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Robot Assisted Neurorehabilitation 

 
By 

 
Sumner L. Norman 

 
Doctor of Philosophy in Mechanical and Aerospace Engineering 

 
University of California, Irvine, 2017 

 
David J. Reinkensmeyer, Chair 

 
 

 

Stroke is the number one cause of movement disability in the world. In recent years, 

robotic assistance has empowered people with stroke to complete intensive movement 

therapy in motivating environments, thus matching or bettering the motor recovery 

attainable with traditional therapy. Yet, motor deficits remain stubbornly persistent, 

especially for those with severe impairments.  

Brain-computer interfaces (BCI) are a technology that can facilitate direct 

communication between the brain and an external device. BCIs have already been used to 

control robotic prostheses to replace lost function. The premise of this dissertation is that, 

with the right tools and knowledge, BCIs could also help restore function to those with 

movement disability after a neurologic injury. In this dissertation, I investigate use of a BCI 

to help individuals with a stroke shape their brain activity while moving the fingers with 

assistance from a robotic orthosis, with the goal of guiding activity-dependent plasticity in 

the brain to drive motor recovery. The working hypothesis is that appropriately shaping 

brain activity will improve finger movement ability and provide a therapeutic benefit after 

stroke. 

First, I present a computational model of motor learning that uses a neural network 

to simulate the motor cortex after a stroke and during subsequent finger force recovery. 
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These simulations suggested that BCI-based interventions should target perilesional motor 

areas, thus restoring normative network recruitment during finger movement, and that 

targeted training should make up about 20% of total limb use to maximize recovery.  

In a study of unimpaired people completing a robot-assisted movement task, I 

identified a key confound of BCI-contingent robot-assisted therapy, showing that robot 

assistance can affect the BCI even when the participant is passive, which may hinder motor 

learning. I also present a potential design approach for both the robot and the BCI to avoid 

this confound.  

 I then explore BCI methodological considerations in two experiments with impaired 

and unimpaired people moving in a robot-assisted environment. Key results included that 

bipolar EEG recordings and finger extension movements led to the best models correlating 

brain state with ensuing movement and are thus most conducive to BCI-based training. 

The culmination of this work is the design of a BCI-robot rehabilitation paradigm, 

which I tested in a study with eight people with severe impairment after a chronic stroke. 

Participants participated in four weeks of a therapy protocol that determined the effect of 

BCI-based sensorimotor rhythm control on finger extension performance. Here, we found 

that BCI training can improve subsequent movement performance – a result never before 

found for individuals with a stroke. The training also produced therapeutic benefits, 

indicating its viability as a future rehabilitation intervention. Finally, looking to the future of 

BCI-robot therapy, I present low-cost alternatives for BCI signal acquisition and wearable 

robotic devices. 
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CHAPTER 1: INTRODUCTION 

Movement is the only method we have to interact with the world and with each other. 

All communication, whether writing, speaking, or gesturing, is facilitated through 

movement. After a neurologic injury, this world can be diminished. With an interface 

between brain and robot, this world could be restored – or even expanded.  

1.1 STROKE 

Stroke is the leading cause of disability in the world (Feigin et al., 2014; Lopez, 

Mathers, Ezzati, Jamison, & Murray, 2006), affecting over 700,000 people in the US each year 

(Broderick et al., 1998). A stroke occurs when blood flow to the brain is interrupted, either 

by a blockage or when blood vessels burst. The affected neurologic circuitry often causes a 

deficit in descending neural pathways. For example, damage to motor areas will affect 

movement in the form of paresis and/or spasticity. Indeed, about 80% of people with acute 

stroke experience functional motor deficits (Gresham et al., 1995). After a neuro-motor 

injury, activities of daily living (ADLs) become more difficult. As a result, less than half of 

stroke survivors return to work. Functional impairment is also a significant contributor to 

post-stroke depression (Teasell, Foley, Bhogal, & Speechley, 2003).  

To some extent, these deficits are reversible. After injury, a massive reorganization of 

cortical and sub-cortical function occurs, especially in areas related to movement (Cramer & 

Crafton, 2006), a phenomenon referred to as neuroplasticity. Although a significant portion 

of motor function recovery is spontaneous, motor practice can enhance the effects of 

neuroplasticity (Calautti & Baron, 2003). People with stroke typically undergo several 

months of motor therapy rehabilitation with the hope of improving their ability to move, a 

process driven by the brains inexorable ability to reorganize itself through neuroplasticity.  

The amount of function a person can recover during traditional movement therapies 

is limited, and varies greatly (Teasell et al., 2003). One potential limiting factor is the amount 

of movement therapy available to people with stroke. A systematic review of 123 

randomized clinical trials (RCTs) demonstrated that intensity and task specificity are likely 

the main drivers of effective motor therapy following stroke (Janne Marieke Veerbeek et al., 
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2014). And yet, the number of task-specific upper extremity movements during a typical 

stroke rehabilitation session averages just 32 repetitions (Lang, MacDonald, et al., 2009), far 

fewer than is thought to be necessary for functional recovery (Kleim & Jones, 2008).  

1.2 ROBOT ASSISTED MOTOR REHABILITATION 

Robot-assisted therapy has been suggested to assist people with stroke in training 

high quality movements with a high number of repetitions, with the expectation that the 

increased activity can improve therapy outcomes (Kahn, Zygman, Rymer, & Reinkensmeyer, 

2006; Krebs, Volpe, Aisen, & Hogan, 2000; P. Lum, Reinkensmeyer, Mahoney, Rymer, & 

Burgar, 2002; Reinkensmeyer, Emken, & Cramer, 2004; Sanchez Jr et al., 2005). Robotic 

therapy has also been suggested to use active-assisted movements to help a patient complete 

a movement they couldn’t normally complete independently, and active-resisted 

movements in higher-level patients to strengthen movement synergies (P. Lum et al., 2002). 

A systematic review found that upper arm robot-assisted therapies can significantly improve 

motor function after stroke (Kwakkel, Kollen, & Krebs, 2007). However, many therapy robots 

are currently complex and come at a substantial financial cost. Therefore, for such devices to 

be clinically justified, their efficacy must match or exceed that of the standard of care. Indeed, 

many robot-assisted protocols have exhibited therapy outcomes that were comparable to, 

or better than, similar amounts of intensive training without robot assistance (Lotze, Braun, 

Birbaumer, Anders, & Cohen, 2003; P. S. Lum et al., 2005; Volpe et al., 2005; Volpe et al., 

2008). 

The mechanisms behind robot-assisted therapy’s efficacy are under continuing 

investigation. One important question is whether sensory engagement alone, without overt 

movement intention, is enough to aid motor outcome after therapy. In a key study, robot-

assisted training that required patient volition, measured by electromyography (EMG), 

showed therapy outcomes exceeding that of an equal number of passive, robot-induced 

movements (Hu, Tong, Song, Zheng, & Leung, 2009). Thus, we can conclude that an important 

factor for ensuring the effectiveness of robotic therapy is active effort by the patient, a view 

shared by the field (Hidler et al., 2009; Hornby, Campbell, Zemon, & Kahn, 2005; Kaelin-Lang, 

Sawaki, & Cohen, 2005; Lotze et al., 2003). Even so, it is difficult to ensure patient 
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engagement. Physically assisting in movement with a robot can trigger slacking by the motor 

system, which is an automatic and subconscious reduction in patient effort (Israel, Campbell, 

Kahn, & Hornby, 2006; Reinkensmeyer et al., 2004; Reinkensmeyer, Wolbrecht, et al., 2012; 

Brendan Wesley Smith, 2017; Wolbrecht, Chan, Reinkensmeyer, & Bobrow, 2008). Thus, it is 

important when designing robotic therapy systems to develop methods that encourage 

patient engagement and effort during the therapy and prevent slacking, since robotic 

assistance may, in some cases, innately encourage slacking. 

1.3 BRAIN COMPUTER INTERFACE  

Brain computer Interface (BCI) technology, sometimes called a brain-machine 

interface, is a system that records neural or neural-population activity, and transmits those 

signals to a decoder that can provide a direct communication channel from the brain to an 

external device (Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). BCI 

technology has already proven its substantial utility in people with devastating neurologic 

disorders. For example, people with advanced amyotrophic lateral sclerosis (ALS) or a 

brainstem stroke, who can be “locked in” with no ability communicate on their own, can use 

a BCI to communicate with family, friends, and caretakers once again (Daly & Wolpaw, 2008).  

Beyond replacing lost function, BCI can also guide activity-dependent plasticity in the 

brain by providing feedback on specific neural networks; to wit, several BCI interventions 

have shown promise to promote adaptive plasticity (Cramer et al., 2011). Brain imaging-

based interventions promote adaptive plasticity by providing feedback to the patient, e.g. a 

visual cursor on a screen, to induce behavioral learning through operant conditioning. A 

protocol that bases its feedback to the patient on an electrical analog of functional activity in 

the CNS of that patient is known as neurofeedback, a process first attempted in 1968 

(Wyrwicka & Sterman, 1968) and in humans shortly thereafter (Kamiya, 1969). 

Neurofeedback protocols have since been extended to induce long-term functional and 

structural changes in specific CNS networks, a process now known as “targeted 

neuroplasticity” (Sitaram et al., 2016; Wolpaw, Braitman, & Seegal, 1983).  

It is not clear how interventions can restore normative biological function to the brain 

(Cramer et al., 2011). However, evidence suggests that beneficial reorganization of the 
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sensorimotor system after stroke is dependent on the type and amount of motor training 

provided (Cramer et al., 2011; Kiper et al., 2016). Still, the optimal targets and dosages for 

enhancing adaptive plasticity (i.e. plasticity associated with a gain in function) are unclear 

(L. G. Cohen et al., 1997).  Further, it is possible to elicit maladaptive plasticity (i.e. plasticity 

associated with a loss of function or other negative consequences) (Nudo, 2006).  Thus, 

attempts to improve motor recovery using targeted neuroplasticity have produced mixed 

results. For example, Ramos-Murguialday et al. found modest improvements in motor 

outcome compared to a control group in an electroencephalography (EEG)-based BCI that 

triggered movement in a hand orthosis for people with chronic hand impairment after stroke 

(Ramos‐Murguialday et al., 2013). A similar study used a magnetoencephalography (MEG)-

based BCI but found no significant improvement in clinical scales used to rate hand function 

(Buch et al., 2008). There have been no studies of fMRI-based targeted neuroplasticity that 

have shown clinical or functional motor improvement after a stroke.  

For many people with severe paralysis after stroke, moving their impaired limb is 

difficult, if not impossible, even after traditional movement therapy. A potential use for BCI 

is in the practice of motor imagery (MI). That is, the practice of mental rehearsal of a physical 

movement task at the cerebral level without any physical demands (Jackson, Lafleur, 

Malouin, Richards, & Doyon, 2001). In an MI paradigm, the therapy is directly targeting the 

stroke impaired brain with the goal of affecting function in the impaired limb. BCIs most 

commonly consider changes in the sensorimotor rhythm (SMR) to detect MI. For example, 

normative physiological SMR modulation includes a down-regulation of power in the mu (8-

13 Hz) and beta (13-30 Hz) frequency bands preceding movement, a phenomenon known as 

event-related desynchronization (ERD) (Pfurtscheller & Aranibar, 1977; Pfurtscheller & 

Lopes da Silva, 1999). However, movement related signals are known to be significantly 

smaller in amplitude (Fu, Daly, & Cavusoglu, 2006) and more spatially distributed (Cramer 

et al., 1997) in people with stroke than in those without impairment. Despite these 

confounding effects of stroke, in this document I will show that people with stroke can learn 

to control a BCI over the course of multiple EEG recording sessions and with similar success 

rates to people without neurologic injury.  
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1.4 COMPUTATIONAL MODELING  

Although targeted neurofeedback has experienced significant growth and promising 

results in recent years, it has not yet reached its full potential. This is, in part, due to the 

complexity and cost of brain imaging techniques in clinical practice. Computational models 

of motor learning might therefore be useful for predicting principles of adaptive plasticity 

during motor rehabilitation that can be later validated in a clinical setting. However, despite 

a large body of computational modeling in neuroscience, only a handful of models exist that 

have attempted to model the mechanisms underlying sensorimotor rehabilitation. A recent 

review compares these models (Reinkensmeyer et al., 2016). For example, a model by Han 

et al. (Han, Arbib, & Schweighofer, 2008) used a population vector framework to simulate 

reinforcement and error-based learning of a bilateral limb task. The authors work predicted 

a threshold level of motor recovery that, if surpassed, allowed the model’s spontaneous 

activity to bootstrap future recovery, a phenomenon the authors call a “virtuous cycle”. In 

another model of reinforcement learning, Reinkensmeyer et al. (Reinkensmeyer, Guigon, & 

Maier, 2012) employed a simplified corticospinal (CS) neural network with inherent 

stochastic noise to simulate finger extension force recovery after stroke. The model used a 

reinforcement learning algorithm to optimize CS activation patterns. The network predicted 

several experimental observations of motor recovery after stroke including exponential 

recovery, latent residual capacity, and shift of motor activity to secondary motor areas.  

1.5 GOALS OF THE DISSERTATION 

The marriage of a BCI system’s ability to target neuroplasticity in the brain, and a 

robotic system’s ability to affect real-world movements, have the potential to greatly impact 

the field of stroke rehabilitation and, in time, the everyday lives of people living with 

movement disability after stroke. In this document, I address the need for investigation into 

the mechanisms behind BCI and robot-assisted movement environments and how one might 

affect the other.  

In Chapters 2 and 3, I address this problem by simulating motor learning after a 

stroke using a computational model based on a neural network architecture that is 

generalizable to other motor tasks and neurologic injuries. In Chapter 2, I use this model to 
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elucidate potential mechanisms that could allow targeted plasticity to enhance movement 

recovery after a stroke. In Chapter 3, I use the model to gain insight into how targeting 

strength versus coordination could affects motor recovery.  In Chapter 4, I describe a key 

potential confound of robot-assisted movement on BCI-contingent therapy using an 

experiment with unimpaired people in a robot-assisted movement environment – that is, 

robotically assisting in movement in a predictable way when a person is a passive can cause 

changes in brain activity similar to when they are active. In Chapter 5, I explore potential 

means of solving this confounding issue using data-driven approaches to identifying patient 

engagement in a motor task. In Chapter 6, I explore several ways of approaching a BCI-robot 

therapy protocol, using data from two pilot studies in both impaired and unimpaired people. 

These studies address several methodological considerations for the experimental design 

and system parameters for a new BCI-robot therapy protocol. In Chapter 7, the findings in 

the work described thus far are synthesized to inform the design and execution of a novel 

BCI-robot therapy. I describe the clinical study of eight people with stroke who participated 

in four weeks of a BCI-robot therapy experiment and present my findings on how BCI-robot 

training can modulate the ability to extend the fingers and may be viable as a future 

rehabilitation intervention. Finally, in Chapter 7, I look towards whether BCI-enhanced, 

robotic therapy can be made pragmatic. First, I compare a low-cost EEG headset with the 

clinical gold standard. Finally, I present a wearable robot for the hand. I present these low-

cost devices to provide a viewpoint of this technology’s eventual transfer out of the clinic and 

into people’s homes.  
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CHAPTER 2: USING TARGETED NEUROPLASTICITY TO IMPROVE MOTOR 
RECOVERY AFTER NEURLOGICAL INJURY: A COMPUTATIONAL MODEL 

2.1 ABSTRACT 

People with motor deficits after stroke, spinal cord injury, or other neurologic injuries 

often develop abnormal patterns of neural activity that appear to limit motor recovery. New 

therapies that can target beneficial plasticity to critical sites could enhance recovery of more 

normal activity.  One such therapy provides the individual with feedback that reflects the 

output of specific neural circuits with potential to improve motor performance. This paper 

describes a computational model that provides insight into the mechanisms of movement 

recovery and predicts optimal parameters for inducing beneficial neuroplasticity. Here we 

use the model to simulate the recovery of finger extension after a cortical stroke. The model 

employs a biologically plausible reinforcement learning algorithm in which the motor 

system uses feedback about simulated finger force. This guides a stochastic search for 

optimal activation of a network of corticospinal cells, located in two hemispheres, with a 

range of connection strengths to the finger extensor motor neuronal pools, and a range of 

intrinsic firing rate variability. When undamaged, the network lateralized cortical activation 

for finger extension to the contralateral hemisphere.  But after a simulated stroke the 

network produced an abnormal pattern of cortical organization – activation in both 

hemispheres for unilateral movement – a result consistent with imaging data, even though 

this pattern produced less extension force than the remaining network was theoretically 

capable of. To access the latent capacity for recovery, we interdigitated normal learning (IA) 

with a targeted plasticity intervention (IB) that gave the network feedback on the summed 

activity of a specific, targeted population of ipsilesional cells. This intervention normalized 

cortical activation by re-lateralizing it, thereby improving force recovery. Its effectiveness 

depended on which population of cells was targeted and on the relative frequencies of IA and 

IB trials. Targeting low variability cells on 20% of trials maximized motor recovery. The 

model suggests that under normal reinforcement learning, cells that are more quickly 

optimized can block involvement of other cells that could contribute to recovery. Targeted 

plasticity IB was effective at re-integrating these cells. These results provide rationale and 
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guidance for using targeted neuroplasticity interventions after neurologic injury, and they 

predict clinically testable principles for optimizing the parameters of these interventions. 

2.2 INTRODUCTION 

Stroke is the leading cause of disability worldwide; it affects over 700,000 new people 

in the US each year (Feigin et al., 2014; Lopez et al., 2006). About 80% experience motor 

deficits and typically undergo several months of movement rehabilitation (Gresham et al., 

1995). During this period, electroencephalography (EEG) and functional magnetic resonance 

imaging (fMRI) reveal substantial reorganization of cortical movement-related activity 

(Calautti et al., 2010; Calautti et al., 2007; Cramer & Crafton, 2006; Wolpaw & Carp, 2006; C.-

Y. Wu et al., 2010; Yozbatiran & Cramer, 2006). As a result, contralesional movements are 

typically associated with abnormally low activation of the ipsilesional cortex and abnormally 

high activation of contralesional cortex (Cramer et al., 1997; Fu et al., 2006; Rossiter, 

Boudrias, & Ward, 2014; C.-Y. Wu et al., 2010). This loss of normal hemispheric laterality 

correlates with decreased motor function; it may reflect a suboptimal compensatory strategy 

that limits motor recovery (Calautti et al., 2010; Cramer & Crafton, 2006). Therefore, 

abnormal movement-related cortical activation may be an important therapeutic target 

(Levin, Kleim, & Wolf, 2008).   

Currently, however, it is not clear how interventions can restore normative biological 

recruitment (Cramer et al., 2011). While evidence suggests that beneficial reorganization of 

the sensorimotor system after stroke is dependent on the type and amount of motor training 

provided (Cramer et al., 2011; Kiper et al., 2016), the optimal targets and dosages for 

enhancing adaptive plasticity (i.e. plasticity associated with a gain in function (L. G. Cohen et 

al., 1997)) are unclear.  Further, it is possible to elicit maladaptive plasticity (i.e. plasticity 

associated with a loss of function or other negative consequences) (Nudo, 2006).   

Several interventions have, however, shown promise to promote adaptive plasticity, 

including brain stimulation and feedback-based brain imaging (Cramer et al., 2011). For 

example, transcranial magnetic stimulation (TMS), excites cortical neuron populations by 

inducing oscillatory trains of current in the cortex using extracranial magnetic coils (Plow, 

Carey, Nudo, & Pascual-Leone, 2009; Wagner, Valero-Cabre, & Pascual-Leone, 2007; 



9 
 

Webster, Celnik, & Cohen, 2006). TMS currents can be used to selectively modify brain 

potentials. For example, by enhancing excitability in the ipsilesional hemisphere or 

inhibiting the contralesional hemisphere, Fregni et al. could promote gains in motor function 

in people with mild to moderate movement impairment after a stroke (Fregni & Pascual-

Leone, 2007). This approach has produced promising results with aphasia as well (Martin et 

al., 2004).  

Brain imaging-based interventions to promote adaptive plasticity differ from brain 

stimulation in that they do not directly affect the central nervous system (CNS). Instead, they 

provide feedback to the patient to induce behavioral learning through operant conditioning. 

A protocol that bases its feedback to the patient on an electrical analog of functional activity 

in the CNS of that patient is known as neurofeedback, a process first attempted in 1968 

(Wyrwicka & Sterman, 1968) and in humans shortly thereafter (Kamiya, 1969). 

Neurofeedback protocols have since been extended to induce long-term functional and 

structural changes in specific CNS networks in a process known as “targeted neuroplasticity” 

(Sitaram et al., 2016; Wolpaw et al., 1983). Such protocols have most commonly using brain-

computer interface (BCI) technology. BCI proficiency has been successfully demonstrated in 

severely paralyzed individuals with cerebral palsy (Daly & Wolpaw, 2008), muscular 

dystrophy (Hashimoto, Ushiba, Kimura, Liu, & Tomita, 2010), spinal cord injury (G. Müller-

Putz, Daly, & Kaiser, 2014), and stroke (Soekadar et al., 2011). This type of targeting can be 

achieved in real time using various imaging techniques including fMRI-based measures of 

localized brain activation (Christopher deCharms et al., 2005; Cox, Jesmanowicz, & Hyde, 

1995), EEG (Fok et al., 2011; Ramos‐Murguialday et al., 2013; Soekadar, Witkowski, 

Birbaumer, & Cohen, 2014), and MEG (Buch et al., 2008; Fabiani, McFarland, Wolpaw, & 

Pfurtscheller, 2004).  

Attempts to improve motor recovery using brain-imaging-based neurofeedback 

training have produced mixed results. Ramos-Murguialday et al. found modest 

improvements in motor outcome compared to a control group in an EEG-based brain-

computer interface (BCI) that triggered movement in a hand orthosis for people with chronic 

hand impairment after stroke (Ramos‐Murguialday et al., 2013). A similar study used a 

magnetoencephalography (MEG)-based BCI but found no significant improvement in clinical 
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scales used to rate hand function (Buch et al., 2008). fMRI-based neurofeedback 

interventions are limited but rapidly increasing (Sulzer et al., 2013). They have, thus far, 

shown promising results in schizophrenia, chronic pain, dyslexia, Parkinson’s disease, and 

depression (Cramer et al., 2011; Sulzer et al., 2013). One study targeted secondary motor 

areas using fMRI to decrease intracortical inhibition (Sitaram et al., 2012), which could 

potentially usher future gains in functional motor recovery.  

Although brain imaging based neurofeedback has experienced significant growth and 

promising results in recent years, it has not yet reached its full potential. This is, in part, due 

to the complexity and cost of brain imaging techniques in clinical practice. Computational 

models of motor learning might therefore be useful for predicting principles of adaptive 

plasticity during motor rehabilitation that can be later validated in a clinical setting. 

However, despite a large body of computational modeling in neuroscience, only a handful of 

models exist that have attempted to model the mechanisms underlying sensorimotor 

rehabilitation. A recent review compares these models (Reinkensmeyer et al., 2016). For 

example, a model by Han et al. (Han et al., 2008) used a population vector framework to 

simulate reinforcement and error-based learning of a bilateral limb task, predicting a 

threshold level of motor recovery. If surpassed, spontaneous activity bootstraps future 

recovery, a phenomenon the authors call a “virtuous cycle”. In another model of 

reinforcement learning, Reinkensmeyer et al. (Reinkensmeyer, Guigon, et al., 2012) 

employed a simplified corticospinal (CS) neural network with inherent stochastic noise to 

simulate finger extension force recovery after stroke. The model used a reinforcement 

learning algorithm to optimize CS activation patterns. The network predicted several 

experimental observations of motor recovery after stroke including exponential recovery, 

latent residual capacity, and shift of motor activity to secondary motor areas. In this paper, 

we expand the model of (Reinkensmeyer, Guigon, et al., 2012) to incorporate additional 

biologically plausible neuronal parameters and use the model to explore mechanisms of 

unphysiological reorganization after a simulated a stroke and the effects of targeted 

neuroplasticity on motor learning and cortical reorganization. 
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2.3 METHODS 

We simulated the effects of targeted neuroplasticity in the context of learning to 

extend the fingers after a stroke.  The mathematical model was comprised of a simulation of 

CS cells, located in two hemispheres, with a range of connection strengths to the finger 

extensor motor neuronal pools, and a range of intrinsic firing rate variability. We simulated 

learning finger extension in three scenarios: 1) when the network was undamaged; 2) 

following a unilateral (i.e. hemispheric) injury to the network, thereby simulating stroke 

rehabilitation, and 3) using targeted plasticity following the injury. In the targeted plasticity 

training condition, the simulated patient was provided direct feedback concerning the 

output of a targeted population of cells. 

 

FIG. 1: ARCHITECTURE OF THE NETWORK FOR EXERTING FINGER EXTENSION FORCE.  THIS TWO-
LAYER FEEDFORWARD NEURAL NETWORK INCORPORATES N CORTICOSPINAL CELLS WITH ACTIVATION LEVELS 

XI, GENERATED WHEN THEY ARE GIVEN A COMMAND TO MAXIMIZE FINGER EXTENSION FORCE FE. A FINGER 

MOTONEURONAL POOL SE SUMS THE WEIGHTED ACTIVATION PATTERNS. A NONLINEAR FUNCTION GI 

IMPLEMENTS THE PHYSIOLOGICAL OBSERVATION THAT THE CONTRIBUTION OF ANY SINGLE CS CELL TO THE 

EXCITATION OF THE MOTONEURONAL POOL MUST SATURATE AT SOME FIRING RATE XI; THAT IS, EACH CELL 

CAN ONLY RECRUIT A FINITE INCREMENT OF THE MOTONEURONAL POOL. THE NETWORK OPTIMIZES THE 

ACTIVATION PATTERN X USING REINFORCEMENT LEARNING IN SIMULATED CONSECUTIVE MOVEMENT 

PRACTICE TRIALS WHERE EXTENSION FORCE FE IS THE TEACHING SIGNAL. 
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2.3.1 ARCHITECTURE 

The network was designed to simulate the behavior of CS cells in primary and 

secondary motor areas of both hemispheres before and after a stroke-like injury that 

damaged a unilateral motor area. The model incorporates a network of n CS cells that fire 

with activation levels (i.e. firing rates) xi, given a command to maximize finger extension. 

Each CS cell is connected to a motoneuronal (MN) pool via a scalar weighting wi. The MN pool 

sums the product of the cell activation xi and weighting wi using a saturation nonlinearity:  

Se = ∑ gi(xi)wi (1) 

where gi sets the saturation limit of cell i. For simplicity, we will discuss the model 

with a constant saturation limit of +1 for all cells. Drawing from other distributions did not 

significantly affect the network dynamics discussed here. The MN pool activation level Se is 

proportional to a unitless finger extension force Fe. Thus, the finger extension force 

generated is proportional to and determined by, the weighted, summed output of the CS 

network activation pattern. This model is simplified from that of (Reinkensmeyer, Guigon, et 

al., 2012), in that we did not simulate flexor/extensor pairs or inhibitory CS cells. Adding 

flexor/extensor and inhibitory connections did not alter the findings presented here or add 

to the findings of (Reinkensmeyer, Guigon, et al., 2012).  Thus, these cell types were not 

included for clarity and to highlight the additions made to the model in this paper. 

2.3.2 NETWORK LEARNING  

The goal of the network is to learn the optimal activation pattern of the CS cells that 

results in the maximum network performance, i.e. the maximum finger extension force 

possible.  Since the network consists only of cells that excite extensor motor neuronal pools, 

the optimal activation pattern is achieved when the activation of every cell is increased until 

the cell’s saturation limit (1). 

To do this, the network must iteratively adjust the activation patterns based on a 

single signal – the finger extension force achieved in any trial, a form of reinforcement 

learning. Feedback of a single signal as a method of optimizing a large network presents a 
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spatial credit assignment problem: if finger extension force Fe increased on the previous 

extension attempt, which cells are responsible for the increase? Reinforcement learning has 

been demonstrated to be a biologically plausible solution for solving the credit assignment 

problem (Anderson, Omidvar, & Dayhoff, 1997; Mazzoni, Andersen, & Jordan, 1991; 

Reinkensmeyer, Guigon, et al., 2012; Werfel, Xie, & Seung, 2005; Williams, 1992). Here, we 

implement reinforcement learning with stochastic search, using a noise process to generate 

a new CS network activation pattern on each movement trial, slightly perturbing the pattern 

from the one used in the previous movement attempt. The algorithm stores the new 

activation pattern if it results in increased finger extension force. Note that remembering a 

new activation pattern is equivalent to updating the weights of the connections from the 

command cell to the CS cells; we speak in terms of activations rather than weights for 

conceptual convenience, in the same manner as (Reinkensmeyer, Guigon, et al., 2012). Here 

we use the random search algorithm used in (Reinkensmeyer, Guigon, et al., 2012), a 

simplified form of the random search with chemotaxis algorithm first described in Anderson 

et al. (Anderson et al., 1997): 

Given an initial activation pattern X0 that produces a force F0, 

1. Activate CS cells with pattern Xi=X0+vi, where vi is random noise, and measure the 

force Fi produced by this pattern. 

2. Memorize the new pattern Xi if the force Fi it produces is greater than F0; i.e. if Fi>F0, 

then let X0=Xi and F0=Fi. 

