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Network-constrained technique to
characterize pathology progression rate in
Alzheimer’s disease

Fon Powell,1 Duygu Tosun2,3 and Ashish Raj1,2 for the Alzheimer’s Disease
Neuroimaging Initiative*

* Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.lo-
ni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data
but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:http://adni.loni.
usc.edu/wp content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Current methods for measuring the chronic rates of cognitive decline and degeneration in Alzheimer’s disease rely on the sensitivity

of longitudinal neuropsychological batteries and clinical neuroimaging, particularly structural magnetic resonance imaging of brain

atrophy, either at a global or regional scale. There is particular interest in approaches predictive of future disease progression and

clinical outcomes using a single time point. If successful, such approaches could have great impact on differential diagnosis, thera-

peutic treatment and clinical trial inclusion. Unfortunately, it has proven quite challenging to accurately predict clinical and degen-

eration progression rates from baseline data. Specifically, a key limitation of the previously proposed approaches for disease pro-

gression based on the brain atrophy measures has been the limited incorporation of the knowledge from disease pathology

progression models, which suggest a prion-like spread of disease pathology and hence the neurodegeneration. Here, we present a

new metric for disease progression rate in Alzheimer that uses only MRI-derived atrophy data yet is able to infer the underlying

rate of pathology transmission. This is enabled by imposing a spread process driven by the brain networks using a Network

Diffusion Model. We first fit this model to each patient’s longitudinal brain atrophy data defined on a brain network structure to

estimate a patient-specific rate of pathology diffusion, called the pathology progression rate. Using machine learning algorithms,

we then build a baseline data model and tested this rate metric on data from longitudinal Alzheimer’s Disease Neuroimaging

Initiative study including 810 subjects. Our measure of disease progression differed significantly across diagnostic groups as well as

between groups with different genetic risk factors. Remarkably, hierarchical clustering revealed 3 distinct clusters based on CSF

profiles with >90% accuracy. These pathological clusters exhibit progressive atrophy and clinical impairments that correspond to

the proposed rate measure. We demonstrate that a subject’s degeneration speed can be best predicted from baseline neuroimaging

volumetrics and fluid biomarkers for subjects in the middle of their degenerative course, which may be a practical, inexpensive

screening tool for future prognostic applications.
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Abbreviations: Ab ¼ amyloid beta; ADAS-Cog ¼ Alzheimer’s disease assessment scale—cognitive; ADNI ¼Alzheimer’s Disease
Neuroimaging Initiative; APOE ¼apolipoprotein-E; CON ¼healthy controls; EMCI ¼Early Mild Cognitive Impairment; FAQ
¼Functional Activities Questionnaire; GM ¼grey matter; LMCI ¼Late Mild Cognitive Impairment; MMSE ¼Mini-Mental State
Exam; NDM ¼Network Diffusion Model; PPR: Pathology progression rate; pTau ¼phosphorylated tau; WM: white matter

Introduction
Pathological processes in the brains of Alzheimer’s disease

patients start well before clinical symptoms1,2 and give

rise to a long and stereotyped progression of regional

pathology, atrophy and synaptic dysfunction. The possi-

bility of capturing and predicting longitudinal decline and

clinical outcomes from baseline data is a matter of in-

tense interest, with applications in differential diagnosis,

therapeutic treatment and clinical trial inclusion.3–6

Current measures of decline rely on changes in global

clinical assessments such as Mini-Mental State Exam

(MMSE) and ADAS-Cog, and longitudinal changes in

global brain volume.7,8 However, these measures have

proved challenging for the purpose of monitoring and

predicting rates of decline.9,10

As a measure of disease progression, global brain vol-

ume is limited, as it ignores the highly specific spatial

patterns of Alzheimer’s disease-related atrophy. While it

is of course possible to obtain atrophy rates for each

brain region, in clinical settings a single rate metric is

more favourable for prognosis or as primary endpoint in

clinical trials. Furthermore, the global atrophy rate does

not capture the Alzheimer’s disease-specific progression

process intrinsically involving network-level spread, a

well-studied ‘prion-like’ transsynaptic transmission of neu-

rodegenerative processes.11–13

To address these limitations, this paper presents a new

measure of pathology progression rate (PPR) in

Alzheimer’s disease-spectrum patients, using at its core a

Network Diffusion Model (NDM) that was previously

shown to recapitulate spatial and temporal patterns of

Alzheimer’s disease-related neurodegeneration spread

along with the brain’s white matter fibre architecture.14

The strength of this approach is that it connects a bio-

physically realistic model of protein transmission to the

Graphical Abstract
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whole brain regional level. Therefore, we propose the

NDM as a robust model from which a PPR metric can

be derived directly from MRI-based atrophy maps.

The current work makes three main contributions: First,

we propose an algorithm to compute the PPR from longi-

tudinal MRI of a subject, by fitting the NDM’s (a priori

unknown) rate parameter called the diffusivity rate b, as a

primary metric of PPR. Although the NDM has been ex-

tensively used in various dementias,15–23 it has previously

focussed on cross-sectional rather than longitudinal data.

The PPR proposed here encapsulates the entire spatiotem-

poral evolution of the disease and serves as a mechanistic-

ally relevant measure of rate of progression in the

Alzheimer’s disease spectrum. Second, we thoroughly char-

acterize the PPR parameter on a large cohort of 810 sub-

jects across the Alzheimer’s disease spectrum available in

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

study.24 Specifically, we assess to what extent the PPR

parameter is explained by the well-established phenotypical

(i.e. clinical diagnosis) and genotypical (i.e. ApoE geno-

type) factors. Third, we assess the predictive value of base-

line Alzheimer’s disease biomarkers including atrophy

measures from MRI and CSF Ab and tau levels for sub-

ject-specific PPR metric. A previous approach dealt with

longitudinal fitting of NDM25 but did not attempt to pre-

dict it from baseline. To our knowledge, this is the first

study to propose a network-based disease progression rate

metric built on a known mechanism of disease pathology

progression in Alzheimer’s disease.

