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Aged black carbon in marine sediments
and sinking particles
Alysha I. Coppola1, Lori A. Ziolkowski2, Caroline A. Masiello3, and Ellen R. M. Druffel1

1Department of Earth System Science, University of California, Irvine, California, USA, 2Marine Science Program and
Department of Earth and Ocean Sciences, University of South Carolina, Columbia, South Carolina, USA, 3Department of
Earth Science and Department of Chemistry, Rice University, Houston, Texas, USA

Abstract We report measurements of oceanic black carbon (BC) to determine the sources of BC to
abyssal marine sediments in the northeast Pacific Ocean. We find that the average 14C age of BC is older
(by 6200±2200 14C years) than that of the concurrently deposited non-BC sedimentary organic carbon. We
investigate sources of aged BC to sediments by measuring a sample of sinking particulate organic carbon
(POC) and find that POC may provide the main transport mechanism of BC to sediments. We suggest that
aged BC is incorporated into POC from a combination of resuspended sediments and sorption of ancient
dissolved organic carbon BC onto POC. Our BC flux estimate represents ~8–16% of the global burial flux
of organic carbon to abyssal sediments and constitutes a minimum long-term removal estimate of 6–32%
of biomass-derived BC using the present day emission flux.

1. Introduction

Black carbon (BC), formed by incomplete combustion of organic matter, cycles on annual to millennial time
scales [Masiello and Druffel, 1998;Middelburg et al., 1999]. Black carbon is defined as a continuum from slightly
charred plant material to highly graphitized soot [Goldberg, 1985; Schmidt and Noack, 2000; Masiello, 2004].
Char BC is produced by the incomplete combustion of biomass, coals, and other materials, while soot BC is
formed from the condensation of combustion gases. Black carbon has been found in marine dissolved
organic carbon (DOC) [Dittmar, 2008; Ziolkowski and Druffel, 2010a], particulate organic carbon (POC)
[Lohmann et al., 2009; Zigah et al., 2012; Flores-Cervantes et al., 2010], and sedimentary organic carbon (SOC)
[Goldberg, 1985; Masiello and Druffel, 2003; Ohkouchi and Eglinton, 2006].

Black carbon enters the ocean by rivers and atmospheric deposition. Modern biomass-derived BC is mainly
transported by surface erosion of soils and rivers, delivered to watersheds, and then to the ocean [Foereid
et al., 2011; Major et al., 2010; Rumpel et al., 2006; Hockaday et al., 2007; Jaffé et al., 2013]. Because of its
submicron size, soot BC can travel long distances before it is deposited into the ocean [Lohmann et al., 2009;
Posfai and Buseck, 2010; Gustafsson and Gschwend, 1998; Ohkouchi and Eglinton, 2006]. Once BC enters the
ocean’s DOC pool, its chemical and isotopic composition (as measured in ultrafiltered, high molecular weight
DOC) dramatically changes between coastal and open ocean regions, suggesting that there are BC loss
processes from the marine DOC pool [Ziolkowski and Druffel, 2010a, 2010b;Ward et al., 2014]. Two proposed
loss processes are photochemical oxidation in the sea surface [Stubbins et al., 2012] and transport to
sediments via sorption to POC [Flores-Cervantes et al., 2010; Zigah et al., 2012].

Marine sediments contain a significant amount of BC in organic carbon, with BC/OC% values ranging from
15± 2% to 21± 6% in abyssal sediments and up to 50± 40% in coastal sediments [Verardo and Ruddiman,
1996;Masiello and Druffel, 1998, 2003; Gustafsson and Gschwend, 1998;Middelburg et al., 1999; Lohmann et al.,
2009]. The variability of sediment BC/OC% values is partly due to differences in methods used to quantify BC
and to environmental transformations not accounted for by the analytical method used [Hammes et al., 2007;
Currie et al., 2002]. Masiello and Druffel [1998] measured 15 ± 2% BC/OC in sediment (0–50 cm) from the
northeast Pacific, with 14C ages of the SOC BC 2400 ± 120 to 5400± 520 14C years older than concurrently
deposited non-BC SOC. This suggested that BC is preaged for thousands of years prior to deposition in
the sediments.

