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Large forensic databases provide an opportunity to compare observed empirical rates of genotype
matching with those expected under forensic genetic models. A number of researchers have taken
advantage of this opportunity to validate some forensic genetic approaches, particularly to ensure that
estimated rates of genotype matching between unrelated individuals are indeed slight overestimates of
those observed. However, these studies have also revealed systematic error trends in genotype
probability estimates. In this analysis, we investigate these error trends and show how they result from
inappropriate implementation of the Balding—Nichols model in the context of database-wide matching.
Specifically, we show that in addition to accounting for increased allelic matching between individuals
with recent shared ancestry, studies must account for relatively decreased allelic matching between
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individuals with more ancient shared ancestry.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Forensic databases, rapidly increasing in size, invite powerful
analyses of rates of coincidental genotype matching [1-3]. Such
analyses have validated some basic assumptions in forensic
genetics, particularly the reasonable over-estimation of genotype
frequencies with existing methods. However, these studies also
illustrate how database population genetic diversity differs from
what is expected under the basic model of forensic genetics: the
Balding-Nichols (BN) model.

The BN model simply and elegantly provides a framework for
estimating probabilities of observed genotypes, taking into
account population structure and variance in allele frequency
estimates [4,5]. The BN model can be interpreted as describing an
ancestral population which has split into a number of internally
randomly mating sub-populations which evolve independently
over some time, resulting in a present-day total population made
up of a number of cryptic sub-population groups. The sampling
probabilities estimated under the BN model then incorporate the
increase in allele sharing between individuals from the same sub-
population due to their shared co-ancestry.
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The amount of excess allele-sharing in a sub-population group
beyond what is expected based on the total population allele
frequencies can be quantified in the BN model by the parameter 6. 6
can be thought of as the probability that two alleles in a sub-
population are identical by descent (IBD) due to within sub-
population shared ancestry. In a coalescent framework under
simplifying assumptions, it represents the probability that two
alleles sampled from within a sub-population coalesce before
either mutates or migrates out of the sub-population [4].

In the BN model used in forensic applications, the probability of
observing a particular genotype conditioning on having observed
the same genotype is estimated using the 6 correction to account
for coincidental allelic sharing between two individuals due to
excess shared ancestry within a sub-population. In most forensic
calculations, there is an implicit assumption that the individuals in
question are from the same sub-population [4]. Balding and
Nichols convincingly argue that this assumption is appropriate,
saying “the ‘same sub-population’ assumption is conservative,
since the suspect’s profile will tend to be more common in his/her
sub-population than in other groups” [4]. A number of studies
have shown the importance and appropriateness of this assump-
tion and the corresponding 6 correction in genetic identification
calculations to provide an over-estimate of genotype frequencies
[5-12]. Curran et al. [10] in particular have argued that this
implementation of the BN model over-corrects for population
structure.
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In database applications, on the other hand, typically all pairs of
genotypes in a database will be compared to each other and their
degree of matching assessed. Previous applications of the standard
BN model to forensic databases [1,2] have shown that the often-
used 6 correction of 0.01 usually adequately corrects for
coincidental allele-sharing, raising estimated probabilities of
matching genotypes above their observed levels, and therefore
reducing false positive rates below their expectation (in statistical
terms, making the test ‘conservative’). Yet, these analyses show an
excess of non-similarity between observed pairs of individuals, as
compared to the expectation [1,2]. As we will show, this is likely
due to the fact that the standard formulation of the BN model does
not take decreased allele sharing between individuals from
different sub-populations into account. When applying the BN
model to describe the amount of genotypic matching observed in a
database, it is not clear that the ‘same sub-population’ assumption
is appropriate.

In this manuscript, we investigate how empirical genotype
matching observations can be explained by reconsidering the
implementation of the BN model. We show that by accounting for
the case of two individuals deriving from different population
groups, we significantly improve the ability to describe empirical
matching rates in a database.