3. Repeat. 

We also tested a gradient descent stochastic search method, another biologically plausible 

solution to the credit assignment problem (Werfel et al., 2005). The best-first and gradient 

descent algorithms produced comparable results.  

2.3.3 CELL PARAMETERS 

CS cells in the model are described by their current activity level (i.e. its firing rate xi), 

and synaptic weighting for activating the extensor MN pool (wi). In addition, we augmented 

the model described in (Reinkensmeyer, Guigon, et al., 2012) to include different levels of 

inherent firing rate variability for each CS cell (i).  The network updates each cell’s 
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activation level after a successful movement attempt, while its weighting and variability are 

constant throughout the simulation. The fixed weighting reflects the assumption that spared 

descending pathways are relatively immutable after injury, which is a simplification. 

2.3.4 SYNAPTIC WEIGHTINGS 

The effects of both mono-synaptic and multi-synaptic CS pathways are captured in 

the model by a single, fixed functional connectivity from each CS cell to the simulated finger 

extensor MN pool (weights labeled wi in Fig. 1). We explicitly represent both cortical 

hemispheres in the model, since the hemisphere ipsilateral to the moving finger is known to 

be able to activate the requisite MN pools through uncrossed pathways, and these pathways 

are thought to play a functional role after stroke (Cramer et al., 1997). We designed the 

distributions of the cell weightings to reflect the physiological situation. Cells from the 

hemisphere contralateral to the motor task are, on average, more strongly connected to the 

 

 

FIG. 2: CELL PARAMETER DISTRIBUTIONS FOR A 10,000-CELL NETWORK. LEFT: SYNAPTIC 

WEIGHTING ADHERES TO BIMODAL DISTRIBUTIONS OF LOGNORMAL PROBABILITY DENSITY FUNCTIONS WHOSE 

AGGREGATE MEAN IS EQUAL TO ONE. MOST CELLS RESIDE IN THE CORTEX CONTRALATERAL TO THE FINGER TO 

BE EXTENDED AND HAVE STRONGER WEIGHTINGS. THE REMAINING CELLS RESIDE IN THE IPSILATERAL CORTEX 

AND HAVE WEAKER WEIGHTINGS.  CENTER: CELL VARIABILITY ADHERES TO BIMODAL DISTRIBUTIONS OF 

LOGNORMAL PROBABILITY DENSITY FUNCTIONS. CELLS IN PRIMARY MOTOR AREAS (M1) ARE MORE TASK-
RELATED AND EXHIBIT MORE TRIAL-TO-TRIAL VARIABILITY DURING MOVEMENT ATTEMPTS. CELLS IN 

SECONDARY MOTOR AREAS (SMA) ARE LESS TASK-RELATED AND EXHIBIT LESS TRIAL-TO-TRIAL VARIABILITY 

DURING MOVEMENT ATTEMPTS. RIGHT: THE RESULTING NETWORK HAS FOUR BROAD TYPES OF CELLS -- 1: 
HIGH-WEIGHTING/HIGH-VARIABILITY; 2: HIGH-WEIGHTING/LOW-VARIABILITY; 3: LOW-WEIGHTING/HIGH-
VARIABILITY; 4: LOW-WEIGHTING/LOW-VARIABILITY 
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MN pools than ipsilateral cells (Fig. 2, left).  Furthermore, these contralateral cells 

outnumber the ipsilateral cells by a ratio of 9:1. 

2.3.5 VARIABILITY 

Stochastic disturbances have been shown to affect the nervous system at both the 

cellular level and, consequentially, the behavioral level (Faisal, Selen, & Wolpert, 2008). 

These disturbances drive the learning process in the simulated network via a stochastic 

search. The variability of a neuron’s firing rate has been shown to be dependent on the 

neuron’s activation level. Specifically, firing rate variability and mean firing rate are related 

by a power function, across cortical areas and behavioral conditions (Dean, 1981; Lee, Port, 

Kruse, & Georgopoulos, 1998). In our model, we simplify signal-dependent variability to 

more plainly elucidate the effects of cell variability on the network dynamics. We express the 

amount of trial-to-trial variability inherent in an individual CS cell’s activation level by the 

standard deviation of a zero-mean normal distribution from which each cell’s activation level 

is perturbed on each movement trial. Thus, a high-variability cell sees larger stochastic 

perturbations on average than a low-variability cell. We simplify the physiological situation 

in that each cell’s variability remains constant.  

Later, we discuss the effects of cell populations’ variability on network dynamics. It 

is, therefore, helpful to discuss variability in terms of spatial areas of the brain similar to how 

we analogize synaptic weighting to laterality in the brain. Recent findings have shown that 

higher variability in a motor task improves motor learning (Selinger, O’Connor, Wong, & 

Donelan, 2015; H. G. Wu, Miyamoto, Castro, Ölveczky, & Smith, 2014). We assume that these 

behavioral observations are indicative of the brain areas associated with the task at hand. 

For example, it is well understood that primary motor cortex (M1) is active during a motor 

task, while secondary motor areas are less active during the same task. We therefore assume 

motor cortical areas more closely associated with the task have higher variability during 

execution of the task. For example, M1 cells have a higher variability for the finger extension 

task than secondary motor areas. We keep in mind that it is not likely that high- and low-

variability neurons are distributed such that they are spatially exclusive (van Steveninck, 

Lewen, Strong, Koberle, & Bialek, 1997; Warzecha & Egelhaaf, 1999). For this reason, we 
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overlapped the high-variability and low-variability cells in primary and secondary motor 

areas, respectively. Although most high-variability cells reside in M1, there is a significant 

population of high-variability cells in secondary motor areas. Similarly, most low-variability 

cells reside in secondary motor areas while a minority of low-variability cells reside in 

nearby M1 (Fig. 2). 

2.3.6 CELL PARAMETER DISTRIBUTIONS 

Functional and structural parameters in the brain, including synaptic weightings and 

firing rates, are not normally distributed, but rather are strongly skewed with a heavy tail 

more closely approximated by lognormal distributions (Buzsáki & Mizuseki, 2014). We 

chose the distributions of synaptic weight, variability, and initial activation patterns based 

on these observations. That is, we initiated the CS activation pattern X0 at the beginning of 

every simulation using a pseudorandom activation pattern sampled from a lognormal 

distribution. We also sampled synaptic weighting and cell variability from distributions of 

lognormal probability density functions. For simplicity, we will discuss the model whose 

weighting and activation variability were sampled from a distribution with a mean of one 

(=1). Thus, the mean possible force contribution of each cell (the product of its activation 

and connectivity), was one (Fi=1).  

2.4 SIMULATIONS 

We simulated three scenarios using the model presented here: learning finger 

extension – 1: with the uninjured network; 2: following a unilateral injury to the network 3: 

using targeted plasticity training following injury. In all three scenarios, the network 

consisted of 10,000 CS cells. We tested initial activation patterns X0 sampled from uniform, 

normal, and log-normal distributions of varying magnitudes, finding comparable results. 

Before the stroke and targeted plasticity simulations, the network activation pattern was 

kept from the final activation pattern of the uninjured network, apart from the lesioned cells 

whose activation and weighting were set to zero.  

Since network learning is driven by movement attempts, the dosage of movement 

attempts affects the learning dynamics. In a recent observational study, Lang et al. found that 

participants with stroke completed an average of 32 functionally oriented movements per 
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day during upper extremity rehabilitation sessions (Lang, MacDonald, et al., 2009). However, 

recent rehabilitation interventions have successfully administered 150 to 250 trials per 

session, for up to 23 sessions (Buch et al., 2008). In the simulations presented here, the 

network trained for 150 trials/day for 180 days. We chose to keep dosage consistent 

between training scenarios for conceptual convenience and clarity of the results.  

2.4.1 SCENARIO I: LEARNING WITH AN UNDAMAGED NETWORK 

Here we simulated learning in the network without simulated injury as a baseline. 

Finger extension force was determined using all 10,000 CS cells. The teaching signal was the 

finger extension force produced during subsequent movement attempts.  

2.4.2 SCENARIO II: RECOVERY AFTER INJURY 

To simulate cell death after a stroke, we de-weighted a subpopulation of the network 

by permanently setting its connectivity and activation level to zero. We simulated strokes 

that affected randomly sampled subpopulations and several different subpopulations 

organized by cell parameters. Changing the location of stroke did not alter the principal 

findings of the model. However, the results were more pronounced with increasing stroke 

severity, i.e. when the more strongly connected and/or more variable network populations 

were damaged. For simplicity, we will present the results after a simulated stroke in the most 

detrimental stroke locale: high-weighting, high-variability cells. The teaching signal was the 

finger extension force produced from the remaining intact CS cells.  

2.4.3 SCENARIO III: LEARNING WITH TARGETED FEEDBACK 

Finally, we simulated learning the finger extension task during a targeted 

neuroplasticity intervention after a stroke-like injury. We focused on the ability for this 

scenario to trigger network reorganization to gain a better understanding of what dosage 

and brain locations could most enhance motor recovery after injury.  To this end, we tested 

the effects of giving targeted feedback on several combinations of network subpopulations 

and different dosages. During targeted feedback trials, the model was only given feedback 

on a network subpopulation. That is, separate training signals were generated for the total 

network (finger extension force, IA) and the targeted network subpopulation (targeted 
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intervention, IB). During the targeted feedback trials, the reinforcement learning algorithm 

was only given access to the increase or decrease in net force produced by the targeted 

subpopulation, but the network would update all residual cells. We interspersed targeted 

feedback training with regular training at different ratios to determine the optimal dosage 

and schedule for this technique. That is, should one practice only with targeted feedback or 

should one intersperse normal movement trials where finger extension force is the teaching 

signal and, if so, what is the optimal mix of training?   

2.5 RESULTS 

2.5.1 SCENARIO I: LEARNING WITH AN UNDAMAGED NETWORK 

After training, the undamaged network achieved about 92% of the maximum possible finger 

extension force (Fig. 3).  High variability cells were optimized first; that is, their activations 

were maximized (Fig. 4).   

 

FIG. 3: FORCE PRODUCTION AS A FUNCTION OF TIME WHERE FORCE IS PRESENTED AS A PERCENTAGE 

OF THE MAXIMUM FORCE POSSIBLE IN THE UNINJURED NETWORK. AFTER A STROKE, FORCE PRODUCTION WAS 

SIGNIFICANTLY REDUCED, BUT EXHIBITED RESIDUAL CAPACITY. TARGETED PLASTICITY FACILITATED 

INCREASED FORCE PRODUCTION COMPARED TO NORMAL RECOVERY.  

 



19 
 

2.5.2 SCENARIO II: RECOVERY AFTER INJURY 

To simulate cell death after a stroke, we removed a subpopulation of cells from the 

network. This resulted in reduced force output, illustrated in Fig. 3 at day 0. Network 

recruitment was also suboptimal. For example, before the injury, the network favored the 

optimization of high-variability (M1), high-weighting (contralateral) cells, leaving low-

 

FIG. 4: SCATTER PLOTS OF A 10,000-CELL NETWORK’S ACTIVATION PATTERNS PRESENTED IN A 

VARIABILITY/WEIGHTING PARAMETER SPACE AFTER DIFFERENT SIMULATIONS OF LEARNING. (TO VIEW 

RESULTS IN THE ANATOMICAL SPACE, SEE FIG. 5) NETWORK ACTIVATION WAS INITIALIZED TO A 

PSEUDORANDOM SAMPLE OF ACTIVATION LEVELS, SEEN IN A. IN B, THE UNINJURED NETWORK OPTIMIZED 

(YELLOW) HIGH-WEIGHTING/HIGH-VARIABILITY CELLS DURING LEARNING. AFTER A STROKE, A SIGNIFICANT 

PORTION OF THE HIGH-WEIGHTING/HIGH-VARIABILITY CELLS WERE REMOVED FROM THE SIMULATION, AS 

SEEN BY THE MISSING CELLS IN C. LEARNING AFTER INJURY EXHIBITED SIMILAR BEHAVIOR TO UNINJURED 

LEARNING, FAVORING HIGH-WEIGHTING/HIGH-VARIABILITY CELLS. RESIDUAL CAPACITY REMAINED BECAUSE 

LOW VARIABILITY CELLS REMAINED UNOPTIMIZED. IN D, TARGETED PLASTICITY WAS GIVEN ON 20% OF 

TRIALS. NETWORK RECRUITMENT WAS REORGANIZED. DIFFICULT-TO-ACCESS, LOW-VARIABILITY CELLS 

WERE RECRUITED, RESULTING IN A MORE EVENLY-DISPERSED ACTIVATION PATTERN. 
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variability, low-weighting cells less optimized (Fig. 4b). After a simulated injury, the model 

again favored high-variability, high-weighting cells (Fig. 4c). However, because a significant 

portion of these cells was lesioned, the network recruited high-variability cells with low 

weighting, shifting activity towards the poorly connected contralesional hemisphere. This 

resulted in increased force production, but also left the network with residual capacity to 

generate more force (Fig. 3). Scenario III: Learning with targeted feedback 

We tested the effects of giving targeted feedback on secondary motor areas (low-

variability cells) to harness network plasticity to optimize previously un-optimized, but still 

well-connected, cells. These targeted cells represent cortical areas that have the potential to 

significantly improve overall network performance but are less likely to be optimized by 

reinforcement learning due to their relatively low variability. Given feedback on one in five 

trials over the same training period, the network showed a broad reorganization of cell 

recruitment during the motor task (Fig 4d), leading to an overall increase in finger extension 

force production (Fig 3).  

2.5.3 LATERALIZATION OF BRAIN ACTIVITY  

To visualize the predicted effect on imaged brain activity, we created a mapping of 

cell parameters to brain areas associated with the motor task. Specifically, we mapped -- 1: 

high-weighting/high-variability to contralateral M1; 2: high-weighting/low-variability to 

contralateral secondary motor areas; 3: weak-weighting/high-variability to ipsilateral M1; 

4: weak-weighting/low-variability to ipsilateral secondary motor area.  In Fig. 5, we use this 

mapping as a tool to visualize network reorganization across hemispheres during learning 

before and after a stroke or after a stroke with targeted plasticity training.  

During uninjured learning, the model optimized the primary motor/high-variability 

cells first, which resided in the hemisphere contralateral to the finger (Fig. 5). After stroke, 

the model exhibited a shift in activation toward the unaffected hemisphere, i.e. toward high-

variability cells with relatively low weighting. Following targeted plasticity training which 

targeted low-variability cells, the model re-lateralized activation, leading to improved motor 

recovery.  
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2.5.4 OPTIMIZING TARGET LOCATION AND TRAINING SCHEDULE 

One of the model’s utilities is its ability to predict the effects of targeted feedback on 

different neuronal populations. First, we will define restitution as the percentage of the 

latent residual capacity recovered by using targeted feedback training, where zero 

restitution is the same force produced by the injured network and 100% restitution is the 

maximum force the injured network could theoretically produce. Giving feedback on 

bilateral secondary motor areas (low variability cells) yielded 21.3% restitution of motor 

function. Giving feedback on secondary motor areas in the ipsilesional cortex only (low-

variability/high-connectivity cells) yielded the most recovery: 29.5% restitution. Targeting 

primary motor areas in the contralesional hemisphere (high-variability/low-connectivity 

cells) was less effective: 4.7%.  

We also used the model to test the effect of varying the targeted feedback training 

schedule. At low dosages of targeted feedback, e.g. 1 in 1000 or 0.1% of trials, there was little 

to no training effect. As the ratio of targeted feedback increased above 1%, there was an 

 

FIG. 5: VISUALIZATION OF NETWORK ORGANIZATION AT THE TERMINATION OF TRAINING IN THE 

THREE DIFFERENT TRAINING CONDITIONS: LEARNING IN THE UNINJURED NETWORK, LEARNING AFTER 

STROKE, AND LEARNING AFTER STROKE WITH TARGETED PLASTICITY. AFTER TRAINING, THE UNINJURED 

NETWORK FAVORS HIGH-VARIABILITY/HIGH-WEIGHTING CELLS, MAPPED AS ACTIVATION IN THE 

CONTRALATERAL M1 CORTICAL AREA. AFTER A STROKE, THE NETWORK CANNOT EASILY ACTIVATE LOW-
VARIABILITY CELLS AND COMPENSATES BY RECRUITING HIGH-VARIABILITY/LOW-WEIGHTING CELLS IN THE 

IPSILATERAL (CONTRALESIONAL) CORTEX, RESULTING IN LESS-FOCAL ACTIVATION IN CONTRALATERAL 

(IPSILESIONAL) M1 AND BILATERAL ACTIVATION FOR A UNILATERAL TASK. BY GIVING THE NETWORK 

INTERDIGITATED TARGETED PLASTICITY AND REGULAR MOVEMENT ATTEMPTS, THE NETWORK REORGANIZES, 
RECRUITING THE HIGH-WEIGHTING BUT DIFFICULT TO ACCESS (LOW-VARIABILITY) CELLS IN CONTRALATERAL 

(IPSILESIONAL) SECONDARY MOTOR AREA, RESTORING LATERALITY – A MORE NORMATIVE PHYSIOLOGICAL 

ACTIVATION PATTERN THOUGHT TO IMPROVE RECOVERY. 
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increase in restitution with a maximum occurring when targeted feedback was given on one 

in five or 20% of trials (Fig. 6). Restitution declined at higher dosages. For example, giving 

targeted feedback on one in ten trials was more effective in terms of motor recovery than 

giving targeted feedback on every trial. We tested the effects of dosage ratio on many 

different populations of cells and on many different network types, injured or uninjured. The 

restitution curve (Fig. 6) was robust to these changes. These results suggest that there exists 

an optimum dosage of targeted plasticity when interspersed with regular movement 

practice that is robust to changes in targeted areas.  

 

2.5.5 MECHANISMS: CELL-SPECIFIC OPTIMIZATION RATES AND “BLOCKING” 

To summarize, key network phenomena were: 1) hemispheric lateralization of 

activation following learning in the undamaged brain 2) a shift towards bilateral activation 

following simulated cortical stroke; 3) a residual capacity for force recovery within the 

context of this bilateral cortical activation pattern; and 4) re-lateralized activity and 

improved force recovery following targeted plasticity.  What accounts for these phenomena? 

 

FIG. 6: FORCE RECOVERY AS A FUNCTION OF THE PERCENTAGE OF TRIALS THAT RECEIVED TARGETED 

FEEDBACK. ERROR BARS REPRESENT STANDARD DEVIATION WHERE THE SIMULATION WAS PERFORMED 20 

TIMES FOR EACH DATA POINT. TARGETED PLASTICITY HAS LITTLE TO NO EFFECT AT DOSAGES LESS THAN 1%. 
RECOVERY IMPROVED WITH INCREASED DOSAGE OF TARGETED FEEDBACK, REACHING A MAXIMUM 

RESTITUTION WHEN 20% OF TRIALS WERE GIVEN TARGETED FEEDBACK. RECOVERY DECLINED WHEN 

TARGETED FEEDBACK WAS GIVEN IN EQUAL OR GREATER DOSAGE THAN REGULAR MOVEMENT PRACTICE. 
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Why did activity lateralize in the undamaged brain, but become bilateral after the simulated 

stroke?  And why did targeted plasticity help remediate this situation? The answer revolves 

around two mechanisms: cell-specific optimization rates (by which high variability cells 

optimize first) and “blocking” (in which saturated cells block further optimization of less 

variable cells).   

To elucidate these mechanisms, we used a Monte Carlo method wherein we ran the 

same, single time-step of the model 10,000 times; once at a time-step at the beginning of 

network training, and once at a time-step after the network had been trained for 180 days 

(100 movements per day). After training, the mean network activation improves to ~85% of 

its maximum. We grouped the cells into four groups: 1: fast (high variability)/strong (high 

weighting); 2: fast/weak; 3: slow/strong; 4: slow/weak. We calculated the probability that 

each group would, through their summed activity, contribute to a positive change in force, 

as well as the probability that the summed activity of all four groups together (i.e. the entire 

population) would contribute to a positive change in force.  Recall, if the entire population 

contributes to a positive change in force, the stochastic search “captures” (i.e. remembers) 

the activation pattern that achieved this positive change.  Further, we calculated the mean 

change in activation (X), across cells in each group, which would be expected should a 

positive change be captured. Finally, we calculated the mean contribution to a change in 

force (F). 

Which populations does the network optimize first? Before training, none of the 

cells were optimized (Fig 7b), and thus they increased or decreased their activity with equal 

probability on each trial (Fig. 7f). High-variability cells change by a relatively large amount 

on each movement attempt. Higher weighting to MN pools also increases the mean 

contribution in force. Thus, fast/strong cells optimize quickly (Fig 7e, before training), but 

eventually saturate (nonlinearity g described in (1)) after training (Fig 7b). At this point, they 

cannot contribute positively to force or it is extremely unlikely (Fig 7e, after training). The 

network then favors the optimization of fast/weak cells (Fig. 7d, after training).  

Why are the fast/weak cells optimized before the slow/strong cells that have 

more potential to contribute to network performance? The answer lies in the network’s 
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teaching signal: force. Because the network is only provided feedback on force, it optimizes 

network populations by their force contribution, not their activation change. This is apparent 

in the mean change in force (F) for captured trials, where fast/weak and slow/strong 

networks are contributing to changes in force equally after training (Fig 7e, after training). 

Despite equal force contributions, the high variability fast/weak cells are optimizing more 

quickly than slow/strong cells due to their weak weightings (Fig. 7d).  

Why did the network learn at increasingly slow rates, failing to optimize some 

cells? During training, the motor system learns based on its training signal: finger extension 

force. The probability that a cell can produce a change in activation that contributes to a 

positive change in force production is not equal for all cells once training starts. Saturated 

cells cannot contribute positively to force production. Strongly-connected and more-variable 

cells (fast/strong) optimize more quickly and thus, on average, saturate first. For the model 

to capture a new CS activation pattern, yet-to-be optimized cells must not only produce their 

own net positive effect on the model, but must also overcome any negative effect of the more-

variable cells that are, on average, contributing negative forces (Fig. 7e). As more cells 

saturate, the chance of achieving a positive net change for all cells decreases (Fig. 7, right). 

Thus, the less-variable cells are effectively “blocked”. This phenomenon, underpinned by the 

nonlinear saturation function, g, describes the latent residual capacity observed in the model 

(Fig. 3). 
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FIG. 7 NETWORK DYNAMICS CALCULATED AT TWO TIME STEPS, BEFORE AND AFTER A PERIOD OF 

TRAINING, USING A MONTE-CARLO SIMULATION. A: FORCE GENERATION OVER TRAINING PERIOD OF 180 

DAYS (100 MOVEMENT ATTEMPTS/DAY). B: MEAN ACTIVATION LEVEL FOR EACH CELL POPULATION, BEFORE 

AND AFTER TRAINING. C: PROBABILITY THAT A CELL POPULATION’S MEAN CHANGE IN ACTIVATION WAS 

POSITIVE ON A CAPTURED TRIAL. D: MEAN CHANGE IN A CELL POPULATION’S ACTIVATION LEVEL, BEFORE AND 

AFTER TRAINING, FOR CAPTURED TRIALS. THIS IS EFFECTIVELY THE RATE OF OPTIMIZATION. E: A CELL 

POPULATION’S MEAN CONTRIBUTION TO THE FORCE CHANGE ON A GIVEN CAPTURED TRIAL, BEFORE AND 

AFTER TRAINING. THIS DESCRIBES WHICH POPULATION THE MODEL IS CURRENTLY OPTIMIZING. F: 
PROBABILITY THAT A CELL POPULATION’S MEAN CHANGE IN ACTIVATION WAS POSITIVE ON ANY GIVEN TRIAL. 
G: MEAN CHANGE IN A CELL POPULATION’S ACTIVATION LEVEL, BEFORE AND AFTER TRAINING, FOR ALL 

TRIALS. H: A CELL POPULATION’S MEAN CONTRIBUTION TO THE FORCE CHANGE ON ALL TRIALS, BEFORE AND 

AFTER TRAINING.  
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2.6 DISCUSSION 

The model supports the premise that targeted plasticity can enhance motor recovery.  
The key results were: 

 
• The network favored optimization of high-variability (M1) and high-weighting 

(contralateral) cells.  

• Before injury, the network recruited high–variability cells, resulting in hemispheric 

lateralization of activity for the finger extension movement.  

• After injury, the network recruited high-variability cells, even those with low 

weighting, i.e. contralesional hemisphere.  

• Blocking leaves residual capacity for motor recovery. 

• Targeted plasticity allowed the network to recruit previously difficult-to-access, low-

variability cells, resulting in increased finger extension force.  

• Optimal cell types to target are those with low variability, and highly connected cells, 

i.e. cells with potential to contribute to motor function that resist optimization due to 

blocking. 

• There exists an optimum dosage of targeted plasticity when interspersed with regular 

movement practice – about 20%. 

We first discuss the computational mechanisms explaining these results, and then directions 

for future research. 

2.6.1 OPTIMIZATION PREFERENCES AND RESIDUAL CAPACITY 

During training, the motor system learns by adjusting the output of CS motor cells 

using stochastic search based on knowledge of the overall motor performance, i.e. finger 

extension force. Strongly-connected and more-variable (fast) cells optimize more quickly, 

and thus, on average, saturate first. As more fast/strong cells saturate, they effectively 

“block” other cells, and the network loses out on their potential contribution. This results in 

latent residual capacity for network performance that is difficult for the network to access. 
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2.6.2 NETWORK ORGANIZATION AFTER INJURY 

During uninjured learning, i.e. without simulated injury, the model optimizes high-

variability (M1) cells first. Thus, learning a left-hand task would trigger learning in right 

hemisphere motor areas (Fig. 5), consistent with normative fMRI and EEG evidence where 

sensorimotor activation preceding and during a motor task is seen in primary motor areas 

associated with the task and contralateral to the limb involved (Grefkes & Fink, 2011; Kim et 

al., 1993; Pfurtscheller & Lopes da Silva, 1999). 

When the motor cortical areas associated with hand movements are affected by an 

infarct (high variability, high weighting), cell death reduces their contributions to motor 

tasks, resulting in reduced motor performance (Fig. 3). As a result, the model exhibited a 

profound reorganization of network recruitment after stroke, a phenomenon well evidenced 

in clinical data (Grefkes & Fink, 2011; Yozbatiran & Cramer, 2006; Zemke, Heagerty, Lee, & 

Cramer, 2003). Specifically, the model exhibited a shift toward the unaffected hemisphere 

(Fig. 5), i.e. toward low-weighting, high-variability cells (Fig. 4), a result reflected in clinical 

fMRI studies of motor network reorganization after injury, wherein people with stroke often 

activate motor regions in the unaffected hemisphere during unilateral movements of the 

affected limb (Cramer et al., 1997; Grefkes & Fink, 2011; C.-Y. Wu et al., 2010). The network 

exhibited limited motor performance, mirroring clinical findings that have associated 

bilateral recruitment of motor areas during unilateral motor tasks with poor performance 

(Nelles et al., 1999). Indeed, previous studies have demonstrated functional improvement in 

people with stroke after they reduced activation in the unaffected hemisphere (Dong, 

Dobkin, Cen, Wu, & Winstein, 2006; Miyai et al., 2003). 

2.6.3 NORMAL PRACTICE AND TARGETED NEUROPLASTICITY 

Recent findings have shown that higher variability in a motor task elicits improved 

motor learning (Selinger et al., 2015; H. G. Wu et al., 2014). However, primary motor areas 

(that typically exhibit high variability) may be damaged after a neurologic injury such as 

stroke. The model shows that, given regular movement practice, the brain will favor 

recruitment in the fastest learning areas of the network that will produce some recovery 

(Fig. 5, After Stroke), further evidenced in clinical data (Cramer et al., 1997). These activation 
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patterns are likely suboptimal, and will, therefore, limit recovery (Calautti et al., 2010; 

Cramer & Crafton, 2006). However, there exist network populations that have potential to 

improve motor recovery, but are difficult to access with regular motor practice. Given 

targeted plasticity feedback, the model exhibited a shift towards more normative brain 

patterns (Fig. 5, targeted plasticity), leading to improved motor recovery (Fig. 3).  

The model suggests that the optimal cell types to target are those with low variability, 

i.e. cells that are less likely to already be optimized, and high weighting, suggesting that 

training the ipsilesional cortex (contralateral to movement) with robust structural 

connectivity to the MN pools associated with the task is important. Clinical studies of 

targeted feedback and cortical activation after neurologic injury also suggest that targeting 

brain areas that are normative to the motor task, i.e. with high connectivity, is more 

beneficial to motor recovery (Calautti et al., 2010; Cramer & Crafton, 2006).  

2.6.4 CLINICAL APPLICATIONS 

These results present a rationale for targeted feedback training to guide restitution 

of more normal recruitment in the affected hemisphere. The model predicts that, given a 

modest dose of targeted feedback motor practice, the network can recover significant 

amounts of residual force compared to traditional motor practice. This result is consistent 

with clinical evidence that has shown appropriate targeted feedback therapy can induce 

widespread adaptive plasticity leading to network reorganization associated with increased 

motor function (Ramos‐Murguialday et al., 2013; Thompson, Pomerantz, & Wolpaw, 2013; 

Thompson & Wolpaw, 2015). Here, we discuss real-world interventions with the potential 

to facilitate targeted feedback training. 