Methods

Participants

All subject data were obtained from the public longitudin-

al Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (http://adni.loni.usc.edu/). Subjects were diagnosed

as Alzheimer’s disease, Late Mild Cognitive Impairment

(LMCI), Early Mild Cognitive Impairment (EMCI) or

Control (CON) according to published ADNI diagnostic

criteria. Only subjects who had two or more longitudinal

volumetric MRI were included in this study. Subjects in

different diagnostic groups were age- (Alzheimer’s disease:

P¼ 0.65, LMCI: P¼ 0.77, EMCI: P¼ 0.10) and gender-

matched (Alzheimer’s disease, P¼ 0.06, LMCI: P¼ 0.76,

EMCI: P¼ 0.77) healthy controls. Forty CON subjects

were eliminated to age-match for LMCI and EMCI sub-

jects. Individuals who had diagnosis conversion (e.g. CN

to MCI, MCI to Alzheimer’s disease) were excluded to en-

sure the integrity of subsequent clustering analysis.

Structural MR image acquisition
and processing

ADNI gives 3 T structural T1-MRI (3D Magnetization

Prepared Rapid Acquisition Gradient Echo or Inversion

Recovery—Spoiled Gradient Echo) with sagittal slices and

voxel size of 1� 1.2� 1.2 mm3 (http://adni.loni.usc.edu/

methods/documents/mri-protocols). Automated cortical

and subcortical volume measures were performed with

FreeSurfer software, version 5.3, using their longitudinal

processing stream (http://surfer.nmr.mgh.harvard.edu/

fswiki). All imaging protocols and preprocessing proce-

dures are available on the ADNI website. (http://adni.

loni.usc.edu/methods/).

DWI acquisition and processing

The white matter connectome was constructed from MRI

data of 73 (40 men, 33 women, 30.2 6 6.7 years) normal,

healthy subjects collected previously.26,27 T1-weighted

structural and diffusion-weighted MR images were col-

lected on a 3 T GE Sigma EXCITE scanner. High

Angular Resolution Diffusion Imaging scans were

acquired with 55 isotropically distributed diffusion-encod-

ing directions at b¼ 1000 sec/mm2 and one at b¼ 0 sec/

mm2, from 72 1.8-mm thick interleaved slices (no slice

gap) and 128� 128 matrix size, zero-filled during recon-

struction to 256� 256, with a field of view of 230 mm2.

T1-weighted inversion-recovery fast spoiled gradient-

recalled echo sequence (Echo time¼ 1.5 msec, Repetition

time¼ 6.3 msec, Inversion time¼ 400 msec) flip angle of

15�) with a 256� 256 matrix over a 230 mm2 field of

view and 156 1.0-mm contiguous partitions.

High Angular Resolution Diffusion Imaging was cor-

rected for eddy current and motion artefacts using

FMRIB Software Library (FSL).28 T1 images were proc-

essed by first segmenting the tissue into CSF, white

matter (WM) and grey matter (GM). The GM segment

was subsequently parcellated into 86 different ROIs of

the FreeSurfer (Desikan-Killiany) parcellation correspond-

ing to 68 cortical and 18 subcortical structures. The

parcellated GM was then linearly transformed and

resampled to diffusion image space for use in

tractography.

Tractography and anatomic
connectivity graph

High Angular Resolution Diffusion Imaging data were

processed using spherical deconvolution to yield orienta-

tion distribution functions in each voxel. The resulting

output was fed into a probabilistic fibre tracking algo-

rithm, to produce fibre tracts in terms of streamlines (see

Fig. 1). Each voxel at each region’s grey–white interface

was seeded with 100 streamlines and the resulting tracts

were traced probabilistically. Proposed and validated in29

the tractography algorithm implemented here incorporates

tissue classification probability and orientation distribu-

tion information in a Bayesian manner. A tract termi-

nated when the algorithm reached the boundary of an

image volume, the edge of a GM region, a voxel not in

the grey or WM masks, or when the angle between
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subsequent steps exceeded p/3. This analysis was done

using Statistical Parametric Mapping (SPMv8),30 a soft-

ware package within Matlab (The Mathworks, Inc.,

Natick, MA), and the Individual-Based Atlas toolbox31

within Statistical Parametric Mapping.

The number of streamlines (weighted by probability

score) found to go from region i to region j and vice

versa, were averaged and this value was recorded as the

connectivity ci;j between the two regions. The full 86 �
86 connectivity matrix was then formed as per C ¼ fci;jg.
Connectivity matrices from individual healthy subjects

were found to be largely similar, nonetheless, to control

for inter-subject variance in total fibre count, each healthy

subject’s connectome was normalized by their total

(weighted) number of streamlines. Then a mean over all

subjects was taken in order to obtain a canonical healthy

connectivity matrix C, which was used in all subsequent

analysis. The subsequent undirected canonical connectome

was weighted, not binary. The weights were minimally

thresholded to remove very small entries, which yielded

�85% sparsity—as depicted in the example in Fig. 1.

Further details of the image processing and tractography

method are given in a previous publication.26,27

The Network Diffusion Model

Our group’s previously published NDM has been shown

to accurately recapitulate spread of Alzheimer’s Disease

pathology throughout the brain.14,25 Briefly, pathology

transmission is modelled as a network diffusion process:

x tð Þ ¼ e�bHtx0 (1)

where x0 and xðtÞ are the initial (t¼ 0) and evolved pat-

terns of the regional pathology at time t respectively,

expressed as 86�1 vectors denoted in boldface, corre-

sponding to the 86-region brain atlas. The matrix expo-

nential exp ð�bHtÞ acts as a spatial and temporal

blurring operator, called the diffusion kernel. Matrix H,

called the network Laplacian, is a derivative of the con-

nectivity matrix obtained from the white matter structural

organization. The parameter b represents the diffusion

rate coefficient, which is considered the rate of disease

progression (i.e. speed of neurodegeneration) in the cur-

rent study.