Here we report that BC is removed from seawater via sorption to marine POC and subsequently transported
to sediments. We compare BC concentration, 14C analyses, and qualitative BC structural information to
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provide the first analysis of multiple pools of oceanic BC. We used the benzene polycarboxylic acid (BPCA)
method, which partially oxidizes BC to aromatic carboxylic acids [Ziolkowski, 2009; Glaser et al., 1998;
Brodowski et al., 2005]. Greater aromaticity of a BC sample results in a greater number of acid functional
groups on each remaining BPCA. All BPCAs greater than B3CAs were operationally defined as BC, while B2CAs
were not quantified because they may be derived from processes other than incomplete combustion, e.g.,
lignin and humic materials [Brodowski et al., 2005]. Recent modifications of the BPCA method have improved
the analytical range of BC detection in the continuum from char to soot [Ziolkowski et al., 2011]. The resulting
relative BPCA abundances provide structural information [Glaser et al., 1998; Dittmar, 2008; Ziolkowski and
Druffel, 2010a] that aids in identifying BC sources and transformation processes. Using the BPCA method,
combined with 14C analyses, we find that sinking POC is likely the main delivery mechanism of BC to abyssal
sediments in the NE Pacific.

2. Methods

Sediments were collected from 4100m depth at Station M (34°50′N 123°00′W), located on the Pacific abyssal
plain. The California current flows southward at Station M and has well-developed spring blooms that last
until the summer. The sinking POC sample analyzed here is sediment trap material from several time periods
collected at Station M at 3450m depth (650m above bottom) from 1994 to 1996 (Table S2 in the supporting
information) using a conical, moored sediment trap [Smith and Kaufmann, 1999]. Sediments were stored at
�20°C and later dried at 40°C prior to analysis. Additional details of these samples are described in Hwang
et al. [2004]. We used sediment from a box core (0–14 cm depth, Event 3109) and from a gravity core
(26–28 cm, Event 3142) collected in October 1996 [Masiello and Druffel, 1998]. The mixed layer was in
the top 8 cm of the sediment [Bauer et al., 1995].

Marine sediments were pretreated to remove polyvalent cations and metals that interfere with BPCA
analysis [Brodowski et al., 2005; Coppola et al., 2013] through high temperature and high-pressure
digestion in trifluoroacetic acid. The pretreated sediment solution was passed through prebaked, quartz
filters and washed with Milli-Q water. Sediment retained on the quartz filters was dried then placed in a
quartz vial for high temperature, high-pressure digestion with concentrated nitric acid [Ziolkowski, 2009].
Filtrates were passed through a cation exchange column to remove heavy metals and then freeze dried.
The carboxylic acids on BPCAs were derivatized with (trimethylsilyl) diazomethane according to Ziolkowski
[2009]. Radiocarbon values were corrected for the 14C-free C introduced from this methylation [see
Coppola et al., 2013]. The BPCAs were identified by comparison with commercially available BPCAs, and
mass fragmentation patterns run on a Finnigan Trace mass spectrometry (MS) and gas chromotography
with electrospray ionization mass spectrometry (GC/MS ESI) at the University of California, Irvine [Coppola
et al., 2013]. Methylated BPCAs were quantified to measure relative BPCA abundances and isolated for 14C
analysis using a Hewlett Packard 6890 preparative gas chromatography with a flame ionization detector
coupled to a fraction collector (preparative capillary gas chromatography (PCGC)). Based on retention
times of known standards, the PCGC fraction collector was programed to collect B3CAs (BPCA substituted
with three carboxylic acids) through B6CAs (those substituted with six carboxylic acids) into a single trap,
including the nitrated BPCAs. The BPCA method requires a conversion factor to convert the mass of BPCA
C to an estimate of total BC mass in the original sample. We used the conversion factor 25.8 ± 6.8% C
determined by Ziolkowski and Druffel [2010b].

