane Change,LaneKeep}, and µb and Σb rep-

resent the mean and covariance computed from the training feature vectors for the gaze behavior

represented by b. One of the reasons for modeling gaze behavior using MVN is, given a new

test scanpath ~htest, we want to know how does it compare to the average scanpath computed

for each gaze behavior in the training corpus. One possibility is by taking the euclidean distance

between the average scanpath, µb, and the test scanpath, ~htest, for all b ∈ B and assign the label

with the shortest distance. However, this assigns equal weight or penalty to each component of

~h. We want the weights to be a function of component as well the behavior under consideration.

Therefore, we use the Mahalanobis distance, which is the component in the exponent of the

unnormalized MVN. By exponentiating the Mahalanobis distance, the range is mapped between

0 and 1. To a degree this can be used to asses the probability or confidence that a certain test

scanpath, ~htest belongs to a particular gaze behavior model.
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(a) Right Lane Change

(b) Left Lane Change

(c) Merge

(d) Secondary Task

Figure 3.2: Glance duration and transition decomposition analysis for (a) right lane change,
(b) left lane change, (c) merge and (d) instrument cluster (averaged over multiple runs in the
naturalistic driving scenarios). The area of the circle is proportional to percentage of glances
and the thickness of the connecting lines proportional to the number of transitions between gaze
locations.
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3.5 Experimental Design and Analysis

3.5.1 Event Description

Every instance of driving on a freeway can be broken or categorized exclusively into

one of these three categories, left lane change, right lane change and lane keep. As a point of

synchronization, for lane change events, when the vehicle is half in the source and half in the

destination it is marked at annotation. A time window of 5-seconds before this instance defines

the left and right lane change events. For the lane keeping events, a lengthy stretch of lane

keeping is broken into non-overlapping 5-sec time windows to create lane keeping events. Table

3.2 contains the number of such events annotated and considered for the following analysis. The

analysis in the following sections are conducted from modeling the gaze for the events described

here with sufficient separation of the training and testing corpus.

3.5.2 Evaluation on Gaze Modeling

All evaluations conducted in this study is done with a four-fold cross validation; four

because there are four different drives as outlined in Table 3.2. Instead of the usual leave one

out cross-validation, training is done with events from one drive and tested with events from

the other drives. With this setup of separating the training and testing samples, two sets of

evaluations are conducted in this study. First, we explore the precision and recall of the gaze

behavior model in predicting lane changes as a function of time. Second, we explore the balance

of learning from the training data without overfitting and generalizing to unseen testing data.

In the first case, training occurs on the 5-second time window before SyncF (SyncF is

defined in Section 3.4.1) as represented by the events in Table 3.2. While testing, however, we

want to test how early the gaze behavior models are able to predict lane change. Therefore,

starting from 5-seconds before SyncF, sequential samples with 1
30 of a second overlap are ex-

tracted up to 5-seconds after SyncF ; note that the time window at 5-seconds before the SyncF

encompasses data from 10 seconds before the SyncF up to 5-seconds before the SyncF. Each

of the samples are tested for fitness across the three gaze behavior models, namely models for

left lane change, right lane change and lane keep. The sample is assigned the label based on

the model which procures the highest fitness score and if the label matches the true label the

sample is considered a true positive. Note that each test sample is associated with a time index

of where it is sampled from with respect to SyncF. By gathering samples at the same time index

with respect to SyncF from drives not included in the training set, precision and recall values

are calculated as a function of the time index. When calculating precision and recall values, true

labels of samples were remapped from three classes to two classes; for instance, when computing

precision and recall values for left lane change prediction, all right lane change events and lane

keep events were considered negatives samples and only the left lane change events are consid-
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Table 3.3: The recall and precision of lane change prediction (averaged over multiple runs
in naturalistic driving scenarios, 8̃8 min each) via gaze behavior modeling using multivariate
Gaussian.

Time before maneuver Left Lane Change Prediction Right Lane Change Prediction
Frame Milliseconds Precision Recall Precision Recall

60 2000 0.4357 0.6931 0.6098 0.7978
54 1800 0.4605 0.7954 0.6066 0.7872
48 1600 0.4740 0.8295 0.6250 0.8510
42 1400 0.4780 0.8636 0.6279 0.8617
36 1200 0.4810 0.8636 0.6391 0.9042
30 1000 0.4873 0.8750 0.6391 0.9042
24 800 0.4906 0.8863 0.6391 0.9042
18 600 0.4969 0.9090 0.6418 0.9148
12 400 0.4815 0.8863 0.6364 0.8936
6 200 0.4780 0.8636 0.6391 0.9042
0 0 0.4753 0.8750 0.6279 0.8617

ered positive samples. Similar procedure is observed for computing precision and recall values

for right lane change prediction. Table 3.3 shows the development of the precision-recall values

for both left and right lane change prediction in an interval of 200 milliseconds starting from

2000 milliseconds prior to SyncF up to 0 milliseconds prior to SyncF. Interestingly, the peak of

precision and recall values occur around 600 milliseconds before the driver is half way in each

lanes. There are several possibilities for such an occurrence. One, it may be likely that there is

a strong indication at that time index of intended lane change using gaze analysis only. Other

possibilities include the misalignment of training and testing samples, the time window consid-

ered, the point of marking what is the start of lane change, etc. With respect to the precision

rate, the values are expected to be low because even during lane keeping, drivers may exhibit

lane change like behavior without lane changing. This is especially observed with the precision

rate for left lane change prediction, where checking left rear view mirror is a strong indicator of

lane change but also part of driver’s normal mirror checking behavior during lane keep. One of

the main cause is the gaze model for lane keep, which encompasses a broad spectrum of driving

behavior and future work will consider finer labeling of classes.

Lastly, we explore the gaze models ability to adapt to unseen data. Unlike the pre-

vious experiment where we explored the early predictability factor of the gaze model, here we

explore whether modeling gaze behavior as an average of observed glance duration and transition

frequency may be overfitting the training data. In this experiment, training and testing are accu-

mulated at the same time index, which is the 5-second time window before SyncF uptill SyncF.

Figure 3.3a shows the confusion matrix when the same samples are used for training and testing;

model is trained from samples on one drive and tested on the same training samples, with values

averaged over all four drives. Figure 3.3b shows the confusion matrix when training and testing

data are separate; model is trained from samples of one drive and tested on samples from other

drives, with values averaged using four-fold cross-validation. With a weighted accuracy or recall

rate of 97% with the former case and 86% with the latter case, the results are promising with
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(a) (b)

Figure 3.3: Confusion matrix, where rows are true classes and columns are predicted classes,
from two experiments. (a) The same data is used for training and testing; model trained on
one drive is tested on the same drive, with values average over all four drives. (b) Training and
testing data are separate; model trained on one drive and tested on the other drives, with values
averaged using four-fold cross validation.

indications of room for improvement.

3.5.3 Discussion on Gaze Behavior Understanding

One of the motivations behind this work is to estimate the driver’s readiness to take over

in highly automated vehicles. Situations where system cannot handle thus requiring take-over

include system boundaries due to sensor limitation and ambiguous environment. In such situa-

tions, looking inside at the state of the driver and how much time is required to reach readiness

to take-over is important. Therefore, in this study we developed a framework to estimate his or

her readiness to handle the situation by modeling gaze behavior from non-automated naturalistic

driving data. In particular, gaze behavior during lane changes and lane keep is modeled. Figure

3.4 illustrates the fitness or confidence of the model around left and right lane change maneuvers.

The figure shows mean (solid line) and standard deviation (semitransparent shades) of three

models (i.e. left lane change, right lane change, lane keep) for two different maneuvers (i.e. left

lane change and right lane change), using the events from naturalistic driving dataset described in

Table 3.2. The model confidence statistics are plotted 5 seconds before and after the lane change

maneuver, where time of 0 seconds represents when the vehicle is half way between the lanes.

Interestingly, during left (right) lane change maneuver, fitness of the right (left) lane change gaze

model is very low within the 10 second bracket and left (right) lane change model peaks in fitness

in a tighter time window around the maneuver. Furthermore, for both maneuvers, the lane keep

model as desired is high in the periphery of the lane change maneuvers hinting at how this model

performs during actual lane keep situations.
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(a) Left Lane Change Events

(b) Right Lane Change events

Figure 3.4: Illustrates the fitness of the three models (i.e. Left lane change, Right lane, Lane
keep) during left and right lane change maneuvers. Mean (solid line) and standard deviation
(semitransparent shades) of the three models as applied to the lane change events described in
Table 3.2 are shown.

3.6 Concluding Remarks

In this study, we explored modeling driver’s gaze behavior in order to predict maneuvers

performed by drivers, namely left lane change, right lane change and lane keep. The particular

model developed in this study features three major aspects: one is the spatio-temporal features

to represent the gaze dynamics, second is in defining the model as the average of the observed

instances and interpreting why such a model fits the data of interest, third is in the design of

the metric for estimating fitness of model. Applying this framework in a sequential series of time
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windows around lane change maneuvers, the gaze models were able to predict left and right lane

change maneuver with an accuracy above 80% around 1600 milliseconds before the maneuver

and reaches a peak of 90% recall rate around 600 milliseconds.

The overall framework, however, is designed to model driver’s gaze behavior for any

tasks or maneuvers performed by driver. In particular, the spatio-temporal feature descriptor

composed of glance duration and glance transition frequencies are powerful tools to capture the

essence of recurring driver gaze dynamics. To this end, there are multiple future directions in

site. One is to quantitatively define the relationship between the time window from which to

extract those meaningful spatio-temporal features and the task or maneuvers performed by driver.

Another is in exploring and comparing different modeling approaches, including HMM, SVM and

bag of words approaches. Other future directions include exploring unsupervised clustering of

gaze behaviors and exploring the effects of quantity and quality of events (e.g. same vs. different

drives, different drives from same or different time of day) on gaze behavior modeling.
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Chapter 4

Driver Modeling by Multi-cue

Fusion of Head, Eyes and Hands

4.1 Introduction and Related Works

In a recent report, NHTSA revealed that urban automotive collisions accounted for some

46% of 33, 782 fatal crashes in the United States in 2012; intersection-related collisions accounted

for 26% of fatal crashes [1]. Furthermore, intersections, especially stop-controlled, have been

found to be the most demanding driving scenario among all typical scenarios in driving [60].

The visual demands include pedestrians, bicyclists, cross-traffic vehicles, etc. and these demands

typically vary depending on the maneuver executed at the stop-intersection [55]. For instance,

going straight at stop-controlled intersections does not demand as much of driver’s attention to

a pedestrian crossing in parallel to the path traveled when compared to turning right or turning

left. These preconceived notions of what and where demands more attention depending on the

maneuver can lead to varying preparatory actions observable of the driver prior to executing the

maneuver [80]; preparatory actions such as head movements, eye glances and hand movements.

Understanding, extracting and temporally modeling these preparatory actions before

the onset of the respective maneuver has tremendous benefits in the development of intelligent

vehicles. Benefits include catering driver assistance for the maneuver and using computational

resources more efficiently. While the natural progression of this work is towards prediction and

intent detection [24], the scope of this paper is to use real driving data and data driven approaches

to guide in the search for signals which best represent these preparatory motions.

Therefore, in order to better understand and properly exploit the preparatory motions

a reality, we equipped an experimental vehicle with cameras and senors to capture the vehicle

dynamics, view of the road ahead, driver’s face and driver’s hand. This paper investigates how

39
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(a) Head and eye movements

(b) Hand positioning

(c) External view

Figure 4.1: Sample instances of (a) Head and eye movements, (b) Hand positioning and (c)
external context prior to the start of respective maneuvers (i.e. stop and right/left turns, stop
and go straight).

and to what extent information from driver’s face and hands can be used to differentiate between

maneuvers at a stop-controlled intersection before the maneuver is executed. Figure 4.1 shows

sample instances of driver’s preparatory motions prior to the start of respective maneuvers. Note

that while external views are shown and discussed throughout the paper, external views are

shown and used only for the sake of context. To this end, the contributions are in three folds:

• Naturalistic driving dataset collection: synchronized capture of sensors looking-in

and looking-out, multiple drivers driving in urban environment, and segmenting events at

stop-controlled intersections

• Extracting reliable features: eye movements [100], head pose [95] and hand location

[86] respective to the wheel from purely vision sensors looking in at the driver

• Data driven processing: construction of features using temporal pyramids and using the

random forest algorithm to extract optimal feature subset, where optimal features reveal

when and what cue is most relevant for representing the preparatory motions.

Given the above contents summary, this work is most relatable to the study of head,

eyes and hand coordination for driver hand activity classification [62]. The common ground is

with respect to the type of extracted features (i.e. head, eyes and hands cues) and showing with

data the relationship between head, eye and hands. In addition to the fundamental difference of
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Figure 4.2: A two part figure illustrating an interesting coordination of head, eye and hand
movements prior to the driver starting a right turn at the strop-controlled intersection. The
bottom part is a time series plot of the cues: eye deviation, head pose and relative hand location.
The top part presents instances from looking-in and looking-out. The colored coded boxes in the
two parts shows were the images are taken from in the time series.

[62] focusing on driver hand activity recognition while this paper is concerned with maneuvers

at stop-controlled intersections, the process of extracting and congregating features temporally

are also fundamentally different, as described in later sections. With regards to stop-controlled

intersections and extracted features, work presented in [60] is similar, but the focus of the study

is on detecting driver cognitive distraction and the findings are from data collected in driving

simulators. Another work which deals with intersection data and deals with cues from looking

inside at the driver, is the work on turn-intent analysis using body pose [14], however the cues

and signal selection and interpretation is vastly different.

There are many other literary works related to the work presented in this paper. The

difference among them and this work is usually in two regards: analysis of signals/cues are

conducted similarly but applied in highway driving conditions or application is urban setting

but no thorough analysis on feature selection and relevance study. As an example of the latter

case, Jain et al. [52] proposes a framework which anticipates maneuvers performed few seconds

in the future. This study is indeed very interesting and useful, as it uses a data driven approach

using real-driving data. The lane change intent [24] and overtaking/braking intent [75] work

similarly uses a data driven approach, and explores the importance of integrating inside looking

cues. Both however, deal with highway driving.

The emphasis of this paper is in understanding, extracting and representing the coor-
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dination of head, eyes and hands cues in the preparatory stages leading up to maneuvers at

stop-controlled intersections. Figure 4.2 illustrates one right turn event from our dataset, where

time 0 represents the start of the turn. The time series plots at the bottom show the three

important cues of interest: iris deviation, head pose in yaw, and hand location with respect to

center of steering wheel. In this particular event, there is evident head motions 10 seconds before,

there is a unique presence of iris deviations 6 seconds before and finally strong hand cues are

observable up to 1 second before the right turn maneuver is executed. This is but an exemplary

show of head, eye and hand coordination for a particular turn event. This paper will analyze

multiple events across varying drivers and different intersections, and show promising results as

observed in this example.