Real-time neuroimaging has been suggested as a tool to provide targeted feedback 

with the intention of improving recovery after neurologic injury (Cramer et al., 2011). This 

approach most commonly involves fMRI or EEG-based brain-computer interfaces (BCI) that 

are capable of imaging neural activation in real time. In one operant conditioning paradigm, 

the system rewards activation of pre-selected brain states by giving feedback directly to the 

participant and asking them to modify that brain state (Buch et al., 2008; Christopher 

deCharms, 2008; Ramos‐Murguialday et al., 2013). This BCI approach has the effect of 
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temporarily amplifying cell networks that are not yet optimized, allowing those cells to train 

uninhibited by the more variable, highly trained cells. For example, Ramos et al. rewarded 

mu rhythm desynchronization in the ipsilesional motor cortex during intended movement 

in people with severe hemiparesis after stroke by providing robotically assisted hand 

grasping movement. In this study, the method of feedback, i.e. teaching signal, was both 

visual and proprioceptive in nature. BCI participants exhibited modest improvements in 

motor recovery compared to a sham-control group (Ramos‐Murguialday et al., 2013). A 

similar study by Buch et al. rewarded mu-rhythm modulation in a magnetoencephalography-

based BCI and reported no significant improvement in clinical scales used to rate hand 

function (Buch et al., 2008). These examples emphasize that, although BCI-based 

rehabilitation shows promise for improving motor recovery after stroke, identifying brain 

states that have the potential to improve motor recovery is a significant roadblock to 

optimizing BCI therapies. The model predicted specific principles of neural circuits that 

would most benefit motor recovery, given targeted feedback. Specifically, rewarding 

normative biological brain states in motor areas previously unassociated with the task, but 

still within the ipsilesional hemisphere may be more likely to enhance motor recovery.  

Another principle predicted by the model is that, as the dose of targeted feedback 

training increases, overall motor recovery increases up to a maximum when targeted 

feedback is given on one in five or 20% of total movement attempts. Although there is a 

growing body of literature regarding the effects of targeted neuroplasticity, there have been, 

to our knowledge, no studies on the dose necessary to optimize motor recovery.  This is a 

clinical hypothesis immediately testable in both human and animal models of motor 

recovery during targeted plasticity training. In one of the first successful targeted feedback 

applications, feedback was provided on 100% of movement trials while training the spinal 

stretch reflex (Wolpaw et al., 1983). A more recent study of targeted plasticity training as an 

intervention in people with stroke also provided feedback on 100% of trials (Buch et al., 

2008). Our model suggests that the results of these interventions, and those like it, could be 

further improved with the principles on optimizing targeted plasticity training identified 

here. 
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2.6.5 IDENTIFYING A FEEDBACK MODALITY 

Reinforcement learning requires a method of feedback for evaluation. In the example 

scenario of learning finger movement after a simulated stroke, we assumed that the amount 

of finger extension force was available to the CS cell network of the simulated patient. 

However, diminished afferent sensation after stroke may make the amount of force difficult 

to interpret or completely opaque to the patient in severe cases. Many real-world 

applications of BCI use other unimodal or multimodal methods of feedback. The output of 

the system can be used for control of several external devices that provide varying types of 

feedback including orthoses (Buch et al., 2008; King et al., 2011; S. Norman et al., 2016; 

Ramos‐Murguialday et al., 2013), on-screen cursors (Fabiani et al., 2004; McFarland, 

Sarnacki, & Wolpaw, 2015), or direct electrical stimulation of muscles (King et al., 2015). 

These feedback methods provide varying levels and types of sensation including visual, 

auditory, proprioceptive, and haptic stimuli. It is not yet clear which method or a 

combination of methods is optimal in each scenario, although they are likely task and subject 

specific. The modality of feedback is one possible future extension not considered in the 

model presented here.  

2.6.6 MODEL GENERALIZATIONS AND UTILITY 

Computational models of motor learning can simulate real-world scenarios of 

learning, especially after simulated neurologic injuries such as stroke (Reinkensmeyer et al., 

2016). Although we discussed the model in terms of finger extension after a stroke, it is 

generalizable to many behaviors and CNS circuits. For example, with little to no modification, 

the CS cells could activate foot or leg MN pools to simulate ankle extension. The model may 

also be useful for entirely different CNS functions, including spinal circuits (Wolpaw & 

Tennissen, 2001). These are just a few examples of possible model applications that could 

lead to clinically testable hypotheses of motor learning in the CNS. 

2.7 CONCLUSION 

In this paper, we used a computational model to study finger extension after a 

simulated stroke to elucidate principles of motor performance before and after a stroke and 

after a stroke with targeted plasticity training. The model predicted latent residual capacity 
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for additional motor recovery after a stroke followed by a dose of normal movement practice. 

This residual capacity is difficult for reinforcement learning to access without extrinsic 

assistance because the optimization of low-variability cells that may have significant 

capacity to improve overall network performance becomes increasingly unlikely as the 

network optimizes high-variability cells. This result suggests that brain networks possess 

the capacity to generate significant improvements that current rehabilitation is not yet 

capable of revealing. Thus, the network exhibits utility in predicting how to exploit this 

residual capacity through targeted neuroplasticity interventions. After a simulated stroke 

that affected finger extension, the network produced abnormal cortical reorganization, 

including bilateral activation for unilateral movement, a result consistent with imaging data. 

In doing so, the network produced less force than it was theoretically capable of, indicating 

residual capacity for recovery. We then subjected the model to normal movement practice 

interdigitated with targeted plasticity training wherein feedback was given on the summed 

activity of a targeted population of ipsilesional cells. This training restored more normal 

cortical activation, i.e. unilateral activation in the ipsilesional hemisphere for a unilateral 

motor task, improving force recovery. The effectiveness of this therapy depended on the 

parameters of the cells targeted and the frequency with which targeted training was given. 

Targeting ipsilesional secondary motor areas on 20% of trials restored normative biological 

recruitment to the ipsilateral hemisphere and optimized force recovery. These results 

provide a rationale for using targeted neuroplasticity interventions after a neurologic injury 

and predict generalizable principles for optimizing the parameters of these interventions.  

2.8 APPENDIX 

2.8.1 CHARACTERIZING THE LEARNING CURVE WITH RESIDUAL CAPACITY 

A key property of the model is the “residual capacity” of the model’s force production 

after injury. That is, simulations exhibited learning curves of force production that did not 

reach their full potential, even through extensive motor practice, but which appeared to 

approach an asymptote (see Fig. 3), a result consistent with clinical evidence of force 

recovery after injury (Ada, Dorsch, & Canning, 2006; Barreca, Wolf, Fasoli, & Bohannon, 

2003; French et al., 2007; Kwakkel et al., 2007; Page, Gater, & Bach-y-Rita, 2004; Rijntjes, 
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2006; Stinear et al., 2007; van der Lee et al., 2001). In fact, the force profile does continue to 

increase, similar to a power curve (Newell & Rosenbloom, 1981), but at an increasingly slow 

rate. A power curve never saturates. We simulated “100 years” of motor practice (150 

trials/day). The network recovers ever-smaller amounts of force at high amounts of practice. 

Given infinite time, it approaches an asymptote due to the nonlinear maximum firing rate 

function g, described in Eq. 1. Thus, the learning curves described in Fig. 3 do not obey a 

power curve at large time scales. Furthermore, a single exponential function cannot 

accurately describe both 1) the initially fast learning of the network, and 2) its latent residual 

capacity at even modest simulation time lengths. Force production over time appears to be 

the sum of fast and slow exponential curves. This “double exponential” learning curve can be 

defined as: 

𝑓 = 𝛼(1 − 𝑒
−𝑡

𝜏𝑠𝑙𝑜𝑤) + (1 − 𝛼)(1 − 𝑒
−𝑡

𝜏𝑓𝑎𝑠𝑡)  (2) 

Where  represents the time constant of each curve,  is a proportionality constant, 

and the compound curve sums to 1 as 𝑡 → ∞. This equation, a “mixed exponential” learning 

curve first shown in human motor learning literature (Newell & Rosenbloom, 1981), 

sufficiently describes learning in the model presented here and in (Reinkensmeyer, Guigon, 

et al., 2012), including the compound curvature and latent residual capacity phenomenon. 
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CHAPTER 3: HOW DO STRENGTH AND COORDINATION RECOVERY 
INTERACT AFTER STROKE? A COMPUTATIONAL MODEL FOR INFORMING 

ROBOTIC TRAINING 

Note: This chapter has been published as: 

Norman, Sumner L., Joan Lobo-Prat, and David J. Reinkensmeyer. "How do strength and coordination 
recovery interact after stroke? A computational model for informing robotic training." Rehabilitation 
Robotics (ICORR), 2017 International Conference on. IEEE, 2017. 

3.1 ABSTRACT 

Robotic devices can train strength, coordination, or a combination of both. If a robotic 

device focuses on coordination, what happens to strength recovery, and vice versa?  

Understanding this interaction could help optimize robotic training. We developed a 

computational neurorehabilitation model to gain insight into the interaction between 

strength and coordination recovery after stroke. In the model, the motor system recovers by 

optimizing the activity of residual corticospinal cells (focally connected, excitatory and 

inhibitory) and reticulospinal cells (diffusely connected and excitatory) to achieve a motor 

task. To do this, the model employs a reinforcement learning algorithm that uses stochastic 

search based on a reward signal produced by task execution. We simulated two tasks that 

require strength and coordination: a finger movement task and a bilateral wheelchair 

propulsion task. We varied the reward signal to value strength versus coordination, 

determined by a weighting factor. The model predicted a nonlinear relationship between 

strength and coordination recovery consistent with clinical data obtained for each task. The 

model also predicted that stroke can cause a competition between strength and coordination 

recovery, due to a scarcity of focal and inhibitory cells. These results provide a rationale for 

implementing robotic movement therapy that can adaptively alter the combination of force 

and coordination training to target desired components of motor recovery.   

3.2 INTRODUCTION 

Stroke is the leading cause of disability worldwide, affecting over 700,000 people in 

the US each year (Feigin et al., 2014; Lopez et al., 2006). It is estimated that 80% of survivors 

experience a motor deficit for which they typically undergo months of rehabilitation 

(Gresham et al., 1995). During this period, people experience substantial reorganization of 
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cortical movement-related activity that drives motor recovery (Cramer & Crafton, 2006; C.-

Y. Wu et al., 2010).  

Many robotic devices have been developed to serve as therapeutic aids in the 

rehabilitation process of stroke survivors (Maciejasz, Eschweiler, Gerlach-Hahn, Jansen-

Troy, & Leonhardt, 2014). Robot-assisted therapy is considered to meet or improve motor 

outcomes compared to conventional therapy (Kwakkel et al., 2007; Janne M Veerbeek, 

Langbroek-Amersfoort, van Wegen, Meskers, & Kwakkel, 2016), making possible a larger 

number of movement repetitions while being less labor intensive for therapists. 

Furthermore, robotic devices can provide quantitative data for systematic evaluation of 

patients’ progress. 

Immediately after a stroke that has injured motor areas of the brain, strength and 

coordination are both impaired (Kamper & Rymer, 2001; Lang & Schieber, 2003). Therefore, 

motor training after stroke must be comprised of these two complementary aspects (Xu et 

al., 2016). Robotic devices can train strength, coordination, or some combination of both. For 

example, resistive training (Stein et al., 2004) and viscous force field training (Baur, 

Klamroth-Marganska, Giorgetti, Fichmann, & Riener, 2016; Stienen et al., 2007) are 

strategies that primarily reward force gains. On the other hand, mirrored assisted movement 

therapy, in which the paretic limb attempts to mimic movements of the non-paretic limb 

(Lewis & Perreault, 2009), and weight-supported, targeted reaching are training strategies 

that primarily reward coordination gains. 

A key type of coordination relevant to hand function is individuation, the ability to 

mobilize one finger while inhibiting movement of another. Several robotic devices have been 

developed for retraining hand strength and finger individuation (e.g. (Ingemanson et al., 

2015; Taheri et al., 2012)), but the relationship between recovery of the two is unclear. 

Recently, using an isometric force measuring apparatus, Xu et al. tracked the finger strength 

and individuation of 54 patients with hemiparesis for one year after their stroke (Xu et al., 

2016). They found that recovery of strength and finger individuation were highly correlated 

for the patients whose strength recovery was less than 60% of the non-paretic hand. After 

this point, individuation nearly fully recovered, and further improvements in strength were 

not met with further improvements in individuation, resulting in a non-linear relationship 
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between them (Fig. 4). They suggested that this non-linearity is evidence that recovery of 

strength and individuation are, in part, mediated by different corticospinal tract (CST) and 

non-CST processes, respectively. 

Coordination of the two arms is also important to stroke recovery. Studies with wrist 

accelerometry indicate that a large fraction of daily movements is bimanual (Bailey, 

Klaesner, & Lang, 2015).  Several robotic devices have been developed to retrain bimanual 

coordination and strength after stroke, including a novel lever drive wheelchair (LARA) 

recently developed in our laboratory (Brendan W Smith, Zondervan, Lord, Chan, & 

Reinkensmeyer, 2014). Bimanual coordination, such as that required to drive LARA, requires 

the ability to move the arms in specific patterns, independently of each other. We have just 

begun collecting data on how people with an acute stroke learn to drive LARA, but for our 

first participant we found that coordination (measured by wheelchair steering error) 

improved quickly to a maximum across several training sessions, while strength (measured 

indirectly by wheelchair speed) improved more slowly and continuously (Fig. 5).  
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Computational neurorehabilitation is an emerging area that uses mathematical 

models of learning and plasticity to understand movement recovery after neurologic injury 

(Reinkensmeyer et al., 2016). One such model studied force recovery after stroke by 

employing a neural network to simulate corticospinal (CS) recruitment (Reinkensmeyer, 

Guigon, et al., 2012). Learning was based on a reinforcement learning algorithm that used 

inherent stochastic noise and the reward signal of force production to optimize CS activation 

patterns. The network predicted several clinical observations of force recovery after stroke 

including a latent residual capacity for force production in the injured network, and a shift 

of motor activity to secondary motor areas. In this paper, we expand the model of 

(Reinkensmeyer, Guigon, et al., 2012) to simulate the coordination of MN pools innervating 

two fingers or two arms, thus allowing us to study the recovery of strength and coordination. 

 

FIGURE 1: MODEL ARCHITECTURE FOR SIMULATING FORCE PRODUCTION BY THE INDEX AND 

MIDDLE FINGERS OF THE LEFT HAND. A TWO-LAYER FEEDFORWARD NEURAL NETWORK 

INCORPORATES 400 CORTICOSPINAL & RETICULOSPINAL CELLS WITH FIRING RATES XI PROJECTING TO 

FINGER MOTONEURONAL POOLS VIA WEIGHTINGS WI,1 AND WI,2. THE POOLS SUM THE WEIGHTED 

ACTIVATION PATTERNS TO PRODUCE FORCES FINDEX AND FMIDDLE. GI IS A NONLINEAR FUNCTION WITH A 

SATURATION, SO THE FIRING RATE XI CONTRIBUTES AT MOST AN INCREMENTAL AMOUNT TO FORCE 

PRODUCTION. 
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We first test the competency of the model to replicate the non-linear strength/coordination 

recovery relationship observed with finger movement recovery and LARA training after 

acute stroke, then use the model to study how training that prefers strength or coordination 

affects recovery of the other.  

3.3 METHODS 

We developed two computational neurorehabilitation models to simulate recovery of 

a finger task (requiring strength and individuation) and learning to drive a bilaterally 

propelled wheelchair (requiring strength and bimanual coordination) after stroke. Both 

models are comprised of a two-layer neural network (Figs. 1 and 2).  For both models, the 

goal of the network is to approach the optimal activation pattern of motor cells that results 

in a maximum network performance, i.e. force and/or individuation/coordination. To this 

end, the network must iteratively improve its activation pattern based on feedback to the 

network about its performance. This presents a spatial credit assignment problem: If 

network performance improves, which cell or cells were responsible? Reinforcement 

learning has been suggested as a biologically plausible solution to the credit assignment 

problem and is effective as a learning method in this type of neural network (Anderson et al., 

1997; Mazzoni et al., 1991; Reinkensmeyer, Guigon, et al., 2012). In this model, we 

implement reinforcement learning with stochastic search, which uses a stochastic noise 

process to generate new activation patterns, an algorithm used previously in 

(Reinkensmeyer, Guigon, et al., 2012), which is a simplification of the random search with 

chemotaxis algorithm described in (Anderson et al., 1997): 

Given an initial activation pattern X0 that produces a performance resulting in a 

reward signal R0, then on each subsequent movement attempt i, 

1. Activate CS cells with pattern Xi=X0+vi, where vi is stochastic noise. 

2. Measure Ri produced by this pattern. 

3. If the resulting performance improves, i.e. Ri>R0, then let X0=Xi and R0=Ri. 

4. Repeat. 
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3.3.1 FINGER MOVEMENT TASK 

For the finger task, we arranged the motor cells in a single hemisphere that projects 

to two flexor MN pools: one for the index finger, and one for the middle finger. To reflect the 

physiological situation, CS motor cells make up the bulk of focal cells, i.e. cells that project to 

one finger only, and are comprised of ~0.8% inhibitory neurons (Witham, Fisher, Edgley, & 

Baker, 2016). Reticulospinal (RS) motor cells are more diffusely innervated, i.e. connected to 

both fingers, and do not contain inhibitory neurons (Riddle, Edgley, & Baker, 2009). 

Generally speaking, CS cells facilitate individual finger movement by virtue of their focal 

connections and inhibitory cell make-up. RS cells are always connected to the motor neurons 

of both fingers; thus, each cell’s firing rate contributes more to the networks overall force 

output, e.g. power grip. Network weightings reflect monosynaptic connections and the 

combined effect of polysynaptic projections to MN pools, and their static nature is a 

simplification. Excitatory neurons are positively weighted; inhibitory neurons are negatively 

weighted.  

We simulated the finger force production task using a network of 400 cells with 

pseudorandom weightings from a unit-mean, unit-variance normal distribution. Focal cells 

(i.e. CS cells) comprised 40% of the network; 60% of cells projected to both fingers (some CS 

and all RS cells). The firing rates, xi, are multiplied by their respective weighting, wi, to the 

MN pools and summed using:  

𝐹1 = ∑ 𝑤𝑖,1𝑔𝑖(𝑥𝑖) 

𝐹2 = ∑ 𝑤𝑖,2𝑔𝑖(𝑥𝑖) 

where g represents a nonlinear saturation function that ensures individual cells’ 

contribution to the force output is limited. The result of this sum, F, is proportional to the 

force produced by the respective finger. 
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We defined the finger task as trying to move one finger with as much force as possible 

while inhibiting movement in the other finger. In other words, the model would ideally 

increase F1 while maximizing the individuation index (3), i.e. minimize F2. We chose this task 

because it is analogous to the finger individuation tasks described in (Xu et al., 2016).  

𝐼 =
𝐹1−𝐹2

𝐹1+𝐹2
 

The network is rewarded for achieving movements with greater force and better 

individuation. We defined a reward function that weights these factors using , with F 

normalized by the maximum possible F the network can produce. A weighting =0 indicates 

that the patient only values being able to individuate their finger movements, and=1 

 

FIGURE 2: MODEL ARCHITECTURE FOR SIMULATING FORCE BY THE TWO ARMS TO PROPEL A 

LEVER DRIVE WHEELCHAIR. A TWO-LAYER FEEDFORWARD NEURAL NETWORK INCORPORATES 400 

CORTICOSPINAL & RETICULOSPINAL NEURONS WITH FIRING RATES XI. CELLS PROJECT TO ARM 

MOTONEURONAL POOLS VIA WEIGHTINGS WI,L AND WI,R. LEFT AND RIGHT MN POOLS SUM THE 

WEIGHTED ACTIVATION PATTERNS TO PRODUCE FORCES FL AND FR. GI SATURATES FIRING RATES OF XI. 
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indicates that the patient only values generating force. Their weighted sum results in the 

reward signal, R:  

𝑅 = 𝛼𝐹 + (1 − 𝛼)|𝐼|  

3.3.2 BILATERAL WHEELCHAIR TASK 

In another application of the model, we arranged the cells in bilateral hemispheres. 

Two MN pools were used: one for the left arm, and one for the right, where 90% of 

connections are projected to the contralateral MN pool and 10% to the ipsilateral MN pool 

in line with human anatomy (Tanji, Okano, & Sato, 1988). In the case of a simulated unilateral 

stroke, we de-weighted a portion of the right hemisphere, simulating the death of these cells 

that control the left arm. 

We evaluated this model by simulating a bilateral wheelchair driving task where the 

arms must coordinate, working together to drive the wheelchair forward by generating as 

much symmetric force as possible. Ideally, the network would increase Fl and Fr while 

coordinating the arms, which means driving the individuation index towards zero to produce 

equal forces, e.g. drive in a straight line. Here, Fl and Fr can be understood as the peak force 

produced by each arm on each push of the levers of the chair. The network was given 

 

FIGURE 3: SIMULATED FORCE PRODUCTION AND INDIVIDUATION INDEX AS A FUNCTION OF 

TIME BEFORE AND AFTER A UNILATERAL STROKE AFFECTING THE INDEX AND MIDDLE FINGERS OF THE 

LEFT HAND. USING A REWARD FUNCTION THAT EQUALLY VALUED FORCE AND INDIVIDUATION, THE 

UNINJURED NETWORK INCREASED INDEX FINGER FORCE WHILE INHIBITING THE MIDDLE FINGER. 
AFTER THE STROKE, THE NETWORK INCREASED INDEX FINGER FORCE PRODUCTION, BUT DID NOT 

INHIBIT MIDDLE FINGER FORCE PRODUCTION, SACRIFICING INDIVIDUATION FOR INDEX FINGER 

STRENGTH RECOVERY. 
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feedback on the summed force from the arms (5) and coordination (6) using a reward 

function (7) slightly modified from the one presented in (4) for the finger task. For this 

reward function, =1 still indicates that the patient only values force (assessed by speed of 

the wheelchair) but =0 indicates that the patient only values coordination in the sense of 

individuation=0 (i.e. driving straight in the wheelchair). 

𝐹 = 𝐹𝑙 + 𝐹𝑟 

𝐼 =
𝐹𝑙−𝐹𝑟

𝐹𝑙+𝐹𝑟
 

𝑅 = 𝛼𝐹 + (1 − 𝛼)(1 − |𝐼|) 

3.4 RESULTS 

We simulated the process of learning force and individuation in a finger movement 

task and a bilateral wheelchair propulsion task after a simulated stroke. We first show that 

the model predicts the nonlinear relationship between strength and coordination recovery 

observed in recent clinical data for these tasks. We then use the model to determine how 

training that prefers strength or coordination affects recovery of the other aspect of motor 

control.  
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3.4.1 FINGER TASK 

For the finger task, we first trained the uninjured network with 200 movement 

attempts per day for 300 days. We then imparted a stroke, eliminating 50% of CS cells 

projecting to both finger MN pools. The network was given a dose of movement attempts to 

simulate acute movement therapy, followed by typical at-home movement, in the same 

manner as (Reinkensmeyer, Guigon, et al., 2012) and in keeping with clinical observations of 

paretic limb-use after stroke (Lang, MacDonald, et al., 2009). Fig. 3 shows the response of the 

model given an equal weighting between force and individuation training (=0.5). Key 

results are that 1) force in the targeted finger (index finger) maximized in the uninjured 

network but only recovered to 81% of its pre-injury force, and 2) the network learned to 

inhibit the middle finger to maximize individuation before the injury but did not inhibit it as 

effectively after injury, resulting in a decreased individuation index. In fact, the force 

produced by the middle finger increased, because this helped the network use the diffusely 

innervated cells (i.e. the cells that excited the MN pools of both fingers) to increase the force 

of the index finger. Thus, valuing strength recovery diminished individuation recovery.  

 

FIGURE 4: THE NON-LINEAR RELATIONSHIP BETWEEN FORCE AND INDIVIDUATION. A: 

SIMULATED RESULTS. B: RESULTS ADAPTED FROM XU ET AL. (XU ET AL., 2016). BOTH PLOTS SHOW 

THE RESULTS OF 54 PEOPLE (SIMULATED IN A AND ACTUAL IN B) WITH VARYING DEGREES OF STROKE 

LEARNING A FINGER INDIVIDUATION TASK OVER 52 WEEKS OF TRAINING. FORCE AND INDIVIDUATION 

CO-VARIED LINEARLY UNTIL INDIVIDUATION SATURATED, AT WHICH POINT FURTHER INCREASES IN 

FORCE WERE NO LONGER MET WITH INCREASES IN INDIVIDUATION.  EACH POINT REPRESENTS ONE OF 

THE 54 PEOPLE AT ONE OF FOUR TIME POINTS DURING RECOVERY. 
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In Fig. 4, we plot strength versus individuation in order to compare to clinical data 

from (Xu et al., 2016). We ran the simulation 54 times at varying levels of stroke for 52 weeks 

of movement practice of 1000 movements per week to replicate (Xu et al., 2016), which 

evaluated 54 subjects over 52 weeks. The progression of strength and individuation in the 

network varied non-linearly (Fig. 4A), a result consistent with (Xu et al., 2016) (Fig. 4B).  

3.4.2 BILATERAL WHEELCHAIR TASK 

For the bilateral wheelchair task, we trained a network initialized to a pseudorandom 

activation pattern sampled from a unit-mean, unit-variance normal distribution for 300 runs 

“in the wheelchair” with =0.7. We did not pre-train the network, as learning to use a lever 

drive wheelchair is presumably a novel task people have not encountered before a stroke. 

Force improved in both arms simultaneously. Coordination between the arms was measured 

 

FIGURE 5: COMPARISON OF A SIMULATION (TOP ROW) AND EMPIRICAL (BOTTOM ROW) DATA 

FROM A PERSON WITH SUB-ACUTE STROKE LEARNING TO DRIVE A NOVEL LEVER DRIVE WHEELCHAIR 

THAT REWARDS COORDINATED, BILATERAL STRENGTH, I.E. INCREASING FORCE AND MAKING 

INDIVIDUATION INDEX = 0. COLUMN A: FORCE/SPEED PRODUCTION IN THE IMPAIRED ARM AND 

UNIMPAIRED ARM. THE NON-PARETIC ARM MATCHES THE PARETIC ARM TO MAINTAIN SYNCHRONY. 
COLUMN B: INDIVIDUATION INDEX (EQUATION 4). INITIALLY, THE NON-PARETIC ARM OVERPOWERS 

THE PARETIC ARM, RESULTING IN A NEGATIVE INDIVIDUATION INDEX. THE NETWORK IMPROVES 

COORDINATION UNTIL IT SATURATES NEAR ZERO. COLUMN C: FORCE AND INDIVIDUATION IMPROVE 

TOGETHER, IN A NON-LINEAR FASHION. 
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using the individuation index I, and the reward function rewarded I=0 so that the arms 

pushed in synchrony.  

Over six daily 20-minute training sessions, an individual with sub-acute stroke 

learned to use LARA, a novel lever drive wheelchair (Fig. 5). Forward driving using LARA is 

a bimanual skill that requires pushing the levers with both arms in a coordinated way. In 

each session, the participant was asked to drive in a straight line for two minutes. The 

angular velocity of the levers and wheelchair speed were recorded. Here, we compare the 

force generation of the model to the wheel speed of the chair, which we assume to be 

proportional. The subject provided informed consent to participate in this experiment, 

which was approved by the U.C. Irvine Institutional Review Board. We found that over the 

six training sessions, the participant increased wheelchair speed and lever pumping 

coordination. Their force and coordination improved in a similar non-linear fashion as the 

simulation (Fig. 5).  

3.4.3 INTERACTION BETWEEN STRENGTH AND COORDINATION TRAINING 

These results show that the model is competent to replicate the non-linear 

relationship between strength and coordination recovery. But how does the model behavior 

depend on , the weighting constant in the reward function that determines how to 

relatively reward strength and coordination? We simulated the finger movement task with 

0≤≤ for a simulated 52 weeks (1000 movement per week), with and without a stroke that 

eliminated 50% of CS cells. As shown in Fig. 6, for the uninjured network, training with a 

wide range of  (i.e. all but  or =1) resulted in full strength and individuation. Thus, 

when uninjured, if the network was rewarded to some degree for both strength and 

coordination, it eventually fully maximized both. In contrast, for the stroke-damaged 

network, training with any  resulted in mostly strength recovery and with any  < 0.5 

resulted in mostly individuation recovery. Therefore, stroke caused a tradeoff between 

strength and coordination recovery that didn’t exist before injury. 

3.5 DISCUSSION 

We developed a computational neurorehabilitation model to gain insight into the 

interaction between strength and coordination recovery after a stroke. The model was 
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competent to replicate the nonlinear relationship between strength and coordination 

observed in clinical recovery data for a finger force production task and a bilateral 

wheelchair propulsion task. The model also suggested that stroke can cause a tradeoff 

between strength and coordination recovery, a tradeoff that doesn’t exist for an uninjured 

network. We now briefly discuss the mechanisms that support these observations, then 

highlight implications for robotic therapy. 