Relationship to atrophy. The measurable phenotype (re-

gional MRI-derived atrophy) in region k is assumed to

be the consequence of and thus proportional to the

Figure 1 Analysis pipeline to yield PPR. Using an atlas parcellation, here, Desikan-Killiany 86-region atlas (A) and probabilistic

tractography on diffusion tensor imaging (DTI) (B) a brain connectome was created (C), with expected sparsity and topology. The NDM was

evaluated on this connectome, and its beta parameter was fitted in order to produce the maximum match with the subject’s empirical

longitudinal atrophy (D). The fitted beta is henceforth also referred to as the pathology progression rate (PPR).
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accumulation of pathology. Hence, it is modelled as the

integral:

/k tð Þ ¼
ðt

0

xk sð Þ ds (2)

On the whole brain this gives:

U tð Þ ¼
ðt

0

x sð Þ ds (3)

Relationship between baseline atrophy and its rate of

change. Let Ubase be the baseline atrophy pattern vector

of a given subject and let tbase be the (unknown) time

elapsed between pathology initiation and the baseline

exam. It was shown in Raj et al.14,25 that the relationship

at baseline scan between atrophy and its rate of change

(as modelled by NDM) under the integral relationship

above is given by

dU
dt
jt¼tbase

¼ b ~H btbaseð ÞUbase (4)

where we define a new variant of the Laplacian

~H btð Þ ¼ U diag

1

bt
; i ¼ 1

kie
�kibt

1� e�kibt
; i > 1

8>><
>>:

9>>=
>>;

0
BBB@

1
CCCAU

†

(5)

involving the eigendecomposition H ¼ UKU
†
, with eigen-

values ki. Please see Raj et al.25 for details. The new

term ~H is not a conventionally defined Laplacian, but it

is the correct operator for derivatives of a signal that sat-

isfies Equations (1) and (3). Thus, the NDM determinis-

tically predicts that the atrophy at baseline and its rate of

change are related via the matrix ~HðbtÞ.
Please note that pathology modelled by the NDM can

decrease with time, especially in seeding sites, since the

NDM is a mass-conserving model. However, we do not

have direct access to pathology in this study, only atro-

phy. By assumption, atrophy is the integral of pathology

(Equation (3)), hence the former can never go down,

even if the latter does. Note also that processes like

hypertrophy or compensatory mechanisms that can in

some cases cause decrease in atrophy are outside the

scope of the present model.

Algorithm for fitting b to individual
subjects’ longitudinal scans

For each subject, the b parameter is computed using the

subject’s longitudinal atrophy patterns. An illustration of

the analysis pipeline is given in Fig. 1.

The algorithm has the following steps:

1. Atrophy slope of each region is calculated independ-

ently, using tlong;a vector of timestamps (length nt) of a

patient’s longitudinal visits. Let the regional atrophy pat-

terns be contained in the (nt x 1) vector for any given re-

gion r, /r . A fitted estimate of slope of atrophy for that

region is calculated from this longitudinal data, using lin-

ear regression with intercept. Mathematically:

/r ¼ 1 tlong

� �
ar brð Þ (6)

where 1 is a nt x 1 vector of ones and tlong is a nt x 1

vector of longitudinal time elapsed since baseline (in

years). Hence the fitted coefficient ar gives the intercept

and br the slope of empirical atrophy, which we record

as D/r

Dt ¼ br. We collect all fitted regional slopes in the

vector DU
Dt ¼

D/r

Dt j8rg
n

. In our implementation, the above

fitting was performed using MATLAB’s pseudoinverse

function. Regions with negative atrophy slopes are set to

0, as thickening of the cortex is a rare and unlikely event

in Alzheimer’s disease, and most likely is a result of

measurement error.

Note that the relationship between instantaneous region-

al atrophy and its instantaneous slope in Equation (4) is

exact, not a linearized assumption. However, the deduc-

tion of the empirical derivative via Equation (6) requires

non-instantaneous (longitudinal) data. Hence there is an

implicit assumption of linear change within the longitudin-

al time window of 2–6 years. In practice, the Alzheimer’s

disease course runs into decades, hence the purpose of

computing empirical atrophy slopes the implicit linear as-

sumption is realistic.

To estimate b and tbase parameters jointly a two-step

approach as detailed in steps 2 and steps 3 was used:

2. Set b ¼ b0, where b0 is an initial or default value,

set as 0:05year�1. Note that the unit of PPR is 1/time.

Hence 0:05year�1 represents a rate of progression that

should correspond to 0.05 per year. Then minimize over

tbase:

^tbase ¼ argmaxtbase
corr b0

~H b0tbaseð ÞUbase;
DU
Dt
Þ

� ��
(7)

where corrð�; �Þ refers to the Pearson correlation coeffi-

cient between two vectors, and recall that DU
Dt is the meas-

ured slope from step 1.

3. Then the optimal rate b̂ is given by least squares fit-

ting, obtained via MATLAB’s pseudoinverse, of b in the

linear system:

DU
Dt
¼ b ~H b0

^tbase

� �
Ubase (8)

Although steps 2 and 3 can in theory be iterated, in

practice it was found sufficient to perform this process

once only.

Statistical analysis

Following calculation of each subject’s b parameter from

baseline and subsequent longitudinal volumetric scans, b
outliers were removed. Outliers are defined as 1.5 times

greater or less than the inter-quartile range separately for

each diagnostic group. This was necessitated by the ob-

servation that the key measurement in its estimation is

Network progression in Alzheimer BRAIN COMMUNICATIONS 2021: Page 5 of 16 | 5



the derivative DU
Dt , which is very noisy. Note that above

analysis requires only baseline and slope, allowing us to

use subjects with multiple and varying number of visits.