4.2 Extraction, Representation and Fusion of

Spatio-Temporal Features

4.2.1 Head and Eye Features

In this work, the state of the head and eye are represented using head pose and normalized

iris deviation. Chapter 2 provides details on obtaining facial landmarks and head for a given

image. This section contains detail on the second representative feature, iris deviation. Iris

deviation is defined as the distance from the iris to one of the eye corners, normalized by the

distance between the eye corners. For example, iris deviation of the left eye is calculated as

follows:

4dLEI =
d( ~qLELC , ~qLEI)

d( ~qLELC , ~qLERC)
(4.1)

with d as the Euclidean distance. The vectors ~qLELC , ~qLERC , and ~qLEI are the left

eye’s left corner coordinates, left eye’s right corner coordinates, and left eye’s iris coordinates,

respectively. Iris deviation of the right eye is calculated similarly.

Given a video sequence V T = {I1, I2, . . . , IT } of length T , the final output of head and

eye features are represented as:

X f
head = {φ1, φ2, . . . , φT },

X f
eye = {4d1,4d2, . . . ,4dT }

where φ is the yaw rotation of the head and 4d is iris deviation of the eye with the most

visibility; the visibility is determined by head pose with respect to camera perspective.
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Figure 4.3: The left panel depicts the labels assigned to regions around the wheel. These are
then used to map hand locations to the corresponding label values. The right panel shows an
exemplar hand track sequences encoded using the method described.

4.2.2 Hand Analysis

Hand motion patterns can be leveraged as an important cue to understand driver activity.

To this end, driver hands are detected and tracked in order to produce continuous trajectories

using the tracker proposed in [86, 85].

Given a video sequence V T = {I1, I2, . . . , IT } of length T , the hand tracker outputs the

trajectory corresponding to each hand of the driver:

Xleft = {~xl1, ~xl2, . . . , ~xlT },

Xright = {~xr1, ~xr2, . . . , ~xrT }
(4.2)

where each

~xi = (xi, yi),∀i ∈ {1, 2, . . . , T} (4.3)

represents the location corresponding to the center of the hand in the image plane.

The trajectories obtained as such are not informative in their original form. In addition

to this, the tracks may be fragmented and subject to spatial noise or jitters. To solve the above
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issues, we propose to encode the spatial location in an intuitive yet discriminative manner. First,

we change the origin of the image plane to the center of the wheel. Given the location of this

center in the image plane ( ~xc), the transformed location of the hands are calculated as follows:

~xi
′ = ~xi − ~xc. (4.4)

To make the tracks robust against noise and fragmentation, we propose a region based

mapping,

M : R2 7→ {−4,−3,−2,−1, 1, 2, 3, 4}

to encode tracks meaningfully. This mapping is visualized in Figure 4.3 along with sample plots

for left and right hand tracks. The regions are assigned labels with a motive of associating

distinct motions with larger skips in region labels. For instance, keeping one hand on each side

of wheel with little or no movement would constrain your hand tracks to regions 2 and 3 for

the left, and -2 and -3 for the right hand respectively. However, substantial hand motions would

result in large changes in the region labels through a given temporal window.

With the above mapping in place, the final trajectory may then be represented as :

X f
left = {cl1, cl2, . . . , clT },

X f
right = {cr1, cr2, . . . , crT }

(4.5)

where,

ci =M(~x′i),∀i ∈ {1, 2, . . . , T}. (4.6)

.

4.2.3 Temporal Modeling and Feature Ranking

In this subsection, we describe the feature generation and ranking process given temporal

sequences from all three modalities - head, hand and eyes. From here on, we denote any generic

temporal sequence as X . For any given X , we extract a set of statistical features (detailed in

Table 4.1) and concatenate them to create a feature vector.

The above feature representation ignores any temporal structure in the data. This makes

it hard to decipher the evolution of an event in time (starting 10-12 seconds before the event). To

encode temporal information into our framework, we represent features in a temporal pyramid

[83], where at the top level features are extracted over the full temporal extent of a video sequence,

the next level is the concatenation of features extracted by temporally segmenting the video into

two halves, and so on. We obtain a coarse-to-fine representation by concatenating all such
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Table 4.1: Candidate features for tem-
poral sequences

Feature Description

hist1 Histogram
mean2 Sample mean
std2 Sample standard deviation
min Minimum value
max Maximum value
mode3 Mode
range Range (max - min)

q1 25th percentile
q2 50th percentile
q3 75th percentile

1 only for head and hand sequences
2 only for head and eye sequences
3 only for hand sequences

features together to generate a feature vector ~f .

Consider a set of feature vectors ~F = {~f1, ~f2, . . . , ~fN}, and their corresponding class

labels Y = {y1, y2, . . . , yN}. In the context of our study, the class labels are one of the following:

stop and turn right, stop and turn left or stop and go straight. Given ~F and Y , we train a

random forest (RF) with an ensemble of 1000 decision trees on the entire corpus. The maximum

depth of each tree is restricted to 10 to prevent overfitting. This RF is then used to perform

feature selection across modalities. The advantage in choosing RFs over other feature selection

techniques is three fold: First, we sidestep the entire process of tuning hyper-parameters through

cross-validation. Second, RFs make no assumption about the linear separability of the data.

Third, RFs are capable of handling different data formats like integers, floats or labels. Thus, no

standardization or regularization is necessary.

The trained RF measures the importance of each feature as the averaged impurity de-

crease computed from all decision trees in the forest. The impurity measure used is the gini

impurity [4], which acts as a criterion to minimize the probability of mis-classification. Using

these importance scores, we rank the set of all features in decreasing order of discriminative

power.
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4.3 Use Case: Stop-controlled Intersection

4.3.1 Naturalistic Driving Dataset

A large corpus of naturalistic driving data was collected using a highly instrumented test

vehicle dubbed LISA-A [97]. The testbed was built to provide a near-panoramic sensing field of

view with synchronized internal vision, external vision, radar, lidar and GPS. Of vision sensors,

of relevance to this work are four camera views; the fourth camera gives another perspective of

the driver’s face.

Using this testbed, multiple drivers were asked to naturally drive on local streets and

freeways in Southern California. The subjects were given no instructions on how to drive, re-

sulting in naturalistic driving data. From the collected data, we selected events when the driver

passes through stop-controlled intersections, by either turning right/left or going straight. In

particular, we narrowed down the events to the stop-controlled intersections geographically illus-

trated in Figure 4.4. The accumulated events were gathered from 7 unique drives lasting at least

60 minutes each of 5 different drivers (4 male and 1 female). The table in Figure 4.4 shows the

events considered, their respective counts and total frames analyzed with respect to one vision

sensor. The duration of how long a driver stops varied depending on the intersection, the driver

and the maneuver executed at the intersection. In Section IV.A, we define epochs that consis-

tently exist in all stop-controlled intersection related maneuvers. These epochs are necessary to

properly extract temporal features for analysis (see Section IV.B for more details).

4.3.2 Event Description

With an intent of analyzing driver behavior at stop-controlled intersections, we define

the following epochs during each event:

• stop : the time at which the vehicle approaching an intersection comes to complete halt.

• start : the time at which the vehicle starts moving after the stop epoch.

• mid : the time halfway between the stop and start epochs.

• end : the time at which the driver completes the entire maneuver.

With the above definitions in place, we analyze each event for a period starting 12 seconds

prior to the stop epoch, and ending with end epoch.

4.3.3 Data Driven Event Analysis

To understand the interplay between head, hand and eye modalities, we extract a set of

features for each of the 24 stop-controlled intersection events, as described in section II. These
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Figure 4.4: Geographical location of the stop-controlled intersections where data is extracted
from and statistics on the events analyzed.

features are labeled based on the end maneuver performed by the driver (i.e. right turn, left

turn, go straight).

To see how the feature importances change as a function of time, we train one RF each

for every 0.25 seconds starting from 10 seconds prior to the stop epoch, up until and including

the stop epoch. Each forest is trained only on features extracted up to that given point in time.

Similarly, we train one RF each for every 0.25 seconds after and including the start epoch. Since

the time interval between the stop and start epochs is variable, we simply train a RF at the mid

epoch for each event. To encode temporal structure into the features, we use a temporal pyramid

of three levels to train each RF.

For each time instant considered above, all features are ranked based on their importance

scores. We consider the top 25 features and plot a histogram based on their modality. Figure

4.5 depicts the evolution of the histogram through time. In addition to the plot, we provide

exemplar image sequences extracted from different time periods for each maneuver type.

The eye modality is seen to hold significance very early in the event. It provides dis-

criminative feature up to a few seconds before the stop epoch. This indicates long-term planning

on the drivers’ part. The head modality is clearly the most discriminative of all three modalities

in this context. This is indicated by a large number of highly ranked head features throughout

the entire event. This modality seems to be most effective just as the vehicle is coming to a
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Figure 4.5: A plot of the histogram of top 25 features with respect to the modality it originates
from as a function of time (bottom panel). Exemplar image sequences extracted from different
time intervals for each of the 3 maneuvers. Best viewed in color.

stop, up until the start epoch. This corresponds to the side-to-side head movements of a driver

to scan the intersection for pedestrians or vehicles. This is reflected in the corresponding image

sequences from this temporal region. Finally, the hand modality comes into play later in the

event. This modality is very short-sighted in the sense that its prediction window is very small

in relation to other modalities. However, it provides the most reliable features for classification

late in the event. This is verified by the rapid increase in discriminative features obtained from

hands right after the start epoch. Additionally, the hand modality is a very strong indicator of

preparatory movements before the actual maneuver is executed (seen from corresponding image

sequences).

Figure 4.6 shows the frequency of occurrence of each individual feature in the top 25,

for each modality, across all time intervals. A higher count generally corresponds to a higher

relevance value for coordination analysis in the dataset. It can be observed that the range, std,

min, and max features are useful across the different modalities studied. These motion cues

are useful for capturing the extent of the motion in the temporal window, such as the side-to-

side movements of the head (captured in the yaw). Because the hand movement is most active

towards the end of the event, hand cues are selected less frequently. Among those selected, the

hist features seem to work best for the left hand, while range is seen to be of most use for the
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Figure 4.6: A plot of relative frequency with which each feature occurs in the top 25 across all
modalities and for all time intervals.

right hand. This may be indicative of the fact that the right hand is more prone to crossover

from one side of the wheel to the other in comparison to the left hand.

As another experimental analysis, the three class problem is broken into three groups of

two-class problem: go straight vs. turn left, turn left vs. turn right, go straight vs. turn right.

Figure 4.5 depicts the evolution of the histogram through time for each of the three binary classes.

In these plots of feature importance as a function of time, there are at least three interesting

observations. One is the order in which the importance of modalities occur; here modalities

refer to eye, head and hand. Another is the time when the relative importance of a modality is

overtaken by another modality. Finally, the duration of a particular modality’s importance over

other modalities.

Elaborating on the first observation, in all three groups, the significance of modalities is

seen to be temporally coordinated. The eye modality is seen to hold significance very early in the

event, followed by head modality and finally by hand modality. The significance of eye modality

early in the event indicates long-term planning on the driver’s part. The significance of head

modality closer to the stop epoch corresponds to the side-to-side head movements of a driver

to scan the intersection for pedestrians or vehicles. The significance of the hand modality, on

the other hand, is very short-sighted in the sense that it is very close to or during the execution

of the maneuver. This is verified by the rapid increase in discriminative features obtained from

hands right after the start epoch.

The other observations of when the relative importance of a modality first surfaces

and how long the modality’s importance stays above the others, unlike the first observation

of the order of modality importance, varies significantly among the groups. For instance, the

relative significance of head modality is earlier when classifying between turn right and go straight

than when classifying between turn right and turn left; also comparatively the latter is more

concentrated in significance duration as the driver approaches the intersection. This knowledge

is important in many ways, one of which is when intersections are three ways and drivers have

only two options for executing maneuver. For instance, as shown in Figure 4.7, if the only

options are going straight or turning right, with head pose alone, the indication of executing one

maneuver versus another can be as early as 6 seconds before coming to a stop at the intersection.

We especially make a pitch with head pose feature because in many situations eyes maybe be
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Figure 4.7: A plot of the histogram of top 25 features with respect to the modality it originates
from as a function of time for three groups of two-class problem: go straight vs. turn left (top
row), turn left vs. turn right (middle row), go straight vs. turn right (bottom row) .

occluded or noisy. Similarly for turning left versus turning right, strong indications may occur

as early as 3 seconds.

4.4 Concluding Remarks

In this study, we provide a data-driven approach to understand and analyze the temporal

interplay between three modalities: head, hands and eyes of the driver, in the context of stop-

controlled intersections. A naturalistic driving dataset was employed to show that preparatory

motions range in the order of a few seconds to a few milliseconds, depending on the modality,

before maneuver events at stop-controlled intersections. Features generated from the head are

seen to be most useful in terms of predictive power. Eye based features play an important role in
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prediction at a very early stage of the maneuver, while hand features dominate towards the end.

These findings are in line with the general flow of most human activities- first see, then perceive

and finally actuate.

Future work encompasses extending this understanding of the temporal influence of each

modality to different maneuvers performed under different contexts. Additionally, this study

will serve as a basis to come up with a strong predictive algorithm for intersections. Other

information sources like vehicle dynamics and external camera sensors can be integrated.
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Chapter 5

Naturalistic Driving Studies

(NDS) database for algorithm

benchmark and development

5.1 Introduction

A holistic perception and understanding of inside and outside the vehicle is absolutely

necessary, and vision based techniques are expected to play an increasing role in this holistic

view. The question is, how well do these vision techniques work in order to be used in time and

safety critical driving situations?

In the past decade, Viola-Jones’s adaboost casacade with haar features [112] for face

detection has been a favorite in the community of intelligent vehicles not only because of its real-

time processing speed but also because of its implementation in OpenCV which allows for easy

training and testing. Works as early as [10] and as late as [63] have used the boosted cascade with

haar features in order to monitor driver vigilance and generate drive reports, respectively. Viola-

Jones’s face detector has also been a key stepping stone in estimating driver’s head pose [72],

predicting driver’s intent to change lane [24], monitoring driver’s alertness [78] and estimating

driver’s gaze [100, 111]. A list of literary works in the development of driver assistance systems

selected because of presenting their work on real driving data is given in Table I. The table

emphasizes how the research community for driver assistance has relied heavily on Viola-Jones’s

face detector. Evaluations of face detection for faces from naturalistic driving in these selected

publications, however, is negligible.