3.5.1 NEURAL RESOURCE SCARCITY CAUSES A STRENGTH/INDIVIDUATION RECOVERY 

TRADEOFF 

What resources does the motor system need to achieve both strength and 

individuation? If there are enough focal cells to maximally activate the motor neuronal pools 

associated with the task, the motor system can learn to activate those cells through 

 

FIGURE 6: THE STRENGTH AND INDIVIDUATION RECOVERY RELATIONSHIP AS VARIES. =1 

ONLY VALUES STRENGTH; =0 ONLY VALUES INDIVIDUATION. THE CURVES ARE SHOWN AT SIMULATED 

WEEK 2 (DOTTED) AND WEEK 52 (SOLID). WE INCLUDE RESULTS FROM THE UNINJURED NETWORK 

(BLACK) AND FROM A NETWORK WITH A STROKE THAT DESTROYED 50% OF THE CS CELLS. FROM THE 

UPPER LEFT TO LOWER RIGHT, THE  INCREASES FROM 0 TO 1. ARROWS CONNECT POINTS WITH THE SAME 

.  NOTE THE CONVERGENT DYNAMICS BEFORE STROKE. ALL BUT EXTREME  RESULT IN FULL 

INDIVIDUATION AND STRENGTH.  COMPARE THE DIVERGENT DYNAMICS AFTER STROKE, WHERE FAVORING 

STRENGTH RESULTS IN ALMOST EXCLUSIVE STRENGTH RECOVERY, AND FAVORING INDIVIDUATION RESULTS 

IN ALMOST EXCLUSIVE INDIVIDUATION RECOVERY. 
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reinforcement learning and achieve maximum strength and individuation. However, if there 

aren’t enough focal cells, e.g. after cell death, the motor system faces a tradeoff: If it recruits 

diffusely connected cells that increase strength, individuation suffers. One solution is to 

mitigate the unwanted effects of the diffusely connected cells by recruiting surviving CS 

inhibitory cells. But the number of these cells is limited, especially after injury (Witham et 

al., 2016). On the other hand, to maximize individuation recovery, the motor system can 

choose to activate only focal CS cells, and only as many diffusely connected cells as whose 

unwanted effects can be inhibited. But, in this case, strength recovery is limited. Thus, the 

model predicts that resource scarcity, i.e. limited focal and inhibitory cells after a stroke, 

causes a strength/individuation tradeoff. These dynamics are consistent with the proposal 

that strength and individuation recovery are mediated by different CST/non-CST processes 

(Xu et al., 2016), and shed light on how those processes might interact. 

3.5.2 A SPECIFIC EXAMPLE OF THE TRADEOFF 

Consider the specific example in which simulating cell death after a stroke reduced 

both strength and individuation in the finger movement task (Fig. 3), a result consistent with 

the clinical literature (Kamper & Rymer, 2001; Lang & Schieber, 2003). Although the 

network recovered much of its strength through rehabilitation (81%), it did not learn to 

inhibit the middle finger, causing a reduced level of individuation after the injury (I=0.4). 

Why did the network fail to learn to inhibit movement in the middle finger, even though the 

reward function contained a term for rewarding individuation? As outlined above, the 

answer lies in the network anatomy. Before the injury, a significant minority (40%) of CS 

pathways were focal, i.e. connected from one CS cell to one MN finger pool. After the injury, 

roughly half of these focal neurons were destroyed, so the network learned to recruit more 

diffusely-connected RS cells that were connected to both fingers (Witham et al., 2016), in 

order to generate forces. In minor strokes, the residual CS network can activate enough 

inhibitory neurons to inhibit any middle finger movement induced by activation of cells 

connected to both fingers. However, after a more severe stroke, there were not enough 

inhibitory CS cells to inhibit the middle finger movement, resulting in reduced individuation. 

Thus, the greater reliance on more diffusely innervating cells, coupled with the scarcity of 

focal CS inhibitory cells, limited individuation recovery. 
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3.5.3 EXPLAINING THE NON-LINEAR RELATIONSHIP  

This observation can also explain the non-linear relationship between force and 

individuation recovery observed by Xu et al. (Xu et al., 2016) and replicated here. 

Individuation and strength recovery can proceed in tandem until all focal cells are recruited, 

then, proceed further by recruiting the diffuse cells, until all inhibitory cells are recruited. 

Accessing these complex patterns becomes increasingly difficult for a stochastic search. 

Thus, strength and individuation cannot be further improved with standard doses of 

movement practice. Thus, a nonlinearity arises when the motor system runs out of resources 

for individuation.   

3.5.4 RECOVERY IN THE WHEELCHAIR TASK  

In the wheelchair task, strength and coordination recovered together. Recall that, for 

this task, coordination was defined as both arms working together in symmetry – exactly 

what the bilaterally connected cells enable. Thus, their recruitment contributes to both 

strength and coordination, allowing full recovery of both without a competition/tradeoff 

between them as is the case in the finger tapping individuation task.  

At first glance, it may appear as though the non-paretic arm was unable to generate forces 

as large as pre-injury (Fig. 5A). The reason for this is straightforward. Again, the simulation 

required force and coordination of the arms in synchrony, implemented as a reward function 

(7) that rewarded I=0, i.e. bilateral symmetry. Although the non-paretic arm was capable of 

much higher forces than the paretic arm, it sacrificed those forces to avoid a penalty in the 

coordination term of the reward signal (7), thereby improving coordination before 

optimizing force. In this case, since bilateral, symmetric coordination was being rewarded, 

which can be implemented with bilaterally connected cells, strength and coordination 

recovery proceeded quickly together, until coordination reached a maximum. 

3.5.5 IMPLICATIONS FOR ROBOTIC THERAPY 

If limited neural resources after stroke cause competition between strength and 

coordination recovery, what are the implications for robotic therapy?  One might predict that 

devices will excel at training strength but not coordination, or coordination but not strength, 

because of the tradeoff and depending on which factor they reward more. However, there 
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are some values of , within a narrow range, that can cause both coordination and strength 

improvements, depending on the amount of network damage. Robotic movement therapy 

devices can, in theory, precisely value strength or coordination training. Perhaps they can be 

an elegant aid for maximizing functional recovery, by measuring ongoing recovery of 

strength and coordination, then adaptively mitigating the effects of under-training one of 

them.  
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CHAPTER 4: MOVEMENT ANTICIPATION AND EEG: IMPLICATIONS FOR 
BCI-CONTINGENT ROBOT THERAPY 

Note: This chapter has been published as: 

Norman, Sumner L., et al. "Movement Anticipation and EEG: Implications for BCI-Contingent Robot 
Therapy." IEEE Transactions on Neural Systems and Rehabilitation Engineering 24.8 (2016): 911-919. 

4.1 ABSTRACT 

Brain-computer interfacing is a technology that has the potential to improve patient 

engagement in robot-assisted rehabilitation therapy. For example, movement intention 

reduces mu (8-13 Hz) oscillation amplitude over the sensorimotor cortex, a phenomenon 

referred to as event-related desynchronization (ERD). In an ERD-contingent assistance 

paradigm, initial BCI-enhanced robotic therapy studies have used ERD to provide robotic 

assistance for movement. Here we investigated how ERD changed as a function of audio-

visual stimuli, overt movement from the participant, and robotic assistance. Twelve 

unimpaired subjects played a computer game designed for rehabilitation therapy with their 

fingers using the FINGER robotic exoskeleton. In the game, the participant and robot 

matched movement timing to audio-visual stimuli in the form of notes approaching a target 

on the screen set to the consistent beat of popular music. The audio-visual stimulation of the 

game alone did not cause ERD, before or after training. In contrast, overt movement by the 

subject caused ERD, whether or not the robot assisted the finger movement. Notably, ERD 

was also present when the subjects remained passive and the robot moved their fingers to 

play the game. This ERD occurred in anticipation of the passive finger movement with similar 

onset timing as for the overt movement conditions. These results demonstrate that ERD can 

be contingent on expectation of robotic assistance; that is, the brain generates an 

anticipatory ERD in expectation of a robot-imposed but predictable movement. This is a 

caveat that should be considered in designing BCIs for enhancing patient effort in 

robotically-assisted therapy. 

4.2 INTRODUCTION 

Robotic devices, such as powered exoskeletons, have demonstrated utility for 

rehabilitation therapy of the upper extremity for individuals with stroke and other 
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neurologic impairments (Klein et al., 2008; Reinkensmeyer, Wolbrecht, et al., 2012; Sanchez Jr et 

al., 2005). In the most commonly used paradigm, the robotic therapy device physically assists 

the patient in completing repetitive desired movements that are pre-specified by a computer 

game that provides audio-visual cues (Reinkensmeyer, Wolbrecht, et al., 2012; Taheri et al., 

2012). Physical assistance is thought to enhance proprioceptive input, which may aid neural 

reorganization (Reinkensmeyer et al., 2004). In past studies, robotic therapy has been shown 

to match or better the results obtainable with conventional rehabilitation movement therapy 

(Kahn et al., 2006; P. S. Lum, Burgar, Shor, Majmundar, & Van der Loos, 2002; Reinkensmeyer, 

Wolbrecht, et al., 2012).  

Research suggests that an important factor for ensuring the effectiveness of robotic 

therapy is active effort by the patient (Hidler et al., 2009; Hornby et al., 2005; Hornby, 

Reinkensmeyer, & Chen, 2010; Hu et al., 2009; Kaelin-Lang et al., 2005; Lotze et al., 2003). A 

key study showed that repetitive robotic movement of the upper extremity with a passive 

stroke patient has little therapeutic effect compared to robotic therapy in which the patient 

and robot work together (Hu et al., 2009). Another study found no improvements in clinical 

movement scales following continuous passive range of motion therapy of the stroke-

impaired arm (Volpe et al., 2005). It has also been shown that physically assisting in 

movement with a robot can trigger slacking by the motor system, which is an automatic and 

subconscious reduction in patient effort (Israel et al., 2006; Reinkensmeyer et al., 2004; 

Reinkensmeyer, Wolbrecht, et al., 2012; Wolbrecht et al., 2008). Thus it is important when 

designing robotic therapy systems to develop methods that encourage patient engagement 

and effort during the therapy and prevent slacking, since robotic assistance may in some 

cases innately encourage slacking. 

Electroencephalography (EEG) based Brain Computer Interface (BCI) systems have 

been proposed for the purpose of enhancing robot-assisted rehabilitation training (Buch et 

al., 2008; Formaggio et al., 2013; Fu et al., 2006; Ramos‐Murguialday et al., 2013). It is yet 

unclear how best to harness the strengths of these systems together, but one rationale 

focuses on promoting patient engagement (Hu et al., 2009; Reinkensmeyer et al., 2004). A 

BCI system could be used to detect movement intention, and the robotic therapy system 

could be programmed to provide assistance contingent on the sensed movement intention. 
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For this purpose, mu and beta frequency bands (8-12, and 13-35 Hz) have been suggested 

for identifying brain states associated with movement intention (Alegre et al., 2002; Buch et 

al., 2008; Cassim et al., 2001; Formaggio et al., 2014; Formaggio et al., 2013; Fu et al., 2006; 

G. R. Müller-Putz et al., 2007; Nakayashiki, Saeki, Takata, Hayashi, & Kondo, 2014; 

Pfurtscheller & Aranibar, 1977; Pfurtscheller & Lopes da Silva, 1999; Ramos‐Murguialday et 

al., 2013). Mu and beta sensorimotor rhythm (SMR) oscillatory amplitude is known to 

attenuate during preparation for an overt movement or motor imagery, a phenomenon 

referred to as event related desynchronization (ERD) (Pfurtscheller & Lopes da Silva, 1999).  

ERD has been used successfully as a control signal for BCI applications, including, 

recently, robot-assisted therapy (Buch et al., 2008; Fabiani et al., 2004; Fok et al., 2011; 

Ramos-Murguialday et al., 2012; Ramos‐Murguialday et al., 2013; Yuan & He, 2014). 

However, use of ERD as a contingent control signal for robotic therapy has not been shown 

to decisively improve motor outcomes for robotic therapy after stroke. One study that 

employed a BCI-contingent orthosis movement paradigm found no significant improvement 

in clinical scales used to rate hand function after the study (Buch et al., 2008). Another, larger 

study found modest improvements in motor outcome measures compared to a sham control 

group who received random imposed (passive) movements (Ramos‐Murguialday et al., 

2013).  

It is possible that ERD is not tied to movement intention alone, but may instead be the 

result of sensory feedback associated with movement, whether active or passive. Indeed, 

previous research has suggested that ERD occurs during passive movements driven by a 

robotic orthosis or an experimenter, similar to when the subject performs overt movement 

or motor imagery (Alegre et al., 2002; Cassim et al., 2001; Formaggio et al., 2014; Formaggio 

et al., 2013; G. R. Müller-Putz et al., 2007; Ramos‐Murguialday et al., 2013). For example, 

Alegre et al. (Alegre et al., 2002) studied beta band desynchronization in six healthy 

volunteers during passive wrist extensions performed with the help of a pulley system at 

random intervals. The passive movements were found to induce ERD after the movement 

onset. The authors concluded that proprioceptive inputs induce ERD similar to that observed 

during voluntary movements. Another study analyzed beta ERD during passive and 

attempted foot movements in unimpaired subjects and subjects with paraplegia after spinal 
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cord injury (SCI) (G. R. Müller-Putz et al., 2007). Passive motions were controlled using a 

custom foot release mechanism at eight second intervals. A significant ERD was found to 

occur ~500ms before movement onset in the unimpaired participants. Thus, in this case, 

ERD was found to anticipate predictable passive movement of the foot. These findings 

suggest that ERD is not solely related to the intention to move, but is also influenced by 

proprioceptive input and/or the expectation of imposed movement. Therefore, these 

findings have implications for the use of ERD as a control signal for detecting patient motor 

engagement during robot-assisted therapy. If the user's expectation and preparation for 

somatosensation as a result of predictable, passive motion is sufficient cause to trigger an 

ERD, the user might no longer need to actively engage in overt movement to cause the ERD 

trigger signal and the contingent imposed robotic movement. 

The purpose of this study was to determine the effect of passive movement and 

subject effort on sensorimotor ERD within the context of a robot-assisted therapy paradigm 

we previously developed for retraining finger rehabilitation and individuation after stroke 

(Taheri et al., 2012). Robotic assistance and motor activity were treated as binary categorical 

design factors in a 22 factorial experiment, resulting in four primary conditions: A) active 

subject/passive robot, B) active subject/active robot, C) passive subject/passive robot, and 

D) passive subject/active robot (see Table I). Audio-visual stimulation without subject or 

robot movement was also tested to identify any changes in ERD that may be elicited by the 

robotic-therapy computer gaming paradigm itself. 
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4.3 METHODS 

4.3.1 EXPERIMENTAL SETUP 

The Finger INdividuating Grasp Exercise Robot or "FINGER", described at length in 

(Taheri et al., 2012), was used as the robotic therapy device in this study (See Fig. 1). This 

robot facilitates the naturalistic grasping patterns of the index and middle fingers together 

or individuated. Robot assistance used a position feedback controller to follow a minimum-

jerk trajectory which began 500ms before the note reached the target. The robot spent 

500ms providing flexion assistance, followed by 500ms of extension assistance. Finger 

movements were mapped to corresponding cues on a screen in front of the participant and 

set to popular music in the form of a custom video game similar to Guitar Hero©. The gaming 

environment and user interface software were tailored specifically for this study. We 

previously found a therapeutic benefit to playing a similar version of the game after stroke 

(N. Friedman et al., 2014).  

 
FIG. 4 THE GAMING ENVIRONMENT USED IN THIS 

EXPERIMENT. NOTES STREAMED DOWN THE SCREEN IN 

SYNCHRONY WITH POPULAR MUSIC. THE USER TRIED 

TO MATCH A FINGER FLEXION TO THE TIMING OF THE 

NOTE CROSSING THE TARGET AT THE BOTTOM OF THE 

SCREEN. FIRE APPEARED WHEN A NOTE WAS HIT, AND 

A SCORE BAR AT THE TOP OF THE SCREEN GAVE VISUAL 

PERFORMANCE FEEDBACK. GREEN NOTES INDICATED 

A DESIRED INDEX FINGER MOVEMENT, YELLOW NOTES 

A MIDDLE FINGER MOVEMENT, AND BLUE NOTES 

INDICATED THAT BOTH FINGERS SHOULD GRASP 

TOGETHER. ORANGE AND RED NOTES WERE NOT USED. 

RED SPHERES ABOVE THE THREE VIRTUAL “STRINGS” 

ON THE RIGHT WERE MAPPED TO ACTUAL ROBOT 

FINGER POSITIONS IN REAL TIME, AND WERE INTENDED 

TO BE MATCHED TO NOTE TIMING ON SCREEN. IN THIS 

SCREENSHOT, THE USER HAD JUST EXECUTED A HIT 

WITH THE YELLOW NOTE/MIDDLE FINGER. A SECOND 

NOTE HAS JUST APPEARED ON SCREEN, AND WILL 

REACH THE TARGET 2 SECONDS LATER. 

 

FIG. 1 EXPERIMENTAL SETUP. A USER IS SHOWN USING THE ROBOT TO PLAY THE GAME USED IN THIS 

STUDY. THE FINGER INDIVIDUATING GRASP EXERCISE ROBOT (FINGER) APPEARS IN THE FOREGROUND. 
FINGER MAKES USE OF TWO STACKED, SINGLE-DEGREE-OF-FREEDOM EIGHT-BAR MECHANISMS DESIGNED 

TO ASSIST THE USER IN NATURALISTIC GRASPING TRAJECTORIES FOR EACH, OR BOTH OF THE INDEX AND 

MIDDLE FINGERS. FINGER IS BACKDRIVEABLE. ROBOTIC FEEDBACK GAINS, WHICH DETERMINE THE ROBOTIC 

FORCES, WERE HELD CONSTANT FOR ACTIVE ROBOT CONDITIONS. FINGER DID NOT PROVIDE ANY ASSISTANCE 

DURING THE PASSIVE ROBOT CASES. 
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In the game, a note appears on screen for two seconds. The note moves down, 

reaching a target near the bottom of the screen. Notes were timed to reach the target with 

the beat of the music ("Blackbird" by The Beatles, 94 bpm, 62 notes). Notes were selected to 

occur at a maximum frequency of every four beats, which resulted in a minimum inter-note 

period of 2.55 seconds. Maximum note spacing was every eight beats (5.11 seconds).  

During active portions of the experiment, the participant attempted to match the 

speed and timing of the note to complete the flexion portion of the grasping trajectory just 

as the note reaches the target. An on-screen marker represented the position of the robot. If 

the participant attained the desired amount of flexion and accurately matched the timing of 

the note, the game considered this a "hit" and provided visual feedback in the form of a fire 

graphic on the target and a progress bar counter increase (See Fig. 2). In some experimental 

conditions, we used the robot to assist in completing the movement with the correct finger 

at the correct time. More details of the assistive control algorithm can be found in (Taheri et 

 

FIG. 2 THE GAMING ENVIRONMENT USED IN THIS EXPERIMENT. NOTES STREAMED DOWN THE 

SCREEN IN SYNCHRONY WITH POPULAR MUSIC. THE USER TRIED TO MATCH A FINGER FLEXION TO THE 

TIMING OF THE NOTE CROSSING THE TARGET AT THE BOTTOM OF THE SCREEN. FIRE APPEARED WHEN 

A NOTE WAS HIT, AND A SCORE BAR AT THE TOP OF THE SCREEN GAVE VISUAL PERFORMANCE 

FEEDBACK. GREEN NOTES INDICATED A DESIRED INDEX FINGER MOVEMENT, YELLOW NOTES A 

MIDDLE FINGER MOVEMENT, AND BLUE NOTES INDICATED THAT BOTH FINGERS SHOULD GRASP 

TOGETHER. ORANGE AND RED NOTES WERE NOT USED. RED SPHERES ABOVE THE THREE VIRTUAL 

“STRINGS” ON THE RIGHT WERE MAPPED TO ACTUAL ROBOT FINGER POSITIONS IN REAL TIME, AND 

WERE INTENDED TO BE MATCHED TO NOTE TIMING ON SCREEN. IN THIS SCREENSHOT, THE USER HAD 

JUST EXECUTED A HIT WITH THE YELLOW NOTE/MIDDLE FINGER. A SECOND NOTE HAS JUST APPEARED 

ON SCREEN, AND WILL REACH THE TARGET 2 SECONDS LATER. 
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al., 2012), but essentially the movements followed a minimum-jerk trajectory calculated to 

guide the subject  using a position feedback controller.  The minimum-jerk trajectory had a 

duration of 500ms for flexion assistance, and a second minimum-jerk trajectory of duration 

500ms was used for extension assistance, with no pause in between.   

EEG data was collected using 256 electrodes, sampled at 1 kHz using the EGI Geodesic 

EEG System 400. Impedance values were kept below 100 kOhm. Raw EEG data was exported 

for offline analysis in Matlab. Marker timing data was captured from the gaming 

environment. Robot position, velocity, and controller gains were also sampled and recorded 

at 1 kHz.  

4.3.2 PARTICIPANTS 

Twelve unimpaired participants took part in this study (6 male; 6 female). All 

participants provided written informed consent and the study was approved by the 

Institutional Review Board of UC Irvine. A prerequisite for study inclusion was naivety to the 

experiment and gaming environment. All participants were considered unimpaired, and had 

no history of neurologic injury. In a study of EEG during shoulder-elbow movements, both 

unimpaired and stroke survivors were found to exhibit significantly greater ERD intensity 

while using their non-dominant arm vs. their dominant arm (Fu et al., 2006). To maximize 

the ERD signal, all participants used their non-dominant hand in the robot. All participants 

were right handed, and thus used their non-dominant left hand. 

4.3.3 EXPERIMENTAL DESIGN 

We used a two factor, two level (22) factorial design (Table I).  The two factors were 

robot assistance (on or off), and overt motor activity (on or off). We will use the term “overt” 

to refer to a willed, voluntary, finger movement by the subject.  In the factorial part of the 

experiment, each subject experienced each of the four conditions, labeled in Table I, A 

through D. We also tested the effect of audio-visual stimulation alone before and after the 

four conditions. This condition was the same as that used in the factorial block (Table I, C). 

The subjects’ fingers were first fastened to the robot as they sat comfortably in front 

of the screen. The gaming environment was loaded and the test song played while the 
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participant watched. Participants were instructed to remain as still as possible during this 

audio-visual only condition. The robot did not provide any assistance. At the conclusion of 

the experiment, the participant was then asked to complete this same task again.  

After the initial audio-visual only session, the participants were allowed to familiarize 

themselves with the robot and gaming environment during a short training session. Robot 

assistance was included during the training period, but limited to small forces that could not 

successfully complete the movement without the overt movement of the subject. Subjects 

were instructed to actively participate in the motor task to the best of their ability. All 

participants trained on the same song ("Gold on the Ceiling" by The Black Keys, 104 notes) 

until both the participant and experimenter felt comfortable in the participant's ability to 

understand the gaming environment and perform to an acceptable level. All participants 

exceeded an 80% note "hit" rate in the gaming environment during the training period. All 

participants gained proficiency within three test songs, and most within two.  

The factorial part of the experimental session was divided into four runs consisting 

of one run per each of the four experimental conditions, for each participant. Inter-

participant session order was randomized using a Williams Design Latin Square to minimize 

first order carryover effects. Factor combinations were explained to the participant by the 

test proctor using standardized scripts. Participants were allowed to ask clarification 

questions regarding their role during the current factor combinations, but were not privy to 

why the combination was being tested. During all combinations, participants completed one 

song, consisting of 62 notes (trials) each. The song, "Blackbird" by The Beatles, was the same 

for all participants and all conditions. 

4.3.4 DATA ANALYSIS 

Raw EEG data were recorded using the EGI Geodesic EEG System 400 with 256 

electrodes at 1 kHz. Data were exported for offline analysis in Matlab (7.10.0, MathWorks, 

Inc., Natick, MA). The continuous EEG signal was detrended and low pass filtered at 50Hz. A 

surface LaPlacian filter was then applied to reduce effects of volume conduction. Eighteenth-

order Legendre polynomials were used with a smoothing factor of 1x10-6. The data were 
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then manually screened for artifacts such as eye blinks or muscle activity in the neck or face. 

Trial-channel combinations exhibiting artifact were marked for removal from later analysis. 

For time-frequency decomposition, a Morlet wavelet transformation was applied. 

Wavelet transformations used 5 cycles at the lowest frequency of 5Hz and increased to 12 

cycles at the highest frequency of 40 Hz. Wavelet analysis was applied at 1Hz steps resulting 

in 36 distinct frequencies. Wavelet transformation was performed on the continuous EEG 

data to eliminate the possibility of edge effects. Trials were then segmented into 3000ms 

epochs surrounding the note-target time, where the epoch start time was 1500ms prior to 

the note reaching the target. Trial-channel combinations marked for removal during data 

screening were removed at this point. 

Power within a frequency bin was calculated as the magnitude of the complex 

coefficient result of the wavelet transformation:  

 

 

 

FIG. 3. TOPOGRAPHICAL SELECTION OF CHANNELS FOR INCLUSION IN PROCESSING. 
PARTICIPANTS USED THEIR LEFT (NON-DOMINANT) HAND IN THE MOVEMENT TASK. CHANNEL 

SELECTION INCLUDED THE CONTRALATERAL SENSORIMOTOR CORTEX SURROUNDING C4, AS WELL AS 

CENTRAL AREAS NEAR CZ AND CPZ.  
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𝑃𝑓(𝑡) = | 𝚿𝑓(𝑡) ⊗ 𝑆(𝑡)| (1) 

 

where Pf is the power at a given frequency, f, Ψ is the Morlet wavelet, and S is the EEG 

signal. All are functions of time, t. The symbol | | represents the complex norm, and ⊗ 

represents the complex convolution. Power was then normalized using the decibel 

normalization method outlined in (M. X. Cohen, 2014), and described by:  

𝑑𝐵𝑡𝑓 = 10 𝑙𝑜𝑔10
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡𝑓

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑓
 (2) 

where 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑓̅  is the scalar mean power taken across the baseline time period, 

defined as the initial 250ms of each note (trial). In the same equation, t and f are time and 

frequency points, respectively. The baseline period began 500ms after the note initially 

appeared on screen. The baseline period ended approximately 800ms before movement, and 

1250ms before the note reached the target (end of flexion). 

In previous studies that explored the effects of active and passive movements on ERD, 

maximum modulation of sensorimotor rhythm appeared in electrodes overlying the right 

and left motor cortices, locations C4 and C3, respectively (Alegre et al., 2002; Formaggio et 

al., 2013; Yuan, Perdoni, & He, 2010). During overt hand movement as well as motor imagery 

and passive movements, SMR modulation appeared primarily in contralateral M1, although 

bilateral modulation was also seen in some cases. Channel selection for this experiment was 

based on consideration of these previous studies’ results (i.e. over C4). We then verified the 

topography of SMR modulation of the participants in this study. In an intermediate analysis, 

topographical location of ERD maxima confirmed SMR modulation in contralateral motor 

cortex near C4 as well as lesser activity in several subjects near CPz. A combination of 

electrodes overlying C4 and CPz that exhibited time-locked motor behavior was selected for 

analysis (see Fig. 3).  

A 2x2 ANOVA was conducted on the maximum pre-movement decibel normalized 

desynchronization value (in dB) and max post-movement offset decibel normalized 

synchronization value (in dB), with a significance level set to p < 0.05. Robot assistance and 
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overt movement (i.e. active movement by the subject) were treated as binary categorical 

design factors.  

4.4 RESULTS 

None of the 12 subjects exhibited ERD during the audio-visual only condition 

presented at the beginning and end of the experiment (see Fig. 6). Consistent with this, no 

ERD was seen in the audio-visual only condition in the factorial part of the experiment 

(passive subject/passive robot). 

 

FIG. 4.  MEAN MU BAND (8-13 HZ) POWER ACROSS SUBJECTS. TIME = 0 CORRESPONDS TO THE 

MOMENT WHEN THE MOVING NOTE CROSSED THE TARGET LOCATION. THIN BLUE TRACES REPRESENT 

INDIVIDUAL PARTICIPANT MEANS. THICK RED TRACE REPRESENTS GROUP-LEVEL MEAN. RED SHADING 

INDICATES AMPLITUDE SIGNIFICANCE (T-TEST) FOR EACH CONDITION COMPARED TO THE AUDIO-VISUAL 

ONLY (PASSIVE SUBJECT/PASSIVE ROBOT) CONDITION. SIGNIFICANT ERD AND ERS WERE SEEN IN ALL 

THREE CONDITIONS IN WHICH A MOVEMENT OCCURRED. ERD PRECEDED MOVEMENT IN ALL CASES. PEAK 

ERS VALUES OCCURRED JUST AFTER FINGER FLEXION. GREEN TRACES SHOW MEAN ROBOT TRAJECTORY, 
WITH FLEXION BEING DEFINED DOWNWARD. SCALE REFERS TO PERCENT RANGE OF MOTION. DISCRETE 

FLEX/EXTEND PORTIONS OF THE GRASPING TRAJECTORY, WITH A NO-MOVEMENT INTERVAL AT THE 

TARGET TIME (T=0), IS ILLUSTRATED BY THE PASSIVE SUBJECT/ACTIVE ROBOT CONDITION (MOVEMENT 

DURATION 937MS). A SMOOTH GRASPING MOVEMENT CONSISTING OF A FLEXION FOLLOWED 

IMMEDIATELY BY AN EXTENSION WITH NO PAUSE BETWEEN IS SEEN IN THE ACTIVE SUBJECT/PASSIVE 

ROBOT CONDITION (DURATION 1637MS). ROBOT ASSISTANCE AIDED A SHORTER EXTENSION PERIOD IN 

THE ACTIVE SUBJECT/ACTIVE ROBOT CONDITION (DURATION 1253MS). THERE WAS NO MOVEMENT IN 

THE PASSIVE SUBJECT/PASSIVE ROBOT CONDITION.   
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In contrast, ERD was observed in the three conditions that involved physical 

movement of the fingers, including the condition in which the subject remained passive and 

the robot moved the subjects’ fingers (see Fig. 4). In all, 10 out of 12 subjects exhibited ERD 

during active subject/passive robot movements. 11 out of 12 exhibited ERD during active 

subject/active robot movements. 10 out of 12 exhibited ERD during the passive 

subject/active robot movements. All 12 subjects exhibited ERD within at least one of the 

physical movement conditions. There was also evidence of event-related synchronization 

(ERS) in these three conditions, as seen by a rebound in power occurring at the end of the 

initial finger flexion, approximately 200ms after movement offset. 

