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https://doi.org/10.1148/ryct.230146 
Purpose: To develop a deep learning algorithm capable of extracting pectoralis muscle and adipose measurements 
and to longitudinally investigate associations between these measurements and incident heart failure (HF) in 
participants from the Multi-Ethnic Study of Atherosclerosis (MESA). 

Materials and Methods: MESA is a prospective study of subclinical cardiovascular disease characteristics and risk 
factors for progression to clinically overt disease approved by institutional review boards of six participating centers 
(ClinicalTrials.gov identifier: NCT00005487). All participants with adequate imaging and clinical data from the 
fifth examination of MESA were included in this study. Hence, in this secondary analysis, manual segmentations of 
600 chest CT examinations (between the years 2010 and 2012) were used to train and validate a convolutional 
neural network, which subsequently extracted pectoralis muscle and adipose (intermuscular adipose tissue (IMAT), 
perimuscular adipose tissue (PAT), extramyocellular lipids and subcutaneous adipose tissue) area measurements 
from 3031 CT examinations using individualized thresholds for adipose segmentation. Next, 1781 participants 
without baseline HF were longitudinally investigated for associations between baseline pectoralis muscle and 
adipose measurements and incident HF using crude and adjusted Cox proportional hazards models. The full models 
were adjusted for variables in categories of demographic (age, race, sex, income), clinical/laboratory (including 
physical activity, BMI, and smoking), CT (coronary artery calcium score), and cardiac MRI (left ventricular ejection 
fraction and mass (% of predicted)) data. 

Results: In 1781 participants (median age, 68 (IQR,61, 75) years; 907 [51%] females), 41 incident HF events 
occurred over a median 6.5-year follow-up. IMAT predicted incident HF in unadjusted (hazard ratio [HR]:1.14; 
95%CI: 1.03–1.26) and fully adjusted (HR:1.16, 95%CI: 1.03–1.31) models. PAT also predicted incident HF in 
crude (HR:1.19; 95%CI: 1.06–1.35) and fully adjusted (HR:1.25; 95%CI: 1.07–1.46) models. 

Conclusion: The study demonstrates that fast and reliable deep learning-derived pectoralis muscle and adipose 
measurements are obtainable from conventional chest CT, which may be predictive of incident HF. 

©RSNA, 2023 

Although causal inference cannot be established in this observational study, longitudinal 
associations were found between potentially modifiable CT-based pectoralis measurements and 
incident heart failure after adjustment for clinical and imaging confounders. 
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Abbreviations 
EML = Extramyocellular Lipids, HF = Heart Failure, IMAT = Intermuscular Adipose 
Tissue, MESA = Multi-Ethnic Study of Atherosclerosis, PAT = Perimuscular Adipose 
Tissue, PMT = Pectoralis Muscle Tissue, SAT = Subcutaneous Adipose Tissue 

Key Points 
A deep-learning algorithm for pectoralis muscle and adipose area measurements was developed 
using individualized thresholds from 3031 chest CT examinations in participants from the Multi-
Ethnic Study of Atherosclerosis (Dice scores: 0.90 for training/testing sets). 
Models were adjusted for a comprehensive set of confounders, including physical activity, left 
ventricular ejection fraction and mass (% of predicted), and coronary artery calcium score. 
In fully adjusted models in 1781 participants without baseline heart failure, intermuscular 
(hazard ratio:1.16, 95% CI: 1.03, 1.31) and perimuscular adipose tissue (hazard ratio:1.25, 95% 
CI: 1.07, 1.46) predicted incident heart failure (n = 41 events). 

Author contributions: 
Guarantor of integrity of entire study, Q.H., S.D.; study concepts/study design or data 
acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript 
revision for important intellectual content, all authors; approval of final version of 
submitted manuscript, all authors; agrees to ensure any questions related to the work 
are appropriately resolved, all authors; literature research, Q.H., H.A.I., F.P., J.G.K., 
M.J.B., M.A.B., J.A.C.L., S.D.; clinical studies, D.A.B., F.P., A.K., J.G.K., M.A., M.J.B., 
R.G.B., S.D.; experimental studies, Q.H.; statistical analysis, Q.H., H.A.I.; and 
manuscript editing, Q.H., H.A.I., D.A.B., F.P., J.G.K., R.C., M.A., M.J.B., W.P., M.A.B., 
J.A.C.L., S.D. 