The driving environment presents a unique set of challenges and vision algorithms, like

face detection, should be properly evaluated under these challenges. The challenges include

52
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Figure 5.1: Face detection in general is challenging due to illumination, occlusion and unseen
faces. However, detecting faces inside the automobile cabin has advantages such as sparse number
of faces in any given image and correlated sets of images from a fixed perspective. A system that
best leverages these challenges and advantages is key towards a robust face detection system
when looking inside the vehicle cabin.

occlusion from object (e.g. eyewear and hats) or actions (e.g. hand and head movements),

lighting conditions (e.g. sunny and cloudy), camera perspective and resolution, and unknown

faces. There are, however, advantages unique to driving conditions which can aid in building

a robust system (see Figure 5.1); for instance, the numbers of faces in any frame is sparse (i.e.

number of faces is less than or equal to the maximum occupancy of the vehicle). In addition to

evaluating vision algorithms on naturalistic driving data, it important that the data be public

for proper comparison.

Vision for intelligent vehicles & applications (VIVA) [64] is a challenge set up to serve two

major purposes. First is to provide the research community with a common pool of naturalistic

driving data of videos from looking -inside and looking-outside the vehicle to present the issues

and challenges from real-world driving scenarios. Second is to challenge the research community

to highlight problems and deficiencies in current approaches and simultaneously, progress the
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Table 5.1: Comparison of Selected Studies in Literature on Face Analysis Methodologies (with
emphasis on face detection) as Applied to Naturalistic Driving Data

Research Study Objective Face Detection
Method

Evaluation on Face
Detection or Head
Pose

Fletcher et al., 2003
[36]

Monitoring driver’s visual
behavior

Commercial Neither on NDS

Bergasa & Nuevo, 2006
[10]

Monitoring vigilance Viola-Jones 87.5% face detection
accuracy in night time
driving

Fletcher & Zelinsky,
2009 [37]

Driver inattention detec-
tion

Commercial Neither on NDS

Tran & Trivedi, 2009
[104]

Driver activity analysis Skin color seg-
mentation &
Viola-Jones

Neither

Murphy-Chutorian &
Trivedi, 2010 [72]

Head pose estimation Viola-Jones 90% face detection ac-
curacy and MAE >
10◦ & STD ≈ 17◦ in
head pose

Morris, Doshi &
Trivedi, 2011 [24]

Lane change intent predic-
tion

Commercial Neither on NDS

Oyini Mbouna et al.,
2013 [78]

Alertness monitoring Viola-Jones +
adaptive template
matching

Neither

Ahlstrom et al., 2013
[3]

Distraction warning sys-
tem

Commercial Neither

Tawari, Martin &
Trivedi, 2014 [95]

Continuous head pose Viola Jones & MTS 96% success rate with
head pose

Tawari et al., 2014
[100]

Attention estimation and
merge recommendations

Commercial Neither

Liu & Graeser, 2015
[61]

Face detection Viola-Jones Face detection accu-
racy of 97.9% on only
faces with shades.

Paone et al., 2015 [79] Face detection, head pose
& coarse direction

Commercial 89% face detection ac-
curacy & MAE of 6◦ in
yaw

Rodemerk et al., 2015
[87]

Predicting driver’s turn in-
tentions

Commercial Neither

Jain et al., 2015 [52] Anticipating maneuvers Viola-Jones Neither

development of future algorithms. There are benchmarking competitions and databases available

for general vision problems, such as the KITTI Vision Benchmark Suite [43], which in comparison

is the closest to VIVA due to data collected from driving. However, one of the major difference

is, VIVA contains datasets and challenges for looking-inside, while KITTI does not.

In this chapter we introduce one part of the VIVA challenge, namely the VIVA Face chal-

lenge. The current face challenge includes face detection and head pose. This section describes

the dataset for and current submissions to the respective challenges.

5.2 Dataset Description

The VIVA Face dataset is composed of selected images from day time naturalistic driving

data collected at LISA-UCSD, as well as selected images from, to the best of our knowledge,

naturalistic driving videos from YouTube. The images are selected from a total of 39 video



55

(a) (b)

(c) (d)

Figure 5.2: Challenges in the dataset: varying illumination (a,b,c), head rotation away from
frontal (b,d), occlusion (a,b,c), multiple faces (b). Realistic driving scenarios are prone to such
volatile conditions. Thus the inclusion of these settings in various degrees in the faces dataset is
vital for proper performance evaluation and benchmarking.

sequences and are selectively chosen based on harsh lighting conditions and facial occlusions

(e.g. hands or the vehicle’s sun visor), as shown in Figure 5.2, in order to highlight some of the

challenges in face detection and head pose estimation in a naturalistic vehicle environment. The

viewpoints range from observing only the driver to the entire vehicle cabin, which resulted in at

least one face per image to a maximum of four faces. To keep computational time roughly the

same per image, all images were resized to have the same height as the LISA-UCSD dataset at

544 pixels in height, while keeping the aspect ratio of the original images. All images provided

in the dataset are only for testing and is available for download here [64]. No training images are

provided, but participants are referenced and encouraged to use publicly available face databases

for training (more details are available on the website).

5.2.1 Ground Truth Generation

For our two challenges, face detection and head pose estimation, our ground truth is

composed of 4 corner points and 3 angles corresponding to a face box and head pose, respec-

tively. For the face detection challenge, results will be evaluated against our ground truth face
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Figure 5.3: Example annotations from the VIVA-Face dataset. (Left) shows the ground truth
face box derived from the 10 annotated points. (Right) shows an overlay of 3D general face
model used to verify the quality of head pose estimation.

box represented by 4 corners, e.g. (x1, y1), ..., (x4, y4). Results for head pose challenge will be

evaluated against our ground truth angles for pitch, yaw, and roll of the head. Both ground

truths are derived from 10 landmark annotations composed of the four eye corners, nose tip,

left/right nose corners, chin, and left/right most part of the face (e.g. the left and right side

burn areas by the ears for a frontal face, and left side burn area and nose tip area for an extreme

profile face looking towards the right), as shown in Figure 5.3. During this process, the annotator

also subjectively labeled each part (i.e. left eye, right eye, nose, and mouth) as occluded or not

occluded. Each part was considered occluded if four pre-defined points within each part region

was not visible.

To generate the face box from the 10 landmark annotations, the bottom edge of the

provided face box is placed at the chin and approximately parallel to the line fitted through the

four eye corners. The top edge of the face box, set to be parallel to the bottom edge, is placed

above the four eye corners with distance being a fraction of the distance between the eyes and

the chin. The left/right edges are placed at the annotated left/right most part of the faces and

set to be perpendicular to the top/bottom edges. A visualization of the annotated landmarks

and resulting face box is shown in Figure 5.3. The distribution of the height and width of the

face boxes is visualized in Figure 5.4a, showing a large range of face sizes. One thing to note is

that the face box height is generally slightly larger than the width.

Head pose is annotated by estimation from the annotated facial landmarks (i.e. four eye

corners, nose tip, left/right nose corners) and their corresponding points on a 3D generic face

model [65], as shown in Figure 5.3. The quality of this estimation is verified by overlaying the

3D generic face model and visually inspecting to ensure it is accurate. In cases where it is not

accurate, the annotated points were re-adjusted slightly such that both the annotated landmarks
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Name of part
occluded

% of
faces

Left Eye 20
Right Eye 28

Nose 10
Mouth 16

# of parts
occluded

% of
faces

None 53
One to two 41

Three to four 6

(c) (d)

Figure 5.4: VIVA-Faces Dataset Statistics: (a) Annotation bounding box size shows a good
spread of different face sizes. (b) Number of faces by head pose in yaw rotation angle. (c)
Percentage of images where face is occluded with respect to (c) part type (i.e. left eye, right eye,
nose and mouth) and (d) number of parts.

and the head pose remain precise. Yaw rotation angle distribution of all the annotated head pose

(Figure 5.4b) shows the variations in the images with respect to head pose. The odd two-peaked

distribution is due to the camera positioning being off to the side on the left or right, so as to

not block the driver’s view, with the faces generally looking straight ahead.

Variations in faces occur in at least one other form, that is occlusion. Occlusions range

from no part of the face to most of the face. In order to quantify the percentage of occlusion

subjectively, we consider four major parts of the face: left eye, right eye, nose, and mouth.

Occlusion statistics of the VIVA-Face dataset is provided in the tables in Figure 5.4c,d.

5.3 Metrics and Performance Evaluation

The dataset as described earlier has many variations in faces including head pose, illu-

mination, and object occlusion. These particular examples can all cause some form of occlusion

to the face as shown in Fig 5.2. In order to evaluate a face analysis system on its strengths and

weakness it is necessary to evaluate with respect to these variations by partitioning the dataset.

And within each variation, standard evaluation metrics are used to evaluate face detection and

head pose estimation. For instance, how well does the face detection and head pose estimation

perform under varying occlusion (i.e. no occlusion to partial/full occlusion of face)? To evaluate
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the performance under these variations, we split the evaluation into three categories: all faces,

faces without any occlusion, and faces with at least one part occluded. However, in a given image

of more than one face, each face may be occluded to different degrees. If an image contains both

non-occluded and occluded faces, we set an ignore flag for the ground truth face boxes which do

not belong in a given category as done in [22] so that detections in the ignore regions are ignored

and do not count as a false positives. If the area of the intersection of the detection and the

ignored ground truth divided by the area of the detection is greater than 0.5, then the detection

is ignored, e.g. a detection entirely inside an ignore region will result in a value of 1.0 and is thus

ignored.

Within each category, standard performance metrics are used to evaluate face detection

and head pose estimation. For face detection, precision recall (PR) curve with the well accepted

overlap of greater than 50% between annotation and detection is used to classify the detections

along with their scores into true versus false positive. For head pose estimation, we first compute

the detection rate (DR) as simply the maximum recall value in the precision recall curve, i.e.

we ignore the score value for the detections and compute the percentage of ground truth faces

that the head pose estimator was able to detect with more than 50% overlap which we will

call correctly detected faces. For a given head pose estimator, we compare only their correctly

detected faces’ head pose with the corresponding ground truth to compute the success rate (SR)

along with mean (µAE) and standard deviation (σAE) of the absolute error. The success rate

is defined as the percentage of head pose that were estimated within 15 degrees of the ground

truth. For this paper, we only present results for yaw angle due to limited submissions with the

other two angles.

Generating PR-curves for face detection and statistics for the head pose estimation

challenges with the dataset as a whole versus partitioned based on occlusion, as shown in Figure

5.5 and Table 5.2 respectively, gives perspective on a given system’s performance with respect

to occlusion. In Figure 5.5, a few different face detectors, which are open source and publicly

available online (i.e. Boosted cascade with Haar [112], Boosted cascade with ACF [21], Mixture

of Tree Structure [122]), are shown as benchmarks for the VIVA Face dataset. In Table 5.2,

we present evaluation results on yaw angle of the head pose with one benchmark system. We

also present results for verified submissions from those who wish to remain anonymous until

their work has been published. While the results shared in this are preliminary, the authors

are in correspondence with researchers working on state-of-the-art methods [49] to keep the

benchmarking results relevant and up-to-date for the vision and intelligent vehicles community.

5.4 Concluding Remarks

The Laboratory for Intelligent and Safe Automobiles (LISA) team at UCSD has made

a major commitment to offer its data sets to the worldwide research community so that anyone
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Figure 5.5: Benchmark evaluations for face detection on the VIVA-Face dataset for (left) all
607 faces in 458 images, (middle) 323 non-occluded faces in 289 images, (right) 284 faces with at
least one occluded part in 240 images.

interested in the research can get open access and evaluate their own algorithms and benchmark

them against others. The main motivators for such effort is to engage wider community of
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Table 5.2: Evaluation results from benchmark and submissions on yaw angle estimation of the
head pose. The evaluation is split by occlusion levels: L0 (all 607 faces in 458 images), L1
(323 non-occluded faces in 289 images), L2 (284 faces with at least one occluded part in 240
images). DR, detection rate, is the percentage of images for which the face detector was able
to detect a face with at least 50% overlap with the ground truth face. SR, success rate, is the
percentage of correctly detected faces for which the estimated yaw angle was within 15 degrees
of the annotation. µAE and σAE are the mean and standard deviation of the absolute yaw error
(in degrees), respectively, calculated only from the correctly detected faces.

Occlusion Level
L0 L1 L2

(all faces) (no parts occluded) (at least one part occluded)
Benchmark/
Submission

DR SR µAE σAE DR SR µAE σAE DR SR µAE σAE

Anonymous 3 0.76 0.75 10.7 9.2 0.85 0.80 9.3 6.6 0.66 0.66 12.7 11.8
Anonymous 4 0.60 0.67 13.9 12.5 0.71 0.69 13.7 12.7 0.48 0.64 14.2 12.0
Zhu MultiPIE 0.68 0.65 15.6 16.3 0.71 0.70 13.8 13.8 0.64 0.59 17.9 18.7

students, scholars, developers in this exciting and challenging field and also to provide credible,

quantifiable benchmarks for evaluation and rapid progress in the field.

In this regard, the paper presented important issues, challenges, and metrics associated

with development of robust vision based systems for intelligent vehicles. Specifically, this paper

presented issues related with face detection and head pose in static images. A major step in the

future direction for face related challenges alone is in the temporal domain; this includes face

tracking, head pose tracking, gaze estimation, activity analysis and expression recognition. A

parallel effort is also in the integrative vision framework of looking-in (e.g. faces, hands) and

looking-out (e.g. vehicles, traffic signs) for activity recognition and intent prediction, to name a

few.

5.5 Acknowledgments

Chapter 5 is in full a reprint of material that is published in the IEEE Intelligent Vehicles

Symposium (2016), by Sujitha Martin, Kevan Yuen and Mohan M. Trivedi. The dissertation

author was the primary investigator and author of these papers.



Chapter 6

Balancing privacy and safety:

Protecting driver identity in

naturalistic driving video data

6.1 Introduction

Although there is a widespread consensus for intelligent vehicles to improve safety, the

study of driver behavior to design and evaluate intelligent vehicles requires large amounts of

naturalistic driving data. In current literature, however, there is a lack of publicly available

naturalistic driving data largely due to concerns over individual privacy.

Camera sensors looking at a driver, which are an integral part of intelligent vehicles

[108, 106, 23], are of particular concern for invasion of privacy as they can be used to recognize

the drivers identity. Publicly available naturalistic driving data should be used for the study of

driver behavior to improve driving safety and not to implicate drivers on their driving behavior.

Typical protection of the privacy of individuals in a video sequence include blacking out and

blurring of faces or people, which is commonly referred to as deidentification. Although this will

help protect the identities of individual drivers, it impedes the purpose of sensorizing vehicles to

look at a driver and his or her behavior. In an ideal situation, a deidentification algorithm would

protect the identity of drivers while preserving sufficient details to infer driver behavior (e.g., eye

gaze, head pose, and hand activity).

Many existing state-of-the-art algorithms on driver behavior are trained to work on

undistorted raw images from camera sensors with possible privacy implications, as shown in

Figure 6.1. Trivedi et al. [107], for example, proposed a smart airbag system by sensing the

passenger occupancy and the body posture to ensure safe airbag deployment. Similarly, in

61
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Figure 6.1: Illustration of privacy implications in using existing systems on raw camera sensory
output to infer driver behavior: posture analysis [107], “keeping hands on the wheel” [104], and
head dynamics [95].