The timing of the ERD and ERS were similar in the three experimental conditions in 

which they occurred (Fig. 4, Table II) with some minor differences. ERD began approximately 

600-900ms before the start of movement in all three conditions, including when the subject 

remained passive but the robot moved. ERD in the active subject/passive robot condition 

preceded that of the remaining two movement conditions. Secondary ERS was seen 

following the finger extension period in Fig. 4 in the active robot conditions. These secondary 

ERS signals were not statistically significant from the active subject/passive robot condition. 

However, the mean secondary ERS value was largest in the passive subject/active robot 

condition (2.19 dB), followed by the active subject/active robot condition (1.96 dB). No 

TABLE II 

ERD/ERS TIMING 

 ERD ERS 

Condition start end start end 

A)   motor only (active) -854 333 405 1169 

B)   robot+motor (active) -682 263 323 1258 

C)  audio-visual only none none none none 

D)  robot only (passive) -642 266 333 1287 

TIME PERIODS IN WHICH EVENT RELATED DESYNCHRONIZATION AND SYNCHRONIZATION 

ACHIEVED STATISTICAL SIGNIFICANCE RELATIVE TO BASELINE, VIA POINTWISE T-TEST (P < 0.05) ARE 

GIVEN IN MILLISECONDS RELATIVE TO MEAN MOVEMENT ONSET. 
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secondary local maxima were seen in the active subject/passive robot condition. ERS was 

also seen to last longest in the active robot conditions, likely due to the secondary ERS 

feature. In these conditions, ERS extends to approximately 1000ms after finger-extension 

was complete.  

Robotic assistance increased ERD magnitude for the pre-movement onset ERD, but it 

only approached significance (ANOVA, p = 0.07). It also increased the magnitude of the post-

 

 
FIG. 5.  TIME-FREQUENCY POWER MAPS DURING THE FOUR CONDITIONS FOR AN EXAMPLE 

SUBJECT. TIME = 0 CORRESPONDS TO THE MOMENT WHEN THE MOVING NOTE CROSSED THE TARGET 

LOCATION. THIS SUBJECT SHOWED MU BAND (8-12 HZ) ERD AND BETA BAND (13-30 HZ) ERS IN THE 

THREE MOVEMENT CASES. MU ERD ALWAYS PRECEDED MOVEMENT. BETA ERS FOLLOWED THE 

COMPLETION OF FINGER FLEXION, OCCURRING AT T=0 IN THE SUBJECT ACTIVE CONDITIONS. A SECOND, 
SMALLER ERS WAS SEEN IN THE ROBOT ACTIVE CONDITIONS. ERS APPEARED ONLY AFTER FINGER 

EXTENSION IN THE PASSIVE SUBJECT/ACTIVE ROBOT CONDITION. 

 
FIG. 6. GROUP-LEVEL MEAN POWER AMPLITUDE TIME-FREQUENCY MAP IN THE AUDIO-VISUAL 

ONLY CONDITION. RESULTS ARE SHOWN AT PRE-EXAM AND POST-EXAM TESTS. NO SIGNIFICANT POWER 

MODULATION WAS RECORDED IN EITHER TEST. TIME = 0 CORRESPONDS TO THE MOMENT WHEN THE 

MOVING NOTE CROSSED THE TARGET LOCATION. 
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movement ERS, but again it only approached significance (p = 0.06). Overt movement did 

not significantly alter ERD amplitude (p = 0.66) or ERS amplitude (p = 0.88). Interaction 

effects between robotic assistance and overt movement were not significant for ERD (p = 

0.59) or ERS (p = 0.99). A comparison of each time point revealed no significant differences 

in the passive subject/active robot condition compared to the active subject conditions as 

well (t-test, p > 0.05). The maximum across-subject ERD value seen in the passive 

subject/active robot condition was found to reach 3.68 (+/- 2.96) dB. The maximum across-

subject ERD value seen in the active subject/passive robot condition was larger at 4.35 (+/- 

3.71) dB, but the difference was not significant (t-test, p = 0.63).  

A total of 9 out of 12 subjects showed ERD primarily within the mu band (8-13 Hz). 

The remaining exhibited primarily beta-focused desynchronization (13-30 Hz). Two of these 

subjects exhibited ERD from 17-22 Hz, and the remaining subject showed ERD from 12-18 

Hz. An example of broadband power amplitude can be seen for one subject in Fig. 5. Again, 

no significant modulation was seen in the passive subject/passive robot, audio-visual 

stimulation only condition. Mu-rhythm specific ERD was seen prior to movement onset with 

a peak at approximately -500ms and 10 Hz. This subject also exhibited prominent beta 

rebound at the end of finger flexion. These were especially noticeable in the active 

subject/active robot condition where beta ERS can be seen after flexion at approximately 12-

28 Hz.  

4.5 DISCUSSION 

In a robotic neurorehabilitation setting, the patient is often given the task of 

combinations of overt movement, robotic assistance, and external audio-visual stimuli 

associated with a computer game. The effects of these stimuli and interaction with one-

another on ERD have not yet been well defined. The aims of this study were to identify the 

effects of these factors on ERD using a prototypical robotic therapy paradigm. ERD was found 

to precede movement during all three movement conditions, and notably even in the passive 

subject/active robot condition. No significant power modulation was seen in the audio-

visual only condition before or after the factorial conditions were completed. ERS was 

identified during post-movement periods, with a tendency toward a secondary ERS in the 



63 
 

robotically assisted conditions. Next we discuss the effects of robotic assistance on ERD and 

ERS. We will highlight the implications of these effects with regard to patient engagement in 

therapy and future BCI-robot therapy paradigms. 

4.5.1 EFFECTS OF ROBOT ASSISTANCE ON ERD 

This study identified pre-movement ERD during passively imposed movement, 

suggesting that ERD during passive movement is not tied solely to proprioceptive feedback, 

but is likely the result of preparation for the impending somatosensory input the movement 

will produce.  In many past studies, ERD has been found to follow imposed movement onset, 

and has been attributed to proprioceptive feedback (Alegre et al., 2002; Cassim et al., 2001; 

Ramos-Murguialday et al., 2012). During self-paced movements however, ERD has been 

observed to precede movement onset (Derambure, Defebvre, Bourriez, Cassim, & Guieu, 

1999; Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller, Stancak Jr, & Edlinger, 1997; 

Stančák Jr, Feige, Lücking, & Kristeva-Feige, 2000). Pre-movement ERD has also been 

observed previously before cued predictable movements (Nakayashiki et al., 2014; 

Pfurtscheller & Aranibar, 1977), including passive movements imposed on the subject 

(Formaggio et al., 2014; G. R. Müller-Putz et al., 2007). This study built on these findings, 

showing that ERD appeared in advance of a predictable imposed movement from a robotic 

orthosis when the subject was instructed to remain passive. Because proprioceptive 

feedback is not yet affected by the imposed movement during the pre-movement interval, 

these findings suggest there is a cortical preparation of the somatosensory system in 

advance of an imposed movement. The existence of ERD before movement onset, 

comparable to that found preceding overt movement, suggests that ERD can become 

contingent on the expectation of robotically-imposed movement. That is, ERD is not uniquely 

tied to active movement but can reflect preparation for movement, whether active or 

passive. 

ERD preceding both active and passive movements may be explained by two 

physiological mechanisms: the efference copy and anticipatory attention. Unlike studies that 

used random movement intervals (Alegre et al., 2002; Cassim et al., 2001), participants in 

the present experiment were aware of the existence and timing of oncoming notes. 
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Participants had sufficient time to prepare for the movement, whether active or imposed by 

the robot. Past studies have found that the brain predicts oncoming sensory information 

related to an intended movement so that the system can learn and adapt to changes (S.-J. 

Blakemore, Wolpert, & Frith, 2000; Kawato, 1999; Wolpert, Ghahramani, & Jordan, 1995). 

When a command is sent to the motor system to generate movement, an internal copy of the 

command is created to predict sensory consequences of the movement. This phenomenon is 

referred to as an efference copy. The efference copy is collated with sensory inputs produced 

by the movement, allowing a comparison of the expected movement (forward model) and 

the actual movement. In one study, subjects performed a self-paced finger-tapping task that 

alternated hands (Bai, Mari, Vorbach, & Hallett, 2005). ERD was observed to occur up to two 

seconds before movement over the contralateral hemisphere during dominant hand 

movements, and bilaterally during non-dominant hand movements. The authors suggest 

that while ERD of the contralateral sensorimotor cortex is an excitatory process, ERD of the 

ipsilateral hemisphere may be the result of an efference copy reflecting inhibition of 

movement. During the passive subject/active robot condition of the current experiment, 

participants expected movement but suppressed overt intention of that movement. Although 

the descending motor command was inhibited, the internal network requires the efference 

copy to predict the somatosensation of the imposed movement (S. J. Blakemore, Goodbody, 

& Wolpert, 1998). Therefore, in the current experiment, ERD preceding movement may be 

the EEG correlate of the efference copy sent in preparation for predictable imposed 

movement. Others have suggested that contralateral beta ERD may be a corollary of 

anticipatory attention to a future motor stimulus (Pfurtscheller, Krausz, & Neuper, 2001). It 

may be the case that ERD measured here is the result of maintained attention to the 

oncoming note stimulus. Examination of the effects of predictable and unpredictable cueing 

would be necessary to further explore the roles of the efference copy and movement 

inhibition on the magnitude and temporal features of ERD. 

4.5.2 IMPLICATIONS FOR PATIENT ENGAGEMENT IN BCI-ROBOT THERAPY 

Although ERD has been shown to be a reliable control signal for BCI applications, the 

use of BCI-contingency in robot therapy has not yet been proven superior to traditional or 

robotic therapy. One important rationale for using BCIs in robotic therapy is ensuring the 
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active engagement of the patient in the movement task (Hu et al., 2009; Reinkensmeyer et 

al., 2004). This study shows that ERD can be contingent on the expectation of passive, 

imposed robotic movement. Therefore, in a predictable task therapy environment, the use 

of ERD as an orthosis control signal does not necessarily require the patient's active motor 

engagement in the task, but simply the expectation of robotic movement. These findings 

suggest that ERD is not only an indicator of motor intention, but may also be an indicator of 

preparation for somatosensation. Producing anticipatory ERD in expectation of an upcoming 

passive movement could, in theory, allow the patient to slack, which, as described previously, 

is, a subconscious and involuntary phenomenon wherein the patient allows the robotic 

environment to supersede their effort in overt movement during the task (Wolbrecht et al., 

2008). As such, ERD may be suboptimal as a signal to ensure patient motor engagement in 

BCI-contingent robot therapy. 

Despite the possibility of reduced patient motor engagement in a BCI-contingent 

robot therapy paradigm, the patient must also exhibit some amount of expectation for the 

sensory feedback of the passive movement in order to create an anticipatory ERD as seen in 

this study. An important question is whether sensory engagement alone, without overt 

movement intention, is enough to aid motor outcome after therapy. A recent paper found 

modest improvements in a BCI-contingent robotic therapy group versus a sham control 

group who received randomized robotic movements not contingent on the BCI (Ramos‐

Murguialday et al., 2013). The sham control group was not able to predict the movement, 

and therefore unable to train ERD. These findings may indicate that the generation of ERD, 

even if it is generated in preparation for sensory stimuli only, may be beneficial to motor 

outcome. 

4.5.3 ABSENCE OF EFFECTS OF AUDIO-VISUAL STIMULI 

Power modulation did not appear in any of the audio-visual only condition exams. 

The final audio-visual only condition is of particular interest, as it occurred after repetitive 

conditioning of motor activity to the audio-visual stimuli. The gaming environment in this 

study utilized very engaging visual and aural cueing matched to overt movement and haptic 

feedback. Popular music with a consistent beat was chosen for maximum influence on the 
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participant; and indeed the gaming paradigm used here is similar to the third most popular 

video game in history. By repeatedly matching hundreds of individuated finger movements 

to the audio-visual cues on screen, the participant was placed in a scenario that one might 

expect would lead to classical conditioning. However, the lack of activity in the final audio-

visual condition suggests an insusceptibility of EEG power modulation to conditioning based 

on audio-visual cueing or gaming environments commonly seen in robot therapy. This 

finding also rules out the possibility that the gaming environment affected ERD in the 

remaining conditions. This is an important null result for ERD-based BCIs relying on aural 

and/or visual cues, as it suggests that the cueing environment alone is unlikely to falsely 

trigger a BCI contingent robot; rather the imposed movement by the robot plays a key role. 

An anticipatory ERD is only generated if the user associates an audio-visual cue as indicating 

an upcoming movement, whether active or passive. 

4.5.4 EFFECTS OF ROBOTIC ASSISTANCE ON SYNCHRONIZATION AFTER MOVEMENT 

Event related synchronization or "rebound" occurred following finger flexion offset 

in all three movement conditions. These findings agree with Pfurtscheller et al., who 

characterized the temporal traits of ERS, finding that a burst of beta power appeared within 

a one second interval following movement offset (Pfurtscheller et al., 1997). Post movement 

beta ERS has since been shown to follow voluntary hand movements (Müller et al., 2003; 

Neuper & Pfurtscheller, 2001; Pfurtscheller, Zalaudek, & Neuper, 1998; Stančák Jr et al., 

2000), as well as passive movements (Cassim et al., 2001; Müller et al., 2003). ERS following 

movement matches previous findings, with the exception of a second, smaller 

synchronization that was more prominent in the robot active conditions. 

The presence of a secondary synchronization in the two active robot conditions may 

be a result of the discrete flexion/extension forces applied by the robot. Secondary 

synchronizations seen in the active robot conditions were not statistically significant from 

the active subject/passive robot case. However, the group-level mean ERS was larger in the 

active robot conditions and ERS significance periods ended later. The mean secondary 

synchronization was greatest in the passive subject/active robot condition, followed by the 

active subject/active robot condition. ERD and ERS in relation to kinematic and kinetic hand 
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movements were recently characterized by use of a 3x4 factorial design experiment in which 

the subjects repeated hand grasping movements at different speeds and forces (Nakayashiki 

et al., 2014). The authors found that although grasping force did not affect the magnitude or 

time course of ERD/ERS, repeating grasping motions caused repeated up-modulation of the 

signal power. This supports our findings, because in the present experiment the robot 

assistance for flexion and extension were separated by approximately a ~200ms interval in 

which no movement occurred, thereby creating two distinct motions (flexion, pause, 

extension), and therefore two distinct synchronization features. In contrast, in the active 

subject/passive robot condition the finger extension occurred immediately after the finger 

flexion without a pause, and therefore did not show a secondary ERS. 

4.5.5 LIMITATIONS AND FUTURE RESEARCH 

In this experiment, we studied unimpaired subjects. Exclusion of the confounding 

influence of brain lesions on EEG activity allowed us to gain insight into the normative 

interaction between robotic assistance and brain activity. However, one study found that 

peak ERD during attempted shoulder-elbow movements was smaller in individuals with a 

stroke compared to unimpaired subjects (Fu et al., 2006). Although this study did not test 

passive movements, there is a possibility that ERD preceding passive movements may be 

diminished in people with neurologic impairment. A future aim of this research is the 

replication the experiment utilizing participants with a stroke.  

This study used a factorial combination of overt movement and robot assistance, 

rather than online BCI contingent control of the robot to study the potential effects of robotic 

therapy on event related EEG features. The observation that the pre-movement ERD was 

contingent on the robotic assistance has implications for using contingent-BCI to improve 

patient engagement. However, it will be important to verify the results presented here in an 

online BCI-contingent robot therapy paradigm in future work.  

Fine motor tasks such as finger individuation are important for daily function. 

Furthermore, it has been suggested that isolated, individualized movement deficit also 

affects impairment in gross movements, such as elbow extension (Zackowski, Dromerick, 

Sahrmann, Thach, & Bastian, 2004). A recent study employed an EEG based BCI in decoding 



68 
 

individuated finger movements, and achieved accuracy significantly above chance level 

(Liao, Xiao, Gonzalez, & Ding, 2014). It may therefore be possible to decode EEG-based 

signals in real time for the online BCI-contingent control of individual fingers in the FINGER 

robotic orthosis, which may improve therapeutic outcome.  

A logical progression of this work would be the identification of an event-related 

brain state robust to the effects of robot-contingent triggering. Functional connectivity has 

been shown to vary between active and passive movements during motor tasks (Formaggio 

et al., 2014), and therefore may be useful as an indicator for active motor engagement in the 

context of BCI-robot therapy. A second approach might forego a-priori feature selection 

altogether, using machine learning algorithms to decode movement intention. Past studies 

have used similar approaches to classify resting state versus active or imagined movements 

(Blankertz, Dornhege, Krauledat, Müller, & Curio, 2007; Fabiani et al., 2004). To our 

knowledge, no such approach has been applied to the classification of passive versus active 

movements. Such an approach may be able to isolate the spatio-spectral EEG features 

associated with active motor engagement in the task. This would circumvent the robot-

contingency observed in ERD preceding passive movements. If patients are indeed slacking 

in the current BCI-contingent robotic therapy paradigms, a passive/active classification BCI 

paradigm might encourage patient motor engagement in the task, improving motor 

outcomes after therapy. 
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CHAPTER 5: DETECTING ACTIVE MOVEMENT IN A ROBOT-ASSISTED 
PROTOCOL 

5.1 INTRODUCTION 

After neurologic trauma, such as a stroke, robot-assisted movement therapy has been 

shown to match or better the results obtainable with conventional rehabilitation (Kahn et al., 

2006; P. S. Lum et al., 2002; Reinkensmeyer, Wolbrecht, et al., 2012).. However, robotic assistance 

can cause "slacking" in the patient, an automatic and subconscious reduction in effort (Israel 

et al., 2006; Reinkensmeyer et al., 2004; Reinkensmeyer, Wolbrecht, et al., 2012; Brendan 

Wesley Smith, 2017; Wolbrecht et al., 2008). In recent years, brain-computer interface (BCI) 

research has aimed to use signals acquired from electrodes on the patient's scalp to detect 

brain states associated with movement intention, and reward the patient by triggering 

robotic assistance (Ramos‐Murguialday et al., 2013). However, in a recent study, we found 

that passive, robotically imposed movements alone can produce brain states that are 

typically associated with actual movement from the participant (S. Norman et al., 2016). This 

phenomenon has the potential to cause false positive movement of the robot, allowing the 

patient to slack, even in a BCI-contingent robot-assisted environment. Using data driven 

techniques, here we identify brain states that can discriminate active versus passive 

movements in 12 unimpaired participants in a robot-assisted environment with the goal to 

inform the BCI methodology and experimental design of BCI-robot therapy. 

5.2 METHODS 

Here, we used the dataset available from (S. L. Norman et al., 2016) where twelve 

unimpaired subjects played a computer game designed for rehabilitation therapy with their 

fingers using the FINGER robotic exoskeleton (Taheri et al., 2014). In the game, the 

participant and robot matched movement timing to audio-visual stimuli in the form of notes 

approaching a target on the screen set to the consistent beat of popular music. We used a 

two factor, two level factorial design where the factors were robot assistance (on or off) and 

overt motor activity by the subject (active or passive) resulting in 4 experimental conditions. 

Participants completed a total of 62 trials in each condition. In this study, we compare brain 

activity from two conditions: 1) the robot was actively moving the fingers but the participant 
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was instructed to remain passive; and 2) the robot was actively moving the fingers and the 

participant was instructed to actively play the musical computer game.  Raw EEG data were 

recorded using the EGI Geodesic EEG System 400 with 256 electrodes at 1 kHz. The 

continuous EEG signals were detrended and low pass filtered at 50Hz. A surface LaPlacian 

filter was then applied to reduce effects of volume conduction. For the results presented in 

(S. L. Norman et al., 2016), we applied a Morlet wavelet transformation for time-frequency 

decomposition. Here, we use a short-time fast Fourier transform (ST-FFT) to ease the 

computational cost of time-frequency decomposition associated with high density EEG 

arrays, i.e. 256 channels sampled at 1 kHz. Trials were segmented into 3000ms epochs 

surrounding the note-target time, where the epoch start time was 1500ms prior to the note 

reaching the target. Power was normalized using the decibel normalization method outlined 

in (M. X. Cohen, 2014), and used in Chapter 4 (S. L. Norman et al., 2016). 

To discern the primary differences between passive and active movements, we 

treated robot assistance and overt movement (i.e. active movement by the subject) as binary 

categorical design factors in two approaches. First, we applied across-subject principal 

component analysis to discern the spatiotemporal patterns that described the most variance 

in the dataset for each condition, e.g. passive vs. active. We use this as a data exploration 

technique to identify common differences in people’s brains, between the active and passive 

conditions, that might inform future experiment task design. We then used Information 

Discriminant Analysis (IDA), a feature extraction technique, to test the feasibility of 

classifying active vs. passive movements in real time (Nenadic, 2007). Due to the high 

dimensional nature of the data, i.e. considering temporal dynamics, spatial patterns, spectral 

bands, etc., we used the solution described by Das & Nenadic, which was specifically 

 

FIG. 1. DATA PROCESSING METHODS OUTLINE 

 

  



72 
 

designed to extract features from high dimensional data (Das & Nenadic, 2009). That is, we 

applied classwise principal component analysis (CPCA) and the Approximated Information 

Discriminant Analysis (AIDA) techniques described in (Das & Nenadic, 2008, 2009). Here, 

we treated passive and active movements as categorical variables. We treated trials as 

replicates in a training set within subjects. We performed this analysis for each subject, 

independently. We used a leave-one-out technique to cross-validate these results, and 

averaged the accuracy across subjects.  

5.3 RESULTS 

Principal component analysis revealed that, after the movement onset of a subject-

passive, robot-imposed, movement, 57% of the variance in the sensorimotor rhythm 

occurred in the primary and secondary motor areas contralateral to the movement. On 

average, a large desynchronization was seen immediately following movement onset, e.g. t=0 

(Fig. 2, left). In contrast, the primary source of variance during subject-active, robot-active 

movements occurred in the prefrontal cortex. A large desynchronization occurred preceding 

movement and immediately rebounded after movement onset.  

 

We were also successful in identifying brain states that can discriminate active 

movement intention and are robust to the influences of the robotic environment. Using the 

 

FIG. 2 FIRST PRINCIPAL COMPONENT DURING PASSIVE, ROBOT-IMPOSED MOVEMENTS (LEFT) AND 

DURING PURPOSEFUL, ACTIVE MOVEMENTS (RIGHT) TOPOGRAPHICAL WEIGHTINGS ARE SHOWN IN AN 

ACROSS-SUBJECTS ANALYSIS. DESYNCHRONIZATION IMMEDIATELY POST-MOVEMENT-ONSET IN 

SENSORIMOTOR AREAS DESCRIBE 57% OF THE VARIANCE DURING PASSIVE MOVEMENTS. PRE-MOVEMENT 

DESYNCHRONIZATION IN PREFRONTAL AREAS DESCRIBE 83% OF THE VARIANCE DURING ACTIVE MOVEMENTS 

WITH A LARGE REBOUND AFTER MOVEMENT ONSET. 
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discriminant techniques described above, we were able to discriminate passive and active 

movements in an average of 75.9% of trials, across participants. Accuracies in 12 subjects 

ranged from 62% to 82% (Fig. 3). 

5.4 DISCUSSION 

Using the classification techniques described here, our BCI predicted patient 

engagement in the task with a 75.9% accuracy on an individual trial basis. Although these 

results were encouraging, these were under ideal conditions and in unimpaired participants. 

Due to the confounding nature of stroke on neuroimaging and its underlying brain 

mechanisms, these accuracies might worsen in people with stroke. For these reasons, we did 

not pursue this method of classification for an online application.  

During the passive movement condition, the topography and resulting temporal 

signal of the first principal component showed a reduction in sensorimotor rhythm 

amplitude, commonly referred to as an event-related desynchronization (ERD) 

(Pfurtscheller & Lopes da Silva, 1999). ERD is most commonly observed in volitional 

movements but, in recent years, increased attention has been given to ERD in passive 

movements and its potential role in rehabilitation (Formaggio et al., 2013; S. L. Norman et 

al., 2016; Tacchino et al., 2016). The primary physiological finding of this exploratory study 

was the variance in signal in the prefrontal cortex preceding movement when the participant 

was subsequently engaged in the motor task. This finding lends insight into the normative 

neurophysiological progression of planning for an intended movement. Indeed, the 

involvement of prefrontal networks in decision making has been observed before. Frith et 

al. found that, for willed acts in which the participant had to make a deliberate choice, blood 

flow in the dorsolateral prefrontal cortex was increased (Frith, Friston, Liddle, & Frackowiak, 

1991). The prefrontal variance observed in this short study was likely associated with the 

motor matching task associated with the musical computer game, which required a 

 

FIG. 3 CLASSIFICATION ACCURACY OF 12 PARTICIPANTS. ACCURACY RANGED FROM 72% TO 82% 

WITH A MEAN ACCURACY OF 75.9%. 
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deliberate choice preceding the finger movement. Thus, designing robotic therapy games to 

require choice, then monitoring pre-frontal activity, may be a simple way of encouraging and 

providing feedback on engagement during rehabilitation training.   
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CHAPTER 6: TOWARDS A CLINICAL APPLICATION OF BCI-ROBOT 
MOVEMENT THERAPY 

Note: Portions of this chapter have been published as: 

Norman, S.L., McFarland, D.J., Sarnacki, W.A., Wolpaw, J.R., Wolbrecht, E.T., Reinkensmeyer, D.J. (2016, 
May). Sensorimotor Rhythms During Preparation for Robot-Assisted Movement, BCI Meeting. 

McFarland, D.J., Norman, S.L., Sarnacki, W.A., Wolbrecht, E.T., Reinkensmeyer, D.J., Wolpaw, J.R. (2016, 
November). BCI-Based Sensorimotor Rhythm Training Can Affect Individuated Finger Movements, 
Neuroscience 2016. 

6.1 INTRODUCTION 

Brain-computer interface (BCI) technology can restore communication and control to 

people who are severely paralyzed. BCI technology might also be able to enhance 

rehabilitation of motor function (Daly & Wolpaw, 2008). Previous research has shown that 

training sensorimotor rhythm (SMR) activity can modulate reaction times in a BCI (Boulay, 

Sarnacki, Wolpaw, & McFarland, 2011) and in motor performance, in a joystick-based cursor 

movement task (McFarland et al., 2015), in people without impairment. A main goal of this 

dissertation is to develop and test BCI-robot protocols for modulating motor performance in 

people with a stroke in the context of developing a potential therapeutic intervention. 

Toward this end, in this chapter, we aim to answer several key preliminary questions for 

people with and without impairment to inform the experimental design and methodology of 

a pilot clinical study of BCI-Robot therapy for retraining finger movement in people with 

stroke. Specifically, we aim to answer the following questions: 1) In adults without motor 

impairment, can training pre-movement SMR activity in the EEG over contralateral 

sensorimotor cortex affect the performance of individuated finger movements? 2) Can a 

previous developed methodology to discriminate movement using pre-movement EEG 

features (McFarland et al., 2015) also predict finger movement in people with stroke? 3) In 

people with chronic motor impairment after stroke, can we detect with comparable 

robustness from pre-movement EEG whether the person intends to flex or extend the finger?   



76 
 

6.2 SENSORIMOTOR RHYTHM TRAINING MODULATES INDIVIDUATED 

FINGER MOVEMENTS 

The primary goal of this pilot study was to answer the question: In adults without 

motor impairment, can controlling pre-movement SMR activity in the EEG over contralateral 

sensorimotor cortex affect the performance of individuated finger movements? In addition 

to this question, we investigated several methodological choices surrounding a finger-

individuated BCI-robot protocol including the effects of cued vs. uncued movement, bipolar 

vs. Laplacian channels, and active vs. passive movements. 