It is likely that the quality of the slope estimate will be

better for >2 time points, but we did not explore this ef-

fect in this study.

Differences in subject characteristics across diagnostic

groups, APOE status categories and clusters were assessed

with the Kruskal–Wallis H-test, a non-parametric one-way

ANOVA on ranks.32 Wilcoxon rank-sum tests were used in

the case of comparing 2 groups directly.33 Differences in

frequencies were assessed with classic chi square analysis.

Independent, two-sided t-tests were used to test for differen-

ces in local brain volume. Glass brains depicting magnitude

and t-statistic are used for visualization.34 Multivariate lin-

ear regression analysis was used to examine the relationship

between multiple CSF biomarkers, cortical/subcortical vol-

umes and b. The coefficient of determination, R2 was used

to evaluate model fit.

Z-scores of CSF metrics were computed relative to age-

matched controls to normalize features for hierarchical clus-

tering analysis. Hierarchical clustering analysis was used to

delineate clusters of subjects in a six-dimensional space

defined by baseline CSF biomarkers of Ab, Tau, phosphory-

lated tau (pTau) and their respective ratios. The optimum

cluster size was estimated based on the variance ratio criter-

ion (Calinski–Harabasz index), defined as the ratio of be-

tween-cluster variance to within-cluster variance is

maximized at 3 clusters.35 Four hundred ninety patients on

the Alzheimer’s disease spectrum of 578 patients (excluding

outliers) had complete data on all 6 CSF biomarkers of

interest in the current study and were used in clustering

analysis. All analysis was carried out in MATLAB.

Data availability

All data used in this study are pubic, from the ADNI

database available from (http://adni.loni.usc.edu/).

Computer code will be available freely on our GitHub re-

pository (https://github.com/Raj-Lab-UCSF).

Results
Subject demographic information is provided in Table 1.

92% of subjects have baseline CSF biomarkers. All sub-

jects also had measures of the MMSE and Functional

Activities Questionnaire (FAQ) to assess global clinical/

cognitive impairment. Since 99% of subjects’ MMSE and

FAQ scores were collected within 1.25 years of their base-

line MRI (mean ¼ 0.59 years, median ¼ 0.55 years), we

consider these scores as baseline measures. Four EMCI

subjects had baseline cognitive metrics measured �2 years

post-baseline scan.

We test whether the network-derived beta parameter

that characterizes the PPR varies by the subject’s diagnos-

tic and genetic status. Prion hypotheses in Alzheimer’s

disease suggest the disease spreads in an exponential,

viral-like manner, with the disease spreading faster with

increased disease severity.13 Thus, we hypothesized that

subjects later in clinical progression will have a higher

rate of disease spread than subjects early in the disease.

Although we accommodate APOE status and CSF bio-

marker levels in our analysis, we did not specifically

stratify our subjects based on amyloid positivity, under

the emerging concept that amyloid facilitates rather than

governs the spatiotemporal trajectory of Alzheimer’s dis-

ease spectrum subjects. To test the hypothesis, each sub-

ject’s PPR (i.e. b) was calculated and its effect across

each of the three diagnostic groups was assessed using a

non-parametric Kruskal–Wallis H test. We observe a sig-

nificant effect of b across diagnoses on the Alzheimer’s

disease spectrum (P¼ 6.67e-18). Furthermore, when dir-

ectly comparing the earliest stage EMCI group to the

Alzheimer’s disease group, we show a significant differ-

ence in b between EMCI and Alzheimer’s disease patients

Table 1 ADNI subject demographics

Dx N Age (std) Sex (% F) APOE4

status

(0/1/2)

MMSE (std) FAQ (std) CSF AB

(pg/ml) (std)

CSF Tau

(pg/ml)

(std)

CSF pTau

(pg/ml)

(std)

Alzheime-

r’s

disease

117 74.9 38% 24/51/22 21.6 15.5 134.6 131.2 58.9

(8.1) 83%þ (3.9) (6.9) (37.2) (64.8) (32.9)

85%þ 84%þ 94%þ 89%þ 94%þ
LMCI 172 72.5 45% 74/69/27 26.7 4.8 159.4 99.8 47.6

(7.7) 99%þ (2.4) (5.7) (49) (54.5) (27.4)

97%þ 97%þ 94%þ 89%þ 94%þ
EMCI 289 71.3 44% 161/103/20 28 2.3 183.8 77.2 36.8

(7.2) 98%þ (1.8) (3.5) (51.2) (47.6) (21.1)

95%þ 95%þ 94%þ 89%þ 94%þ
CON 232 74.5 53% 153/56/6 28.9 0.44 198.1 68 33.1

(6.9) 93%þ (1.3) (2) (51.2) (33.7) (17.9)

91%þ 90%þ 94%þ 89%þ 89%þ

APOE, apolipoprotein-E; CON, healthy controls; EMCI, Early Mild Cognitive Impairment; FAQ, Functional Activities Questionnaire; LMCI, Late Mild Cognitive Impairment; MMSE,

Mini-Mental State Exam.

þDenotes percentage of data available in diagnostic cohort.
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(P¼ 5.72e-18) (Fig. 2A). Note, healthy subjects were used

to compute statistically normalized effect sizes in patients

but are themselves not included here as a separate

cohort.

Since Alzheimer’s disease is highly associated with the

number of putative APOE4 alleles, we examined the rela-

tionship between b and APOE4 allele status.36,37 In our

dataset, 266 patients have 0 APOE4 alleles, 195 patients

have 1 allele and 66 have 2 APOE4 alleles. Thus, we

hypothesized that b is higher in subjects with the patho-

genic APOE4 allele compared to subjects without the

APOE4 allele. A one-way Kruskal–Wallis test confirms

this, illustrating a significant effect of beta across subjects

with 0, 1 and 2 APOE4 alleles (P¼ 0.0006) Specifically,

we observe beta in subjects with the E4/E4 allele is sig-

nificantly higher than subjects without the E4 allele

(P¼ 7.50e-04) (Fig. 2B).