[104, 105], cameras pointed at the drivers face and hands are used to discern whether the driver

is keeping hands on the wheel and eyes on the road, which is a general tip for safe driving. In

a larger scheme of looking inside and looking outside, Doshi et al. [24] used vision-based head

dynamics estimation as a proxy for gaze direction to predict a drivers intent to change lanes. To

eventually realize these active safety systems in commercial vehicles, parallel efforts need to be

made on both privacy protecting and driver-behaviormonitoring systems.

A drivers absolute gaze direction is of particular interest because it can be used as a

proxy to determine what information the driver is processing [101, 26, 27]. We say absolute gaze,

which should not be confused with eye gaze relative to head pose, and henceforth any reference to

gaze estimation implies absolute gaze. Interestingly, the same facial features that are explicitly or

implicitly used for gaze estimation play a key role in recognizing a persons identity. Any form of

deidentification on video sequences of looking at a driver can only degrade the performance of gaze

estimation. However, the degradation in performance could be minimized by using appropriate

methods for deidentifying drivers. Therefore, we propose and implement a deidentification filter,

which, semantically, protects the identity of the driver and preserves the behavior of the driver;
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to our interest, it should preserve gaze direction. With such filters, researchers may be more

inclined to publicly share deidentified naturalistic driving data. The research community can

then tremendously benefit from large amounts of naturalistic driving data and focus on the

analysis of human factors in the design and evaluation of intelligent vehicles [102, 110, 77].

The remainder of this paper consists of the following. Section 6.2 extensively describes

the properties and challenges of deidentification in the driving scenario and how it compares to

deidentification in other applications. Section 6.3 describes one possible design for a deidentifi-

cation filter and explores its varying parameters. Section 6.4 presents how the driving data are

collected, which filter parameters are used, what is gathered from the face recognition and gaze-

estimation user study, and the discussion on the level of deidentification and of gaze estimation.

Section 6.5 provides the concluding remarks with future directions.

6.2 DeIdentification Filter: Definition, Challenges and Re-

lated Research

A de-identification filter is that which takes an image or a sequence of images where a

person’s identity could be recognized and makes it unrecognizable, while at the same preserving

the necessary information for which the image was captured. Semantically, in an ideal situation,

a de-identification filter applied to a raw image of looking at the driver will output a similar

image where the identity of the driver is protected and the behavior of the driver is preserved. In

the first part of this section, we briefly discuss the properties associated with a de-identification

filter and the challenges in addressing those properties when looking at the driver. In the second

part, we discuss work related to de-identification of people in other applications.

6.2.1 Looking inside the vehicle

There are two main properties associated with de-identification filters: region of interest

and what should be preserved. First, given an image containing the driver’s face, whether de-

identification should be applied locally inside a region of interest (e.g. the driver’s face)

or over the entire image. The former is challenging because if the face is detected or tracked

incorrectly, then de-identification on the wrong portion of the image leaves the driver’s face

vulnerable for identification. Robustness of face tracking algorithms is made difficult by the

changing illumination conditions and large spatial head movements present in typical naturalistic

driving data. While applying de-identification uniformly to the entire image is appealing for its

limited or lack of dependence on face detection or tracking modules, it would, however, mean

sacrificing resolution or key details in the background, which do not reveal the driver’s identity.

For example, distorting the whole image can deteriorate the performance not only of recognizing

driver’s identity, but also of inferring whether the driver is wearing a seat belt or in inferring
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Figure 6.2: Illustrating three different de-identification filters, which semantically share the
same goal of obscuring driver’s identity and preserving driver’s behavior, but in different degrees.
The last filter demonstrates de-identification by region of interest (e.g. eyes), which is very
weak in protecting privacy but reveals behaviors such as whether the driver is talking, frowning,
smiling or yawning, and roughly where the driver is looking. The first and second filters are
geared towards gaze direction estimation without and with spatial context, respectively. As a
decreasing number of driver’s face parts are preserved the less likely it is to identify the driver.

driver’s hand movements.

This leads to the second issue of what should be preserved in the process of de-

identification. Driver fatigue monitoring systems would benefit largely from preserving mouth

behavior such as the number of times the driver yawned [114], head dynamics behavior such as

the nodding frequency [91], and eye behavior such as the proportion of time the eyes are closed

(PERCLOS) [81] and fixed gaze [10]. In addition to fatigue monitoring, preserving eye gaze

behavior can be used as a proxy to determine what information the driver is processing [101].

For example, coarse gaze direction estimation is a good indicator of driver’s intent to change

lanes [25]. Figure 6.2 illustrates three different de-identification filters which share the same goal

of obscuring driver identity and preserving driver behavior, but in varying degrees. Therefore,

depending on the study of driver behavior, specific de-identification algorithms can be designed.

These key ideas on de-identification of driver’s face on naturalistic driving data are to

some extent addressed in literature for de-identification of faces and people in other applications,

as described in the following section.

6.2.2 Related Studies

The term “De-Identification” has been popularly used in literature to address the concern

of privacy invasion from sensorized environments. A sensorized environment can be anything from

when a photographer captures a moment in time, where the camera is the sensor and the scene is

the environment, to constant surveillance, such as airports and convenience stores. The need for

de-identifying people in sensorized environments are typically for two reasons, either the person is
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not intended to be in the image or the presence and action of the person is intended but not their

identity. The former is a prevalent reason for de-identification in applications like Google-street

view [41, 38] while the later has applications in surveillance [2] and vehicle cockpit. A summary of

selected studies are described and illustrated in Table 6.1, with the following important elements

to be considered about respective means of de-identification:

• Approach: What is the process and object of de-identification? Is it a region based de-

identification or de-identification applied to the entire image?

• Preserving: In the process of de-identification, what was preserved? Was it the background,

the scene, the action of people, etc.?

• Application domain: What is application domain that requires de-identification? Is it

surveillance (e.g. airports, convenience stores, banks)? Is it intelligent vehicle space (e.g.

Google street view)?

• Sample: An illustration of respective de-identification applied to an image portraying re-

spective application domain.

• Evaluation: How was the recognition of people or faces evaluated? Is it by user studies or

by machine algorithms?

To put our contributions in perspective, we present related research on de-identifying

people with application to real-world, unconstrained environments such as intelligent vehicle

space and surveillance. Note that we compare our work mainly with de-identification in other

applications because there is a lack of studies in driver specific de-identification in literature.

Intelligent Vehicle space

Intelligent Vehicle space where vehicles instrumented with camera sensors observe the en-

vironment outside and/or inside the vehicle for various purposes. Google street view is a popular

context for observing the environment outside an instrumented vehicle to capture geographical

information. In the 360◦ panoramic view, the street view car captures not only the appearance

of location specific objects such as buildings, billboards and street signs but also privacy sensitive

material such as people and license plates. Google protects individual privacy by introducing a

system that automatically blurs faces and license plates [41]. However, recent studies have shown

that face is one of many identifiable features associated with people, such as silhouette, gait and

articles of clothing [15, 119]. To this end, many researchers have proposed to remove persons

from the Google street view and replace them with background pixels using multiple views of

the same scene [38] or with similar looking pedestrians from a controlled dataset [73].

Looking inside the vehicle has been equally popular among researchers of intelligent

vehicle space. While the matter of privacy invasion has been of much concern, to the best of our
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knowledge, no work has explicitly proposed or evaluated de-identification algorithms for inside

the vehicle. We say explicitly because some researchers have used a derivative of camera sensor

data to do further analysis. In [107], Cheng and Trivedi represent data from multiple camera

sensors as voxel data and perform occupant posture analysis. Similarly, [104] uses EXtremity

Movement OBservation (XMOB) for 3D upper body pose tracking to determine whether the

driver’s hand is on the wheel. However, these derivatives of raw data require further analysis

to address privacy concerns. In this study, we intentionally apply de-identification filter on data

from camera looking at the driver, and quantify the level of de-identification and the effects of

de-identification on estimating driver’s gaze direction.

Surveillance

Surveillance of public areas such as airports, convenience stores and shopping malls is

becoming increasingly prevalent. In many of these sensorized environments, the scene and the

actions of people to determine irregular activities is highly desired over the identity of individuals.

This can be accomplished in one of two ways: first, by overlaying distinguishable features, such

as face, with elementary shapes (e.g. ellipsoids, rectangular boxes) [34, 90] and second, by

segmenting the person from the background and representing the raw pixels differently [84, 2].

While overlaying faces with ellipsoids preserves raw pixels on the rest of the body parts [90] and

may allow for better action recognition, it leaves the rest of the distinguishable features vulnerable

to person identification. On the other hand, replacing the entire person with a rectangular box

guarantees de-identification and can provide rudimentary information such as the velocity and

the direction in which the person is moving [34], but lacks the detail to do finer action recognition

such as use of cellphones and carrying of luggage.

Segmentation of person from background, however, provides finer details on actions of

individuals. Person segmentation is more feasible in surveillance with stationary cameras to allow

the system to learn the background and distinguish it from the foreground. Once segmented, raw

pixels of individual persons can be replaced with the background or color coded depending on

actions of interest [84]. Interestingly, [2] addresses the concern over recognizing individuals using

gait information by smooth temporal blurring on segmented persons and test for recognition by

humans in a user study. While algorithmic recognition systems using gait information are yet to

materialize, gait information is a key distinguishing factor in human recognition system. Future

de-identification algorithms on videos should collectively de-identify images in the sequence. This

is especially true for videos looking at the driver inside the vehicle, where a number of de-identified

frames containing one driver can accumulate to reveal the driver’s identity.

In this chapter, we first address the concern of de-identifying driver’s faces in individual

frames independent of other frames in the video and leave collective de-identification over the

entire video sequence to future studies.
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Table 6.1: Comparison of selected studies in literature of de-identifcation of faces or people.

Research
Study

Approach Preserv-
ing

Context Sample Evaluation

Cheng &
Trivedi,
2004 [107]

Voxel reconstruc-
tion of scene
using constrained
multi-camera setup

Action Looking in-
side the ve-
hicle

Not applicable

Schiff,
Meingast
& Mulli-
gan, 2009
[90]

Obscures faces
with solid ellip-
soidal overlays

Scene
and ac-
tion of
people

Surveillance Hand labeled: false
positives and false neg-
atives.

Tran &
Trivedi,
2009 [104]

Extremity move-
ment observation
for 3D upper body
pose respresenta-
tion

Action Looking in-
side the ve-
hicle

Not applicable

Flores &
Belongie et
al., 2010
[38]

Removing pedes-
trians using multi-
ple views

Scene Google
street view

Visual samples

Agrawal &
Narayan,
2011 [2]

Applying transfor-
mations on individ-
uals in a conserva-
tive voxel space

Scene
and ac-
tion of
people

Surveillance Algorithmic face &
people detection re-
sults, and user study
for recognition

Nodari et
al., 2012
[73]

Replacing pedestri-
ans with similar
pedestrians from a
controlled database

Scene
and ac-
tion of
pedestri-
ans

Google
street view

Algorithmic detection,
segmentation, match-
ing and replacing re-
sults

Proposed
framework

Isolated segmenta-
tion of eyes on a
black background

Driver’s
eye gaze

Looking in-
side the ve-
hicle

User study of face
recognition and gaze
estimation

6.3 How to Protect Identity and Preserve Gaze?

As presented in Section 6.2.2, there are many ways of de-identifying faces and people.

The matter, however, lies in what should be preserved after applying de-identification, such as

the action. In this study, we are especially interested in preserving driver’s gaze. There is a

trade-off, however, between preserving driver’s gaze and protecting the driver’s identity, because
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Figure 6.3: Illustration of different combinations of patches around facial landmarks to estimate
or predict driver behavior while protecting driver’s identity. Combinations which include eyes can
provide information such as the driver’s gaze and blink rate. Combinations which include mouth
can be used to discern whether the driver is talking or to interpret the driver’s emotion (i.e.
happy, sad). However, some combinations are more susceptible than others to face recognition.

the same facial features that are explicitly or implicitly used for gaze estimation play a key role

in recognizing a person’s identity. In the following sections, we explore methods to de-identify

the driver yet allow for gaze estimation by preserving key facial regions in the foreground and

obscuring other regions in the background.

6.3.1 Foreground Preservation for Gaze Estimation

Facial recognition occurs due to a combination of facial features: eye shape, eye color,

hair texture, nose size, mouth shape etc. When these facial regions are isolated, it could represent

many number of people. Yet isolated facial regions provide powerful information about the state

of the driver. For example, eyes alone could be used to estimate the driver’s gaze, calculate blink

rate, etc. and mouth alone could discern whether the driver is talking, frowning, smiling, etc.

While it would be more powerful to preserve a combination of facial regions to derive the complete

state of the driver, certain combinations are more susceptible than others to face recognition.

Figure 6.3 shows a subset of these combinations of facial regions.

Gaze estimation can be accomplished using any one of the combinations of facial regions

in Figure 6.3. Some, however, are more robust to large head movements, facial deformations,

lighting conditions etc. In this study, we explore the benefits of preserving only the region around

the eyes. To extract the location of the eyes, facial landmarks can be reliably detected using

state of the art algorithms such as Constrained Local Model [18], Pictorial Structure Matching

[33] and Supervised Descent Method [117]. These detected facial landmarks are used not only

to extract the eye regions, but also to estimate head pose. Head pose is computed using seven

facial landmarks (eye corners, nose corners and nose tip) and their corresponding points on a

3D-generic face model [65]. Using head pose, a de-identification scheme which preserves only

one-eye can determine which eye is more visible from the camera perspective.
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(a) Two eyes preserved on a diffused back-
ground

(b) Two eyes preserved on a scrambled back-
ground

Figure 6.4: Visual demonstration of de-identification by preserving the eyes in the foreground
while scrambling or diffusing the context in the background. (a) Scrambling in the transform
domain occurs inside non-overlapping blocks. Small block size (window = 4x4) leaves the driver
in the image vulnerable to identification, whereas a large block size (window = 640x640) is
equivalent to replacing the background with random noise. (b) Anisotropic diffusion preserves
edges and lines while smoothing out finer details in the image. Illustrated are images from two
different drivers under varying iterations of diffusion. As shown with two different drivers, the
outcome is dependent on contrasting color between skin, clothing, background etc.

6.3.2 Background Distortion for Privacy Protection

When facial landmark tracking becomes unreliable, precautions must be taken to protect

the driver’s identity. One way is to replace everything around the region of interest with black

pixels. Other possibilities include replacing the background using one of the methods mentioned

below to give some spatial context, as illustrated in Figure 6.4.