2. Methods
2.1. Allele sharing matrix

To quantify the degree of multi-locus genotype matching
within a data set, consider the matrix M where each entry M, is
the number of profile pairs with m markers matching at both
alleles and p markers matching at one allele [1,2]. Tvedebrink et al.
[2] described a recursive algorithm to compute the probability 7,
that two multi-locus genotypes completely match at m loci and
partially match at p loci, constructing a probability matrix
analogous to M. This method uses the single-locus probabilities of
individuals matching two, one, and zero alleles as P g, Po 1, and Py o,
respectively, following in the notation of Tvedebrink et al. [2]. Note
the parallel notation to counts of matching and partially matching
markers in My, ,. Weir [1] described how to compute P; o, Py 1, and
Py at a locus by summing over the appropriate two-individual
single locus genotype probabilities [1].

2.2. Single locus allelic sharing probabilities

2.2.1. Individuals from the same sub-population group

Under the typical implementation of the BN model, where all
individuals are assumed to be in the same sub-population group,
the two-individual genotype probabilities are
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where A ;is an allele i drawn from the single sub-population 1, so,
for example P(AqA1; A1,A1;) is the probability observing a
homozygote and heterozygote sharing one allele, and p; is the
frequency of allele i.

2.2.2. Individuals from same or different sub-population groups

Under the BN model, if two individuals are not in the same
population group, the probability that their alleles coalesce more
recently than a mutation or migration event is zero. In other words,
there is no increased chance of allele-sharing due to shared
ancestry for individuals in different population groups. In that case,
the probability of observing their genotypes is computed as a
function of the observed allele frequencies without the 6
correction.

We can allow individuals to be from different sub-populations
by introducing a parameter d, which describes the probability that
a pair of individuals are from different sub-population groups. This
way, we fully describe the BN model with some individuals from
the same sub-population group and some from differing groups.
This technique is analogous to that used by Curran et al. [11] to
condition on different genetic relationships. Under a model with
population differentiation, two-individual genotype probabilities
are

= (1 -d)P(A1 A1, A A1) +dP(A A, Ax Ay )

where subscript dots indicate any option such that A _is any allele
drawn from any sub-population and A, _ is any allele drawn from
sub-population 1. Genotype probabilities for individuals from the
same population are the same as under the typical implementation
of the BN model and for individuals from different sub-populations
the genotype probabilities are
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2.2.3. Chromosomes from same or different sub-populations

In the previous formulation of joint genotype probabilities for
two individuals, it is assumed that in each individual, both
chromosomes derive from the same sub-population. This is not
realistic in post-colonial societies, where few individuals can trace
all their ancestry to their current location, creating strong
admixture. We describe an alternative model allowing alleles
within individuals to be drawn from different, but correlated, sub-
population groups. This model essentially accounts for population
structure and admixture between sub-population groups. In this
model there are k sub-populations of equal size and relation to each
other. The correlation of sub-population draws within individuals is
described by the parameter a. We can use this model to compute
joint genotype probabilities, as shown in Supplementary materials.

2.2.4. Accounting for genetic relatives

These implementations of the BN model can be expanded to
account for genetic relatives using the method proposed by Curran
et al. [11]. In brief, the proportion of pairs of individuals with a
particular genetic relationship is parameterized, allowing the
probability of a pair of genotypes to be computed conditioning
on genetic relationship. In this manuscript we consider the
relationships of parent-offspring, sibling, half-sibling, and cousin
so that the probability of a particular observed genotype G pair is
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P(G) :punrel(P(G‘nIBD =0))+ pp,g(P(G\n,BD =1))
+ Psin(0.25P(Glnyp = 0) + 0.5P(Gnjpp = 1)
+0.25P(G|npp = 2)) + DPpsin(0-5P(G|npp = 0)
+0.5P(Glrypp = 1)) + Peos(0.75P(G|nypp = 0)
+0.25P(G|ngp = 1))

where ngp is the number of alleles shared IBD and pp,_o, Psib, Phsib»
and pcos are the probability that a pair of individuals is genetic
parent-offspring, siblings, half-siblings, and cousins, respectively,
such that the probability of no genetic relationship is pyn-
rer=1— (pp—o * Dsib * Phsib + pcos)-