For 14C analysis of bulk samples, dried sediment (~ 50mg) and POC (~15mg) samples were acidified with 3%
phosphoric acid in quartz tubes and subsequently dried according to Hwang [2004]. Percent organic carbon
(%OC) was determined by the manometric measurement of CO2 produced from single-tube combustions.
Due to the large sediment sample size (1000mg) required for BC 14C analysis, only one SOC sample was
measured in duplicate, and no POC samples weremeasured in duplicate for 14C. BPCA isolates from the PCGC
fraction collector were transferred to quartz tubes, dried, and combusted to CO2 at 850°C with CuO and Ag.
Graphite was produced according to standard methods [Santos et al., 2007]. Radiocarbon results are
reported as Δ14C [Stuiver and Polach, 1977]. Uncertainties of the Δ14C measurements are determined from
the Δ14C difference between duplicate values [Coppola et al., 2013]. Process blank assessments were made,
and BC reference materials were analyzed to account for extraneous carbon introduced during chemical
processing, PCGC collection, and graphitization [Santos et al., 2007; Ziolkowski and Druffel, 2010b; Coppola
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et al., 2013]. BC reference materials, such as wood char and grass char [Hammes et al., 2007], were prepared
in varying sizes that bracketed the sample sizes.

3. Results

Sediment samples contained 1.0 ± 0.3 to 1.7 ± 0.2%OC with an average value of 1.4 ± 0.2%OC (Table 1). The
BC/OC% in SOC ranged from 3± 2 to 9 ± 3% (Table 1 and Figure 1a) with an average value of 6 ± 2 BC/OC%.
There was no significant trend of BC/OC% with depth (Figure 1a). For the POC sample, OC% was 2.9 ± 0.5%
and BC/OC% was 6± 2%. Both POC BC and surface SOC BC have the same BC/OC% values.

Table 1. Measurements of BC Isolated From Northeast Pacific Sediments and POC Using the BPCA Methoda

UCID No. Depth (cm) OC% BC/OC% g BC/kg dry weight Δ14CBC (‰) 14CBC Age (14C Years BP) Δ14Cbulk (‰) Δ14Cnon-BC OC (‰)

Sedimentary Organic Carbon
13187 0.25 ±0.25 1.4 ± 0.4 6 ± 2 0.8 ± 0.4 �530± 7 6050± 180 �246± 4 �229± 61
13234 0.75 ±0.25 1.7 ± 0.2 3 ± 2 0.5 ± 0.1 �740± 36 10800± 1600 �245± 4 �238± 90
13241 1.25 ±0.25 1.5 ± 0.3 7 ± 2 1.1 ± 0.2 �795± 18 12700± 1030 �242± 5 �200± 60
13233 1.75± 0.25 1.5 ± 0.2 5 ± 2 0.7 ± 0.3 �697± 16 9590± 620 �242± 3 �220± 69
13188 2.25± 0.25 1.4 ± 0.4 6 ± 2 0.8 ± 0.3 �605± 16 7460± 470 �238± 4 �216± 80
13240 2.75± 0.25 1.6 ± 0.6 4 ± 2 0.7 ± 0.2 �664± 15 8800± 520 �263± 4 �245± 76
13239 2.75± 0.25 1.6 ± 0.2 3 ± 2 0.5 ± 0.2 �592± 30 7210± 870 �263± 6 �251± 81
13189 4.25± 0.25 1.5 ± 0.2 7 ± 2 1.1 ± 0.2 �534± 10 6400± 270 �231± 4 �265± 85
13232 6.5 ± 0.5 1.6 ± 0.2 5 ± 2 0.7 ± 0.1 �596± 19 7200± 540 �260± 4 �200± 83
13190 7.5 ± 0.5 1.4 ± 0.4 7 ±3 1.0 ± 0.2 �653± 10 6100± 240 �286± 5 �243± 94
13231 8.5 ± 0.5 1.5 ± 0.2 4 ± 2 0.5 ± 0.2 �596± 33 7300± 790 �312± 4 �267± 87
13230 13± 1 1.5 ± 0.2 6 ± 2 0.9 ± 0.2 �730± 18 10500± 1300 �428± 6 �300± 88
12181 27± 1 1.0 ± 0.3 9 ± 3 0.9 ± 0.1 �966± 21 24300± 1700 �904± 7 �897± 21
12182 27± 1 1.0 ± 0.4 9 ± 3 0.9 ± 0.2 �952± 15 23600± 1400 �904± 7 �899± 23