Now we establish whether PPR is reflective of longitu-

dinal progression of neurodegeneration. We hypothesize

that there will be a strong relationship between beta and

the global slope of atrophy as well as a strong relation-

ship between beta and clinical/cognitive decline measured

via MMSE. Indeed, a high correlation was found between

the modelled beta parameter and global rate of atrophy

(R2 ¼ 0:30;P ¼ 5:1� 10�43) (Fig. 2C). A moderate cor-

relation was found between the modelled beta parameter

and clinical decline as measured by the difference be-

tween unimpaired MMSE (i.e. 30) and subject’s end-point

MMSE (R2 ¼ 0:15;P ¼ 8:6� 10�18) (Fig. 2D). For com-

parison, we also obtained the correlation of clinical de-

cline with global slope of atrophy (Fig. 2E), which, while

moderately significant (R2 ¼ 0:10;P ¼ 1:3� 10�12), was

weaker compared to that of beta. These P-values were

not corrected for multiple comparisons. The patient

Figure 2 Significant effect of PPR on subject’s atrophy rate, MMSE, diagnosis and genetics. (A) The fitted value of beta, or PPR,

is significantly higher in Alzheimer’s disease than MCI groups. (B) Fitted beta is significantly higher in subjects with E4/E4 APOE alleles

compared to other APOE groups, across the Alzheimer’s disease spectrum. Subjects with both putative APOE4 alleles show the highest

betas, while subjects homozygous for the APOE3 allele exhibit the lowest betas. (C) Correlation between a subject’s fitted PPR and global

atrophy rate. (D) Correlation between each subject’s b and slope of clinical decline as measured by the difference between end-point MMSE

and unimpaired MMSE (i.e. 30). Notice inverted scale. Blue represents Alzheimer’s disease, teal represents LMCI and yellow represents EMCI.

(E) For comparison the correlation between clinical decline and global rate of atrophy is shown. While both D and E give moderate

association, the one using beta is stronger.
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subgroups showed no discernible differences in R, hence

were not separately evaluated; although clearly

Alzheimer’s disease give the highest and EMCI the lowest

average values of both global atrophy rate and fitted b.

Since the NDM model in this study was evolved on the

Cornell connectome from prior publications,26,27 we

wished to assess whether using a different, more modern

connectome would also produce similar results. To test

this, we employed the average connectome from the

Human Connectome Project, see e.g. Fornari et al.38 We

found similar, although slightly less strong, results to

those shown in Fig. 2; see Supplementary Fig. 1.

We further tested the notion that clinical trajectories of

subjects with higher baseline pathology burden worsen

faster than subjects with lower burden.6,39 In this study,

we accommodated amyloid burden from CSF rather than

from PET imaging. We individually probed baseline CSF

amyloid beta, tau, ptau, ratio of AB/tau, AB/pTau and

pTau/tau. We hypothesize a significant relationship be-

tween at least one of baseline CSF biomarkers and speed

of pathology spread, both within all subjects and within

individually diagnostic groups.

Contrary to our hypothesis, correlation analysis reveals

weak relationships between b and baseline CSF measure-

ments (Fig. 3A). Though baseline CSF values are highly

correlated with one another, correlation to b is overall

poor (Fig. 3B). Additional linear, quadratic and power

models did not reveal significant relationships between

CSF biomarkers and beta (data not shown). Multivariate

linear regression using multiple CSF biomarkers as pre-

dictor variables for b also yielded poor predictive ability

as assessed by the coefficient of determination (data not

shown).

Since our efforts to predict a patient’s precise b from

baseline CSF measurements were unsuccessful, we

hypothesized this was due to potential subject heterogen-

eity in CSF profile. There is precedent for this hypothesis,

as prior work shows CSF biomarker profile across the

Alzheimer’s disease spectrum is variable, with clusters of

subjects.40 Hierarchical clustering analysis was utilized to

understand potential subject heterogeneity in baseline CSF

biomarker profile. As shown in Fig. 4, 3 clusters are

clearly delineated by the z-scores of 6 baseline CSF bio-

markers: Cluster 1 (n¼ 108, mean age: 71.3 years),

Cluster 2 (n¼ 207, 72.9 years) and Cluster 3 (n¼ 175,

72.7 years). There is no significant effect of age across

clusters (P¼ 0.20). The average biomarker values in each

cluster are shown in panel B for 3 chief CSF biomarkers.

For reference the z-scores of the 6 CSF biomarker combi-

nations computed relative to age-matched, healthy con-

trols are plotted for each cluster in panel C. Cluster 1

was characterized by the least pathogenic biomarker pro-

file whose difference relative to controls was very small

across all 6 biomarkers. In contrast, Cluster 3 appears to

be the most pathogenic cluster, showing the most remark-

able differences in CSF biomarkers compared to controls.

This cluster mirrors the pathogenic biomarker signature

of typical of Alzheimer’s disease, which includes

decreased CSF AB and increased Tau and pTau com-

pared to controls. Cluster 2 falls between Clusters 1 and

3 in terms of pathogenic profile. Compared directly to

each other, Cluster 3 appears significantly more patho-

genic than Cluster 1, exhibiting significantly lower base-

line CSF amyloid beta compared to Cluster 1 and

significantly higher pTau and Tau (AB: P¼ 1.9e-43,

pTau: P¼ 5.6e-45, Tau: P¼ 1.8e-44).

Having successfully clustered subjects based on CSF

biomarker profiles, we examine whether these clusters

also show significant differences in their baseline volumet-

rics and in their inferred PPR (Fig. 5). We observed that

baseline atrophy patterns correspond to baseline CSF pro-

files. Specifically, Cluster 3 is characterized by the most

amount of atrophy, while Cluster 1 by the least. Cluster

2 falls squarely in the middle. The same is true of

inferred PPR parameter b: there is a significant effect of

b across clusters (P¼ 3.9e-6). Specifically, the cluster

defined by the most pathogenic Alzheimer’s disease-

related CSF biomarkers, Cluster 3, shows the highest

PPR. In contrast, cluster 1, which is characterized by the

least pathogenic biomarkers, has the lowest PPR.

