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An analytical and numerical study of the suppression of the transverse head-tail instability by 
modulating the chromaticity over a synchrotron period is presented. We find that a threshold can 
be developed, and it can be increased to a value larger than the strong head-tail instability thresh­
old. The stability criterion derived agrees very well with the simulations. The underlying physical 
mechanisms of the damping scheme are the rotation of the head-tail phase such that the instability 
does not occur, and the Landau damping due to the incoherent betatron tune spread generated by 
the varying chromaticity. 

A bunched beam traveling in a storage ring creates a deflecting force generated by the interactions of the particles 
and environment. The deflecting force, the so-called wake field, reacts and perturbs the beam, often causing transverse 
collective instabilities. These instabilities limit the peak current in the bunch. In this Letter, we analyze a new method 
for controlling such instabilities; namely, through a temporal variation of the ring parameters. We apply this method 
to a practical example, the head-tail (HT) instability. 

In a storage ring, particles with different energy see different focusing strength in the quadrupoles, and thus have 
different betatron frequency. The ratio of the relative frequency difference to the relative momentum difference is 
called the chromaticity. The betatron angular frequency of an off-momentum particle is given by wp( 8) = wp0 (1 +e8), 
where e is the chromaticity, wpo is the betatron angular frequency of the on-momentum particle, and 8 = D.pfp is the 
relative momentum difference. Even if e = 0, there is an instability called the strong head-tail (SHT) instability. This 
instability has a threshold created by the particle's synchrotron oscillation, and when the threshold is exceeded, the 
bunch's motion grows exponentially. In practice, e # 0, there is still a SHT instability with a threshold; in addition, 
there is the head-tail instability due to chromatic effect, which has no stability threshold. The HT instability was 
observed in experiments [1], has been well analyzed [2], and has been confirmed by simulations [3]. 

The HT instability has been a concern for many circular accelerators in the world, for example, we may note 
the observations and simula~ions of single-bunch transverse excitation of the beam in the proton ring of the HERA 
collider at DESY [4], the observation of higher-order HT instability in the PS Booster of the LHC at CERN [5], and 
the investigation of the possible HT oscillation due to a transverse feedback kicker at KEK's B-Factory (KEKB) [6]. 

It is understood that, when e/1J > 0, the in-phase mode which governs the bunch's transverse center of motion is 
damped, while the bunch's transverse size which is governed by the out-of-phase mode grows exponentially; when 
e/1J < 0, the condition reverses [7], where 1J = pdC /Cdp- 1j-y2 is the slippage factor, C = 2n-R = cT0 is the 
circumference of the ring, 1 = (1- /32)- 112 , and (3 = vfc ~ 1 for a relativistic beam discussed in this Letter. 
Moreover, the growth rate of the out-of-phase mode when e/1J > 0, is smaller than the growth rate of the in-phase 
mode when e/1J < 0. Consequently, machine parameters are usually chosen such that e/1J is positive and small, i.e. 
we need e > 0 ( < 0) when the machine is operated above (below) transition. Damping mechanisms, such as radiation 
damping and Landau damping, may or may not stabilize the HT instability, depends on the damping time, the width 
of the incoherent tune spread, and so on. 

As the sign of e/7J is crucial to the stability of the two fundamental modes of head-tail oscillation, in analogous to 
the strong focusing principle, alternating the sign of e/7J within a synchrotron period could stabilize both modes. Since 
varying 1J means transition crossing, which involves many unfavorable problems, such as vanishing Landau damping, 
large momentum spread, bunch-shape mismatch and nonlinear effects [8]; we propose, in this Letter, variation of the 
chromaticity·in order to stabilize the HT instability. 

While drafting this Letter, we were advised of the existence of the paper written by T. Nakamura of SPring-S [9]. 
Nakamura suggested, as we have also (independently), the concept of chromaticity modulation, which contributes an 
incoherent tune spread that effectively Landau damps the transverse instabilities. In this Letter, going considerably 
beyond what Nakamura has done, we provide analysis, simulation results, and a stability criterion for the head-tail 
instability. 
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We consider that the chromaticity is no longer a constant but a function of "time" s, where s measures the distance 
around the ring. The chromaticity can be expanded by a Fourier series in terms of the harmonics of the synchrotron 
phase advance ¢, as 

e(s) =Len cos(n¢ + Bn), (1) 
n=O 

where ¢ = w 3 sjc, w 3 is the synchrotron angular frequency, n = 0 corresponds to the case of constant chromaticity 
(DC) eo, and Bn is the phase difference between the chromaticity and energy variation. 

The introduction of a time dependent part of the chromaticity generates an additional incoherent tune spread that 
contributes to the Landau damping, as was emphasized by Nakamura. Specifically, the constant part of chromaticity 
causes both the HT instability and Landau damping. However, Landau damping generated by the DC incoherent 
tune spread is not effective in stabilizing the weak instability. As will be shown in this Letter, the varying part of 
the chromaticity does not cause the HT instability, and consequently, Landau damping due to the AC (e.g., n=1) 
incoherent tune spread suppresses the instability due to the DC part of the chromaticity. 