Anisotropic Diffusion

Anisotropic Diffusion reduces noise or high frequency detail in an image, and preserves

the overall model or low frequency details such as edges and lines. In fact, one of the criteria

for anisotropic diffusion is “intraregion smoothing should occur preferentially over interregion

smoothing” [82]. Figure 6.4 a shows three different numbers of iterations for two images of

different drivers. First row of images, with an iteration of 160, are clearly identifiable. The second

row of images, with an iteration 1000, has sufficient contextual information but de-identification

is still not sufficient because enough distinguishing features exist in order to correctly identify

the driver from a list of possible candidates. The last row of images, with an iteration of 10 000,

takes significant computational time yet provides no contextual information.



70

Figure 6.5: Illustration of a de-identification method where region around the eyes are preserved
and the background is replaced with black pixels. While pixel replacement for the background
ensures more privacy, it removes context information often helpful in determining driver’s gaze.

Transform Domain Scrambling

Transform Domain Scrambling is random permutation of AC-coefficients in the transform

domain [29]. Given an image, transform domain coefficients, q[i] with i = 0, ..., (n2 − 1), are

computed for each non-overlapping blocks of size nxn in the image. Within each block, randomly

permuting only the AC-coefficients and applying inverse transform results in the scrambled image.

Block size plays a key role in the level of de-identification. If the block size is too small, local

scrambling will preserve most of the identifiable facial features. On the other hand, if the block

size is the size of the image, then the background is like random noise. Figure 6.4b illustrates

the increased loss of key facial features as well as spatial context with increasing block size.

Visual querying raises concern that any form of de-identification on the background, ex-

cept for pixel replacement, provides some information towards driver’s identity. For this reason,

we use the pixel replacement approach, as illustrated in Figure 6.5, for further analysis. How-

ever, removing background information can remove contextual information often helpful in e.g.

determining driver gaze (look) zone. Hence, a thorough experimental analysis is conducted to

address the two aspects.

6.4 Experiment Design, Evaluation and Discussion

Looking inside the vehicle cockpit at the driver, we are more interested in driver behavior

than driver’s identity. In the following sections, we describe the collected dataset and the user

study with human participants on face recognition and on gaze zone estimation of de-identified

images of drivers.

6.4.1 Experiment Design

The dataset is collected on the LISA-A testbed [98] with four drivers. The dataset

contains video feed from a camera mounted to the left of the driver on the front wind shield near



71

(a) Three Gaze Zones

(a) Five Gaze Zones

Figure 6.6: Illustrates (a) the three gaze zone regions of interest: Left, Front, Right and (b)
the five gaze zone regions of interest: Left, Front, Right, Rear Mirror, and Inside.

the A-pillar. All drives are from urban and freeway settings around the University of California,

San Diego (UCSD) campus. While each drive lasted approximately 20 minutes, we choose sample

images from discrete gaze zones to conduct our recognition and gaze zone estimation study. From

a human factors perspective, we are interested in knowing whether the driver is looking inside

or outside, and if outside, which regions. Hence, we designed the experiments with the following

sets of discrete gaze zones.

One set of gaze zones, as shown in Figure 6.6a, consists of three regions: Left, Front,

Right. The second set of gaze zones, as shown in Figure 6.6b, consists of five regions: Left, Front,

Right, Rear-view mirror, Inside. The former set of gaze zones is self explanatory and except for

ambiguity in the borders between regions, the regions are mutually exclusive. In the latter set,

however, some of regions are not mutually exclusive. For example, a driver glancing at the rear-

view mirror can also be considered as looking right. The inside gaze zone, representing the gauge

and center console regions, can be confused with Front and Right gaze zones, respectively, for

similar reasons.

Two user studies are conducted to test the level of recognition and the ability to estimate

gaze zone in de-identified images. A total of 20 human subjects were asked to participate in this

two part study. In the user study for recognition of faces in de-identified images, we use five
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Figure 6.7: Layout of the face recognition testing toolbox for user study. Given a de-identified
image, participants choose one of the 12 candidates that best represents the driver in the de-
identified image.

images of each driver for the five gaze zones. In addition, approximately 5 random images from

four other drivers are used to increase variability in the dataset. So there are a total of (5 x 4

+ 19) x 2 = 78 de-identified images, representing de-identification with one-eye and two-eyes,

presented to each of the ten participants. Figure 6.7 shows the layout of the user study as seen

by participants.

In this layout for face recognition, the location indicated by the arrow for test samples is

updated with de-identified images during the study and the 12 images of candidates are possible

matches to the de-identified faces in the test samples. Given a de-identified image, participants

choose one of the persons in the option who best identifies with the person in the de-identified

image. Among the 12 options, the image with a question mark is an option for if the participant

cannot conjecture who is in the de-identified image. The participants are instructed that people

in the de-identified images may not necessarily be available as one of the options and not all

people in the options are necessarily represented in the de-identified images. This represents a

realistic situation of person identification where the subject in real life encounters many unknown

faces to match with known (available) faces.

The second user study is comprised of nine expert participants estimating the gaze of

the driver in the de-identified image by choosing one of the six categories: Left, Front, Right,

Rear Mirror, Inside, and Unknown. These experts represent researchers who are interested in
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Figure 6.8: Layout of gaze zone estimation tool box for user study. Given a de-identified image,
participants choose one of following categories that best represents the driver’s gaze: Left, Front,
Right, Rear Mirror, Down, Unknown.

driver behavior study and are familiar with the camera perspective. By watching unperturbed

videos of drivers not in this study but from the same camera perspective, the expert participants

are familiarized with estimating gaze zones. This is especially challenging because the camera

position is biased to the left. In the study, we use five images of two drivers for each of the

five gaze zones. There are a total of 5 x 2 x 5 x 2 = 100 de-identified images, representing

de-identification with one-eye and two-eyes, presented to each participant. Figure 6.8 shows the

layout of the user study as seen by participants.

6.4.2 Face Recognition

Evaluating the degree of de-identification is a key part of designing the filter. Because

failure to provide adequate protection of privacy is unacceptable and in one case, a failed de-

identification attempt resulted in a lawsuit [113]. Two types of de-identification methods are

implemented: the first preserves the region around one eye with black pixel replacement for

background and the second preserves the region around both eyes with black pixel replacement

for the background. These de-identification methods, henceforth, will be referred to as One-Eye

and Two Eyes, respectively. Evaluations of face recognition on de-identified images can occur in
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Table 6.2: Face Recognition User Study: Evaluation of Participants’ Response

De-Identification
Method

Drivers Samples Recognition
Rate

Unknown
Rate

One-Eye

1 50 0% 34%
2 50 8% 38%
3 50 2% 38%
4 50 10% 46%

All 200 5% 39%

Two-Eyes

1 50 0% 46%
2 50 8% 40%
3 50 8% 30%
4 50 16% 54%

All 200 8% 43%

one of two ways: human user study and machine vision.

First, an automatic machine vision based approach for face recognition is implemented

to get an objective measure on the recognition rate. Training samples are taken from the list of

candidate images, as presented in the user study, and testing samples are the de-identified images

of the four drivers described earlier. As features, eye regions are extracted, scaled, aligned and

intensity normalized. The nearest neighbor algorithm is then used to find the candidate image

closest in the feature space to the de-identified image. Using 800 testing samples (200 samples

per driver) randomly chosen from video sequences of the four drivers, the results show an 8%

recognition rate, which is less than random chance. Given there are 11 possible candidates

(excluding the Unknown available to participants in the user study), the random chance of

recognition is 1/11 = 9.1%. While machine face recognition is more objective, it does not

compare to a human’s ability to recognize faces.

The second type of face recognition evaluation is with a user study using human subjects.

In the user study, the first step of evaluation lies in justifying the pictures used in options to

recognize drivers in the de-identified images. To do this, one participant performed the user

study for recognition on images before they are de-identified. With a 100% recognition rate,

results show the pictures used in options satisfactorily represent the raw images of looking at the

driver. Second part of the face recognition user study is evaluating the level of recognition after

de-identification. Ten participants took part in this second part of the evaluation.

In the user study, we present de-identified images starting with the de-identification

method that reveals the least amount of information to the most about the driver’s identity.

Therefore, One-Eye de-identification is presented first followed by the Two-Eyes. Sequence of

the images are randomly presented in each of the two cases. Table 6.2 details the number of

drivers, the number of samples accumulated over all participants per driver, the recognition rate

and the percentage of times participants responded with Unknown for de-identification with one-

eye and two-eyes. Given there are 12 possible candidates to choose from, the random chance
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of recognition is 1/12 = 8.3%. Table 6.2 shows the mean recognition rate is less than or equal

to chance for de-identified images with One-Eye and with Two-Eyes for most of the drivers

considered. On average, the recognition rate is higher with Two-Eyesthan with One-Eye, as

expected, however, both are below chance level. Notice that, participants responded with a high

percentage of Unknown with both One-Eye and Two-Eyes, indicating the difficulty in recognizing

a person with eyes only.

It’s important to mention that the nature of the experiment, where the choices are given

to pick one from, is very conservative and subjects could use elimination tactics without actually

identifying the driver. For example, one participant noted that eye color (e.g. dark or light) was

one of his criteria for choosing a candidate. Despite this, recognition rate of any particular driver

as well as overall is very close to chance level.

6.4.3 Gaze Zone Estimation

We consider the gaze zones as illustrated in Figure 6.6b: Left, Front, Right, Rear Mirror

and Inside. In a user study, a total of nine expert participants classify the driver’s gaze using

de-identified images of looking at the driver. The de-identified image samples in the user study

were chosen after two experts used respective raw images, as well as image sequences around

the interested frame for temporal context, to independently agree upon the correct label of

gaze. Similar to the user study for recognition, de-identified images with One-Eye is presented

first, followed by de-identified images with Two-Eyes. The participant pool between the user

study for face recognition and gaze estimation, however, is non overlapping. In Table 6.3, the

number of samples over all participants, the classification accuracy, and the percentage of times

participants responded with Unknown for each method of de-identification and for each gaze

zone is described. Notice that, in comparison to the percentage of Unknown responses for face

recognition, the percentage of Unknown responses for gaze zone estimation is very small. This

strengthens our goal of de-identifying drivers yet preserving driver’s gaze.

Furthermore, gaze zone classification accuracy on de-identified images with One-Eye and

Two-Eyes is 65% and 71%, respectively, which is well above chance of 20% for the five gaze zones

considered. Confusion matrix, as given in Figure 6.9, gives insight into the misclassification of

gaze zones. As expected, there is misclassifications among neighboring gaze zones. Left gaze,

for instance was confused only with the Front gaze while Front gaze was confused with all but

Rear Mirror gaze. On the other hand, Rear Mirror gaze was confused with Front gaze sometimes

because some rear-view mirror glances were very subtle. Furthermore, Rear Mirror gaze was

significantly confused with Right gaze. Even though participants were asked to chose the zone

that better matches the driver’s gaze than all others, it is not incorrect to assume a rightward gaze

when a driver is gazing at the rear-view mirror. Similarly, Inside gaze is significantly confused with

Front gaze and Right gaze. It is expected since gazing at the gauge and instrument panel invoke
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Table 6.3: Gaze Zone Estimation User Study: Evaluation of Participants’ response

De-Identification
Method

Gaze-zone Samples Accuracy Unknown
Rate

One-Eye

Left 90 67% 1%
Front 90 82% 0%
Right 90 76% 9%

Rear Mirror 90 67% 0%
Inside 90 32% 7%

All 450 65% 3%

Two-Eyes

Left 90 92% 2%
Front 90 87% 2%
Right 90 77% 1%

Rear Mirror 90 61% 1%
Inside 90 39% 3%

All 450 71% 2%

0.67 0.31 0.01 0 0

0.09 0.82 0.04 0 0.04

0 0.08 0.76 0.01 0.07

0 0.02 0.31 0.67 0

0 0.33 0.28 0 0.32

     Left     Front     Right Rear−view      Down

     Left

    Front

    Right

Rear−view

     Down

0.92 0.02 0 0 0.03

0.08 0.87 0.03 0 0

0 0.19 0.77 0.01 0.02

0 0.06 0.32 0.61 0

0 0.33 0.24 0 0.39

     Left     Front     Right Rear−view      Down

     Left

    Front

    Right

Rear−view

     Down

(a) One eye (b) Two eyes

Figure 6.9: Confusion matrix for the five gaze zone classification by participants of de-identified
images with (a) one eye and (b) two eyes. Gaze zones are depicted in Figure 6.6. Each row
represents true gaze and each column represents the participant’s estimate of the gaze zone.
Most of the elements in the diagonal have higher percentages than off-diagonal entries. On the
average, gaze zone estimation is accurate 65% and 71% for de-identification with one-eye and
with two-eyes, respectively.

gazes similar to Front and Right, respectively. In Figure 6.10, an extension of the confusion

matrix is presented where each row represents true gaze and each image is one of the most

recurring de-identified image in respective positions in the confusion matrix for de-identifications

with One-Eye and Two-Eyes.

Interestingly, there are instances where de-identified image with One-Eye is sufficient to

estimate the driver’s gaze. One such instance is portrayed in Figure 6.11a, where the driver’s

gaze is leftward. In Figure 6.11, each of the four collages is made up of three images: bottom

is the raw image, top left and top right are cropped images of de-identification with One-Eye

and Two-Eyes, respectively. On the other hand, sometimes even the raw image is insufficient

for gaze estimation because of the lack of temporal context. For example, in Figure 6.11b, it

is hard to strongly support Front or Inside gaze without more reference into what happened

before and possibly after this instant. A more expected result is when more visual cues (e.g.
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(a) One eye

(b) Two eyes

Figure 6.10: Five gaze zone performance of de-identified images with (a) one eye and (b) two
eyes. Gaze zones are depicted in Figure 6.6. Each row represents true gaze and each column
represents the participant’s estimate of the gaze zone. Each element in this matrix of images is
a cropped image of one of the highest participant response in respective categories.

(a) (b) (c) (d)

Figure 6.11: Illustrates multiple instances where typical confusion between gaze zones could
occur. Each collage of images is comprised of three images: bottom is the raw image, top left and
top right are cropped images of de-identification with one-eye and two-eyes, respectively. Each
collage illustrates when (a) de-identification with one-eye is sufficient, (b) raw image doesn’t
contain sufficient information, (c) de-identification with two-eyes provides sufficient context and
(d) de-identification with two-eyes introduces more uncertainty than with one-eye.

two eyes over one eye) lead to correct gaze estimation. Figure 6.11c is such an instance where

participants found difficulty in inferring gaze with one-eye but had no problem estimating gaze

with two-eyes. Surprisingly, however, there are instances were participants misclassified more

often with two-eyes than with one-eye. One of these instances is portrayed in Figure 6.11d,
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0.67 0.31 0.01

0.09 0.82 0.04

0 0.05 0.87

     Left     Front     Right

     Left

    Front

    Right

0.92 0.02 0

0.08 0.87 0.03

0 0.12 0.86

     Left     Front     Right

     Left

    Front

    Right

(a) One eye (b) Two eyes

Figure 6.12: Three gaze zone performance of de-identified images with (a) one eye and (b)
two eyes. Accuracy for Right gaze zone goes up significantly when Rear-Mirror gaze zone is
considered to be part of Right gaze zone. Average accuracy for (a) one eye is 0.79 and (b) two
eyes is 0.88.