Conflicts of interest are listed at the end of this article. 

Heart failure (HF) incidence rates are increasing, with an estimated annual incidence of one 
million patients in the United States and currently affecting ∼ 26 million patients worldwide 
(1,2). 

Study of risk factors for the prediction of HF has become a rapidly emerging focus of 
clinical interest to mitigate these rising trends (3–5). However, compared with prediction models 
of other cardiovascular diseases (eg, Framingham Risk score for coronary heart disease) (6), HF 
incidence prediction models are relatively new (7,8) and perhaps less robust than models 
predicting HF-related hospitalization or mortality (9–12). Variables traditionally identified as 
risk factors for HF or HF-related outcomes include demographic factors (13), clinical factors (eg, 
physical activity, hypertension, and diabetes) (3), and imaging biomarkers (eg, Agatston score 
(14) and MRI-derived left ventricular mass (15) and ejection fraction (9)). 

Therefore, identifying and validating other potentially “modifiable” factors (eg, muscle 
loss) that can predict incident HF independent of traditionally predictive clinical and imaging 
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biomarkers can be pivotal to implement secondary preventative measures (eg, adequate nutrition 
and physical rehabilitation to mitigate muscle loss) in at-risk populations (16–18). Future studies 
may also investigate the role of these CT-derived markers to monitor the effect of these 
secondary preventive measures. Additionally, identification of at-risk individuals may also lower 
the threshold of clinical suspicion, which can improve HF-related outcomes and thereby prevent 
hospitalizations and mortality. 

One established morbidity in the setting of advanced HF is “cardiac cachexia,” defined as 
unintentional lean body mass loss concurrent with advanced cardiac dysfunction (16). Cardiac 
cachexia is a relatively well-established condition with prior studies associating cachexia and HF 
either through cross-sectional analyses or longitudinal observations in patients with pre-existing 
HF (19,20). Studies have shown that nutritional support (16,18,21) as well as physical 
rehabilitation (16,21) may improve cardiac cachexia, which further justify the investigation of 
the associated biomarkers for muscle loss as modifiable predictors for HF incidence. 

A recent study demonstrated an association between CT-based adipose tissue 
measurements in thigh muscles and HF (22). Compared with thigh muscle groups, pectoralis 
muscles are opportunistically imaged in any conventional chest CT examination (eg, during CT 
for Agatston score) and can provide opportunities to improve HF incidence prediction model 
performances at no additional cost or radiation. 

Previously, CT-based muscle measurements have been limited to research settings due to 
the time-consuming and complex nature of manual postprocessing techniques. With recent 
advances in deep learning algorithms, fast and reliable muscle measurements are now feasible 
(23). These advances may facilitate their implementation into routine clinical practice. CT-based 
pectoralis muscle measurements have previously been shown to have predictive value for other 
health outcomes, such as all-cause mortality in patients with chronic obstructive pulmonary 
disease (24) and COVID-19 (25). 

The present study aims to develop a deep learning algorithm capable of fast and reliable 
pectoralis muscle and adipose area (in cm2) measurements, including intermuscular adipose 
tissue (IMAT), perimuscular adipose tissue (PAT), extramyocellular lipids (EML) and 
subcutaneous adipose tissue (SAT) measurements, and to longitudinally investigate associations 
between these measurements and incident HF in the Multi-Ethnic Study of Atherosclerosis 
(MESA; https://www.mesa-nhlbi.org). 