Particulate Organic Carbon
16515 3450mc 2.9 ± 0.5 6 ± 2 2.0 ± 0.4 �192± 24 2360± 260 �12± 2 �4 ±25

Ultrafiltered Dissolved Organic Carbonb

11955 1000 mc �918± 31 20100± 3000 �445± 3 �192± 24

aBold UCID numbers indicate duplicate measurements.
bZiolkowski and Druffel [2010a].
cCollected from the water column at Station M.

Figure 1. (a) BC/SOC%with depth in the sediment from StationM. Closed circles represent measurements using the BPCAmethod (this work). Open circles represent
values from Masiello and Druffel [1998] using the Cr2O7 oxidation method. Sediment depths 0–13 cm were obtained from a box core. A gravity core was used for
samples from deeper depths. (b) Δ14CBC values of sediment samples. Closed circles represent measurements from this work. Open circles represent measurements
from Masiello and Druffel [1998] for the same sediment samples. (c) Black carbon 14C ages (closed circles) plotted with non-BC 14C ages (open triangles) in sediment
using the BPCAmethod. Non-BC SOC Δ14C values were calculated using a mass balance approach (equation (1) in the supporting information) then converted to 14C
ages in years B.P.
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The Δ14C values of bulk SOC (Δ14Cbulk)
ranged from �231 ± 4‰ to �904 ± 7‰
(Table 1). In the mixed layer (0–8 cm
depth), Δ14Cbulk values ranged from
�231 ± 4‰ to �286 ± 5‰, and those
just below the mixed layer (8.5 and
13 cm) were �312 ± 4 and �428 ± 6‰,
respectively. At 27 cm, Δ14Cbulk values of
duplicate samples were
both �904±7‰.

The Δ14C values of BC (Δ14CBC) for the
sediment samples are all lower than SOC
Δ14Cbulk values from the corresponding
depths (Table 1). Within the mixed layer,
Δ14CBC values ranged from�530± 7‰ to
�795± 18‰. Just below the mixed layer,
Δ14CBC values were �596± 33‰ and
�730± 18‰, respectively. At 27 cm
depth, the average of duplicate analyses
was�959±13‰ (Figure 1b). The Δ14Cbulk

value of POCwas�12±2‰, and theΔ14CBC value was�192±24‰. Just as for the sediments, the Δ14CBC value
for POC is lower than the Δ14Cbulk value.

The relative abundances of B5CAs and B6CAs in SOC BC (compared to the sum of B3CA+B4CA+B5CA+B6CA)
were similar for all depth horizons, averaging 26±1% (standard deviation n=12) and 25±4% (n=12),
respectively (Table S2 in the supporting information). These relative abundances did not vary significantly with
depth in the sediment. In contrast, the relative abundances of B4CAs and B3CAs averaged 36±4% and 13±4%,
respectively, but the deepest sediment horizon had lower B3CA and higher B4CA relative abundances than
those at shallower depths (Figure S2 in the supporting information). In POC BC, the relative abundances of
B3CAs, B4CAs, B5CAs, and B6CAs were similar to those in SOC BC (Figure 2).

4. Discussion

Combustion conditions determine the relative structure of BC. The BPCA method is a powerful tool for
constraining the source of BC, because the relative BPCA abundances serve as a fingerprint of the combustion
conditions that formed the BC. Hotter combustion conditions, such as during fossil fuel burning, produce a highly
condensed BC structure, while cool combustion conditions of biomass burning produce a less condensed BC
structure [Schneider et al., 2010]. Additionally, environmental reworking of BC, such as by photochemistry [e.g.,
Stubbins et al., 2012], can decrease the aromaticity of BC. Therefore, coupling the relative BPCA abundances with
compound specific radiocarbon analysis allows us to unravel the sources of BC to marine sediment.