Figure 6.13: A sequence of de-identified images with respective raw images from a video se-
quence of the driver glancing at the rear view mirror. The red box indicates an instance when
the driver’s gaze is on the rear-view mirror. Gaze estimation of the de-identified images in this
instance can be more accurate when provided the sequence leading up to it and possibly following
it.

where the ground truth gaze is Rear Mirror. One possible reason is, more information on the

gaze introduces alternative possibilities.

Finally, due to the inherent confusions in some zones we consider a simpler allocation of

gaze zones as illustrated in Figure 6.6a: Left, Front and Right. One of the main differences is the

absorption of Rear-Mirror into Right gaze zone. The second is the removal of Inside gaze zone

from the list, because looking inside at the gauge is similar to looking front whereas looking at the

center console is similar to looking right. Figure 6.12 shows the confusion matrix for a three gaze

zone classification. The overall accuracy is higher for both forms of de-identification since there

is less ambiguity between regions. As expected, the average accuracy of 88% for de-identified

images with two-eyes is higher than 79% for de-identification with one-eye when considering a
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simple allocation of gaze zones.

Estimating the gaze of the driver, in this user study, proved especially difficult because

the participants viewed an image out of context. Figure 6.13 shows a sequences of de-identified

images with respective raw images from a video sequence of the driver glancing at the rear-view

mirror. The red box indicates the actual act of looking at the rear-view mirror, which is typically

the image presented to a participant in our study. By providing the sequence leading up to the

event and possibly the sequence following, the participants are provided with more context and

can thus make a more informed decision.

6.5 Concluding Remarks

In the design of driver assistance system, when looking at the driver, driver’s identity

is irrelevant to understanding and predicting driver behavior. We explored a de-identification

scheme which preserves the facial region around the eyes in the foreground and obscures every-

thing else in the background. Eyes especially because it can provide finer detail on gaze zone

estimation. A user study using human participants showed face recognition to be well below

chance and gaze estimation accuracy for the five gaze zones to be 65% and 71% with One-Eye

and Two-Eyes, respectively. Gaze zones were misclassified mostly due to lack of spatial and

temporal context.

Our ongoing research is focused on preserving different combinations of facial regions, on

testing different background obscuring algorithms for spatial context and on providing a sequence

of images representing the act of looking at a gaze zone for temporal context [94]. The latter is

of special interest because knowing the history of driver’s gaze is useful in robustly predicting

the current gaze of the driver [100].
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Chapter 7

Conclusions

In this dissertation, we have tackled research challenges related to using cameras, fusing

modalities and preserving privacy to equip intelligent vehicles with an understanding of the

driver’s state. In relation to this central research goal, we have made several critical research

contributions

Gaze zone estimation is still a new area of research in literature. While there are many

ways to design a gaze zone estimator, the focus of this research is in carefully designing submod-

ules which will build up to achieve a continuous and robust gaze zone estimation. Key modules

in this system include, face detection using deep convolutional neural networks, landmark esti-

mation from cascaded regression models, head pose from geometrical correspondence mapping

from 2-D points in the image plane to 3-D points in the head model, horizontal gaze surrogate

based on geometrical formulation of the eye ball and iris position, vertical gaze surrogate based

on openness of the upper eye lids and appearance descriptor, and finally, a 9-class gaze zone

estimation from naturalistic driving data driven random forest algorithm. In addition to the

contributions in each of these submodules, this work also gives an extensive analysis of the sys-

tem as a whole on naturalistic driving data. The gaze estimator described in this work is based

on static features, meaning no information in time window previous to the instance is leveraged.

Near future work will extend this framework to dynamics features and therefore show significant

improvement in current framework’s sensitivity to occlusions and global models.

In this study, we explored modeling driver’s gaze behavior in order to predict maneuvers

performed by drivers, namely left lane change, right lane change and lane keep. The particular

model developed in this study features three major aspects: one is the spatio-temporal features

to represent the gaze dynamics, second is in defining the model as the average of the observed

instances and interpreting why such a model fits the data of interest, third is in the design of

the metric for estimating fitness of model. Applying this framework in a sequential series of

time windows around lane change maneuvers, the gaze models were able to predict left and right

80
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lane change maneuver with an accuracy above 80% around 1.6 seconds before the maneuver and

reaches a peak of 90% recall rate around 600 milliseconds. The overall framework is designed to

model driver’s gaze behavior for any tasks or maneuvers performed by driver. In particular, the

spatio-temporal feature descriptor composed of glance durations and glance transition frequencies

are powerful tools to capture the essence of recurring driver gaze dynamics. To this end, there

are multiple future directions in sight. One is to quantitatively define the relationship between

the time window from which to extract those meaningful spatio-temporal features and the task

or maneuvers performed by driver. Another is in exploring and comparing different modeling

approaches, including HMM, SVM and bag of words approaches. Other future directions include

exploring unsupervised clustering of gaze behaviors and exploring the effects of quantity and

quality of events (e.g. same vs. different drives, different drives from same or different time of

day) on gaze behavior modeling.

In this study, we also provided a data-driven approach to understand and analyze the

temporal interplay between three modalities: head, hands and eyes of the driver, in the con-

text of stop-controlled intersections. A naturalistic driving dataset was employed to show that

preparatory motions range in the order of a few seconds to a few milliseconds, depending on the

modality, before maneuvers occurred at intersections. Features generated from the head are seen

to be most useful in terms of predictive power. Eye based features play an important role in

prediction at a very early stage of the maneuver, while hand features dominate towards the end.

These findings are in line with the general flow of most human activities- first see, then perceive

and finally actuate. Future work in this scope encompasses extending this understanding of the

temporal influence of each modality to different maneuvers performed under different contexts.

Additionally, this study will serve as a basis to come up with a strong predictive algorithm for

intersections. Other information sources like vehicle dynamics and external camera sensors are

to be integrated and explored.

The Laboratory for Intelligent and Safe Automobiles (LISA) team at UCSD has made

a major commitment to offer its data sets to the worldwide research community so that anyone

interested in the research can get open access and evaluate their own algorithms and benchmark

them against others. The main motivators for such effort is to engage wider community of

students, scholars, developers in this exciting and challenging field and also to provide credible,

quantifiable benchmarks for evaluation and rapid progress in the field. In this regard, this work

presented important issues, challenges, and metrics associated with development of robust vision

based systems for intelligent vehicles. Specifically, this dissertation presented issues related with

face detection and head pose in static images. A major step in the future direction for face related

challenges alone is in the temporal domain; this includes face tracking, head pose tracking, gaze

estimation, activity analysis and expression recognition. A parallel effort is also in the integrative

vision framework of looking-in (e.g. faces, hands) and looking-out (e.g. vehicles, traffic signs) for

activity recognition and intent prediction, to name a few.
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In the design of driver assistance system, when looking at the driver, driver’s identity

is irrelevant to understanding and predicting driver behavior. We explored a de-identification

scheme which preserves the facial region around the eyes in the foreground and obscures every-

thing else in the background. Eyes especially because it can provide finer detail on gaze zone

estimation. A user study using human participants showed face recognition to be well below

chance and gaze estimation accuracy for the five gaze zones to be 65% and 71% with One-Eye

and Two-Eyes, respectively. Gaze zones were misclassified mostly due to lack of spatial and

temporal context. Our ongoing research is focused on preserving different combinations of facial

regions, on testing different background obscuring algorithms for spatial context and on provid-

ing a sequence of images representing the act of looking at a gaze zone for temporal context [94].

The latter is of special interest because knowing the history of driver’s gaze is useful in robustly

predicting the current gaze of the driver [100].

The work in this dissertation has been oriented towards enabling intelligent vehicles to

understand and estimate the state of the driver by mainly observing the face and some works on

fusion with hand analysis. Study of driver state in naturalistic driving studies is still in its infancy

relative to surround analysis. One of the future research direction is in understanding, modeling

and predicting driver behavior in highly automated vehicles. Reason being the role of drivers

in highly automated vehicles is constantly changing and being redefined and studies on driver

state is mainly in driving simulators. Another future research direction is in understanding and

modeling the interaction of humans in the vehicles with those surrounding the vehicle, because

the aim is global safety. Research challenges will lie ahead, in correlating the observable actions

to thoughts and intentions of humans in and around the intelligent vehicle.



Appendix A

Continuous Head Movement

Estimator: Framework and

On-Road Evaluations

A.1 Introduction

Driver head and eye dynamic behaviors are of particular interest, as they have the

potential to derive where or at what the driver is looking. Traditionally, eye gaze and movement

are considered good measures to identify an individual’s focus of attention. Vision based systems

are commonly used for gaze tracking as they provide non-contact and non-invasive solution.

However, such systems are highly susceptible to illumination changes, particularly in real-world

driving scenario. Eye-gaze tracking methods using corneal reflection with infrared illumination

have been primarily used indoor [47] but are vulnerable to sunlight. Robustness requirement

of IDAS has suggested the use of head dynamics. While precise gaze direction provides useful

information, head pose and dynamics provide course gaze direction, which are often sufficient in

a number of applications [57, 28]. Recent studies have used head motion along with lane position

and vehicle dynamics to predict a driver’s intent to turn [13] and intent to change lanes [67]. In

fact, head motion cues when compared to eye gaze cues were shown to better predict lane change

intent, 3s ahead of the intended event [25]. A significant amount of research has gone towards

fatigue and attention monitoring using driver head dynamics [5, 8]. In a more recent study, head

dynamics was used to estimate driver’s awareness of traffic objects by learning which objects

attract the driver’s gaze depending on the situation [6].

Many state-of-the-art vision based head pose algorithms have taken the necessary steps

to be automatic, fast and person invariant [68]. These systems have shown good performance
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Figure A.1: Head movements during a merge event. The 3D model of a head illustrates
observed facial feature from a fixed camera perspective and self-occlusion induced by large head
movements.

when the head pose is near frontal. Martin et al. show that during a typical ride a driver spends

95% of the time facing forward. Then, a system may be able to perform reliably 95% of the

time but it is during those 5% non-frontal glances which are of special interest since interesting

events, critical to driver safety, occur during those times. Figure A.1 illustrates a typical temporal

dynamics of head pose seen from a fixed single camera perspective during a merge maneuver. It

can be seen that head pose quickly goes far from forward facing (about 00 in yaw angle). It is

during those times when performance of monocular based systems degrades significantly due to

decreased visibility of facial features and texture caused by self occlusion.

Hence, we require a system with new sensing approaches to continuously estimate driver’s

head movement. A natural choice for the design of such a system is the use of multiple cam-

eras [66, 98]. Multi-camera systems exist in many other applications such as gesture recognition

[51, 103], human body pose and activity recognition [50], face detection, tracking and pose esti-

mation in intelligent space etc. A thorough study of such systems in a vehicular setting utilizing

naturalistic driving data, however, is lacking in the literature. Towards this end, we propose a

continuous head movement estimator (CoHMEt), a key component for the uninterrupted driver

monitoring system.

Our contributions are three folds. First, we propose a distributed camera solution and

conduct a thorough study comparing different configurations of multiple cameras. Second, we
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propose two solutions for head pose estimation based on a geometric method utilizing state-of-

the-art techniques for facial feature tracking. We introduce spatio-temporal constraints available

in driving context to improve head pose tracking accuracy as well as computation time. Further-

more, we compare the two solutions for different configurations and show that the choice of the

algorithm determines ‘best’ camera configuration. Finally, we quantitatively demonstrate the

success of this system on the road. For this, we gather a dataset which targets spatially large

head turns (away from the frontal pose) during different vehicle maneuvers. Although this makes

the dataset challenging, it sets realistic requirements for the vision based system to be a viable

commercial solution. We evaluate our proposed systems using both metrics, error in angular

calculation in 3 degree of freedom (pitch, yaw and roll) and failure rate, which is a percentage

of the time the system’s output is unreliable. The part hardware and part software solution

of multiple camera perspectives will be shown to improve continuous head dynamics estimation

during critical events such as merges, lane changes and turns.

A.2 Related Research

Naturalistic driving presents unique challenges for vision based head dynamic estimation

and tracking methods. Amongst research thrust and commercial offerings that can provide

automatic head pose estimation, most of them lack rigorous and quantitative evaluation in an

automobile. In a car, ever-shifting lighting conditions cause heavy shadows and illumination

changes, and as a result, techniques that demonstrate high proficiency in stable lighting often

will not work in on-road driving situations. In this work, our effort is to advance state-of-the-art

technology for head pose and dynamics estimation targeted for drive assistance systems. In this

context, we review past work with a focus on systems that have been evaluated in naturalistic

driving or studies conducted in-lab/driving-simulator setup that have potential for applying but

have yet to be tested under naturalistic driving conditions. For a good overview of head pose

estimation in computer vision, readers are encouraged to refer to a survey by Murphy-Chutorian

and Trivedi [68].

Head pose estimation algorithms can generally be classified into the following main cat-

egories: geometric/shape feature based, appearance/texture feature based, and hybrid (shape+

texture) feature based methods. Methods based on shape features analyze geometric configu-

ration of facial features along with face model (e.g. cylindrical [109], ellipsoidal [57] or mean

3D face [65]) to recover head pose. Smith et al. analyzed color and intensity statistics to find

both eyes, lip corners, and the bounding box of the face [19]. By using these facial features,

they estimated continuous head orientation and gaze direction. However, this method cannot

always find facial features when the driver wears eyeglasses or makes conversation. Kaminski et

al. analyzed the intensity, shape, and size properties to detect the pupils, nose bottom, and pupil

glints to estimate continuous head orientations and gaze direction [20]. By using the foregoing
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ä
r

et
a
l.

’1
3

[6
]

D
ri

v
er

’s
h

ea
d

p
o
se

a
n

d

g
a
ze

es
ti

m
a
ti

o
n

T
ex

tu
re

&

d
ep

th

S
in

g
le

D
is

cr
et

e
y
a
w

R
ea

l-
ti

m
e

O
n

-R
o
a
d

C
C

R

P
ro

p
o
se

d

C
o
H

M
E

T

C
o
n
ti

n
u

o
u

s
h

ea
d

d
y
n

a
m

-

ic
s

es
ti

m
a
ti

o
n

fo
r

sp
a
ti

a
ll
y

la
rg

e
h

ea
d

m
o
v
em

en
ts

S
h

a
p

e
M

u
lt

i
C

o
n
ti

n
u

o
u

s
y
a
w

,
p

it
ch

,
ro

ll
R

ea
l-

ti
m

e
N

a
tu

ra
li
st

ic

d
ri

v
in

g

O
v
er

a
ll

:
M

S
E

,

S
T

D
.