2.3. Likelihood framework

With match probabilities specified by the aforementioned
models, we can calculate the expectation 7 of the match matrix M
under varying assumptions regarding allele frequencies, and
parameters of the models: 6 for the typical implementation of
the BN model without population differentiation, 6 and d for the
model with population differentiation, and 6, a, and k for the model
allowing admixture between sub-populations (Table 1). By taking
the entries 7w as categorical probabilities in a multinomial
distribution, we can compute the sampling probability of an
observed instance of M, an approach used effectively in other
population genetic applications [13].

Using the sampling probability of M as a likelihood function, we
can estimate parameters of the model using maximum likelihood.
Since the models described here are nested and fulfill standard
regularity conditions, the asymptotic distributions of likelihood
ratio test statistics (LRTs) are known to be chi square. Specifically, if
we take the null hypothesis to be the typical implementation of the
BN model with a fixed value of 6 (say Ho:6=0.01), and the
alternative to be the typical BN model implementation where 6
varies (H, : 6 # 0.01), the LRT is distributed as a chi square with one
degree of freedom (LRT ~ x3). Similarly, to compare the typical
implementation of the BN model with our implementation with
population differentiation, we specify Ho:6+#0.01, d=0 and
H,:0#0.01, d#0, in which case the LRT ~ x3 + x2. The model
allowing chromosomes within individuals from different sub-
populations reduces to the model with population differentiation
under complete allelic correlation (a=1). In this case, d is
equivalent to (k — 1)/k. This enables tests where LRT ~ x3 + x?
between the chromosomal model and the model with population
differentiation.

Additionally, we can obtain maximum likelihood parameter
estimates and likelihood profile confidence intervals of 6, d, d, and
k. While we do not advocate interpreting these estimates too
strongly, as the underlying population models are very simple, we
can compare them as a reference.

2.4. Database

We consider genotype data from 98,988 Brazilian individuals
undergoing paternity testing during 2011-2013 in the Hermes
Pardini Laboratory, Vespasiano, MG, Brazil. The individuals

Table 1
The maximum log likelihoods are listed for each model considered, both accounting
for genetic relatives and not.

Model Log likelihood

Without relatives With relatives

Typical implementation with 6=0.01 —53,070,085 —53,070,085
Typical implementation with 6 varying —1,259,283 —1,259,283
Population differentiation implementation -37,234 —37,234
Sub-population groups by chromosome -37,182 -37,182

genotyped reside in all 26 Brazilian States and the Federal District
(Brasilia). Although the population genetic background of these
particular individuals is unknown, generally Brazilian populations
show ancestry from Indigenous South America, Africa, and Europe
[14-16]. It is unclear if these ancestries are represented
proportionally in this database. The genotypes were obtained
using a combination of two Life Technologies kits and ABI
3730 Genetic analyzers (Life Technologies, CA, USA) for a total
of 20 loci (the original 13 CODIS core loci and additionally
D10S1248, D22S1045, D1S1656, D12S391, D2S441, D2S1338,
D19S433) [17].

Multiple entries of the same individual are expected in this
dataset. As such, pairs of individuals with 17-20 loci matching and
the same birth dates (when available) were removed as likely
multiple entries or identical twins with some genotyping or
clerical errors. When birth dates were not available or inconsistent
apparently due to a typo, names were manually checked by the lab
personnel and the most complete profile was kept, resulting in a
data set with 96,400 individuals [17].

While there are no known genetic relatives in this dataset, some
unknown genetic relatives are likely present.

Since our analysis requires genotypes across the same number
of loci for all individuals, we discarded all individuals with any
missing data. In the remaining data set, extremely rare alleles
observed exactly one time may be, in fact, genotyping errors.
Profiles with these rare alleles were similarly eliminated. The final
dataset considered in this analysis contained 90,852 individuals.