The incoherent chromatic tune spread due to the AC part of chromaticity can be estimated as u v = .J378vf3o6 Ub, 
for a Gaussian beam, where Vf3o = W[3o/wo, wo = cf R, Ub = (w./c7J)Uz, Uz is the rms bunch length. In obtaining the 
equation for the incoherent tune spread, we have adjusted 81 such that the chromaticity modulation is in-phase with 
the energy oscillation, i.e. e =eo +6sin¢, b = (w./c7J)rzsin¢, where (rz,¢) are the action-angle variables in the 
longitudinal phase space. The AC part of the incoherent tune spread contributes to a Landau damping without driving 
the HT instability, and the damping rate per turn can be approximated as r£.8(1/turn] ~ 27ruv = 27r.J378v.x1, where 
Vs = w3 /wo, and x1 = Wf3o6uz/c7J is the AC part of head-tail phase. Note that the Landau damping time due to 
the AC part of chromaticity is independent of beam intensity and the impedance of a ring. Simulations of a bunched 
beam traversing an averaged impedance in a storage ring confirm this. The implication is that, within the tolerance 
of dynamic aperture reduction due to the chromaticity, one can increase the damping rate (by a large enough x1) to 
suppress the HT instability. 

For an analysis of the effect of variable chromaticity, we assume the particle in a bunched beam experiences two 
forces: the external focusing force and the wake force generated from the interaction between the beam and cavities. 
We neglect any nonlinear synchrotron oscillation, the longitudinal wake force and the gradient of the transverse wake 
force. The synchrobetatron coupling effect on the longitudinal orbit is also ignored. 

There are two parameters essential to the dynamics studied in this Letter: 

(2) 

where Xn is the phase shift between head and tail of a bunch for each harmonic n of the chromaticity, N is the number 
of particles in a bunch, r 0 = e2 /m0 c2 , and W l. is the transverse wake function. The parameter T is approximately 
the ratio of betatron tune shift to the synchrotron tune. It can easily be shown, by a two particle model, that the 
onset of the SHT instability is where T ;?: 1 [7], when X1 = 0. The well-known transverse Boussard criterion is also 
consistent with this condition [10]. In this work, we concentrate on the case of n = 0 & 1, therefore we have three 
independent parameters under study: xo, x1 , and T. 

The effect of nonlinear chromaticity characterized by eo1, where enc is expanded as enc = eo+ eo1 b, plays a similar 
role to the AC component 6. In fact, 6 :::::: eo1 uc. Since both eo1 and uc are usually small, the nonlinear part of the 
DC component eo1 is not effective enough to suppress the HT instability. 

A linearized Vlasov analysis of a many-particle system yields an eigenmode equation. The mode frequency, fl(l), 

can be approximated for the dominant radial mode (j = 0), as [11] 

(3) 

where NJ1
) = Lq I9Io(x 1 ,Xq -xoW, gzo is the frequency spectrum·ofthe beam's perturbed density of the (l,j) = (l, 0) 

mode, l is the index of the azimuthal mode, Xq = wquz/c, Wq = qwo + Wf3 + lw., the transverse impedance is 
Zt{wq) = -Wl.Z(wq), and the effective impedance is 

(4) 

Note that, the number of azimuthal and radial nodes in the longitudinal phase space are, l and j, respectively. 
In the following study, we assume the beam distribution is Gaussian, and take a model-impedance function as: 
Z(w) = 1/w - i1rb(w ). The coherent tune shift, given by the real part of the mode frequency, is 
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(5) ' 

where ~v = (Q(I)- Wf3o)fw0 - lvs, and J0(x) is the Bessel function. The growth rates per synchrotron period of 

the two fundamental modes, given in terms of the imaginary part of the mode frequency, 1/Tfl) = 27r~(~v)/vs, are 
approximately 

(6) 

(7) 

where Erfi(x) = -iErf(ix), Erf(x) is the error function, and L~1)(x) is the Laguerre polynomial. One can see that, 
when xo = 0, the growth rate of HT instability is zero. 

We can make a rough estimate of the stability criterion for the HT instability, which is that the incoherent tune 
spread is larger than the absolute value of the coherent tune shift; that is: 0'11 > l~vl. The approximate stability 
condition is therefore 

(8) 

where N1 = J dwpi9Iol 2
. Explicitly, expressed in terms of the accelerator parameters, we have 

(9) 

where c1 = ~r(/ + 1/2)/7rl!21
+I, E = 1moc2 , and 10 = Nec/C which is the averageq current. When 0 < xo < 1, 

the l = 1 mode is usually the dominant unstable mode, and ci = 0.058. In contrast, when -1 < xo < 0, the l = 0 
mode is the dominant unstable mode and co = 0.23. 