We also observed a significant effect of baseline FAQ

and baseline MMSE scores across clusters (FAQ:

P¼ 9.0e-7; MMSE: 7.2e-5, Fig. 6). Clinical measures are

most compromised in Cluster 3 versus Cluster 1 (FAQ:

P¼ 8.0e-07, MMSE: P¼ 1.7e-05), a finding that con-

verges with each cluster’s biomarker profile and rate of

disease spread. Correspondingly, we observed that the

more pathogenic Cluster 3 has a higher, but non-signifi-

cant, percentage of APOE4 allele carriers compared to

the least pathogenic cluster.

Lastly, we found correlations between a subject’s speed

of disease spread PPR and baseline cognitive score, which

differ across clusters (Fig. 7). Cluster 2 had the strongest

relationship between b and the baseline MMSE (r ¼
�0.28, P¼ 2.5e-8), followed by Cluster 1 (r¼ 0.20,

P¼ 0.004) and a relatively weak Cluster 3 (r ¼ �0.14,

P¼ 0.02). Interestingly, the FAQ survey shows the strong

relationship with b in Cluster 1 (r¼ 0.28, P¼ 8.7e-05),

followed by Cluster 3 (r¼ 0.20, P ¼ 0.0003) and is the

weakest in Cluster 2 (r¼ 0.15, P¼ 0.002).

Although we were able to predict a narrow range of b
based on cluster assignment from baseline CSF biomark-

er profiles, we wondered whether adding neuroimaging

data will further improve the individual-level prediction

of b. Hence, we created a regression model using the

top 10 most atrophied regions, obtained by independent

t-tests (Alzheimer’s disease versus CON): bilateral hippo-

campus, amygdala, entorhinal cortex, inferior temporal

and middle temporal gyrus. To these were added the

baseline CSF biomarkers (AB, tau and pTau) to form a

13 variable multivariate linear regression for predicting

b which was the outcome variable (Fig. 8A–C). We

found that the least pathologically severe cluster, Cluster

1, gives a relatively weak R2 of 0.15, the middle cluster
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yields a moderately strong R2 of 0.26 and the most

pathologically severe Cluster 3 yields a relatively weak

R2 of 0.12. In Cluster 2, the significant predictors were:

CSF AB (P ¼ 0.0006), right amygdala (P ¼ 0.005),

right hippocampus (P ¼ 0.002) and left hippocampus

volume (P ¼ 0.01).

Next, we conducted the same regression analysis using

global atrophy rate as the response variable (Fig. 8D–F).

Unlike the above b regression results, the prediction of

global atrophy rate using the same regressors yields the

strongest R2 in the least pathologically severe Cluster 1.

Cluster 2 and Cluster 3 yield relatively poor predictive

Figure 3 Correlation analysis between baseline CSF biomarkers and speed of pathology spread. (A) Scatterplots depicting lack

of strong correlations between baseline CSF AB, Tau, pTau and their ratios versus beta in all subjects, Alzheimer’s disease-subjects only and

EMCI-subjects only. (B) Heat map illustrating correlations of baseline CSF measurements with one another and beta.
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ability of global atrophy rate with R2 ¼ 0.12 and R2 ¼
0.06, respectively.

Discussion
This study applies graph theoretic approaches and ma-

chine learning in a multimodal dataset of 810 subjects to

obtain a new measure of PPR. Using our group’s previ-

ously published NDM of Alzheimer’s disease spread,14,25

we derive a single neurodegeneration rate, given by the

model’s diffusivity parameter b, from each subject’s longi-

tudinal MRI data. This rate measure depends on various

natural stratifications of the Alzheimer’s disease cohorts.

At the group level it is highest for Alzheimer’s disease

patients, lower for LMCI and lowest for EMCI, indicat-

ing that the degenerative process speeds up over time.

The rate is higher for subjects with 2 putative APOE4

alleles compared to subjects with no putative APOE4

alleles. However, these group differences mask substantial

individual variability, which is shown in cluster analysis

based on baseline CSF metrics. We demonstrate that 3

separate clusters emerge, which are characterized by dif-

fering degrees of Alzheimer’s disease-related pathology.

These clusters clearly reflect differences in cognitive

scores, APOE allele status, PPR parameter b and baseline

atrophy patterns.

We then focussed on the clinically relevant problem of

predicting PPR from a subject’s baseline data only. We

found that baseline CSF biomarkers, even within clusters,

were not able to predict individual PPR. However, a

combination of CSF and MRI biomarkers at baseline can

predict a narrow range of PPR values, and this prediction

is most accurate in those subjects who happen to be in

the middle of their degenerative course. This is the first

study to propose a rate metric derived from the known

Figure 4 Clustering and prediction based on CSF biomarker profile. (A) Dendrogram depicting 3 clusters defined by z-scores of

baseline CSF biomarkers. (B) CSF metrics across clusters. Error bars represent one standard deviation. (C) Average z-score of CSF metrics

versus age-matched controls.
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mechanism of network-centric progression in Alzheimer’s

disease, and the first to successfully model a narrow

range of a subject’s rate of brain degeneration from base-

line CSF and MRI biomarkers.

Characterizing the PPR rate
parameter

PPR was significantly correlated with global rate of atro-

phy, suggesting that the former can serve as a mechanis-

tically relevant network version of the latter (Fig. 2).

Although it is not expected that the proposed rate meas-

ure will completely track the established global atrophy

rate measure, it is comforting that the two are closely

associated—also an expected outcome, since PPR was fit-

ted using the regional atrophy rates in the first place. To

confirm that PPR converges with current hypotheses of

neurological decline, we tested its effect size across diag-

nostic groups and APOE allele status (Fig. 2).