3. Results
3.1. Observed database matching

We counted the number of zero, one, and two allele matches for
each locus for each pair of individuals in the dataset to create the
observed matrix M,ps, as shown in Supplementary Table 1. For
92’0852> — 4,126,997,526 pairs
of genotypes, 295,948 pairs have exactly one locus matching at
both alleles, two loci matching at one allele (partially matching),
and 17 markers matching at neither allele (Supplementary Table 1).

example, in our dataset, out of (

3.2. Comparing data likelihood under different models

Previous investigators have used the conventional implemen-
tation of the BN model (without population differentiation) with
fixed at 0.01 to describe matching in databases [1,2]. Under this
model, setting 6 =0.01, we calculated the log likelihood of the
observed match matrix as -53,070,085 (Table 1). We can
graphically compare our observed and expected results in a
dropping ball diagram [11,18,2] (Fig. 1), or in a heat map of the
residuals (Fig. 2a). The heat maps in this manuscript show a color
gradient along the log of the divergence of the observed and
expected as ((obs — exp)?/exp). Through these visualizations, we
see that as in previous analyses [1,11,2], under the typical BN
model implementation with 6 set at 0.01, there is an excess of
observed pairs of individuals who share few alleles, as compared to
the expectation.

Using the maximum likelihood framework and optimizing over
6, we performed a similar analysis (Table 1 and Supplementary
Table 2). This model where 6 may vary fits the observed data
significantly better than with 6 fixed at 0.01 (LRT = 103,621,604).
However, we still observed an excess of individuals sharing few
alleles (Fig. 2b). Further, under the maximum likelihood of this
model, 6 is estimated near zero as O =4.6x 107" (in 95%
likelihood profile confidence interval (0.0, 2.07 x 10~°)), indicating
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Fig. 1. This dropping ball plot shows the observed (dot) and expected (x) numbers of pairs of individuals sharing m matching loci and p partially matching loci where m/p is

indicated on the x-axis.

that the 6 correction as implemented here does not improve model
fit (Supplementary Tables 3 and 4). This makes sense since the 6
correction only accounts for excess allelic sharing due to common
ancestry within a sub-population.
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We allow individuals in different sub-populations to share
comparatively fewer alleles through common ancestry using the
population differentiation model, where two random individuals
derive from different sub-population groups with probability
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Fig. 2. These heat maps show the difference between the observed match matrix and that expected under, (a) the typical implementation of the BN model with 6 = 0.01, (b) the
typical implementation of the BN model where 6 varies, (c) the full implementation of the BN model, and (d) the full implementation of the BN model allowing for admixture.
Purple indicates a lack of observed pairs of individuals and green indicates an excess of observed pairs of individuals. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of the article.)
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d. Again, we find the maximum likelihood value under this model
(Table 1 and Supplementary Table 5). The model fits the observed
data significantly better (LRT =2,444,098) and corrects for the
previous excess of individuals sharing few alleles (Fig. 2c).
However, we still see consistent differences between the observed
and expected allelic matching. Compared to the observed data, the
population differentiation model predicts a more narrow range of
allelic matching than what is observed.

In the population differentiation model, it is assumed that both
alleles within an individual derive from the same sub-population.
This assumption may not be valid in realistic cases of admixture,
and can be relaxed using the a model where chromosomes are
considered separately with some correlation. We fit such a model
with k equally represented sub-populations and intra-individual
allelic correlation to the observed data. This model, allowing
chromosomes of different population origins within individuals,
fits the data significantly better than the model without admixture
(LRT = 148,835) (Fig. 2d). Still, we observe a wider range of allelic
matching than is expected under these models.

3.3. Accounting for relatives

Since it is likely that some genetic relatives are present in this
large dataset, all of these analyses were repeated accounting for
genetic relatives. The likelihood results are quite similar to those
computed without accounting for relatives (Table 1). In most cases
the maximum likelihood estimates for the frequency of genetic
relatives were 0.0 with narrow likelihood profile confidence
intervals, with an exception under the model allowing chromo-
somes within an individual different population origins (Supple-
mentary Tables 3 and 4). In all cases, a likelihood ratio test
comparing each model disallowing relatives to the analogous
model accounting for relatives fails to reject the null hypothesis
(Table 1).