A code has been developed to simulate a bunched beam traversing a ring with a transverse impedance. A bunch 
beam is loaded with a hi-Gaussian distribution in both longitudinal and transverse phase spaces. All results are 
numerically converged when the number of macro-particles simulated is larger than 400. Since xo is usually chosen as 
a positive parameter in accelerators, we only show the figures of numerical work for xo > 0. Simulations, nevertheless, 
confirm the growth rates and stability criterion for both sign of XO· 

In Fig. 1, we show the results of multi-particle simulations. The curve of (y) presented in this Letter has been 
averaged over a synchrotron period. For a beam with initial centroid offset, the bunch centroid motion is initially 
dominated by the l = 0 mode, which is a damping mode when xo > 0; the higher order unstable modes then cause 
the growth of averaged bunch-center after the initial damping. The varying chromaticity, nonetheless, Landau damps 
all the higher order unstable modes when XI is larger than the HT stability theshold estimated in Eq. (8). 

The estimate for stability in Eq. (8) is usually sufficient for the bunch centroid motions. A rigorous stability 
criterion can be deriyed by incorporating the incoherent tune spread in the Vlasov analysis. We first write down the 
betatron phase advance, 

Wf30 WEI WEO WEI . 
<I>,B = -s+-

2 
¢rz--rz cos¢--

4 
rz sm(2¢), 

c c c c 
(10) 

where wE(O,I) = W,BO~(O,I)/1J, and the tune generated by the in-phase oscillation between the chromaticity modulation 
and the energy oscillation is included. Following the well-known technique [12], one can find the dispersion relation 
of the most dominat radial mode, which is 

v + iu = ~! N1 { ~ [ z~~] + i~ [ z~~] } , (11) 

where V + iU is the so called "beam transfer function" [7]. For a Gaussian beam with the model-impedance, we have 
V+iU = 

-ixi/2 (12) 
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(13) 

for the l = 0 and l = 1 modes, respectively, where v = Av jv •. Examination of the dispersion relation shows that the 
SHT threshold can be enlarged by increasing Xl· 

Multiparticle simulations show that the rms-emittance of a Gaussian beam is stabilized, when the the value of x1 

approaches the stability threshold of Eq. (11) [cf. Fig. 2], where t:rms = ((y2 )(PJ)- (yPy}2 ) 112 , Py = (cfwf3o) dyjds, 
and the bracket () means a phase-space ensemble average. We find that, the results of simulation of the bunch 
centroid motion agree very well with the approximate stability limits, and the results of emittance growth agree with 
the exact stability criterion [cf. Fig. 3]. Figs. 4 show the simulation results of stabilization of the SHT effect by a 
large enough x1 , when xo = 0. This implies that the limitation of peak current in a storage ring can be increased by 
the varying chromaticity scheme. 

In summary, the chromaticity of a storage ring, which causes the head-tail instability, usually needs to be controlled 
by sextupoles. We have shown that, by the varying chromaticity scheme, the head-tail instability is suppressed, and, 
futhermore, a stability threshold is developed. With a large enough allowable AC part of the chromaticity, one could 
even make larger the threshold of the strong head-tail instability. The physics of the underlying mechanism is simple: 
strong focusing principle and Landau damping. Studies of practical operation issue, such as rapid modulated sextupole 
magnets, and theoretical issues, such as the reduction of dynamic apertures, and exact calculations of the azimuthal 
mode-coupling, are required. Also, of course, the practical aspects of varying chromaticity must be compared with 
the other schemes that also introduce an incoherent tune spread, e.g., space-charge, ion-trapping, rf-nonlinearity, and 
octupole magnets. Temporal variation of accelerator parameters might be used in the control of other instabilities. 

We are grateful to Sasha A. Zholents, who called our attention to the paper by Nakamura. We alo thank Alexander 
W. Chao for his helpful discussion. In particular, W.-H. C. would like to thank Robert L. Gluckstern for his introduc­
tion of the concept of Alternating-Phase-Focusing (APF) which inspired the early idea of this work. Work supported 
by the U.S. Department of Energy under contracts No. EDDEFG-03-95ER-40936 and DE-AC03-76SF00098. 
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FIG. 1. Multi-particle simulation results showing stabilization of the HT motions of the centroid of a Gaussian beam by x1 , 

where xo = 0.2, T = 0.22. The estimated stability threshold for the l = 1 mode, according to Eq. (8), is where Xl ;::: 0.0127. 
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FIG. 2. Multi-particle simulation result showing stabilization of the HT motions of the rms-emittance of a Gaussian bea~ 
when x1 ;::: 0.026- the theoretical stability threshold of the l = 1 mode [cf. Eq. (11)]. Here xo = 0.2, T = 0.22. 
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