Alzheimer’s disease subjects had the highest PPR followed

by LMCI then EMCI subjects. PPR was moderately cor-

related with cognitive and clinical decline as measured by

DMMSE, a stronger association than that between

DMMSE and global slope of atrophy (Fig. 2C–E), sup-

porting the enhanced role of PPR as a measure of pro-

gression in Alzheimer’s disease.

These results are consistent with the prion hypothesis

of Alzheimer’s disease, whereby more advanced stages

Figure 5 Baseline volumetric and degeneration speed by cluster. (A) Glass brains depict t-statistics of differences in baseline volumetric

by cluster compared to age-matched controls Gold represents hyperatrophy, all other colours represent atrophy. (B) Boxplot of beta by cluster.

Figure 6 MMSE, FAQ and APOE differences across clusters. (A–B) Differences in baseline cognitive score FAQ and MMSE across

cluster. (C) Frequencies in APOE4 across clusters. Pink represents cluster 1, green represents cluster 2 and blue represents cluster 3.
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will have higher rates of progression.12,13,41 However, the

middle stages, especially LMCI, do not have the highest

rate—this is at variance to Jack’s model which involves a

biomarker plateau at advanced stages.1,42 It is possible

that empirical measurements of tau PET directly will re-

solve this discrepancy, but at this time sufficient longitu-

dinal tau PET data are not available to test this.

The highest PPR was seen in APOE E4/E4 subjects

compared to E4/E3 and E3/E3, consistent with prior

work, as the effect of APOE and amyloid beta burden on

accelerated cognitive and clinical decline in both

Alzheimer’s disease and cognitively normal subjects is

well-established.6,43,44 These results robustly characterize

the proposed rate measure and demonstrate that it gener-

ally agrees with current literature and hypotheses.

Predicting PPR from baseline CSF

biomarkers

The ability to predict a subject’s rate of neurodegenera-

tion from baseline CSF and MRI biomarkers will be crit-

ical to approach the ultimate goal of circumventing costly

and time-consuming longitudinal scanning procedures for

prognostic applications. The baseline predictors used in

this study involve CSF biomarkers and APOE rather than

clinical/demographic variables, because we desire the pro-

posed PPR to be dependent on only pathological

variables to the extent possible. Simple correlation ana-

lysis revealed no significant, straightforward relationship

between baseline CSF biomarker and PPR (Fig. 3).

Though this result appears to reduce the direct prognostic

value of our proposed PPR, it is not entirely surprising,

as current molecular biomarker models posit the relation-

ship between disease spread and CSF biomarker is dy-

namic and changes with stage of disease,1,42 suggesting

more sophisticated modelling is necessary. Indeed, while

we did not observe a plateau effect on b based on clinic-

al stage (EMCI, LMCI, Alzheimer’s disease), we observe

a strong plateau based on pathological stage, as discussed

below.

Machine learning to infer

pathological stage

Therefore, we employed machine learning, specifically

hierarchical clustering, to establish a relationship between

a subject’s 6 baseline CSF biomarkers and PPR (Fig. 4).

This revealed 3 distinct clusters roughly arranged in order

of pathological severity, going from Cluster 1 (highest

Ab42, lowest tau) to Cluster 3 (lowest Ab42, highest

tau). Although there is no one-to-one mapping between

CSF clusters and Alzheimer’s disease stage, we found that

Cluster 1 was most enriched with EMCI and Cluster 3

by Alzheimer’s disease, suggesting a clear order of

Figure 7 Correlation between beta and baseline cognitive score within clusters. (A) Correlation between rate of disease

progression and baseline MMSE cognitive score across each of the three clusters. (B) Correlation between beta and baseline FAQ

cognitive score across each of the three clusters. Blue represents Alzheimer’s disease, turquoise represents LMCI and yellow represents

EMCI. P-values are uncorrected for multiple comparisons. Please note, the y-axis on the subplots are not identical.
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severity, both pathologically and clinically. These results

are consistent with previous work, particularly,40,45 which

demonstrated existence of similar clusters from non-

ADNI Alzheimer’s disease patients. The 3 CSF-derived

clusters are also arranged in order of increasing atrophy

burden and display a distinct and narrow range of PPR

(Fig. 5). Notably, the more pathogenic clusters also show

higher PPR, cognitive impairments and frequency of puta-

tive APOE alleles (Figs. 4–6). Within clusters, patients

have differing relationships to cognitive metrics (Fig. 7).

However, it is clear that CSF biomarkers alone are in-

sufficient to correctly estimate an individual patient’s rate

parameter. Partly this reflects the well-known heterogen-

eity amongst Alzheimer’s disease cohorts.40,45 Visual in-

spection of the 3 CSF-based clusters reveals a mix of

Alzheimer’s disease, LMCI and EMCI (Fig. 7). Prior clas-

sification work in large datasets, in particular a CSF clas-

sification study in 675 subjects showed that while CSF

profile was able to discriminate between neural disorders

such as depression and Alzheimer’s disease, it performed

poorly at classifying across different dementias, suggested

dementias have intertwined pathophysiology.3 Therefore,

we reasoned that MRI-derived biomarkers might be ne-

cessary to further improve predictive ability.