F
u

n
ct

io
n

o
f

y
a
w

:
1
st

th
re

e

er
ro

r
q
u

a
rt

il
es

.



87

methods considering both eye and head orientations, detailed and local gaze direction can be

estimated. However, the accuracy of the eye location significantly drops in the presence of large

head movements. Thus, the algorithm delivers poorer performance for deviation from the frontal

pose.

To circumvent precise localization of detailed facial feature, Ohue et al. proposed simple

facial features - the left and right borders, and the center of the face [76]. Along with these

features, the authors used a cylindrical face model to find the driver’s yaw direction. Lee et.

al. [57] used similar shape feature with ellipsoidal face model to improve the yaw estimate when

the head rotates significantly away from frontal pose. The authors trained gaze classifiers in a

supervised framework to determine 18 gaze zones. Fu et al. designed a system that categorizes

head pose into 12 different gaze zones based on facial features [42]. The system automatically

learns the zones based on different calibration points such as side mirrors, rear-view mirrors etc.

It takes, however, several hours of driving before automatic calibration reaches similar accuracy

as of supervised training based method. It is unclear whether the evaluations are performed

in stationary or moving vehicle and whether drivers were asked to look towards defined zones

during data collection. A study conducted on naturalistic driving data by Martin et al. [65],

tracked prominent facial features (e.g. eye corners, nose corners and nose tip) and analyzed their

geometric configurations to estimate head pose. This is very similar to proposed approach but

it is limited to single perspective. Appearance-based approaches attempt to use holistic facial

appearance, where face is treated as a two-dimensional pattern of intensity variations. They

assume that there exists a mapping relationship between 3D face pose and certain properties of

the facial image, which is constructed based on a large number of training images. In [48], Guo et

al. utilizes template face images distributed in the pose space to determine the head pose. The

system operates by first finding the face using a cascade of face detectors and then a best face

exemplar in the training dataset is found. The head pose of the exemplar is the estimated head

pose. The study provides little information on testing methodology and how the ground truth

is obtained. Such methods, however, require precise localization of faces as matching is often

sensitive to localization errors. Bär et al. [7], estimate driver’s head pose using RGB-D images.

Multiple templates are used to align 3D point cloud data using Iterative Closest Point (ICP)

algorithm to obtain head pose and subsequently drivers line of gaze by analyzing the angles of

the eyes in RGB image. Template matching algorithm (ICP) also suffers from initialization error.

Zhu and Ji [123] proposed a system to track 2D face location and 3D face pose simultane-

ously. 3D face pose is tracked using Kalman Filtering which in turn guides 2D face localization.

The system uses a planar face appearance template to match with current frame to obtain the

best pose parameters. It, however, requires initialization with frontal face and tracking is per-

formed from this initial position. Like other holistic approaches, the use of full face appearance

template can be very limiting, specially in driving scenario due to constant varying illumination

condition. The authors propose to dynamically update the face model or when the track is lost,
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use eye detection and fiducial facial feature to estimate the rough pose parameters. The evalua-

tion is performed in a lab setting. With the limited information about the characteristics of the

database, it is not clear how the system performs as a function of out-of-plane rotation.

Wu et al. detected discrete yaw and pitch by using a coarse-to-fine strategy using quan-

tized pose classifier [116]. First, a coarse pose estimate is obtained by nearest prototype matching

with Euclidean distance in the subspace of Gabor wavelets. In the second stage, the pose estimate

is refined by analyzing finer geometrical structure of facial features. This is a hybrid approach

combining shape and texture features. Evaluations are performed in laboratory settings. More

recent studies have taken their research to naturalistic driving, where driver is asked to drive

on highways or urban roads as they would do in their normal commute. One notable work by

Murphy-Chutorian et al. estimated the initial head orientation using a local-gradient-orientation

(LGO) feature and support vector regression [69], called a static pose estimator. Finer head

orientations were computed by fitting and tracking a 3D face model. While the tracking module

showed good performance, the combined system suffered from inaccurate initialization.

A summary of select studies with emphasis on applicability to driver assistance system

is provided in Table A.2. Apart from their original objective, the following important elements

related to employed methodology and evaluation strategies are mentioned for comparison against

the proposed CoHMEt framework:

• Objective: What is the purpose of the study (e.g. gaze estimation)?

• Methodology:

1. Feature: Type of features used (shape, texture or hybrid).

2. Perspective: Whether system utilizes single or multiple cameras.

3. Resolution: Whether the system provides discrete or continuous head pose estimate.

4. Degrees of freedom: Number of degrees of freedom in the system output e.g. rotation

- pitch, yaw and roll, and position - x,y and z values from a reference frame.

• Evaluations:

1. Operation: Real-time vs non real-time

2. Dataset: In what environment, the evaluation is performed (naturalistic driving, sta-

tionary vehicle or lab)

3. Metrics: Type of metrics used for the performance evaluation.

Our proposed approach falls in the category of shape feature based methods. Unlike

appearance based methods, they are intuitive and simple to implement (since the cause of failure

can be reasoned out well). The challenge, however, lies in robust and accurate localization of the

facial features. With the recent advancements in facial feature tracking methods, we revisit them
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and perform a thorough evaluation in naturalistic driving scenario. Furthermore, with multiple

cameras, we improve the operational range while maintaining good accuracies. Unlike stereo

camera (an instance of multi-camera) setup, we do not have any assumption of the visibility of

the faces in both cameras nor do we require lengthy calibration process. In fact, our cameras

have wide baseline and are uncalibrated. The proposed framework utilizes them independently in

a parallel fashion and the results are further analyzed by later stages to provide the final output.

A.3 Issues and Challenges in Continuous and Robust Head

Movement Analysis

Researchers working on driver monitoring systems, in particular, for driver head dynamic

analysis, face unique challenges. As argued earlier, methods designed and tested in controlled lab

settings provide no guarantee of robust performance in automobile environment. Hence, a proper

evaluation on naturalistic driving database is very much required. The challenge lies in the design

of a reliable, configurable and yet affordable database collection module. It’s not just a matter of

mounting cameras, but we also require ground truth for proper evaluation. Automobile setting

during driving, however, precludes conventional methods used in lab environment e.g. asking

individuals to look to certain fixed direction. Care needs to be taken to not distort imagery input

e.g by placing marker on face. Manually labeling either direct head pose information or more

objectively, annotation of facial features can provide head pose measurement. However, with

video data at 30fps, it quickly becomes a daunting task and renders itself practically infeasible.

One good candidate could be magnetic sensors. They are used extensively in lab settings without

cluttering or obscuring visual data. However, they can be unreliable in an automobile due to

their high susceptibility to noise and the presence of metal in the environment. Optical motion

capture systems do provide a very reliable solution. But they are often very expensive with bulky

equipments and require lengthy calibration. Inertial sensors utilizing accelerometer, gyroscopes

or other motion sensing devices can provide compact, inexpensive and clean solution. But they

often suffer from drift associated with gyroscope. However, this can be solved as proposed in this

work by small amounts of manual annotation.

Another important aspect is number of camera(s) and their placement. Camera should

neither block the driver’s view for safe driving nor should its presence alter driver’s behavior. At

the same time, the placement should not be prone to frequent occlusions. A choice of placement

can very much be application dependent, though a desirable choice would be one that covers as

large a pose space, generally exhibited by a driver during a typical ride, as possible. From a

computer vision perspective, however, intrinsic properties of head dynamics present a challenge

to the robustness of many existing algorithms. As described earlier, many existing state of the

art head pose estimation algorithms, explicitly or implicitly, rely on a portion of the face to



90

Figure A.2: Multi-perspective data collected during naturalistic on-road driving. Each row
of images shows images are from a particular camera location and each column of images are
time-synchronized. Locations of the camera: Camera 1 is near the left A-pillar, Camera 2 is
close to the dashboard, and Camera 3 is near the rear-view mirror. Notice, challenges (e.g.
external-/self-occlusion, shadows, illumination change) present in real world data.

be visible in the image plane to estimate head pose. This means that even during large head

movements, algorithms require the visibility of facial features to continuously track the state of

the head. With a single perspective of the driver’s head, however, large spatial head movements

induce self-occlusions of facial features as illustrated in the first two columns of Figure A.2. In

Figure A.2, each row of images are taken from a different camera perspective and each column

of images are time-synchronized. Clearly, the availability of multiple perspectives decreases the

severity of self-occlusions at any instant in time which translates to an increase in the robustness

of continuous head tracking.

Occlusions of facial features can also occur due to external objects (e.g. hand movements

near the face region, sunglasses). Depending on camera perspective, hand movements on steering

wheel during vehicle maneuvers, to adjust sunshade, to point, etc. can cause occlusion. The mid-

dle two columns in Figure A.2 show examples of the latter two scenarios with hand movements.

Effects of lighting conditions are also highly dependent on the camera location. In Figure A.2,

the last two columns illustrate the effects of lighting conditions. Therefore, a multiple perspective

approach with suitable camera placements, can mitigate the adverse effect of any one camera

perspective being unreliable to track the head.

A.4 CoHMEt: Framework and Algorithms

Continuously and accurately monitoring driver’s head movement even during large devi-

ation from the frontal pose requires improved operating range of the head pose tracking system.

For this, we propose a distributed camera framework inside the vehicle cockpit. The framework
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treats each camera perspective independently and a perspective selection procedure provides the

final head pose estimation by analyzing temporal dynamics and the current quality of the esti-

mated head pose in each perspective. For head pose estimation, we present a geometric method

where local features, such as eye corners, nose corners and nose tip, and their relative 3D con-

figurations determine the pose. In the following sections, we present automatic facial feature

detection and tracking methods, pose estimation approach and perspective selection procedure

in detail.

A.4.1 Facial Feature Detection and Tracking

In this work, facial features refer to salient landmarks on the face such as eye corners,

nose corners, nose tip, mouth contour and outer face contour as shown in Figure A.5. We present

two formulations for automatic facial feature detection and tracking based on two separate feature

detection methods: Constrained Local Model (CLM) introduced by Cristinacce and Cootes [17,

19] and Pictorial Structure Matching (PSM) proposed by Felzenszwalb and Huttenlocher [33].

Unlike images, video data provides temporal constraints; moreover, a driving setting imposes

spatial constraints on the detected facial features in the image plane. In our formulations, we

introduce these spatial and temporal constraints to improve the tracking accuracy by reducing

false detections, and the computation cost by reducing the search space.

Constrained Local Model

CLM represents objects, in our case faces, using local appearance descriptions centered

around landmarks of interest, and a parameterized shape model of those landmarks. Local

representation of appearance circumvents many drawbacks of holistic approach (e.g. Active

Appearance Model (AAM)), such as modeling complexity and sensitivity to illumination changes,

and shows superior generalization performance to novel unseen faces. The local descriptors are

generally learned from labeled training images for each landmark. These local representations,

however, are often ambiguous mainly due to small support region with large appearance variation

in the training data. The effect of the ambiguity is typically reduced by the shape model that

constraints the joint positioning of the landmarks.

A parametrized shape model to capture plausible deformations of landmark locations is

given in Equation A.1. This is also known as a point distribution model (PDM), a term coined

by Cootes and Taylor [16]:

pi = sR2D(p̄i + Φiq) + t (A.1)

where pi = (xi, yi) is the 2D location of the ith landmark in the image I. p̄i is the 2D location

of the ith landmark of the mean shape and Φi encodes the shape variations. Rigid parameters
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θrg = {s,R2D, t} with global scaling s, in-plane rotation R2D and translation t, along with

non-rigid parameters q, represent parameters of the PDM.

Let’s define θ = {θrg, q}. The objective of CLM, then, can be defined in a probabilistic

framework as maximizing the likelihood of the model parameters such that all of the facial

landmarks are aligned to their corresponding locations. With the assumption of conditional

independence amongst detections of each landmark, the objective function becomes:

L(θ|{li = 1}ni=1, I) = p({li = 1}ni=1|θ, I)

=

n∏
i=1

p(li = 1|θ, I) (A.2)

where li ∈ {+1,−1} is a discrete random variable denoting the ith landmark is aligned or not.

To facilitate the optimization process so that it is efficient and numerically stable, the true

response map p(li = 1|θ, I) of the local detectors are approximated by various models, such as

parametric representation - Gaussian density with diagonal covariance [16], full covariance [115],

Gaussian mixture model [46], or nonparametric representation - kernel density estimate (KDE)

[89]. In our current implementation, we chose KDE for it’s fast convergence property with good

tracking ability [89]. It has shown its efficacy in other applications too, such as face expression

recognition [99]. In the method, landmark locations are optimized via subspace constrained

meanshifts while enforcing their joint motion via shape model. The maximum likelihood estimate

(MLE) of the parameters, however, does not exploit the constraint setting present in the driving

context. Since driver’s seat location is fixed while driving, the body and head locations are

restricted along with head orientation observed from the fixed camera perspective. To incorporate

these constraints, we learn the parameter space, particularly for rigid parameters θrg online. We

need to learn this online since each driver has a different seat setting suitable for their driving.

To learn the probable face location and face size, face detection is used to find bounding

boxes, Bi, for the first NB face detected frames:

Bi =
[
ximin yimin ximax yimax

]
where i ∈ 1, ..., NB . A restricted face region B∗ is obtained as:
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Figure A.3: Illustration of the online learning process of estimating restricted face region in the
image plane.

H(x, y) =
∑
Bi

U [x− ximin]U [y − yimin] (A.3)

− U [x− ximax]U [y − yimax]

M(x, y) = U

[
H(x, y)

γ
− α

]
(A.4)

BR(P ) = {(min
x∈P

x,min
y∈P

y,max
x∈P

x,max
y∈P

y)} (A.5)

where, U [·] is the unit step function and the normalization factor γ = maxx,yH(x, y). α ∈ (0, 1)

is a tuning parameter to control the size of the expected face region M(x, y). A tight bounding

rectangle BR(·) as defined in Eq. A.5 is calculated using set of points P = {p = (x, y) |
M(x, y) > 0}. We call this minimum bounding rectangle B∗, the restricted face region. Figure

A.3 depicts the overall process. Estimated facial landmark location pi within B∗ is considered

admissible. Similarly, the probable size of face is proportional to the size of B∗. Finally, the

rotation parameter is inferred from the estimated roll angle of the driver’s head. The estimate

value within ±200 is considered admissible. When the estimated parameters do not satisfy above

conditions, they are discarded and the system is re-initialized. This helps reduce false detection

and also improve tracking quality (accuracy and failure rate). This is the case since during the

optimization process an initial guess of the parameters is based on the previous output. When
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there is no output from the previous frame, the face detection output in the current frame is used

to initialize the parameters. Discarding the estimation, however, amounts to no system output

which we account for in one of the performance metrics as explained in the Section A.5.2.