While the main source of OC to POC and SOC at an abyssal ocean site, such as Station M, is water column
derived biological material with a modern 14C content [Hwang et al., 2004], the Δ14CBC values of SOC and POC
are lower than their corresponding Δ14Cbulk values. Therefore, BC in SOC and POC is not of recent biologic
origin; instead, it is preaged before it is incorporated into the POC and SOC pools.

A source of old BC to POC and SOC may be sorption of DOC BC onto sinking POC. Ultrafiltered DOC BC from
1000m depth at Station M is very old (20,100±3000 14C years) [Ziolkowski and Druffel, 2010a, 2010b], and a small
amount would increase the age of BC in POC substantially. Below we discuss possible sources of preaged BC
including sediment resuspension, input via sorption onto sinking POC, and sorption of ancient DOC BC to
sinking POC.

First, a source of aged BC to POC and SOC is likely from resuspended sediments that are laterally transported
by bottom currents from the continental shelf to the abyssal plain [Hwang et al., 2010]. Using aluminum
content and Δ14C values of sinking POC from several open ocean sites, Hwang et al. [2010] estimated that
35 ± 13% of sinking POC is derived from resuspended sediment and is the primary reason that sinking POC
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has lower Δ14C values than those in the surface ocean [Hwang et al., 2010]. Bioturbation by macrofauna
burrowing and feeding in the mixed layer decreases Δ14C values of SOC at the surface by transporting deeper,
older sediments upward from depth making it older than its chronological “age”. Resuspension of the old,
surface SOC provides a source of old OC and BC to sinking POC. The similarity of the relative BPCA abundances in
POC BC and SOC BC (Figure 2) supports the recycling of resuspended sediment into the sinking POC pool.

A second, though unlikely, source of aged BC to POC and SOC is aerosol soot BC (Δ14C = �400 to �600‰)
[Gustafsson et al., 2009] that has entered the surface ocean during the past 150 years primarily by atmospheric
deposition. In coastal regions, aerosol BC has been shown to play a significant role in transporting BC to the
sediments [Flores-Cervantes et al., 2010; Zigah et al., 2012; Lohmann et al., 2009 ]. Due to the slow sedimentation
rate at StationM (1.9 cm/kyr) [Cai et al., 1995], this old BC would constitute a very small amount (<4%) of the BC
in the surface sediment, and we do not observe lower Δ14CBC values in the mixed layer of the sediment relative
to those at deeper depths (Figure 1c). Although it could be speculated that deposition has increased at this site,
the age offset between BC and non-BC SOC does not appear to change down core, suggesting that the input of
preaged BC to SOC was constant before and during the industrial revolution. Therefore, we conclude that this
source of 14C-free BC via aerosols is minimal in these sediments.

The third, and likely the largest source of aged BC to sinking POC and SOC is from DOC. The average 14C age
offset between BC and non-BC SOC of 6200 ± 2200 14C years (Figure 1c and equation (1) in the supporting
information) may represent a residence time for BC in the “holding pool” of DOC before its deposition to the
sediments. There are two possible explanations for the different chemical structures of BPCAs in ultrafiltered
DOC (no B6CAs) [Ziolkowski and Druffel, 2010a, 2010b] compared to those in POC and SOC (equal amounts of
B3CAs, B4CAs, B5CAs, and B6CAs), taking into account the different methodological treatments of these
samples (POC and SOC were pretreated with trifluoroacetic acid). We hypothesize that DOC BC may be
preferentially sorbed onto sinking POC by (a) aggregation during photolysis or (b) hydrophobic bonding in
microgel formation to explain our measurements.