MRI-derived atrophy and CSF
biomarkers can predict PPR

When baseline neuroimaging biomarkers were introduced

along with CSF biomarkers into a linear regression

model, a subject’s PPR could be predicted relatively well

in Cluster 2 (R2 ¼ 0.26), and moderately in Clusters 1

and 3 (R2 �0.15) (Fig. 8). At first, it would appear more

plausible that Cluster 3, the most pathologically severe

cluster, would yield the best linear regression results. A

closer inspection revealed that Cluster 3 is highly

enriched with mature Alzheimer’s disease patients, and

Cluster 1 for early or mild cases (Fig. 7). Cluster 2 may

therefore be considered a middle phase that is most active

pathologically. Previous studies have frequently observed

similar behaviour, e.g. the non-linear model of biomarker

progression,46 whereby the rate of change is highest in

the middle (inflection point) and thereby reaches a plat-

eau reflecting resource challenged environments

Figure 8 Thirteen variable multivariable linear regressions predicting beta by cluster. Regressions include the top 10 most

atrophied regions characteristic of Alzheimer’s disease pathology and 3 CSF metrics. (A) To predict beta in Cluster 1 (B) To predict beta in

Cluster 2 (C) To predict beta in Cluster 3 (D) To predict global atrophy rate in Cluster 1 (E) To predict global atrophy rate in Cluster 2 (F) To

predict global atrophy rate in Cluster 3.
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corresponding to mature disease.1,42,46 In this respect,

our result showing the highest rate of progression in mid-

dle pathological stages (Cluster 2) is consistent with the

literature. In contrast, Fig. 8D–F shows the highest pre-

dictive ability using these same regressors to predict glo-

bal atrophy rate is highest in the least pathogenic Cluster

1 and less in pathologically advanced clusters, suggesting

that global atrophy may not be as sensitive as the pro-

posed network-constrained PPR in the critical middle

stages of the disease course.

Clinical implications

Despite remarkable progress in prognostic neuroimaging

and molecular biomarkers,6,47 the relationship between

baseline and longitudinal progression is inconsistently

described,8,48 and overall accuracy of clinical diagnosis

based on cognitive metrics is low.9 Dependence on cogni-

tive/clinical score as a metric of disease progression is

problematic, because clinically diagnosed MCI/

Alzheimer’s disease can have non-Alzheimer’s disease aeti-

ologies, and some cognitive controls may have preclinical

Alzheimer’s disease.10 In line with these reports, we

found moderate correlations between a subject’s speed of

disease spread PPR and baseline cognitive score, which

differ across clusters (Fig. 7), with Cluster 2 giving the

strongest relationship between b and baseline MMSE,

while Cluster 1 gave the strongest association with FAQ.

The P-values were uncorrected for multiple comparisons,

and as such these results may be considered only trending

towards significance. Our goal here was not to propose

the fitted beta as a predictor of cognitive decline but to

show that as a new measure of pathological progression

it holds information about both baseline pathology and

subsequent rate of decline.

Prior work supports that baseline biomarker profiles

can distinguish Alzheimer’s disease from other neurologic-

al diseases, assess risk for progression to Alzheimer’s dis-

ease or distinguish progressors from non-progressors in

clinical trial environments.3–6 However, the majority of

this work has been done using amyloid and tau PET.

Unfortunately, PET scans are expensive, time consuming

and not readily available in all clinical settings. While

lumbar puncture is hardly less intrusive than PET, it can

be done in many clinical settings and CSF samples easily

shipped to central laboratories for analysis.49 Diagnostic

criteria for Alzheimer’s disease has evolved to include

molecular biomarkers.50 Alzheimer’s disease pathology is

accompanied by decrease in CSF Ab42 and increase in

CSF Tau, pTau.51–55

Hence, we focussed on predicting a subject’s progres-

sion rate from baseline CSF biomarkers. It was found ne-

cessary to include MRI regional atrophy, which is

typically available in most patients under standard-of-care

MRI. We demonstrated that PPR can be reasonably pre-

dicted from baseline CSF and MRI in a large class of

subjects falling within an intermediate pathological

cluster. In clinical terms, this is perhaps also the group

that can most benefit from a prognostic indicator of lon-

gitudinal progression.

To our knowledge, this is the first study to propose a

network-based measure of progression rate and to predict

it from baseline CSF and MRI biomarkers, see, e.g.

Herukka et al.49 Although the NDM has been extensively

used in various dementias,15–23 previous reports did not

explicitly fit for the diffusivity rate in individuals or

assessed its relationship with other biomarkers as we do

here. We note that rigorous individual fitting of NDM

was done before, for Huntington’s disease.22 It is our

hope that the proposed rate measure will be used in a

prognostic manner as a screening tool for differential

diagnosis, clinical trial inclusion and therapeutic treat-

ments. In order to facilitate adoption, we are making the

computer code available freely on our website (https://

radiology.ucsf.edu/research/labs/brain-networks-lab#-) and

from our GitHub repository (https://github.com/Raj-Lab-

UCSF).

Limitations

Many aspects of inter-individual variability were consid-

ered out of current scope, including cognitive and brain

reserve. Many approaches exist to characterize these

sources of variability, which will be explored in future

work. Lack of standardization of CSF protocols to detect

Ab42 and tau remains a concern, with different commer-

cial kits utilizing their own standards, anti-bodies, ranges

and cut-offs.56 However, methodologies regarding meas-

urement of Ab1–42, t-tau and p-tau181 in clinically anno-

tated ADNI CSF samples are available to identify and

control key sources of analytical variability.5 It was sug-

gested that longitudinal CSF data is necessary for prog-

nostic application as biomarkers can change linearly with

time, exponentially, sigmoidally, etc.42,57 Our study miti-

gates that issue as 90% of CSF data was collected within

a year of subject’s baseline scan, reducing the need for

extensive modelling of biomarker dynamics.

The NDM is a first-order, linear, parsimonious model

of diffusive spread that assumes that the structural con-

nectivity network remains static and unchanged over the

duration of the longitudinal analysis. This is reasonable

because the observation window (2–6 years) is short com-

pared to the course of the disease. Our use of a template

connectome instead of patient-specific ones is also a limi-

tation that warrants future exploration. However, prior

explorations suggest that subject-specific connectomes are

no better than template connectomes regarding the

NDM.58 Additionally, although the model enables long-

term projections of future atrophy, model validation in

the current work is limited to public (ADNI) data sets of

rather narrow time span (2–6 years), precluding long-term

longitudinal follow-up.
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