Mixture of Pictorial Structures (MPS)

Using pictorial structures, a face is modeled by a collection of parts arranged in a

deformable configuration, where each part captures the local visual descriptions of the face

and spring-like connections between certain pair of parts capture the deformable configura-

tion [35]. This is naturally represented by an undirected graph G = (V, E), where the vertices

V = {v1, · · · , vn} correspond to the n parts, and for each pair of connected parts, there exists an

edge (vi, vj) ∈ E . A mixture of pictorial structures further captures the topological changes of

the face due to varying head orientations. The best configuration of parts is found by maximizing

a score function that measures both the appearance similarity, SA(It,pi,m), of placing the ith

part (i.e. node vi) at location pi = (xi, yi), and the likely deformation, SD(It,pi,pj ,m), for each

pair of connected parts. Optimization proceeds by maximizing over all mixtures:

S(It,P,m) =

nm−1∑
i=0

SA(It, pi,m) +
∑

(vi,vj)∈E

SD(It,pi,pj ,m)

S∗(It,P∗) = max
m∈{m̂t}

[ max
p∈{P̂t}

S(It,p,m)]

where m̂t ∈ M is a subset of all mixtures M and P̂ t is a rectangular region of interest defined

by Eq. A.6 and Eq. A.8 respectively.

In literature, the appearance similarity SA(It,pi, ·) is modeled in various ways e.g. Gaus-

sian derivative filter response around a point [33], feature based description such as Histogram

of Gradient (HoG) [122], Haar-like feature [31] etc. SD(It,pi,pj , ·) is a distance function e.g. a

Mahalanobis distance in some transformed space of pi and pj . In our implementation, we use a

discriminative, max-margin framework [122] to model the two scoring functions. Here, G for each

mixture is a tree and the optimization is performed efficiently with dynamic programming [33].

To improve the computation time, we further incorporated spatio-temporal constraints to reduce

the search space. First, the possible solutions for a configuration of parts are constrained to lie

within a region where the head was found in the previous frame. Second, the enumerations over

all mixture components for the current frame can be reduced to neighboring mixture components
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Figure A.4: Process of reducing search space for video analysis using mixture of pictorial
structures. Part space is reduced by constraining to region around the face location in the
previous frame as illustrated by the red box. Similarly, mixture space is reduced by searching
over neighboring mixture components around the estimated component from the previous frame.

around the estimate from the previous frame:

m̂t = m∗t−l + {−1, 0, 1} (A.6)

m∗t−1 = arg max
m∈{m̂t−1}

[ max
p∈{P̂t−1}

S(It,p,m)] (A.7)

P̂ t = {pi | pi ∈ (BR(P ∗t−1) + (−b,−b,+b,+b, ))} (A.8)

where m∗t−l is the mixture chosen for the previous frame It−1, BR(·) is defined in Eq. A.5 and

b is the border width. Figure A.4 depicts the overall process. These optimizations decreased the

processing time by at least 4 folds.

A.4.2 Pose Estimation

Given a 3D model of an object, POS (Pose from Orthography and Scaling) [20] finds the

position and orientation of the camera coordinate with respect to the object reference frame. It

minimizes the reprojection error using weak perspective transform. Given a point on 3D model,

say Mi, and its measured projection in the image plane, say pi = (xi, yi), POS solves the following

linear system of equations:

M0Mi · αi = x0xi i = 1 · · ·Nc

M0Mi · αj = y0yi i = 1 · · ·Nc

where, M0Mi represents the vector from the reference point on the 3D model M0 to Mi, α is

the scale factor associated with the weak perspective projection and Nc is number of 3D − 2D

point correspondences. The vectors i and j form the first two rows of the rotation matrix and
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Figure A.5: Tracked facial feature/landmarks and their correspondences in 3D face image. Solid
red circles are the points utilized for the head pose calculation.

the third row is given by the vector k = i × j, a cross product. Note, however, that while k is

perpendicular to i and j, vectors i and j aren’t necessarily perpendicular due to noisy 3D− 2D

point correspondences. Therefore, the rotation matrix is projected into the SO(3) space by

normalizing the magnitude of the eigenvalues.

To solve this system of equations, POS requires at least 4 points of correspondences in

general positions. CLM and mixture of pictorial structures model, however, output more than 4

fiducial points. In our current implementation, we use the following fiducial points as they are

less deformable: four eye corners, two nose corners and a nose tip. Figure A.5 shows these points

(red solid circle) on a test image and its corresponding points on the 3D mean face model.

A.4.3 Perspective Selection Procedure

CoHMEt tracks head independently in each camera stream and their outputs are further

analyzed to choose the best perspective and corresponding head pose. The block diagram in

Figure A.6 illustrates this process for a general setup of N cameras, where the cameras are

numbered in the increasing order from the leftmost position in the distributed camera array

setup. In the proposed system, we utilize three cameras positioned to the left, front and right

of the driver as seen in Figure A.8. The system is initialized with the front camera and during

the tracking phase, transitions from one perspective to another is allowed based on the operating

range (ΩNc
− , ΩNc

+ ) of the selected camera and yaw movement direction. When tracking is lost,

due to either loss of facial point detection or rejection of the estimated points, re-initialization

is performed using a scoring criteria. For the CLM based approach, the system is re-initialized

with the perspective that has the highest symmetry score, where the symmetry of the face is

computed using the detected facial landmarks. This ensures perspective close to frontal position

is chosen. For the MPS based system, the score obtained during facial landmark detection

(explained in Section A.4.1) is utilized. Figure A.7 illustrates this process as applied to the data

from a naturalistic on-road driving.
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Figure A.6: Perspective selection approach. Tracking phase utilizes head pose and dynamics to
switch between perspectives, while a scoring criterion during a lost track re-initializes with the
highest score camera.

A.5 Experimental Evaluations and discussion

The CoHMEt framework is evaluated on naturalistic driving data. The data collection

was focused and targeted around various maneuvers and events that cause large head turns (away

from the driving direction) as they are of special interest for driver safety. By evaluating on these

select events, we show the need and usefulness of a multi-perspective setup for continuous and

reliable head tracking. Ground truth head pose is generated by mounting an inertial sensor on

top of the driver’s head and retrieving the head rotations in pitch, yaw and roll angles.
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Figure A.7: Illustration of multiple perspective framework on a segment taken from a subject’s
naturalist on-road driving experiment. The horizontal axis represents frame number (w.r.t. left
camera) and the vertical axis represents head rotations in the yaw rotation angle relative to car
reference frame. The blue asterisks represent the left camera, the red circles represent the center
camera and the magenta crosses represent the right camera. The plot shows the head scan by
the driver from left to the right mirror starting from front pose. The evolution of the perspective
selection is presented.

A.5.1 Testbed and Dataset

Data is collected from naturalistic, on-road driving using the LISA-A testbed as shown

in Figure A.8. Three cameras are mounted facing the driver: one on the front windshield near

the A-pillar, one on the front windshield and one near the rear view mirror. They capture face

view in color video stream at 30fps and 640× 360 pixel resolution.

In addition, the vehicle is instrumented with Inertial Motion Units (IMUs) with sensors

placed on the divers head and fixed at the back of the car to track their respective motions. Sensor

fusion of the IMUs’ data provide precise ground truth head pose data for evaluation. Sensor fusion

is required since the IMU attached to the driver’s head is affected by the car’s movement. To

compensate this effect, an IMU rigidly fixed to the car is used to capture vehicle dynamics. The

multiple IMUs involve calibrated accelerometer- and gyroscope-sensors. The IMU unit, however,

has some drift associated with the gyroscope, a commonly known phenomenon. This is overcome

by resetting angle calculation in the beginning of each event where initial orientation is provided

by hand annotating the face image. Since, on average, each event lasts around 10 seconds, the

drift during this period is practically non existent.
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Figure A.8: LISA-A experimental testbed equipped with and capable of time synchronized
capture of camera array and multiple Inertial Measurement Units (IMUS) [98].

Using this testbed, multiple drivers were asked to drive naturally on local streets and

freeways near UCSD. Approximately 60 minutes of data was collected in total and sunny weather

conditions allowed for varying lighting conditions. Additionally, driving in an urban setting, the

drivers passed through many stops signs and made multiple turns, and driving on the freeway

allowed for multiple lane change occurrences, resulting in a dataset with wide spatial changes in

head pose.

From the collected data, we select events when the driver is making right/left turns,

right/left lane changes, stops at stop signs, and freeway merges. Table A.2 shows the events

considered, the number of respective events analyzed during the total 60 minute drive containing

all drivers, and the total number of frames accumulated for each event. The evaluations reported

in the following section will be on these selected events. It is important to note that each event

can induce more than one sequence of spatially wide head movements. Figure A.9 shows a typical

histogram of yaw angle distribution during a test drive. It can be seen that while considering the

entire drive, the driver is near frontal facing most of the time (Fig A.9a). However, yaw angle

distribution is more spread out for the chosen events (Fig A.9b).

A.5.2 On-road Performance Evaluation

A series of experiments involving the naturalistic on-road data are conducted to char-

acterize the performance of CoHMEt. Performance of CoHMEt, with 3-cameras and 2-cameras,
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Table A.2: A list of events considered for evaluation, and its respective count and number of
frames.

Events No. of events Total no. of frames

Right turns 27 7417
Left turns 13 4027
Stop sign 42 10853

Right Lane change 12 2565
Left Lane Change 15 2963

Merge 7 1778
Xing 3 628

All 119 22814

(a) (b)

Figure A.9: Distribution of head pose values in yaw rotation angle for an entire test drive (a)
and accumulation of selected events (b) in the same test drive. Clearly, data from chosen events
shows a more even distribution across yaw when compared to the entire drive.

are compared against the performance of a single-view approach. Spatial distribution of cameras

for a 3-, 2- and 1-camera view from a top-down perspective is illustrated in Figure A.10. For a

quantitative evaluation over the database, three metrics are used: mean absolute error (MAE),

standard deviation error (STD) and failure rate (percentage of the time when system’s output is

unreliable). Head tracking is considered to be lost if the estimated head pose is not available or

is more than 20◦ from the ground truth in either direction of the yaw rotation angle. Number

of frames where head tracking is lost, normalized by the total number of frames over all events

gives the failure rate.

As shown in Table A.5.2, the MPS+POS system shows a general trend of improvement

in failure rate from 1-camera view to 2-camera view to 3-camera view. The best performance of

3.9% failure rate is achieved with the 3-cameras view compared to that of over 15% for the single

view, a significant improvement. However, for the CLM+POS, the 2-camera view performed the

worst. This is because CLM+POS requires near frontal pose for initialization and front camera is

absent in the 2-camera view configuration. The 3-camera view with front camera again performed

the best, dropping failure rate by a half compared to single front camera view. Hence, choice



101

Figure A.10: Shows the setup of the single-camera view, 2-camera view and 3-camera view as
discussed and compared for performance evaluation of the multi-view framework. The single-
view setup is composed of the center camera only. The 2-camera view setup is composed of the
left and right camera. The 3-camera view setup is composed of the left, center and right camera.

of the algorithms and the camera configurations are tightly coupled. This is further discussed

below. From Table A.5.2, also notice that irrespective of the number of cameras (observing each

column), MPS+POS algorithm outperforms CLM+POS approach. This can be attributed to the

ability of the MPS formulation to incorporate global topological variation of the facial landmark

due to different pose using different mixture components. The drawback of MPS, however, is

computational complexity. In our experiments, using Intel 3.0 GHz CPU, MPS+POS without

search space reduction, as explained in Section A.4.1, took ∼ 13 seconds to process one frame

and with search space reduction took ∼ 3 seconds for one frame, a four fold improvement.

CLM+POS, on the other hand, runs real-time with ∼ 25 frames per second.

The MAE and STD for pitch, yaw and roll are relatively similar across different configu-

rations and the placements of cameras. This is expected since a multiple camera system combines

each camera independently and is bounded by the single view accuracy. While a direct compar-

ison to other reported error rates in the literature may not be appropriate e.g due to different

databases, to put in perspective, we refer to the results of the study by Murphy-Chutorian and

Trivedi [71] evaluated on on-road data. The authors reported MAE < 50 in yaw angle when the

system is initialized with ground truth. However, the fully automatic system, had MAE > 100

in yaw angle with large STD ≈ 170. Our proposed framework, evaluated on the challenging

naturalistic on-road dataset, has shown good results.

Next, we show in Figure A.11 the absolute yaw error statistics as a function of true

yaw angle with respect to front camera. The figure shows first-, second- and third quartile of

the errors associated with the respective yaw bins. It can be observed that the single camera

system quickly loses tracks with high estimation error beyond 30◦ in either direction. While the

multi-camera system is able to keep track over much wider span with better error statistics. Also,

notice that higher errors are associated at the two extremes, which is due to decreased visibility

of facial landmarks caused by self occlusion.

Finally, we conduct an experiment to study the operational range of the system and for

a given choice of an algorithm, how to obtain ‘best’ camera placement. We chose the MPS+POS

system for this experiment since the MPS formulation provides a facial feature detection score

(higher the better), which we refer to here as quality. Figure A.12 shows the quality of each
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Figure A.12: Quality of head pose estimation from individual camera view with respect to
head orientations in the yaw angle. A useful means of configuring camera positions to maximize
operational range of the overall system.

of the three cameras as a function of true yaw angle. Given a desired level of quality, this can

provide the operational range of a camera and how cameras should be placed with respect to

each other to maximize the operational range of the overall system.

A.6 Concluding Remarks

Robust systems for observing the driver behavior will play a key role in the development

of IDAS. Analyzing the driver’s head movement is becoming an increasingly important aspect

of such systems, since it is a strong indicator of the driver’s field of view, current focus of

attention as well as intent. In a driving environment, the driver is prone to make large spatial

head movements during maneuvers such as lane changes, right/left turns. During these crucial

moments, it is important to continuously and reliably track the head of the driver. Moreover,

the system needs to perform uninterrupted with high accuracy to be accepted and trusted by

the driver.

In this chapter, we proposed the CoHMEt to address the above design criteria. We pre-

sented two approaches of facial feature tracking to compute head pose and conducted systematic

comparative studies with different configurations of multiple-camera systems. The best system

could reliably track head movement over 96% of the time. The evaluations are performed over

the naturalistic real-world driving dataset, which is a must as they present the actual scenario.
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Towards this end, we collected a unique and novel dataset of naturalistic driving with distributed

cameras. The dataset targets spatially large head turns (away from the driving direction) during

different maneuvers (e.g. merge, lane change) on urban streets and freeways. Going forward, we

will pursue a unified framework to combine the two approaches to improve computational cost

without sacrificing failure rate and head pose error. Finally, CoHMEt framework can also be

adapted in other “Intelligent Environments” with multiple participants [70] and multiple sensory

cues [92].
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