6.2.1 METHODS 

 

 

FIG. 1. IN THE UPPER LEFT PANEL, THE RED CIRCLE ON TOP INDICATES THAT THE INDEX FINGER 

SHOULD REMAIN EXTENDED WHILE THE GREEN CIRCLE BELOW INDICATES THAT THE MIDDLE FINGER SHOULD 

BE FLEXED. THE RESPONSE WAVEFORMS ARE SHOWN IN THE UPPER RIGHT PANEL. THE RESPONSE FEATURES 

ANALYZED WERE LATENCY TO START, LATENCY AND AMPLITUDE OF MAXIMUM ACCELERATION, AND LATENCY 

AND AMPLITUDE OF PEAK RESPONSE.  
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Six (N=6) unimpaired volunteers, aged 25 to 53, took part in this study. In Phase 1, 

each subject performed a go-nogo task in which flexion of the index finger and/or middle 

finger was cued by visual stimuli on a video screen (Fig. 1) and assisted by the robot. Robot 

assistance was provided by the Finger Individuating Grasp Exercise Robot (FINGER) (Taheri 

et al., 2012). FINGER can assist flexion/extension of the index and middle fingers along a 

naturalistic grasping/release trajectory. Robot data were sampled at 1000Hz and sub-

sampled/recorded at 64Hz. On the “Go” trials, the robot only assisted the user after they 

reached a finger extension force threshold, requiring the participant to initiate each trial of 

their own volition. Assistance forces were based on a position (PD) controller that corrected 

user movement towards a minimum-jerk trajectory that would complete a full movement in 

0.5 s. Thus, if the user lagged the trajectory, the robot would assist them. However, if the user 

exceeded the trajectory, the robot would slow them down.  

We compared two pre-response cuing conditions on separate days: 1) a warning 

stimulus that did not inform about which fingers would be requested to be flexed (Fig. 2, 

UnCued) and 2) a pre-trial cuing of the to-be-flexed fingers (Fig. 2, PreCued). We also tested 

two movement types: flexion and extension. Thus, there were four experimental conditions 

including the mixtures of cued/uncued and flexion/extension movements. EEG activity for 

the pre-movement period was analyzed to identify SMR features, i.e. amplitudes in specific 

mu (9-13 Hz) or beta (18-27 Hz) frequency bands at locations over the sensorimotor cortex, 

which best predicted movement versus no movement. We did this for each of the four 

experimental conditions. In Phase 2, the participant was trained to increase or decrease this 

SMR feature. In Phase 3, the subject was cued to either increase or decrease this SMR feature 

prior to finger movement, and the impact of pre-movement SMR amplitude on movement 

performance was assessed (Fig. 3). 
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6.2.2 RESULTS 

We tested several regression models: elastic net with l1 and l2 regularization, and 

Ordinary Least Squares. Phase 1 predictive models were successful across all participants in 

 

FIG. 2. THE LEFT PANEL ILLUSTRATES THE CONDITION WHERE THE TO-BE-FLEXED FINGERS ARE NOT 

IDENTIFIED DURING THE PRE-TRIAL PERIOD. THE RIGHT PANEL ILLUSTRATES THE CONDITION WHERE THE TO-
BE-FLEXED FINGERS ARE IDENTIFIED DURING THE PRE-TRIAL PERIOD. IN THE PRECUED CONDITION, YELLOW 

ON TOP INDICATES THAT THE INDEX FINGER WILL SUBSEQUENTLY BE FLEXED AND BLUE ON THE BOTTOM 

INDICATES THAT THE MIDDLE FINGER WILL REMAIN EXTENDED. 

 

FIG. 3. THREE PHASE DESIGN. THE LEFT PANEL SHOWS THE CUED TASK THAT WAS USED TO IDENTIFY 

SMR FEATURES FOR TRAINING (4 SESSIONS). THE MIDDLE PANEL SHOWS THE TRAINING PHASE (10 

SESSIONS). SUBJECTS LEARNED TO REDUCE SMR FEATURES WITH YELLOW TARGETS AND INCREASE SMR 

FEATURES WITH BLUE TARGETS. WITH SUCCESS, TARGETS TURNED GREEN. THE RIGHT PANEL SHOWS PHASE 

3 STIMULI (5 SESSIONS). SUBJECTS GENERATED APPROPRIATE SMR CONDITIONS TO INITIATE MOTOR TASKS. 
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that they could predict go vs. nogo during the training period using any of the model types. 

That is, the response parameters (uncued and cued go/nogo for all finger combinations) 

were correlated with 24 EEG features using ordinary and l1 penalized canonical correlation 

models (Witten, Tibshirani, & Hastie, 2009). The l1 penalty produced sparse solutions, and 

was thus thrown out. We generated these models on training data from the first day of data. 

In general, the comparisons’ generalization to test data, taken on the second day, was poor. 

 

We also tested two types of EEG montage transforms: Laplacian transform 

(McFarland, McCane, David, & Wolpaw, 1997) and bipolar derivations involving channels C3 

and either AFz, FCz, CPz, or POz. We then correlated cued movement or rest with 24 EEG 

features using the OLSR and elastic net penalties (Zou & Hastie, 2005). Bipolar derivations 

consistently outperformed the Laplacian transformation (Fig. 5). 

 

FIG. 4. PHASE 1 PREDICTION OF RESPONSE PARAMETERS FOR PRE-TRIAL CUED AND UNCUED 

CONDITIONS. THE LEFT PANEL COMPARES THE SPARSE AND ORDINARY MODELS WHEN USED FOR PARAMETER 

ESTIMATION AND MODEL VALIDATION (MODEL X USE INTERACTION, F=28.48, P<0.0001). THE RIGHT 

PANEL COMPARES THE CUED AND UNCUED CONDITIONS (CUE X USE INTERACTION, F=5.30, P<0.0468). IN 

THESE COMPARISONS, GENERALIZATION TO TEST DATA WAS GENERALLY POOR.  
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Finally, we tested the ability of the model types to predict active vs. passive 

movements. That is, volitional/active movements by the participant in the robot vs. passive, 

robot-imposed movements of the fingers. Models based on passive movement data 

generalized better than active movement models (Fig. 6). In addition, all the penalized 

models generalized better than OLSR. 

 

 

FIG. 5. PHASE 1 PREDICTION OF STIMULUS CONDITIONS FOR THE PRE-TRIAL CUED TASK. THIS FIGURE 

COMPARES THE RESULTS OF EEG FEATURES DERIVED WITH EITHER A LARGE LAPLACIAN (LL) TRANSFORM 

OR BIPOLAR DERIVATIONS (BIP). CORRELATIONS AND GENERALIZATION TO TEST DATA WAS BETTER FOR 

BIPOLAR DERIVATIONS.  

 

FIG. 6. PHASE 1 PREDICTION OF STIMULUS CONDITIONS FOR THE PRE-TRIAL CUED ACTIVE AND 

PASSIVE MOVEMENTS. A COMPARISON OF ACTIVE AND PASSIVE MOVEMENT CONDITIONS REVEALED THAT 

MODELS BASED ON PASSIVE MOVEMENT DATA GENERALIZED BETTER THAN ACTIVE MOVEMENT MODELS.  
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After phase 2 training, all participants generated significantly higher SMR amplitudes 

on the blue target trials and smaller SMR amplitudes on the yellow trials. Here, we present a 

topographical map of r2 values describing what areas of the brain, for each participant, 

correlated with the yellow vs. blue response parameter. Participants, A, B, C, and F used their 

right hands; participants D and E used their left hands. Participants A, B, E, and F showed 

lateralized activation contralateral to the limb being moved in primary sensorimotor cortex, 

although participant F did show some bilateral activation. Participants C and D exhibited 

more central activation patterns. The amplitude spectra reveal that most participants were 

modulating in the mu or beta band, or both. For example, participant D showed a clear 

separation of the spectra for go vs. nogo trials at approximately 20 Hz. Participants C and F 

exhibited small amounts of low-frequency modulation.  

 

Finally, we examined the effects of voluntary pre-movement SMR modulation on subsequent 

motor performance. In Table 1, we present the movement measure mean values across all 

responses for each participant. A few key results are that four of six participants significantly 

altered their response latency, maximum response latency, and maximum acceleration 

 

FIG. 7. R2 TOPOGRAPHIES AND VOLTAGE SPECTRA FOR EACH INDIVIDUAL SUBJECT ON THE LAST 

SESSION OF PHASE 2 BCI TRAINING. 
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latency by modulating pre-movement SMR and four participants, including three of the 

aforementioned, significantly altered their maximum acceleration amplitude.  

 

Although many subjects exhibited significantly altered movement performance as the result 

of successfully modulating pre-movement SMR, the effect on movement was not consistent 

across subjects or indeed, across responses, i.e. which finger moved (Fig. 8). For example, 

Participants B and D, both subjects’ latency was shorter when they moved two fingers after 

successfully decreasing their pre-movement SMR compared to when they moved two fingers 

after increasing their pre-movement SMR. In both subjects, latency was longer with two 

finger movements than one finger movements. In contrast to two finger movements, when 

these participants moved one finger after successfully decreasing pre-movement SMR, the 

reduction in latency was less in subject B and even reversed in subject D. Thus, in these 

subjects, SMR effects varied with response requirements.  

TABLE 1: PHASE 3 FINGER MOVEMENT PERFORMANCE ON TRIALS WITH BLUE (SMR INCREASE) AND 

YELLOW (SMR DECREASE) CUES FOR INDIVIDUAL SUBJECTS. LATENCIES ARE IN MSEC AND AMPLITUDES ARE 

IN PERCENTAGE OF MAXIMUM POSSIBLE. SIGNIFICANCE LEVELS ARE DENOTED BY: *P<0.05, **P<0.01, 
***P<0.001, +P<0.0001. 

Table 1: Phase 3 Movement Performance 

Subject SMR SMR feature Latency (ms) Max Amplitude 

Time to M.A. 

(ms) 

A Increase 4.27 827 61.2 981 

 Decrease 4.18+ 767 63.8 921 

      

B Increase 2.52 497 69.2 763 

 Decrease 2.02+ 459** 69.9 633+ 

      

C Increase 1.96 627 82.6 855 

 Decrease 1.31+ 521+ 82.4 718+ 

      

D Increase 3.32 484 88.7 805 

 Decrease 1.95+ 475 89.6 803 

      

E Increase 5.57 821 50.6 988 

 Decrease 3.35+ 978** 44.5** 1103* 

      

F Increase 7.43 622 57.5 897 

  Decrease 4.04+ 556 57.2 832++ 
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6.2.3 DISCUSSION 

Previous research has shown that controlling pre-movement sensorimotor rhythm 

(SMR) activity can modulate reaction time in mental tasks (Boulay et al., 2011) and motor 

tasks such as a joystick-based cursor movement task (McFarland et al., 2015). Here, we found 

that, in adults without motor impairment, controlling pre-movement SMR activity in the EEG 

over contralateral sensorimotor cortex can modulate the performance of subsequent 

movement performance in a finger movement task. This provides a rationale for using this 

finger movement test in a BCI-robot protocol in people with stroke.  

In addition to this primary finding, we also found several secondary findings. First, 

we found that cued and uncued movements had comparable correlations to the response 

 

FIG. 8. PHASE 3 MOTOR PERFORMANCE FOR SUBJECTS B (UPPER PANEL) AND D (LOWER PANEL) AS 

A FUNCTION OF NUMBER OF ACTIVE FINGERS (ONE OR BOTH). IN BOTH SUBJECTS, LATENCY IS LONGER WITH 

TWO FINGER MOVEMENT AND DECREASES WHEN SMR IS VOLUNTARILY DECREASED. WITH SINGLE FINGER 

MOVEMENTS, THIS EFFECT IS LESS (SUBJECT B) OR REVERSED (SUBJECT D). THUS, SMR EFFECTS CAN VARY 

WITH RESPONSE REQUIREMENTS.  
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value (Fig. 4), indicating feasibility in a BCI methodology designed around either approach. 

Thus, in Chapter 7, we describe a BCI-robot therapy protocol for people with stroke designed 

around both cued and uncued movements. Next, we found that Bipolar channels performed 

better than Laplacian channels (Fig. 5). Thus, in the following work we discard Laplacian 

channel analysis in favor of Bipolar channels. We also found that the models continued to 

perform, and in-fact performed better in the test data set, for passive movements compared 

to active movements (Fig. 6). Again, this highlights the sensory nature of the sensorimotor 

cortex, especially in a robot-assisted movement environment, and is confirmatory of my 

previous results described in (S. L. Norman et al., 2016). Next, we describe a second pilot 

experiment that explores several other questions pertaining to BCI-robot training, but now 

in a study of people with chronic movement disability after a stroke.  
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6.3 PREDICTING FINGER MOVEMENT IN PEOPLE WITH CHRONIC STROKE 

The primary goal of this pilot study was to answer the question: Can our existing 

methodology to discriminate movement using EEG, so-far tested only in unimpaired people, 

also predict movement in people with stroke? We also aim to explore whether finger flexion, 

or finger extension, stand to experience greater effect from SMR training in people with 

stroke.  

6.3.1 METHODS 

We recruited five (N=5) individuals with paresis of the left hand resulting from 

chronic stroke, all male, aged 27-73 (mean 56 +/- SD 17.9), Fugl-Meyer Assessment (FMA) 

at baseline 47.8+/-8.4, Box & Blocks Test (BBT) at baseline 23.4 +/-10.7. Participants 

performed a go-nogo finger movement task using the FINGER robot-assisted movement 

system (Taheri et al., 2014). Visual stimuli cued movement conditions for index, middle, or 

both fingers. Participants used their impaired hand to complete finger individuated 

extension and finger individuated flexion tasks to discern any differences in motor 

performance and EEG signals between the two. Robot assistance was provided only after the 

subject initiated movement, detected by FINGER when the user exceeded a force threshold 

against the robot. No assistance was provided for incorrect movements. Participants 

completed two sessions with at-least 24 hours between them. Each session consisted of six 

two-minute runs of approximately 18 trials per run.  

Visual cues were given on the screen to cue the participants’ movement. At the 

beginning of each trial, two dots, arranged vertically on a monitor in front of the participants, 

presented different colors. The top dot represented the imperative stimuli for the index 

finger, while the bottom finger represented the imperative stimuli for the middle finger. 

During a pre-movement period, the dots would present as either yellow or blue. Yellow dots 

indicated that the corresponding finger would subsequently be cued to move while blue dots 

indicated that the corresponding finger would not be cued to move. The pre-movement 

stimulus appeared on the screen for an average of 1.5 sec, but was randomized to avoid 

predictive movements by the participant. After the pre-movement stimuli were presented, 

the movement cue was given. At this point, yellow circles turned green for ‘go’ and blue 
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circles turned red for ‘no-go’ for the corresponding fingers. The participant would attempt 

to move the finger(s) that was given a ‘go’ cue, as quickly and as far as possible. Participants 

were assisted by the Finger Individuating Grasp Exercise Robot (FINGER) (Taheri et al., 

2012). Robot data were sampled at 1000Hz and sub-sampled/recorded at 64Hz. On the “Go” 

trials, the robot only assisted the user after they reached a finger extension force threshold, 

requiring the participant to initiate each trial of their own volition. The size of the circles on 

screen would grow with the position change of a correctly-moved finger. At the completion 

of movement, defined as 90% of the maximum range of the robot, the large green circle 

would turn white to indicate a successful trial. An example of a successful index finger flexion 

trial can be seen in Fig. 9. 

EEG was recorded using 16 electrodes embedded in a cap (ElectroCap, Inc.) according to the 

modified 10-20 system referenced to the mastoid and re-referenced, in software, to a 

common average transform (McFarland et al., 1997). Spectral analysis was performed using 

the 16th order autoregressive algorithm described in (McFarland & Wolpaw, 2008). 

 

FIG. 9. TIME PROGRESSION OF AN INDEX FINGER FLEXION ‘GO’ TRIAL. TOP: VISUAL CUES GIVEN TO 

THE PARTICIPANT. BOTTOM: THE CORRESPONDING RESPONSE OF A PARTICIPANT USING FINGER. AN 

EXAMPLE MOVEMENT PROGRESSION CAN BE SEEN STARTING WITH A, AN INDEX MOVEMENT PREPARATION CUE 

(YELLOW DOT), AND B, THE ‘GO’ CUE (GREEN DOT) AND THE CORRECT MOVEMENT RESPONSE (INDEX FINGER 

FLEXION). IN C, THE PARTICIPANT’S CORRECT RESPONSE HAS ELICITED ROBOT ASSISTANCE FOR THE 

REMAINDER OF THE MOVEMENT. VISUAL FEEDBACK IS GIVEN IN THAT THE GREEN CIRCLE GROWS WITH FINGER 

POSITION. IN D, THE CUE TURNS WHITE INDICATING A PROPERLY EXECUTED MOVEMENT BEYOND A TARGET 

DISTANCE. AFTER THIS, THE PARTICIPANT WAS GIVEN VISUAL FEEDBACK ON THE LATENCY FROM GO CUE TO 

FINGER MOVEMENT INITIATION, WHICH THEY WERE INSTRUCTED TO MINIMIZE, AND THE ROBOT RETURNED 

THE PARTICIPANT’S FINGER BACK TO THE STARTING POSITION. 
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Amplitudes for six 3-Hz spectral bands from 6-24 Hz were computed for 400-ms sliding 

windows updated every 50 ms. The response parameters (go vs. nogo for all finger 

combinations) were correlated with 24 EEG features (amplitudes for each spectral band & 

location) using ordinary least square regression (OLSR) and canonical correlation (Elastic 

Net) with l1 penalties models (Witten et al., 2009). We used the glmnet package from R (J. 

Friedman, Hastie, & Tibshirani, 2010). Data from session 1 was used as the training set. We 

validated the model using data from session 2, on a different day.  

6.3.2 RESULTS 

 

For the finger extension task, the OLSR modeling of pre-movement SMR features on 

the training set (first day) successfully predicted go/nogo cues in all five participants 

(p<0.05) on the test data (second day). The elastic net model successfully predicted go/nogo 

cues in 4/5 participants. For the finger flexion task, the OLSR model successfully predicted 

go/nogo cues in just 1/5 participants, and the elastic net model successfully predicted 

go/nogo cues in just 2/5 participants. We outline these results by each participant and motor 

task (flex/extend) in Table 2. Overall, models of pre-movement SMR predicted go vs. nogo 

with better accuracy for finger individuated extension movements compared with flexion 

movements in four out of five subjects (Fig. 10). 

 

FIG. 10. PEARSON’S R VALUES FOR THE BEST PREDICTOR MODEL BY SUBJECT. PRE-MOVEMENT 

PERIOD SMR FEATURES PREDICT GO VS. NOGO. FLEXION AND EXTENSION MOVEMENTS RESULTS ARE GIVEN. 
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Pre-movement features showed varying results across participants (Fig. 11). The 

strongest pre-movement and intra-movement correlations for participant 1 were in the 18 

Hz band and located above contralateral motor cortex. Participants 2 and 4 had little spatial 

or spectral variation in pre-movement correlations but showed significant correlations at 18 

Hz and 12 Hz, respectively, during the intra-movement period. Participants 3 and 5 showed 

broad spatial and spectral patterns correlating to the go/nogo condition. In general, intra-

movement features were more robust, showing predictive power in all five participants. We 

present the correlation topographies for each participant and frequency band in Fig. 11 for 

comparison to the pre-movement period topographies. However, because these features are 

of little utility in an SMR training BCI protocol, we did not investigate these signals any 

further.  

TABLE 2: PEARSON’S R VALUES. PRE-MOVEMENT SMR FEATURES PREDICT GO VS. NOGO (TARGET 

COLOR). ELASTIC NET AND ORDINARY LEAST SQUARES REGRESSION (OLSR) RESULTS FOR BOTH FLEXION 

AND EXTENSION MOVEMENTS. *P<0.05. **P<0.01. 
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6.3.3 DISCUSSION 

These results show that we could predict the willing intent to move the finger in a 

person with stroke using an SMR-based BCI protocol over the course of multiple session. Our 

previous work (McFarland et al., 2015) in unimpaired people suggests that operant 

conditioning of SMR features during movement preparation can improve subsequent motor 

performance. The present results provide a potential basis for conditioning such activity in 

people with motor deficit after stroke to beneficially modify neural circuits important to 

finger movement.  

A secondary finding is that EEG features predicting finger extension generalized to a 

second session with better accuracy than features predicting finger flexion. Finger extension 

deficit is a major contributor to movement disability in the hand for people with chronic 

stroke (Lang, DeJong, & Beebe, 2009), and, conveniently, the current results show that an 

ensuing finger extension movement is more robust to detection with pre-movement EEG 

 

FIG. 11. TOPOGRAPHICAL MAPS OF PEARSON’S R VALUES FOR PREDICTING WHETHER THE 

PARTICIPANT IS PREPARING TO RESPOND OR WITHHOLD A RESPONSE (I.E. TARGET COLOR GREEN VS. RED) 

BASED ON SMR PRECEDING MOVEMENT ONSET (SEE FIG 9A).  EACH GROUPING OF TWO COLUMNS 

REPRESENTS DATA FROM EACH SUBJECT. 
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features than finger flexion.  Thus, in Chapter 7, we describe a BCI-robot therapy protocol for 

people with stroke designed to train finger extension rather than finger flexion. 

By focusing on the movement preparation period, this work is exploring a new way 

in which BCI technology might contribute to rehabilitation after stroke or in other chronic 

movement disorders. BCI-based shaping of pre-movement SMR activity together with robot-

assisted movement could potentially enhance rehabilitation and augment recovery of hand 

function.   
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CHAPTER 7: LEARNING TO CONTROL PRE-MOVEMENT SENSORIMOTOR 
RHYTHM CAN IMPROVE FINGER EXTENSION AFTER STROKE 

7.1 ABSTRACT 

Brain-computer interface (BCI) technology, combined with robot assistance, is 

attracting increasing interest as a possible tool for enhancing rehabilitation therapy of motor 

function after stroke, yet the optimal way to apply this technology is unknown. Here, we 

studied the immediate and therapeutic effects of learning to control pre-movement 

sensorimotor rhythm (SMR) using a BCI on subsequent finger extension ability of people 

with moderate to severe hand impairment after chronic stroke. Eight participants (mean Box 

and Blocks Test (BBT) score = 14 compared to a normal score of 70) completed four weeks 

of an EEG-based training protocol during which they practiced finger extension with 

assistance from the FINGER robotic exoskeleton. During the first week (Phase 1) we 

identified individualized SMR features in the pre-movement EEG that correlated with the 

intent to try to extend the finger. Next, for two weeks (Phase 2), the participants learned to 

increase or decrease their selected SMR features given visual feedback, without moving the 

fingers. Finally, in the fourth week (Phase 3), participants were cued to increase or decrease 

their SMR feature immediately prior to attempting to extend the fingers. Six of eight 

participants achieved reliable control of the BCI in Phase 2, but spectral analysis indicated 

the possibility of non-EEG control by two of these six. In Phase 3, the four participants with 

brain-based control of the BCI initiated finger extension faster after decreasing compared to 

increasing pre-movement SMR amplitude, consistent with previous findings with 

unimpaired people. We also show, for the first time, that these participants extended the 

fingers more forcefully after decreasing pre-movement SMR amplitude. Across the course of 

training, participants’ hand function, measured by the BBT showed modest improvement 

(4.3 +/- 4.5). BBT score at screening predicted the final change in BBT score (R2=0.63, 

p=0.019), and the strength of this effect was significantly improved by limiting the model to 

the participants with BCI control (R2=0.99, p=0.005). That is, participants with higher 

baseline finger function had significantly better motor outcome following the BCI-based 

training, and those that achieved brain-based control benefit most. These results show that 

learning to control pre-movement SMR can modulate finger extension ability, and suggest 
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possible therapeutic carry-over from the BCI training process, meriting further investigation 

in a rehabilitation context.  

7.2 INTRODUCTION 

Stroke is the leading cause of disability worldwide (Feigin et al., 2014; Lopez et al., 

2006), affecting over 700,000 people in the US each year (Broderick et al., 1998). It is 

estimated that about 80% of people with acute stroke experience motor deficits (Gresham 

et al., 1995). After injury, people with stroke typically undergo several months of movement 

rehabilitation with the goal of improving functional movements.  

Robotic devices, such as powered exoskeletons, have been suggested to assist 

rehabilitation therapy for people with stroke and other neurologic impairments 

(Reinkensmeyer et al., 2004). Robotic assistance has been shown to enhance afferent 

feedback, which may aid neural reorganization (Hornby et al., 2010). Past literature has 

shown the efficacy of robot-assisted therapy to equal or better the results of conventional 

rehabilitation techniques (Hidler et al., 2009; Volpe et al., 2005). Robot-assisted therapy is 

not without its flaws, however. For example, maintaining active effort by the patient is vital 

to motor recovery (Hu et al., 2009; Lotze et al., 2003; Reinkensmeyer et al., 2004). 

Unfortunately, patient engagement is not guaranteed in a robot-assisted environment due to 

a phenomenon called “slacking”, a subconscious and automatic reduction in effort by the 

patient (Reinkensmeyer, Wolbrecht, et al., 2012; Wolbrecht et al., 2008). Furthermore, 

control strategies such as force amplification and gravity cancellation are not sufficient for 

patients with severe paralysis. Brain-computer interface (BCI) technology has been 

proposed as one potential solution to augment robot-assisted therapy for the purpose of 

restoring motor function after neurologic injury (Daly & Wolpaw, 2008). Toward this end, 

we explore the possibility that BCI training could enhance the efficacy of robot-assisted 

movement training for people with stroke.  

BCI has also been suggested to leverage neuroplasticity to improve motor outcome 

after neurologic injury. Since its inception in the 1940’s, activity dependent plasticity, i.e. 

“Hebbian” plasticity, has been expanded to apply to representational plasticity documented 

after subjects endured manipulations of inputs from the peripheral nervous system 
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(Buonomano & Merzenich, 1998). In 1991, Taub’s study in macaque monkeys demonstrated 

cortical reorganization after undergoing peripheral nerve limb deafferentation over a 

decade earlier (KAAS, TAUB, & MISHKIN, 1991). Sensorimotor rhythm (SMR) training has 

been used as the go-to control signal for BCI protocols that aim to alter cortical organization, 

with modest therapeutic effect (Buch et al., 2008; Ramos‐Murguialday et al., 2013). SMR 

training may also be useful for normalizing SMR activity to produce more normal subsequent 

movements (McFarland et al., 2015), but this approach has not yet been tested in people with 

stroke. 

Although there has been much speculation as to the capacity of 

electroencephalographic (EEG) based BCI technology to contribute to the rehabilitation of 

motor function, there is limited empirical data suggesting that volitional control of EEG 

activity can modify motor behavior. In this work, we hypothesize that 1) people with stroke 

can obtain control of an EEG-based SMR-amplitude BCI, given visual feedback, and 2) 

volitional modulation of pre-movement SMR amplitude immediately before a finger 

extension task can alter motor performance, measured as movement onset latency and 

maximum extension torque. In a previous study, we trained eight (N=8) unimpaired 

participants to control SMR during movement preparation in a similar manner to this study 

(McFarland et al., 2015). Following successful BCI training, participants were required to 

modulate SMR amplitude to initiate a motor task. Movement onset latency was significantly 

reduced when participants decreased their pre-movement SMR amplitude. Here we present 

a pilot study to test the ability of people with chronic hand paresis after stroke to control 

such a BCI and its potential effects on motor performance.  

7.3 METHODS 

7.3.1 PARTICIPANTS 

We recruited individuals who had experienced a single stroke at least six months 

previously, which had spared the ipsilesional precentral gyrus, (i.e. whose stroke was 

subcortical or cortical sparing primary motor area), and who had a significant but not total 

deficit of finger motor function, defined as a Box and Blocks Test (BBT) score between 1 and 

25.  The resulting eight (N=8) participants were all male, aged 44-83 (mean 59.5 +/- SD 11.8), 
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with BBT score at baseline between 1-22 (mean 12.0 +/- 8.5). All participants were naïve to 

brain-computer interface training and achieved a satisfactory score (minimum 24) on the 

Montreal Cognitive Assessment (MoCA). All participants provided written informed consent 

and the study was approved by the Institutional Review Board of UC Irvine.  

7.3.2 PROTOCOL 

Participants engaged in four weeks of training, undergoing three days of training per week 

using the FINGER robotic exoskeleton (Taheri et al., 2014).  Each day consisted of 8 3-minute 

runs, with an average total of 240 trials per day. The study was divided into three phases. 

Phases 1 and 3 lasted one week, and incorporated finger extension practice, while Phase 2 

lasted two weeks and focused solely on SMR control (Fig. 1). Phase 1 identified one or more 

SMR features in the EEG during the preparatory period that correlated with the go/nogo 

condition of the finger extension movement trial. Phase 2 trained users to increase or 

decrease the amplitude of these SMR features using visual feedback only, without attempting 

to move the fingers. Phase 3 combined the SMR regulation of Phase 2 with the movement of 

Phase 1 to evaluate the effects of achieving control of the pre-movement SMR feature on an 

immediately ensuing finger extension movement attempt.  

 

3. 