Materials and Methods 
MESA is a prospective study designed to investigate subclinical cardiovascular disease 
characteristics and risk factors for progression to clinical manifestation. At baseline (2000–
2002), MESA enrolled 6,814 individuals aged 45–84 years from various racial backgrounds. 
Eligibility was determined based on age and geographic boundaries for each field center. 
Participants with known clinical cardiovascular disease were excluded. Thus, participants with 
and without subclinical cardiovascular disease were recruited (26). The study is approved by the 
institutional review boards of its six participating field centers (Columbia University, Johns 
Hopkins University, Northwestern University, University of California, University of Minnesota, 
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and Wake Forest University) and its coordinating center (University of Washington) 
(ClinicalTrials.gov identifier: NCT00005487) and is compliant with the Health Insurance 
Portability and Accountability Act. Participants provided written informed consent at enrollment 
(24). 

In MESA’s fifth examination (conducted April 2010–January 2012), 3137 participants 
underwent noncontrast chest CT (distinct from CT scans performed for Agatston score) for the 
MESA Lung ancillary study. The current analysis includes participants (n = 3083) from the 
MESArthritis ancillary study (which uses participant data from the main MESA’s fifth 
examination (2010–2012) as its baseline data), which is a subancillary study of participants from 
the MESA Lung ancillary study (Fig 1) (24). 

Imaging Biomarkers 
Coronary artery calcium CT scans.— 

Cardiac-gated electron-beam CT or multidetector CT (Imatron C150, LightSpeed QXi, 
LightSpeed Plus; GE Medical Systems, Milwaukee, Wis; Volume Zoom, Siemens, Erlangen, 
Germany; voltage, 120–140 kVp; rotation time, 0.5–0.8 seconds; effective current: 630mA or 
body weight dependent; reconstructed field of view: 350 m) were used to calculate the Agatston 
score between 2010–2012. Two consecutive scans were obtained and independently analyzed for 
coronary artery plaque calcifications. An in-house software was used for Agatston score 
measurement (27,28). 

MRI-derived left ventricular mass.— 

1.5 Tesla MRI examinations (Avanto and Espree, Siemens Medical Systems; and Signa HD, GE 
Healthcare) were used to assess left ventricular mass and volumes between 2010–2012. A cine 
fast gradient-echo sequence with temporal resolution ≤ 40 msec acquired short-axis images over 
the left ventricle. Left ventricular mass (% of Predicted) was calculated as follows: 

 

(5)(5). A publicly accessible calculator is available at https://www.mesa-
nhlbi.org/MESALVmass/MesaLVMPercentPredicted.aspx (5). 

Chest CT scans.— 
In addition to CAC CT scans, a 64-section multidetector row CT scanner (LightSpeed and 
Discovery, GE Healthcare; Somatom Sensation and Somatom Definition, Siemens Medical 
Solutions) was used to perform noncontrast chest CT examinations between 2010–2012, 
following the MESA Lung and Subpopulations and Intermediate Outcomes in COPD Study 
Protocol (voltage: 120 kVp; pitch: 0.984; rotation time: 0.500 seconds; effective current setting 
was based on the participants’ body mass index). Monthly lung phantom calibrations were 
performed, and examinations were reconstructed at 0.625 mm (24,29). 

Deep Learning Algorithm–pectoralis Muscle and Adipose Area Measurements 
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Manual segmentation.— 
Manual pectoralis muscle tissue (ie, pectoralis major and minor) (PMT) and SAT areas were 
initially measured on chest CT examinations. In 600 participants, manual measurements of PMT 
and SAT were performed using LabelMe (v5.1.0) (30) by two trained observers with two years 
of interpreting research images (Authors B and E). These observers were trained by Author N (a 
musculoskeletal radiologist with 15 years of experience) using 50 sample images. Labels were 
created for the right PMT, left PMT, and SAT. These manual traces were divided into 60% 
training (n = 360) and 40% hold-out (n = 240) sets (Fig 2). 

DICOM to PNG conversion.— 
Primary axial CT images with the thinnest slices were recursively selected using glob2 (v0.7) 
from the Digital Imaging and Communications in Medicine (DICOM) image list of each 
participant. DICOM images were windowed to a width of 250 and length of 50, converted to a 
255-pixel grayscale image and saved as PNGs with OpenCV (v4.7.0.68; https://opencv.org/) 
(31), keeping the original resolution. 