Studies have shown that highly aromatic compounds similar to BC, such as carboxylated multiwalled carbon
nanotubes (MWCNTs) and C60, lose stability in solution after exposure to UV light, leading to aggregation and
deposition in saline solutions [Hou et al., 2010; Hwang et al., 2013; Chen and Jafvert, 2011]. These authors
suggested that photochemical transformations can play an important role in the aggregation and deposition
of MWCNTs in aquatic systems [Hwang et al., 2013; Saleh et al., 2008]. This mechanism may be important for
the transfer of hydrophobic, highly aromatic BC from DOC to POC, leading to an accumulation of smaller,
hydrophilic BC structures (yielding B3CA-B5CAs) in oceanic DOC [Ziolkowski and Druffel, 2010a; Masiello and
Louchouarn, 2013] (Figure 2).

Alternatively, abiotic transfer of BC from DOC to POC may occur synchronously with hydrophobic bonding
during marine microgel formation [Verdugo, 2012; Verdugo et al., 2004]. Hydrophobic interactions are low-
energy attractions that can cause aggregation and production of POC. It seems likely that hydrophobic BC
has a higher aromaticity than hydrophylic BC and would produce a higher B6CA abundance using the BPCA
method. Previous work has shown that DOC self-assembled microgel formation facilitates ~10% of the OC
transfer from DOC to POC [Verdugo, 2012; Verdugo et al., 2004]. Whether these processes discriminate
between structures of BC is an open question. We hypothesize that aged BC can be incorporated into POC by
a combination of resuspended sediments laterally transported from the continental shelf and sorption of
aged DOC BC onto POC.

These results can be used to help constrain the flux of BC transported to abyssal sediments via POC, although
the flux to coastal sediments is considerably higher [Flores-Cervantes et al., 2010] and limit the scope of our
estimate to the open ocean. If we assume that sorption of BC fromDOC to POC is themain source of BC to the
sediments, the POC flux to the deep ocean is 2mg C m�2 d�1 [Smith and Kaufmann, 1999], and BC/OC% of
POC is 6%, we estimate that the average global BC flux is 0.12mg BCm�2 d�1 or 0.016 Gt BC yr�1. Because the
BC is preaged, this estimate represents the preindustrial era and is at the low end of the range of measured
BC flux ranges (0.01 to 360mgm�2 yr�1) reported from several studies of the open ocean (see review byMitra
et al. [2013]). Our estimate of BC flux represents ~8–16% of the global burial flux of organic carbon to
sediments (0.1 to 0.2 Gt C yr�1) [Hedges and Keil, 1995]. Compared to present day BC biomass emission fluxes
(0.050–0.270 Gt BC yr�1) [Kuhlbusch and Crutzen, 1995], our estimate of POC BC flux to the abyssal ocean
represents a removal of 6–32% of biomass-derived BC.
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In summary, this multipool data set leads us to conclude that a significant fraction of BC produced from
biomass burning could be transported to ocean sediments. However, multiple POC BC and DOC BC
measurements are needed to provide a more representative view of BC dynamics in the ocean. Ultrafiltered
DOC, from which the only deep ocean BC value was derived [Ziolkowski and Druffel, 2010a], includes only
~25% of the marine DOC pool [Benner, 2002] and does not include the aged low molecular weight fraction
[Hansell et al., 2012; Santschi et al., 1995]. Solid phase extraction of DOC [Dittmar et al., 2008] has revealed the
presence of B6CAs in North Atlantic Deep Water [Stubbins et al., 2012], which also has a different relative
BPCA abundance to that of SOC and POC. Reverse osmosis coupled to electrodialysis (RO/ED) is another
method than can be used to isolate >60% of the DOC pool [Vetter et al., 2007; Koprivnjak et al., 2009]. RO/ED
has an even greater efficiency for colored DOM absorbance, suggesting it may provide excellent yields of the
aromatic compounds contained within colored DOM [Helms et al., 2013]. These data sets would further
our understanding of BC cycling in both dissolved and particle phases. Additionally, updated global
estimates of sources and sinks of BC are sorely needed to put into context the fate of BC upon entering
the ocean.
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