 

Fig. 1. TIMELINE OF STUDY. EACH DOT REPRESENTS ONE SESSION/DAY OF TRAINING. EACH GROUP 

OF THREE DOTS REPRESENTS ONE WEEK OF TRAINING (4 WEEKS TOTAL). RED SESSIONS INDICATE ROBOT-
ASSISTED MOVEMENT TRIALS AND BLUE SESSIONS INDICATE BCI/VISUAL FEEDBACK ONLY SESSIONS. PHASES 

1 AND 3 HAD THREE SESSIONS EACH, WHILE PHASE 2 HAD SIX SESSIONS. CLINICAL ASSESSMENTS OF UPPER 

EXTREMITY MOVEMENT ABILITY WERE CONDUCTED AT THE BEGINNING AND END OF PHASES 1 AND 
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7.3.3 PHASE 1 – IDENTIFICATION OF SMR FEATURES 

During Phase 1, we aimed to identify participant-specific SMR features that predicted 

the intent to try to extend the fingers as quickly and forcefully as possible. Participants sat in 

a chair facing a 24” 1920x1080 monitor 1.5 m away while EEG was recorded. Participants 

completed a Go/NoGo task cued on the monitor. “Go” trials required them to extend the index 

finger only, the middle finger only, or both fingers together. On these trials, robot assistance 

was provided by the Finger Individuating Grasp Exercise Robot (FINGER) (Taheri et al., 

2012). FINGER can assist flexion/extension of the index and middle fingers along a 

naturalistic grasping/release trajectory, and was used to record position, acceleration, and 

force at the proximal and middle phalanxes of the index and middle fingers to calculate 

torque at the metacarpophalangeal (MCP) joint. These data were sampled at 1000Hz and 

sub-sampled/recorded at 64Hz. On the “Go” trials, the robot only assisted the user after they 

reached a finger extension force threshold, requiring the participant to initiate each trial of 

their own volition. Assistance was given primarily to assist participants in completing finger 

extension movements that they couldn’t normally complete on their own. Assistance forces 

were based on a position (PD) controller that corrected user movement towards a minimum-

jerk trajectory that would complete a full extension movement in 0.5 s. Thus, if the user 

lagged the trajectory, the robot would assist them. However, if the user exceeded the 

trajectory, the robot would slow them down. We did not observe a slowing effect in any of 

the participants in this study. 

Movement conditions were randomized between 1) no-movement (i.e. “NoGo” 

condition), 2) index finger only, 3) middle finger only, and 4) both finger movement. All 

movements were attempted using the paretic hand. Each trial began with the fingers flexed. 

Extension of the index and/or middle fingers was cued during a warning phase by the colors 

of two circles on the monitor (Fig. 2a). During the 1 s period prior to movement, the 

participant received a yellow circle(s) for the to-be-extended finger(s) and a blue circle(s) 

for any finger(s) that were to remain flexed, i.e. no movement. During the response interval, 

yellow circles changed to green to cue extension (“Go” condition) and blue circles changed 

to red to cue the participants’ finger to remain flexed (“NoGo” condition, Fig. 2b). The 

participant had 2 seconds to complete the response (Fig. 2c). The green circle would grow 
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with proper movement as a form of positive visual feedback. If the response was correct and 

the participant completed the movement, the circle turned white for 1 s (Fig. 2d).  If the 

response was not correct, or 2 seconds expired, the screen went black for 1 sec.  Fig. 2 also 

shows an example of the finger position response profile recorded from a single trial. After 

each movement, the robot returned the fingers to the flexed position and held the fingers 

there.  

 

7.3.3.1 EEG DATA COLLECTION, PROCESSING, AND MODELING 

EEG activity for the period between the two cues was analyzed to identify the SMR 

features, defined as the amplitude in a specific mu (8-12 Hz) or beta (18-30 Hz) frequency 

band at a specific location(s) over sensorimotor cortices – that best predicted movement in 

the “Go” condition versus the “NoGo” condition. EEG was recorded using 9-mm tin electrodes 

 

FIG. 2. PROGRESSION OF AN INDEX FINGER EXTENSION TRIAL DURING PHASE I. TOP: VISUAL CUES 

GIVEN TO THE PARTICIPANT. BOTTOM: THE CORRESPONDING RESPONSE OF A PARTICIPANT USING FINGER. 
AN EXAMPLE MOVEMENT PROGRESSION CAN BE SEEN STARTING WITH A, AN INDEX MOVEMENT PREPARATION 

CUE (YELLOW CIRCLE), AND B, THE ‘GO’ CUE (GREEN DOT) AND THE CORRECT MOVEMENT RESPONSE (INDEX 

FINGER EXTENSION). IN C, THE PARTICIPANT’S CORRECT RESPONSE HAS ELICITED ROBOT ASSISTANCE FOR THE 

REMAINDER OF THE MOVEMENT. VISUAL FEEDBACK IS GIVEN IN THAT THE GREEN CIRCLE GROWS WITH FINGER 

POSITION. IN D, THE CUE TURNS WHITE INDICATING A PROPERLY EXECUTED MOVEMENT BEYOND A TARGET 

DISTANCE. AFTER THIS, THE PARTICIPANT WAS GIVEN VISUAL FEEDBACK ON THE LATENCY FROM GO CUE TO 

FINGER MOVEMENT INITIATION, WHICH THEY WERE INSTRUCTED TO MINIMIZE, AND THE ROBOT RETURNED 

THE PARTICIPANT’S FINGER BACK TO THE STARTING POSITION. 
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embedded in a cap (ElectroCap, Inc.) at 16 scalp locations according to the modified 10-20 

system of Sharbrough et al. (Sharbrough et al., 1991). The electrodes were referenced to the 

mastoid and re-referenced to a common average reference transform (McFarland et al., 

1997). Their signals were amplified and digitized at 256 Hz by a g.USB. BCI operation and 

data collection were supported by the BCI2000 platform (Mellinger & Schalk, 2009; Schalk, 

McFarland, Hinterberger, Birbaumer, & Wolpaw, 2004). Spectral analyses were performed 

using the 16th-order autoregressive algorithm described in McFarland and Wolpaw 

(McFarland & Wolpaw, 2008) and used in (McFarland et al., 2015). The amplitudes for 3-Hz 

spectral bands from 6-24 Hz were computed for 400-ms sliding windows updated every 

50ms. Next, we used multiple regression models in the glmnet package from R (J. Friedman 

et al., 2010) to correlate potential SMR features (e.g. SMR amplitude at 6-9 Hz for electrode 

C3) with the warning cue value (Go vs. NoGo). We tested three regression models: Elastic Net 

with l1 and l2 regularization and Ordinary Least Squares, keeping the best result for each 

participant. 

7.3.4 PHASE 2 – SENSORIMOTOR RHYTHM TRAINING 

In Phase 2, participants were trained to gain volitional control of the SMR feature 

amplitude selected on the basis of the analysis of the Phase 1 data. Participants attended 

three sessions of Phase 2 training per week for two weeks (6 total sessions). Each session 

lasted approximately one hour, during which participants completed 8 x 3-minute runs of 

SMR training. Participants learned to increase or decrease the amplitude of the SMR feature 

identified in Phase 1 using visual feedback in the form of color change of a square on the 

monitor. Participants were instructed to explore different motor imagery scenarios, e.g. 

finger movement, until they found a strategy that allowed them to control the BCI. For each 

trial, the starting color of the 5.1 cm squares was randomly chosen to be yellow or blue. When 

the square appeared, the participant controlled the saturation of the colored square based 

on real-time feedback of their modulation of the SMR. For yellow squares, the participant 

was asked to maintain the SMR feature amplitude above a threshold value for 1 s. As the 

criterion approached threshold, the square would change color to a brighter yellow and 

finally to bright green for 0.5 s upon success (Fig. 3). In blue-target trials, participants were 

asked to maintain the SMR feature amplitude below a threshold value for 1 s. As the criterion 
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approached threshold, the square would turn to a brighter yellow and finally to a bright 

green for 0.5 s upon success.   

 

Although all participants were given feedback on SMR regulation, the specific 

spatiospectral location of the SMR was participant-dependent as determined from their 

Phase 1 data. We selected the spatiospectral locations that maximized the predictive capacity 

of our models for each participant. Spatiospectral locations of SMR features (up to 3) for each 

participant can be seen in Table 1.  

7.3.5 PHASE 3 – SMR-TRIGGERED MOVEMENT PERFORMANCE  

Phase 3 consisted of three sessions spread over the one week immediately following 

the conclusion of Phase 2. During Phase 3, participants were given multimodal feedback on 

their ability to volitionally modulate SMR amplitude. Like Phase 2, participants were initially 

presented with a colored square that was color-saturated by proper SMR feature 

modulation. When the participants reached the feature threshold, a movement trial was 

immediately cued. Like Phase 1, the robot actively maintained a constant position, thus 

resisting movement, allowing for isometric torque to be measured. Once the participant 

initiated a movement (i.e. reached the force threshold) robot assistance was activated.  

 

FIG. 3. PROGRESSION OF A PHASE 2 TRIAL. PARTICIPANTS LEARNED TO INCREASE SMR FEATURES 

ON YELLOW TARGETS AND DECREASE SMR FEATURES ON BLUE TARGETS GIVEN VISUAL FEEDBACK: A YELLOW 

TARGET APPEARS IN A, PROMPTING THE PARTICIPANT TO MODULATE THEIR SMR FEATURE AMPLITUDE. THE 

PARTICIPANT APPROACHED THE SMR CRITERION IN B, AND SUCCESSFULLY REACHED THE TARGET IN C, 
RESULTING IN A GREEN SQUARE/POSITIVE FEEDBACK. THE SCREEN GOES BLANK FOR 2.5 S AFTER FEEDBACK 

IN D. IF THE PARTICIPANT DID NOT REACH THE SMR CRITERION OR MODULATED THEIR SMR FEATURE IN THE 

WRONG DIRECTION, THE SCREEN GOES BLANK, AS IN D, WITHOUT SHOWING THE GREEN BOX, AND A NEW TRIAL 

STARTS AFTER A 2.5 S PERIOD. 
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During Phase 3, we collected two primary measures of movement performance: 

latency to movement onset and maximum MCP torque. Latency to movement onset was 

defined as the amount of time it took the participant to initiate movement in the robot, i.e. 

exceed the force threshold that triggered robot assistance. Torque about the 

metacarpophalangeal joint (MCP torque) was calculated based on the forces measured by 

transducers placed at the proximal and middle finger joints of the index and middle fingers. 

Here, we report maximum MCP torque, calculated as the maximum MCP torque on an 

individual trial in the extension direction, normalized to the maximum torque across all 

trials. Thus, MCP torque is reported as a value 0-1.  

7.4 RESULTS 

7.4.1 PHASE 1 – IDENTIFICATION OF SMR FEATURES 

Phase 1 data were collected to identify participant-specific SMR features that could 

maximally predict the movement intention of the participant, i.e. if they were about to move 

 

FIG. 4. PROGRESSION OF A PHASE 3 TRIAL. PARTICIPANTS MODULATED THEIR SMR FEATURE PER 

THE STIMULUS IN A, WHICH MAY HAVE BEEN A YELLOW (DOWN-REGULATION) OR BLUE (UP-REGULATION) 

SQUARE. AS THE PARTICIPANT SUCCESSFULLY GENERATED THE APPROPRIATE SMR (B), THE SQUARE GREW 

BRIGHTER. WHEN THE PARTICIPANT SUCCESSFULLY REACHED THE SMR CRITERION, THE MOVEMENT STIMULI 

WERE PRESENTED, INSTRUCTING THE PARTICIPANT TO FLEX THE INDEX OR MIDDLE FINGER, OR BOTH, USING 

GREEN CIRCLES (C). OTHERWISE, THE SCREEN WENT BLANK. IN D, THE PARTICIPANT’S CORRECT RESPONSE 

INITIATE INDEX FINGER EXTENSION ELICITED ROBOT ASSISTANCE FOR THE REMAINDER OF THE MOVEMENT. 
VISUAL FEEDBACK OF MOVEMENT PROGRESS WAS GIVEN IN THAT THE GREEN CIRCLE GREW WITH INCREASING 

FINGER EXTENSION POSITION. IN E, THE CUE TURNED WHITE INDICATING A PROPERLY EXECUTED MOVEMENT. 
IN F, THE SCREEN WENT BLANK BETWEEN TRIALS FOR 2.5 S AND THE ROBOT RETURNED THE PARTICIPANT’S 

FINGER BACK TO THE STARTING POSITION. 
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or not. We successfully generated models for all eight participants that correlated SMR 

features with the Go-NoGo response condition in the training data from the first two sessions 

(R values ranged 0.156-0.783, mean R=0.5341, p<0.05 for 8/8 participants and p<0.01 for 

7/8 participants). These models generalized well to test data from the third session (R values 

ranged 0.078-0.772, mean R=0.481, p<0.05 for 7/8 participants and p<0.01 for 5/8 

participants). For each participant, we selected the model that had the highest correlation to 

the response condition. The linear combination of these SMR features comprised the ‘SMR 

Composite’ signal, which is what we used in Phase 2 as a measure of SMR regulation. In other 

words, regulating the SMR composite score, a linear combination of the power at the SMR 

features identified for each person, directly affected the stimulus color during Phases 2 and 

3. Table 1 shows, for each participant, up to three SMR features that had the largest weights 

in the regression models. Note that all channels are bipolar referenced to Cz.  

 

Table 1: SMR features and phase 2 accuracy for each subject 

Subject Impaired Channel 

Frequency 

(Hz) Channel 

Frequency 

(Hz) Channel 

Frequency 

(Hz) 

Percent 

Correct 

A R C3 18, 24 C4 18-24 CP4 12, 24 82.4 

B L CP3 18-24 CP4 12, 24 - - 73.6 

C R C3 21 CP3 12, 21-24 CP4 12, 21 40 

D L C4 12, 15  CP3 12 CP4 18 47.7 

E R CP3 18 - - - - 74.5 

F R C3 21 C4 12, 21 - - 76.6 

G L C3 21 C4 12, 21 - - 72.7 

H R C3 15, 18 C4 18, 21 CP3 3, 18 68.5 
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7.4.2 PHASE 2 – SENSORIMOTOR RHYTHM TRAINING 

 

The purpose of Phase 2 was for the participants to learn to volitionally modulate the 

SMR feature identified for them in Phase 1 using visual feedback (Fig. 3). Table 1 shows the 

percent correct on the last day of Phase 2 training. Six out of eight participants achieved BCI 

hit rates significantly above chance level (mean 74.8%, t-test vs. chance level across 

participants p < 0.01), and are bolded in Table 1. Individualized topographies and spectra 

for the last Phase 2 training day are shown in Fig. 6. Participants a, c, d, g, and h showed 

correlated activity (i.e. activity that correlated with the instruction to increase or decrease 

the feature) contralateral to their impaired hand. Participant f showed correlated activity 

centered about Cz, with less lateralization. Peak correlations were most often in the beta 

band for these participants, although the exact spatiospectral locations of the maximum 

correlation varied across individuals. Participants b and e showed broad spatial distribution 

and broadband spectral correlation to the SMR condition, suggesting the use of non-EEG 

artifacts. The proctors for this study noted that participants b and e exhibited symptoms of 

severe hypertonia and both participants would shrug their shoulders or tense their neck 

involuntarily during the recording session, which may have led to this putative EMG 

contamination of the EEG signals.  

 

FIG. 5. BCI HIT RATE ACROSS PHASE 2 SESSIONS FOR ALL PARTICIPANTS. ALL BUT TWO 

PARTICIPANTS (C AND D, IN RED) LEARNED TO RELIABLY CONTROL THE BCI. TWO PARTICIPANTS (B AND E, IN 

BLUE) EXHIBITED BROAD SPATIOSPECTRAL PATTERNS INDICATIVE OF NON-EEG BCI CONTROL.  
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FIG. 6. TOPOGRAPHIES AND SPECTRA OF THE CORRELATION BETWEEN THE SMR FEATURE 

AMPLITUDE AND THE TARGET CONDITION, SMR DOWN-REGULATION VS. SMR UP-REGULATION. DATA ARE 

SHOWN FOR EACH PARTICIPANT, A THROUGH H, TAKEN AT THE LAST PHASE 2 SESSION. ASTERISKS DENOTE 

THE STROKE-AFFECTED HEMISPHERE.  
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7.4.3 PHASE 3 – SMR-TRIGGERED MOVEMENT PERFORMANCE  

The purpose of Phase 3 was to combine the overt movement of Phase 1 with the SMR 

feature modulation of Phase 2 to elucidate the effects of pre-movement SMR feature 

modulation on movement performance in people with stroke. Like Phase 1, the participants 

modulated their SMR feature up or down corresponding to a visual cue on the monitor. Once 

they reached a threshold, a finger extension task was immediately cued (Fig. 4). We 

quantified three movement performance measures: latency to movement onset, maximum 

flexion torque at the MCP joint, and latency to the maximum flexion torque at the MCP joint. 

We restrict our analysis here to four participants. We exclude participants b and e who 

showed broad spatiospectral control of the BCI, suggesting the use of non-EEG artifacts. We 

also exclude participants c and d, who did not learn to control the BCI. 

The four participants with reliable narrow-band BCI control at the end of Phase 2 (a, 

f, g, and h) showed significantly reduced SMR amplitude during blue targets. We performed 

two-way ANOVAs for each dependent motor performance measure (latency to movement 

initiation, latency to maximum MCP extension torque, and maximum MCP extension torque) 

and participant where the finger target (index, middle, both) and SMR condition (increase, 

decrease) served as independent variables. Latency: Three of four participants showed 

significantly lower latency to movement initiation for all finger targets when they reduced 

their SMR compared to when they increased their SMR (Fig. 8), participants a, g, h, p < 0.05; 

participant f, p=0.40). Two of four participants showed significantly lower latencies to 

maximum MCP torque in for all finger targets when they reduced their SMR (participants a, 

g, p<0.01; participant f, p=0.49; participant h, p=0.09). MCP Torque: Three of four 

participants showed significantly higher MCP torques when they reduced their SMR, with an 

interaction effect with finger condition. Post-hoc tests revealed that two participants showed 

significantly higher torques in individuated (index, middle) finger extensions when they 

reduced their SMR (participant a, index p=0.012, middle p<0.01; participant h, index 

p=0.017, middle p<0.01). The other participant showed significantly higher torques in 

coordinated (both) finger extensions when they reduced their SMR (participant g, both 

p=0.04). 
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FIG. 7. ALL PHASE 3 INDEX FINGER MOVEMENTS FROM PARTICIPANTS A, F, G, AND H. INDEX FINGER 

POSITION (LEFT) AND NORMALIZED MCP TORQUE (RIGHT) ARE PLOTTED VS. TIME WHERE T=0 

CORRESPONDS TO THE MOVEMENT CUE. YELLOW TRACES REPRESENT RESPONSES TO YELLOW STIMULI 

(INCREASED SMR) AND BLUE TRACES REPRESENT RESPONSES TO BLUE STIMULI (DECREASED SMR). 
MOVEMENT LATENCIES WERE SIGNIFICANTLY SHORTER FOR A, G, AND H WHEN THEY DECREASED THEIR PRE-
MOVEMENT SMR VS. WHEN THEY INCREASED THEIR SMR.  MCP TORQUES WERE SIGNIFICANTLY HIGHER FOR 

PARTICIPANTS A AND G WHEN THEY DECREASED THEIR SMR. 
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FIG. 8. PHASE 3 MOTOR PERFORMANCE COMPARISON FROM EXAMPLE PARTICIPANTS A (TOP), F, G, AND 

H (BOTTOM). LATENCY TO MOVEMENT ONSET (LEFT) AND MAXIMUM TORQUE (RIGHT) ARE PRESENTED WITH 

EACH MOVEMENT STIMULUS, I.E. INDEX FINGER, MIDDLE FINGER, OR TWO-FINGER MOVEMENT ACROSS SMR 

STIMULI (YELLOW & BLUE, I.E. INCREASE SMR & DECREASE SMR). STARS REPRESENT SIGNIFICANCE (P<0.05) 

AND BLACK BARS REPRESENT STANDARD ERROR. PARTICIPANTS A AND G SHOWED SIGNIFICANTLY SHORTER 

LATENCIES FOR ALL THREE FINGER STIMULI, AND PARTICIPANT H FOR INDEX AND BOTH FINGER STIMULI, WHEN 

THEY REDUCED THEIR SMR (BLUE). PARTICIPANT A HAD SIGNIFICANTLY HIGHER TORQUES IN THEIR INDEX 

FINGER AFTER REDUCING SMR, BUT LOWER TORQUES WITH THE MIDDLE FINGER. PARTICIPANT G HAD HIGHER 

TORQUE DURING TWO-FINGER MOVEMENTS ONLY AND PARTICIPANT H HAD HIGHER TORQUE DURING INDEX-
FINGER MOVEMENTS ONLY. 
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7.4.4 CLINICAL FINDINGS 

The primary clinical outcome measure of this study was the Box & Blocks Test (BBT) 

(Radomski & Latham, 2008). Mean BBT score at screening was 14.3 +/- 10.4. For 

comparison, the average score for an unimpaired individual of this age group is 70.9 +/- 8.4 

(Mathiowetz, Volland, Kashman, & Weber, 1985). We observed no significant effects of age, 

days-post-stroke, type of stroke (hemorrhagic/ischemic), or dominant hand on BBT score. 

We measured the change in BBT score as the difference in the score at the end of therapy 

compared to the mean of the values at screening and session 1. The mean change in BBT 

score after therapy was 4.3 +/- 4.5 with a minimum and maximum change of 0 and 12, 

respectively. The mean Box & Blocks change in participants that gained control of the BCI 

was 6.3 compared to 2.3 in those that did not learn to control the BCI or did so with 

broadband spatiospectral activity indicative of non-EEG control. However, the difference 

between groups was not significant (t-test, p=0.58).  

 

BBT score at screening predicted the change in BBT score over the course of 

training for all participants (R2=0.63, p=0.019). The strength of this effect was significantly 

improved by limiting the model to the participants with BCI control (Fig. 10, R2=0.99, 

 

FIG. 9. BOX & BLOCKS SCORES FOR EACH PARTICIPANT TAKEN AT BASELINE AND THE BEGINNING AND 

ENDS OF PHASES 1 AND 3. RAW SCORES (LEFT) AND CHANGE IN SCORE FROM SESSION 1 (RIGHT) ARE SHOWN. 
PARTICIPANTS THAT GAINED RELIABLE NARROW-BAND CONTROL OF THE BCI ARE SHOWN IN BLACK. 
PARTICIPANTS C AND D, WHO DID NOT GAIN CONTROL OF THE BCI, ARE SHOWN IN RED. PARTICIPANTS B AND E, 
WHO USED BROADBAND ACTIVITY TO CONTROL THE BCI, ARE SHOWN IN BLUE. 
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p=0.005). Participants with higher function had significantly better motor outcomes 

following the BCI-based training.  

 

7.5 DISCUSSION 

BCI systems have been proposed, and are attracting increasing interest, to enhance 

rehabilitation protocols in people with motor impairment after a neurologic injury (Ang & 

Guan, 2013; Daly & Wolpaw, 2008). However, studies that examine the effects of BCI training 

for motor rehabilitation in people with stroke are limited. Most use muscle stimulation or 

orthotic assistance with the goal to improve sensory feedback that might improve motor 

outcome (Ang & Guan, 2013). To the extent that poor motor preparation can also limit 

subsequent motor function, training pre-movement SMR may improve motor performance. 

Here, we build on the results of (McFarland et al., 2015) to evaluate SMR control to improve 

preparation for subsequent movement in people with stroke. 

 

FIG. 10. BOX & BLOCKS, AS MEASURED AT THERAPY SCREENING, PREDICTED A CHANGE IN BOX & 

BLOCKS AFTER THERAPY, MEASURED AS THE CHANGE IN SCORE AT THE END OF THERAPY COMPARED TO THE 

AVERAGE OF THE BASELINE AND SESSION 1 SCORE. HIGHER BOX & BLOCKS SCORES AT BASELINE PREDICTED 

LARGER GAINS IN BOX & BLOCKS SCORE AFTER THERAPY. PARTICIPANTS C AND D, WHO DID NOT GAIN 

CONTROL OF THE BCI, ARE SHOWN IN RED. PARTICIPANTS B AND E, WHO USED BROADBAND ACTIVITY TO 

CONTROL THE BCI, ARE SHOWN IN BLUE.  
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7.5.1 PRE-MOVEMENT SMR AFTER STROKE 

Normative physiological SMR modulation includes a down-regulation of power in the 

mu (8-13 Hz) and beta (13-30 Hz) frequency bands preceding movement, a phenomenon 

known as event-related desynchronization (ERD) (Pfurtscheller & Aranibar, 1977; 

Pfurtscheller & Lopes da Silva, 1999). Seven of the eight participants in this study exhibited 

clear ERD patterns. However, the spatial representation of this signal was more broadly 

distributed (Fig. 6, participants a, c, d, f, g, h) than the results of previous work in unimpaired 

individuals (McFarland et al., 2015). This is a known phenomenon; movement related signals 

are often more spatially distributed in people with stroke (Cramer et al., 1997). These signals 

are also known to be significantly smaller in people with stroke than in those without 

impairment (Fu et al., 2006). Despite these confounding effects of stroke, we showed that we 

can predict the willing intent to move in a person with chronic stroke over the course of 

multiple EEG recording sessions and with similar success rates to our previous work in 

people without neurologic injury (McFarland et al., 2015).  

7.5.2 SMR-BASED BCIS 

Ultimately, the effectiveness of SMR-based BCIs depends on whether the underlying 

brain activity that produces pre-movement changes in SMR affects subsequent motor 

behavior. Pre-movement SMR desynchronization (Pfurtscheller & Aranibar, 1977) and post-

movement rebound (Pfurtscheller, Neuper, Brunner, & da Silva, 2005) are understood to be 

a correlate of motor preparation (Krusienski, McFarland, Principe, & Wolpaw, 2012) and 

execution. Furthermore, SMR desynchronization increases motor cortex excitability 

(Pichiorri et al., 2011), which is thought to be beneficial for motor rehabilitation (Pomeroy 

et al., 2011). However, SMR’s origins in the nervous system, and whether pre-movement 

SMR affects subsequent motor behavior, are less clear. SMR changes are an effect of a 

distributed process of the nervous system including premotor and motor cortices, 

subcortical, and spinal centers (O. Cohen, Sherman, Zinger, Perlmutter, & Prut, 2010). 

Resting SMR is thought to reflect motor inhibition (Pfurtscheller, 1992), a view consistent 

with its decrease leading up to movement and increase after movement. However, SMR may 

not be tied directly and uniquely to motor preparation but is also involved in preparation for 
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upcoming sensory information, evidenced by its modulation before passive movements 

elicited by an orthosis (Formaggio et al., 2013; S. L. Norman et al., 2016). 

BCIs have been proposed as a possible method to enhance rehabilitation training by 

using operant conditioning to normalize brain states or couple normal brain states to 

sensory feedback. SMR operant conditioning has been used to control external devices that 

assist the users’ movements with the expectation that the temporal coupling of more normal 

SMR activity to more normal sensory feedback of the device could induce Hebbian/activity-

dependent plasticity in the CNS (Buch et al., 2008). For example, Ramos-Murguialday et al. 

used ERD as a contingent control signal for robotic therapy and found modest improvements 

in motor outcome compared to a control group (Ramos‐Murguialday et al., 2013). Another 

strategy is for patients to produce more normal SMR with the assumption that normal SMR 

activity could also produce more normal movement (Khanna & Carmena, 2017; Rozelle & 

Budzynski, 1995). The implication of this approach is that people with stroke can learn, given 

feedback, to improve their preparation for movement. The sequential nature of the SMR and 

movement task used in this study is in contrast to the dual and parallel SMR and movement 

tasks used in other studies (Boulay et al., 2011; Ramos‐Murguialday et al., 2013). Dual tasks 

such as these may interfere with each other, making them difficult for people with neurologic 

injury (Pashler, 1994). This study, for the first time in people with stroke, aims to answer 

whether normalizing pre-movement-associated EEG features can alter subsequent motor 

performance. 

7.5.3 SMR TRAINING CAN AFFECT MOVEMENT PERFORMANCE 

Khanna et al. recorded neural activity while three macaques performed a 

neurofeedback task in which they modulated their beta oscillatory power before executing 

an arm reaching task (Khanna & Carmena, 2017). The authors found that reaches preceded 

by reduced beta power had significantly less latency than those preceded by an increase in 

beta power. In (McFarland et al., 2015), we recorded neural activity while eight unimpaired 

people performed neurofeedback task in which they modulated their SMR activity before 

executing a joystick-based cursor-movement task with their hands. We found that 

movements preceded by reduced SMR power had significantly less latency than those 
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preceded by an increase in beta power, a result consistent with (Khanna & Carmena, 2017). 

The end goal of such studies is to provide insight into the mechanisms of motor performance 

from the brain level such that they might enhance training in a rehabilitation intervention 

and therefore improve restoration of useful motor function to people with neurologic 

injuries. Building on (McFarland et al., 2015) we set out to explore the efficacy of such a 

paradigm in impaired people.  

In this study, six of eight people gained control of the BCI by the end of phase 2. Of 

those six, two exhibited broad spatiospectral control, suggesting non-EEG control of the BCI. 

Thus, the remaining four participants gained volitional, narrow-band control of the BCI and 

could be further investigated for changes in movement performance. We found that, for 

three out of these four people, modulating SMR amplitude during movement preparation 

altered subsequent movement performance. Participants’ movements made after 

decreasing SMR amplitude were initiated with less latency compared to movements made 

after increasing SMR, in accordance with previous work (Khanna & Carmena, 2017; 

McFarland et al., 2015). In addition to these results, we also recorded measures of force at 

the proximal and middle phalanxes of the index and middle finger. We calculated the torque 

at the metacarpophalangeal joint, finding that two of the four participants had significantly 

higher extension torques when they had decreased SMR before the movement. In addition 

to improving latencies for the first time in people with stroke, these results also show, for 

the first time, that people can produce more forceful movement by decreasing their SMR 

before movement.  