4. Discussion and conclusions

We have shown how a multinomial distribution on the
expected match matrix can be used to calculate the sampling
probability of an observed match matrix. Further, we have shown
how this probability can be maximized with respect to some
parameters to provide maximum likelihood estimates of these
parameters.

Using this procedure, we found that estimating the value of 6,
fits the data significantly better than a uniform value of 0.01. This is
intuitive since the typically used € = 0.01 was not chosen to fit the
observed number of coincidental matches between pairs of profiles
in a forensic database. Further, we found that estimate to be near
zero. This initially surprising estimate is explained by considering
that the common implementation of the BN model in forensic
genetics accounts for excess allele sharing due to recent ancestry,
but not relatively less allele sharing for individuals with more
distant ancestry. Under this implementation, every pair of
individuals has increased allelic sharing due to recent ancestry.
Since many pairs of individuals do not share recent ancestry, the
maximum likelihood estimate of 6 is driven to zero to explain the
lack of consistent excess allele sharing.

We show and implement several parameterizations of the full
BN model where individuals may or may not have excess allele
sharing (equivalently, may or may not derive from the same
population group). This full BN model fits the observed match
matrix significantly better than the typical BN model implemen-
tation.

We further implemented a model allowing admixture by letting
chromosomes within individuals have different population origins,
which fits the data significantly better than the model without

admixture (LRT=148,835). However, we caution against over-
interpreting the maximum likelihood parameter point estimates of
this model, especially considering the sometimes very wide
likelihood profile confidence intervals (Supplementary Table 4).
Despite similar log likelihoods, the parameter point estimates
differ between the models with and without genetic relatives. This
indicates that the flexible model accommodates a correlation
structure in the data that may not be explicitly described by the
parameters, for example more complex population structures
including asymmetric migrations or varying sub-population group
sizes. Again, this argues against a direct biological interpretation of
parameter estimates.

In the BN model, all sub-populations have equal excess allele
sharing internally and are equally unrelated to each other. While
this model provides a simple and reasonable over-estimation of
coincidental genotype match rates, essential to forensic case work,
it is clearly a simplification of complex human population
structures, where some individuals are vastly more related than
others. A more sophisticated model allowing varying degrees of
allele sharing between individuals would likely better fit our
observation of a broad range of allelic-matching. However, such a
model would begin to accumulate parameters, making use in
forensic case work impractical compared to the adequate typical
BN model implementation.

Additionally, the full BN model does not explain a small
observed excess of people matching at many loci. For example,
there are three pairs of individuals who match both alleles at
13 loci and one allele at six loci, whereas under the full BN model,
5.0e — 13 are expected. There are several possible explanations for
these individuals. They may be genetic relatives who share a large
number of alleles IBD. They could share even more alleles than
expected if allele frequencies are mis-specified because they derive
from a population group divergent from the whole sample [19]. It
is also possible that the same individual was entered a number of
times, with genotyping or clerical errors resulting in differing
alleles. Of note, these individuals do share a common surname.

Like other authors [1,11,20,2], we consider presence of genetic
relatives within a database when calculating genotype match
probabilities so that the total probability of genotype matching
takes into account the possibility of genetic relationships. Our
results fail to reject the null hypothesis of no genetic relatives
present. Since the loci are still treated independently, the small
probability of a genetic relationship is factored in at each locus
separately, rather than considering how genetic relatives share
alleles across loci. As a result, unless there are extensive genetic
relatives in a dataset, this does not dramatically affect the expected
allelic matching.

We have shown how the correct full implementation of the BN
model is crucial to understanding database-wide allelic matching.
While this is essential for computing the number of expected
matches in a large database, it does not affect forensic case work
where the typical BN model implementation is adequate to
reasonably overestimate the probability of coincidental genotype
matching between a suspected contributor and the actual person
who left the evidentiary profile.
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