7.5.4 BCI & ROBOT TRAINING COULD IMPROVE MOVEMENT RECOVERY AFTER STROKE 

The primary purpose of this study was methodological in nature: to explore the 

effects of modulating pre-movement SMR on subsequent motor performance. In addition to 

these results, we also performed clinical evaluations at screening, sessions 1, 3, 10, and 12. 

None of the participants showed a decline in function, and we saw an average increase of 4.3 

blocks, which is a modest increase. Although the improvement in Box & Blocks score was 

higher for the four participants who had narrow-band control of the BCI (6.3) than in the 

four who did not (2.3), this result was not significant, meriting further investigation, ideally 
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with a larger sample size and a sham control group similar to (Ramos‐Murguialday et al., 

2013). 

BCI has been suggested as a potential therapy for people with stroke, with an 

emphasis on people with more severe paralysis. In this study, we found that Box & Blocks 

score positively correlated with the change in Box & Blocks score over the course of training 

(Fig. 10, R2=0.99, p=0.005). That is, people with higher functional scores at screening had 

better functional outcome. BCIs that interface with robot assisted movement therapy may be 

subject to the same constraints as robot therapy alone when considering their therapeutic 

efficacy, i.e. users must enter the therapy with sufficient function to utilize the robot.  

7.5.5 LIMITATIONS  

It was thought to best serve our study to select patients with an intact somatosensory 

cortex to not confound the EEG readings with such superficial damage. This decision was 

deemed necessary to prevent technical confounders. However, stroke patients with 

hemiparesis must have had damage either cortically or subcortically. Thus, the necessity to 

target patients with subcortical damage may create some unpredictable variability in 

response to therapies that could enhance cortical plasticity events. As brain imaging 

techniques improve, it may be possible to analyze the specific area where subcortical 

damage has occurred, e.g. internal capsule vs. thalamus, to better categorize patients’ 

response to neuroplasticity-based therapies.  

The majority (six of eight) of participants in this study gained volitional control of the 

BCI. However, two participants had severe hypertonia and were unable to completely relax 

during the BCI trials. Although they gained control of the BCI, it is likely that muscle activity 

obscured the EEG signals on enough trials to discredit their results. This is an important 

limitation in this type of BCI, where its utility may be limited for users with severe 

hypertonia.  

This is the first test of SMR based training of pre-movement brain states to improve 

subsequent motor performance in people with stroke. However, the sample size of this study 

was small and only three participants improved their motor function, as measured by the 

robot. Longitudinal assessment of motor learning was not evaluated here. Increases in 



112 
 

clinical outcome, measured by the Box & Blocks Assessment, were modest but encouraging. 

Although this study provided evidence for this methodology to be feasible in people with 

stroke, its efficacy as a therapy is not yet clear. To examine clinical efficacy, future work 

would benefit from use of a larger sample size and a control group of people with stroke who 

receive sham BCI therapy with dose-matched robot assisted movement. 

7.6 CONCLUSION 

BCI-based training protocols for movement therapy are of growing interest. Training 

SMR features associated with movement performance has been shown to be a viable 

protocol in unimpaired people. This approach has further shown potential to improve motor 

performance immediately after desynchronizing individualized SMR features. In this study, 

we trained individualized SMR features in people with stroke and explored the effects of SMR 

modulation on subsequent movement performance. We found that people with stroke can 

learn to control this type of BCI and that it does affect movement performance. Specifically, 

we showed for the first time in people with stroke that decreasing SMR amplitude before 

movement produces quicker and more forceful movements. Although sample size was 

limited (N=8), a moderate therapeutic effect was observed, amplified in participants who 

entered the study with more residual motor function.  
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CHAPTER 8: POTENTIAL FOR LOW-COST DEVICES AND IN-HOME BCI-
ROBOT THERAPY 

Note: Portions of this chapter have been published as: 

Aguilar, C., Shanta, O., Tran, T., Reinkensmeyer, D.J., & Norman, S. (2015, October). Towards a Low-Cost 
Alternative for BCI-aided Neurorehabilitation: A Comparison of the Emotiv Epoc to a Clinical EEG 
System. American Society of Neurorehabilitation 2015 Annual Meeting Abstracts. 

Norman, S.L., Sarigul-Klijn, Y., & Reinkensmeyer, D.J. (2016, April). Design of a Wearable Robot to Enable 
Bimanual Manipulation after Stroke. Southern California Robotics Symposium 2016. 

8.1 INTRODUCTION 

Brain-computer interfacing (BCI) is a form of human-machine interaction with 

potential to enhance rehabilitation therapy after neurologic injuries. The most common 

method used to capture data in BCI is electroencephalography (EEG). In EEG, electrodes 

embedded in a non-invasive cap detect electrical signals over the user's scalp. The BCI then 

decodes these signals to control an external device, such as a wheelchair or exoskeleton 

robot. Although EEG has proven useful for neurorehabilitation, typical systems are very 

expensive, limiting their use to clinical and research settings. In recent years, low-cost 

alternatives, such as the Epoc by Emotiv©, have targeted widespread use of BCI, including 

bringing BCI into the home. In this chapter, I explore the potential of the Emotiv Epoc as a 

low-cost EEG headset for in-home use. 

Individuals with hemiparesis after stroke often cannot use their hands together to 

achieve bimanual functions, as they lack the ability to extend the fingers in one hand.  Static 

exoskeletons, such as FINGER described in this document, are useful in a clinical setting but 

are too expensive and difficult to operate to be viable as a commercial system. Indeed, 

adoption of rehabilitation exoskeleton robotics for commercial use is limited (Dollar & Herr, 

2008), especially for the upper extremity (Lo & Xie, 2012). In recent years, wearable hand 

orthoses have gained popularity, and could potentially facilitate a path from the clinic to 

people’s homes for orthotic devices (Bos et al., 2016).  

 Wearable robots could potentially enable finger extension after stroke, a key 

impaired function, but most previous devices are bulky and focus on multiple finger 

assistance and hard-wired control schemes (Bos et al., 2016). However, all degrees of 
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freedom in the hand are not lost. In this document, we have explored people with chronic 

stroke’s ability to flex their fingers and the difficulty they incur to extend their fingers. In this 

chapter, I also present a wearable Robotic Hand Extension Device (RHED) that combines the 

user’s residual capacity for finger flexion with robot assistance to enable extension in the 

user’s thumb and index finger.  

8.2 TOWARDS LOW-COST EEG: A COMPARISON OF THE EMOTIV EPOC 

TO A CLINICAL EEG SYSTEM 

8.2.1 INTRODUCTION 

Brain computer interface (BCI) technology records and translates neurophysiological 

signals to communicate with an external device (Birbaumer & Cohen, 2007). EEG, a non-

invasive technique, records electrical activity at the scalp using dry electrodes, wet 

electrodes in a salt-water solution, or electrolyte gel injected into electrode sites. A 

commonly used EEG corollary to movement intention is a reduction of amplitude in the mu 

(8-12 Hz) and beta (13-30 Hz) frequency bands located in the sensorimotor and premotor 

cortices, a phenomenon called Event-Related Desynchronization (ERD) (Pfurtscheller & 

Lopes da Silva, 1999), and is commonly used in BCI applications as a control signal, e.g. 

(Ramos‐Murguialday et al., 2013). ERD is robust, but smaller in amplitude for those with 

neurologic impairment (Fu et al., 2006). It is therefore important to be able to reliably detect 

changes in the sensorimotor rhythm (SMR) such as ERD for the purposes of BCI-assisted 

neurorehabilitation. 

Despite promising results from past studies to improve BCI rehabilitation methods 

(Ramos‐Murguialday et al., 2013), the cost of clinical EEG recording devices make them less 

accessible to the end-user and limit their use in developing countries or in-home therapies. 

Several low-cost EEG-based BCI alternatives are currently available on the market. One such 

device is the EPOC headset by Emotiv Inc. ©. The Emotiv EPOC is one of the first 

commercially available BCI systems intended for both impaired and unimpaired users and 

can be purchased at a starting cost of $399 as of this writing. The EPOC has 14 dry electrodes 

that record electrical activity at the scalp and transmits wirelessly to a receiver unit 
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connected to a standard computer. Its open license and access to raw data allow for flexible 

implementations and modulations of the acquired data, providing the technical possibility 

to use it for EEG-based BCIs. 

There has been caution exercised in promoting the Emotiv EPOC to acquire significant 

EEG modulations (Duvinage et al., 2012). However, some studies have shown optimistic 

results acquiring well-studied event related brain signals. A key study demonstrated the 

ability of the Emotiv EPOC headset to successfully acquire event-related synchronization 

(ERS) modulations during motor imagery experiments (Vamvakousis & Ramirez). Another 

such study showed success of this device in a hybrid BCI paradigm that navigated a virtual 

humanoid robot in a computerized maze (Choi & Jo, 2013). 

Here, we aim to investigate the potential for the EPOC, a dry electrode system, to 

detect ERD in a robot assisted environment. We directly compare the results of the EPOC to 

a clinical grade EEG recording system: the EGI Clinical Geodesic system, consisting of an EEG 

hydrocel cap with 256 Ag-Ag electrodes.  

8.2.2 METHODS 

The EPOC consists of 14 dry electrodes and samples at 128 Hz, while the EGI uses 256 

electrodes and samples at 1000 Hz. The headset consists of 14 active electrodes and 2 

reference electrodes. Electrode position for the Emotiv EPOC is based on the International 

10-20 locations (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). A map of the EGI 

system’s electrode placement, which uses the International 10-10 system, can be seen in Fig. 

1. Channel selection for this EGI headset in this experiment was based on consideration of 

our previous study’s (Ch. 4) results. Essentially, a combination of electrodes overlying C4 and 

CPz that exhibited time-locked motor behavior was selected for analysis (see Fig. 3). The 

256-channel electrode map of the EGI Clinical Geodesic hydrocel EEG System also includes 

the electrodes that are used by the Emotiv EPOC, highlighted in red. We used the Emotiv 

Research Edition software to store raw EEG data captured by the EPOC headset. The data 

was up-sampled using linear interpolation from 128 Hz to 1000 Hz to match the sampling 

frequency of the EGI Clinical Geodesic Hydrocel EEG System. The remainder of the data 

processing chain is described in detail in Chapter 4.3.4 and in (S. L. Norman et al., 2016). 
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We collected data from six (N=6) unimpaired subjects (4 right-handed, 5 Female) 

using their left hand to play a musical computer game, similar to Guitar Hero ©. Participants 

completed the same experiment described in (S. L. Norman et al., 2016) and here in Chapter 

4. Participants received robotic assistance from the Finger Individuated Grasping Exercise 

Robot (FINGER) (Taheri et al., 2014). We used a two factor, two level factorial design where 

the factors were robot assistance (on or off) and overt motor activity by the subject (active 

or passive) resulting in 4 experimental conditions. Participants completed a total of 62 trials 

in each condition. We investigated the ability of each EEG system to reliably detect Event 

Related Desynchronization (ERD), a commonly used signal for BCI-contingent robot therapy. 

ERD refers to the reduction in amplitude of mu (8-13 Hz) oscillations over the sensorimotor 

cortex, known to precede both overt and imagined movement.  

 

 

FIG. 1. A MAP OF THE EGI CLINICAL SYSTEM’S ELECTRODE PLACEMENT. A MAPPING OF THE EMOTIV EPOC’S 

ELECTRODE PLACEMENT (RED) AND THE EGI CHANNEL SELECTION HAVE BEEN SUPERIMPOSED (BLUE) OVER 

THE MAPPING FOR COMPARISON. 
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8.2.3 RESULTS 

The more expensive clinical-grade EGI system detected significant ERD in all subjects 

and all conditions where movement took place when compared to passive recording, i.e. the 

passive-passive condition (t-test, p < 0.01). The less expensive EPOC detected ERD for only 

one subject when the participant was active (within-subject MANOVA, p = 0.0383). The 

magnitude of ERD was also significantly greater with the EGI headset than with the Epoc (t-

test, active subject, p < 0.01).  

 

8.2.4 DISCUSSION 

The importance of the sensorimotor cortex in neurorehabilitation means that any 

EEG system used for BCI must reliably detect motor signals such as ERD. The 14 channels of 

the EPOC do not adequately cover the scalp, most closely approaching sensorimotor cortex 

with electrodes at F3/F4 and FC5/FC6. It is likely that the EPOC detected ERD in these nearby 

 

FIG. 2. A COMPARISON OF THE SENSORIMOTOR MU RHYTHM (8-12 HZ) MEASURED BY THE EGI CLINICAL 

GEODESIC SYSTEM AND THE EMOTIV EPOC. RESULTS ARE SHOWN FOR ALL PARTICIPANTS AND CONDITIONS 

IN A 3 S EPOCH SURROUNDING THE TARGET TIME (T=0). SIGNIFICANT ERD SIGNALS PRECEDE MOVEMENT 

ONSET IN THE CLINICAL RECORDINGS IN ALL EXCEPT THE PASSIVE-PASSIVE CONDITION. ONLY ONE 

PARTICIPANT EXHIBITED SIGNIFICANT ERD AS RECORDED BY THE EMOTIV SYSTEM 
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channels in one subject through volume conduction, as evidenced by the reduction in ERD 

magnitude. Although the EPOC shows promise in its ability to detect raw EEG, its electrode 

placement meant it was unable to reliably detect ERD, thus limiting its potential for 

applications in robotically assisted therapy. 

8.3 DESIGN OF A WEARABLE ROBOT TO ENABLE BIMANUAL 

MANIPULATION AFTER STROKE 

8.3.1 INTRODUCTION 

Finger extension is a common movement impairment after stroke, the leading cause 

of disability in the United States (Muntner, Garrett, Klag, & Coresh, 2002; Trombly et al., 

1986). People with stroke often resort to compensatory strategies using the unimpaired 

limb, but most tasks require at-least some degree of bilateral function (e.g. the impaired hand 

stabilizes a piece of paper while the other hand writes) (Bailey, Klaesner, & Lang, 2014). 

Because activities of daily living often require bilateral actions, grasping function in the 

impaired hand is paramount to quality of life. In recent years, declining cost and size in 

assistive robotics have made them increasingly attractive for use by people with impairment. 

However, many of the existing robotic-assistive devices for people with stroke remain 

impractical for day-to-day use (Heo, Gu, Lee, Rhee, & Kim, 2012).  In this section, we 

introduce the design of the Robotic Hand Extension Device, or “RHED”. 

8.3.2 DESIGN AND METHODS 

We designed RHED to capitalize on the user’s residual flexion ability by limiting 

actuation to solely extension. This allows the device to be simple, lightweight, and low-cost, 

ideal attributes for a wearable device. The user is uninhibited during flexion, encouraging 

dexterity in coordinated grasping tasks. However, when the user struggles to achieve full 

extension, RHED uses a unique cable assembly to transmit extension forces to the fingers 

remotely from actuators located on the forearm. Flexible/incompressible cable sheaths 

allow for wrist manipulation without causing cable slack. This allows RHED to facilitate 

finger and thumb extension without limiting the freedom of the wrist and remaining finger 

joints or inhibiting flexion in any of the fingers or thumb when the device is slack. 
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Many wearable assistance devices have relied on agonist/antagonist muscle 

activation via electromyography (EMG) or force-based intention sensing (Heo et al., 2012; 

Wege & Zimmermann, 2007). However, people with stroke typically display abnormal 

muscle synergies, including coactivation of the flexor/extensor pair and inability to produce 

positive extension force, making these approaches suboptimal (Trombly et al., 1986). 

Additionally, past research has shown that rewarding abnormal synergies with robotic 

movement can result in their cementation through reinforcement learning (Dipietro et al., 

2007). For RHED, we use the unimpaired hand as a means of controlling three discrete grip 

strategies for the impaired hand. The user wears a magnetic ring on the unimpaired hand 

and a three-axis magnetometer on the robot/impaired arm. A simple wave of the unimpaired 

hand in one of three gesture commands results in the extension of the thumb and index 

finger, or a combination thereof (Fig. 4).   

 

 

FIG. 3: EXAMPLE OF A BIMANUAL TASK USING RHED. 
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𝑝𝑜𝑠𝑡𝑢𝑟𝑒 = 𝑚𝑎𝑥 𝑖𝑛𝑑𝑒𝑥 ([

𝐹⃗ ∙ 𝐹⃗1

𝐹⃗ ∙ 𝐹⃗2

𝐹⃗ ∙ 𝐹⃗3

]) ∙ (|𝐹⃗| ≥  𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)   (1) 

Equation 1 defines the next posture as an integer from one to three, where  𝐹1
⃗⃗ ⃗⃗ ⊥ 𝐹2

⃗⃗⃗⃗⃗ ⊥ 𝐹3
⃗⃗⃗⃗⃗ . 

If the ring is sufficiently close to the sensor (|𝐹⃗| ≥  𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), the controller compares the 

current magnetic field 𝐹⃗ to three posture definitions 𝐹⃗𝑖  using their dot product. e index of the 

maximum value results in a value of one, two, or three, which results in the corresponding 

posture (numbered in Fig. 4). A field below threshold results in a value of zero and the default 

hand posture (flexion/posture 0, Fig. 4).  

 

 

FIG. 4: TOP, THE ROBOTIC HAND EXOSKELETON DEVICE (RHED). LEFT, AN EXAMPLE OF THE 

THREE DISCRETE COMMAND GESTURES. RIGHT, FOUR RESULTING GRIP POSTURES PER INPUT 

COMMAND. POSTURE 0 IS UNASSISTED.  
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As a special consideration for people with spasticity after stroke, the device was 

designed to be donned and doffed using only the unimpaired hand. People with spasticity 

typically exhibit difficulty with one-piece designs such as gloves, as it is difficult to extend 

the impaired fingers to a position in which to don the device. We designed finger joint cable 

guides attached by hook-and-loop straps. The guides attach to the proximal/middle 

phalanxes of the index finger and the proximal/distal phalanxes of the thumb. Rapid 

prototyping methods made individualized guides possible, allowing for comfort and ease of 

use. 

8.3.3 DISCUSSION 

A primary design goal of RHED was to exceed the passive flexion torques of the user’s 

fingers to allow extension that could support bilateral movement tasks. A statics analysis 

showed that RHED applies a minimum torque about the proximal interphalangeal joint that 

is greater than the maximum passive torque calculated by Kamper et al. in people with stroke 

(Kamper, Harvey, Suresh, & Rymer, 2003). This was verified in preliminary tests where 

RHED was capable of extending unimpaired subjects’ index finger and thumb while they 

maintained a flexion force. The device can be seen assisting the non-dominant hand in 

extension to complete a supporting role in a bimanual functional task in Fig. 1. This is just 

one example of many daily tasks that would now possible with an assistive device like RHED. 
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CHAPTER 9: SUMMARY OF THE PRIMARY FINDINGS OF THIS 
DISSERTATION 

The primary contribution of this research was to elucidate the mechanisms behind 

BCI and robot-assisted movement and how one might affect the other in the context of 

developing BCI-robot therapy protocols to restore movement in people with stroke. First, I 

developed a novel computational model to investigate the conditions under which targeted 

plasticity, such as can be provided by a BCI, might optimize motor learning after a neurologic 

injury. I also applied the model to study the interaction between strength and coordination 

recovery after a stroke. Next, in a study with unimpaired people, I investigated a key 

potential confound of BCI-contingent robot-assisted therapy, showing that the robot 

assistance can cause ERD even when the participant is passive, a condition unhelpful for 

promoting motor learning. In Chapter 5, I identified a potential methodology to avoid this 

confound, which is to design robotic therapy games that require choice then to monitor 

frontal activity to detect engagement in the games. In Chapter 6, I present two pilot studies 

that tested methodological considerations for the experimental design and system 

parameters for a different approach to BCI-robot therapy – which is to require the 

participant to learn to volitionally control pre-movement brain states. The crux of this work 

lies in Chapter 7, where I presented the findings of a clinical study in eight people with stroke 

who underwent 12 days of training with this approach to BCI-robot therapy. Four of eight 

participants learned to control pre-movement brain state, and by doing so could modulate 

their finger movement ability – a result never before found for individuals with a stroke. I 

identified potential clinical benefits of the training, as well. Finally, I presented low-cost 

alternatives for BCI signal acquisition and wearable robot actuation in the context of this 

technology’s future translation into people’s homes. 

Investigations into targeted neuroplasticity approaches that use BCI technology and 

robot assistance have experienced significant growth and promising results. Yet, they have 

struggled to reach their full potential, in part due to the difficulty and cost of testing new 

hypotheses in a clinical setting. Computational models of motor learning are therefore useful 

for predicting principles of adaptive plasticity during motor rehabilitation. In this work, I 

presented a novel computational model that employs a simplified corticospinal (CS) neural 
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network with inherent stochastic noise to simulate finger extension force recovery after 

stroke. The network predicted several experimental observations of motor recovery after 

stroke including exponential recovery, latent residual capacity, and a broad reorganization 

of motor activity after a neurologic injury.  

Latent residual capacity, i.e. additional capacity for motor performance that the 

network could not easily access, appeared after a stroke followed by a dose of normal 

movement practice. Residual capacity is difficult for reinforcement learning to access 

without extrinsic assistance because the optimization of high-variability cells, i.e. cells that 

can learn quickly, can block the optimization of low-variability, i.e. slow-learning, cells that 

may have significant capacity to improve overall network performance. This result suggests 

ways in which brain networks may possess capacity to generate significant improvements 

that current rehabilitation is not yet capable of revealing. Thus, a primary contribution of 

this work was in predicting how to exploit residual capacity through targeted neuroplasticity 

interventions.  

After a simulated stroke that affected finger extension, the network also produced 

abnormal cortical reorganization, including bilateral activation for unilateral movement, a 

result consistent with imaging data (Cramer & Crafton, 2006; Cramer et al., 1997; Grefkes & 

Fink, 2011). The model was then subject to normal movement practice interdigitated with 

targeted plasticity training wherein feedback was given on the summed activity of a targeted 

population of ipsilesional cells. This training restored more unilateral activation in the 

ipsilesional hemisphere for a unilateral motor task, improving overall force recovery. 

Furthermore, the model revealed that targeting these areas on 20% of trials, and giving 

normal movement practice for the remaining trials, maximized motor recovery. In preparing 

the methodology of a BCI-robot therapy protocol, we took these results into consideration. 

For example, during the experiments described in Chapters 6 and 7, we limited the spatial 

areas to target to the sensorimotor cortices.  

We used a similar computational neurorehabilitation model to gain insight into the 

interaction between strength and coordination recovery after a stroke with the goal of 

informing future therapeutic protocols. This model replicated the nonlinear relationship 
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between strength and coordination observed in clinical recovery data for a finger force 

production task (Xu et al., 2016), and a bilateral wheelchair propulsion task. The primary 

finding of the model was that a neurologic injury such as stroke can cause a tradeoff between 

strength and coordination, a tradeoff that doesn’t exist for an uninjured network. That is, 

before an injury, the neural resources in the brain related to focal control of muscles are 

plentiful and therefore capable of producing both forceful and coordinated movements. 

Although training one or the other might alter their progress in learning, an uninjured brain 

can produce satisfactory results for both task types. After a stroke, these focal neural 

resources are more scarce, and the simulated brain is incapable of learning both strength 

and coordination in fast simultaneous succession. Thus, robotic movement therapy devices 

can be an elegant aid for maximizing functional recovery, by adaptively mitigating the effects 

of over- or under-training strength or coordination. The tasks described in the lead up to, 

and in, the BCI-robot protocol described in this work attempt to balance strength and 

coordination training. For example, we developed an admittance controller for FINGER to be 

used in the experiments described in Chapters 6 & 7. Thus, the participant had to generate 

significant force (to trigger robot assistance), and had to do so with finger individuation, e.g. 

they could not move the non-cued finger or else the robot would not assist them. Although 

we do not systematically compare the therapeutic results of this type of training vs. pure 

individuation or pure strength training in this work, we felt that this approach struck a 

balance between strength and coordination training appropriate for the BCI-robot protocol 

being tested. 

A common EEG corollary for movement intention is the reduction in mu (8-13 Hz) 

and beta (13-30 Hz) oscillation amplitude over the sensorimotor cortex that precedes 

movement-onset, a phenomenon referred to as event-related desynchronization (ERD). BCI 

therapy has been suggested to have potential in improving motor outcome, wherein an ERD-

contingency triggers robot-assisted movements (Ramos‐Murguialday et al., 2013). In 

Chapter 4, we investigated ERD as an a priori brain state that we could potentially target in 

a future BCI-robot therapy protocol. Specifically, we investigated how ERD changed as a 

function of audio-visual stimuli, overt movement from the participant, and robotic 

assistance. Overt movement by the subject caused ERD, whether the robot assisted the finger 
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movement or not. The primary finding of this work was that ERD was also present when the 

subjects remained passive and the robot moved their fingers. This ERD occurred in 

anticipation of the passive finger movement with similar onset timing as for the overt 

movement conditions. These results demonstrated that the brain generates an anticipatory 

ERD in expectation of a robot-imposed but predictable movement. This finding became an 

important caveat in developing a BCI-contingent robot therapy protocol. First, we attempted 

to use data-driven methods to find a way around this limiting factor, which I describe in 

Chapter 5. We aimed to classify active vs. passive movements in an offline data set with the 

goal of eventually moving to a real-time classification system. In applying these techniques 

to a data set of 12 people performing active and passive movements, we could predict patient 

engagement in the task with 75.9% accuracy on an individual trial basis. Although these 

results were encouraging, these were under ideal conditions and in unimpaired participants. 

Due to the confounding nature of stroke on neuroimaging and the underlying brain 

mechanisms, these accuracies might worsen in people with stroke. For these reasons, we did 

not pursue this method of classification for an online application. In a secondary exploratory 

analysis, we applied principal component analysis to discern the spatiotemporal patterns 

associated with each condition, e.g. passive vs. active. We found that, during active 

movements, the first principal component, which described 83% of the variance in the signal, 

was focused in prefrontal cortex. This finding was not present in passive movements, whose 

first principal component (57% of the variance) was an ERD signal over the contralateral 

sensorimotor cortex. These findings lent insight into the normative neurophysiological 

progression of planning for an intended movement, a process consistent with clinical 

findings (Frith et al., 1991). Thus, one potential method of mitigating the effects of the 

anticipatory ERD described in (S. L. Norman et al., 2016) is to involve a substantial decision-

making task to a BCI-robot protocol. Indeed, we included a finger-matching task, both cued 

and un-cued, in Chapter 6.2 to investigate its effects on a BCI protocol. Although not 

implemented here, future work might also consider prefrontal activation patterns to detect 

patient engagement in real time. 

Chapters 6 and 7 develop the methodology for, and implement a novel BCI-robot 

therapy protocol for the first time in people with stroke. In previous work, my colleagues 
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had shown that learning to control pre-movement SMR activity can modulate reaction time 

of the ensuing movement in unimpaired people (Boulay et al., 2011; McFarland et al., 2015). 

Thus, the questions remained: Can we also affect reaction time in a similar BCI protocol for 

individuated finger movements? Can we extend such a protocol to people with stroke? 

Would such a protocol have potential as a therapeutic intervention for people with 

movement disability after a stroke? In Chapter 6, I answer the first two questions. We then 

used these findings to guide the development of the BCI methodology which I present in 

Chapter 7. 

First, we found that, in adults without motor impairment, training pre-movement 

SMR activity affected subsequent movement performance in a finger individuated task. This 

reinforced our task selection for a BCI-robot protocol. We also investigated several 

secondary methodological considerations. We found that our models had comparable 

performance in cued and uncued movements. We also found that bipolar channels 

performed better than Laplacian channels. Thus, when we designed the BCI methodology I 

describe in Chapter 7, we used bipolar channels. In a second pilot study, we investigated a 

similar BCI-robot protocol in people with chronic movement disability after stroke. The 

primary finding of this work was that we could predict the willing intent to move in people 

with stroke using an SMR-based BCI protocol over the course of multiple sessions. We also 

found that finger individuated extension movements generalized across multiple recording 

sessions better than flexion movements. These results provided the basis for the 

methodology of the BCI-robot protocol presented in Chapter 7. 

Finally, we put the culmination of all the findings presented thus far to the test. In 

Chapter 7, I presented a BCI-robot therapy protocol as a potential rehabilitation tool for 

stroke. Eight participants with chronic hemiparesis of the hand completed 12 days of an EEG-

based BCI-robot training protocol using the FINGER exoskeleton. The efficacy of such a 

protocol depends on its ability to modulate movement behavior in people with stroke. Until 

this point, we had only tested the full protocol – training pre-movement SMR to modulate 

subsequent motor performance – in unimpaired people. This study showed that people with 

stroke could learn to control their SMR. Specifically, six of eight participants achieved reliable 

control of the BCI, although two showed evidence of contamination from EMG signals. 
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Following BCI training, decreasing pre-movement SMR amplitude decreased movement 

latency, a novel finding in people with stroke. Furthermore, we also showed, for the first time 

(in people with- or without a stroke), that people can produce more forceful movement, i.e. 

higher extension torques about the MCP joint, by decreasing pre-movement SMR amplitude. 

In summary, a BCI-robot protocol, properly implemented, can positively affect subsequent 

motor performance in people with stroke. Although this study was not designed as a 

therapeutic intervention, we did find modest improvements in clinical scores of hand 

function, and these improvements were larger for those subjects who had achieved brain-

control. These results merit further investigation of BCI-robot training in a rehabilitation 

context for people with movement disability after stroke ∎ 
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