Frame selection.— 
Frames directly superior to the aortic arch were selected for subsequent analysis. Our algorithm 
starts by removing all frames containing abdominal sections. Next, it crops the chest CT images, 
focusing on the mediastinum. The presentation of mediastinal structures such as the heart, 
pulmonary vasculature, and other venous and arterial vessels allowed for automatic selection of 
the frame directly superior to the aortic arch. For example, moving superiorly through the 
mediastinum, as the aortic arch disappears, the brachiocephalic, left common carotid, and left 
subclavian arteries have the lowest pixel intensities; pixel intensity increases moving superiorly 
as the thymus and sternum move within our cropped mediastinal view (Fig 3). 

Semantic segmentation.— 

Using PixelLib (dependencies: Mask region-based convolutional neural network [R-CNN]; 
labelmetococo (v0.1.2); tensorflow (v2.5.3); keras (v2.4.3)), training images were utilized to 
build the semantic segmentation platform, identifying the right PMT, left PMT, and SAT. 
Briefly, the Mask R-CNN algorithm (13) is a Faster R-CNN extension that allows for mask 
identification. The Mask R-CNN algorithm is augmented using PixelLib to allow for custom 
segmentation projects. We configured our transfer learning model using ResNet50 with 
pretrained weights (ie, common objects in context, or COCO). Following training, the algorithm 
was assessed on the 40% hold-out set. 

The Python code was developed in Python 3.7 in Jupyter Notebook on a Dell Precisions 
Workstation T5810 with 256 GB RAM. The operating system was native Linux, Ubuntu 18.04 
LTS. Further information is provided on our GitHub page 
(https://github.com/qahathaway/Automated_Segmentation_PTM-IMAT-SAT). Since our code is 
written in Python and is executable on either a central processing unit or graphics processing 
unit, it can theoretically be used through in-house applications or via cloud implementation. 
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We now include a Google Colab Jupyter Notebook that allows users to access a sample 
patient population (ie, patient 1, patient 2, and patient 3 in the “Example” folder under the main 
Github branch) and run the code to perform the following: 1) generate a single image above the 
aortic arch, 2) predict the semantic segmentation images, and 3) produce individual regions of 
interest. We have also now included the COCO pretrained weights on the GitHub page, which 
will allow other users to apply our developed weights on their own datasets. 

Individualized threshold-based adipose tissue segmentation.— 
We quantified adipose deposits existing between muscle fibers (EML) and between pectoralis 
major and minor (PAT), together constituting IMAT (Fig 4 and Fig E1). IMAT was isolated as 
previously described (32), using SAT attenuations to determine individualized thresholds. First, a 
histogram of SAT attenuation values was extracted. Then, we trimmed values that had a 
frequency < 30% as much as the mode value from both upper and lower histogram limits. The 
IMAT threshold was calculated as pixel values ≤ 2 standard deviations from the mean of 
remaining values as described by Mühlberg et al (32). Further, we separated IMAT into PAT and 
EML; thresholds were defined as pixel values ≤ 1 standard deviation above the mean (PAT) and 
between 1–2 standard deviations above the mean (EML) (Fig 4). Intramyocellular lipids can only 
be measured indirectly through CT muscle tissue attenuation and are considered part of PMT in 
this study. Total areas were calculated as the sum of bilateral pectoralis muscle and adipose area 
measurements. Measurements were indexed to the participants’ heights. 

Outcome-incident HF 
Adjudication of events has been published in detail previously (5). Briefly, after the first MESA 
examination, participants were followed with a combination of in-person and telephonic 
interviews every 9–12 months to obtain hospital admission, outpatient cardiovascular disease 
diagnoses, and mortality data. Endpoint classification was performed by two independent 
physicians from the MESA study events committee using MESA study criteria. Disagreements 
were settled through consensus of the entire MESA study events committee. HF event criteria 
included probable HF events (physician diagnosis or medical treatment) or definitive HF events 
(diagnostic criteria of probable HF with pulmonary edema/dilated ventricle on radiography or 
poor left ventricular function/evidence of left ventricular diastolic dysfunction) (5). Participants 
were followed through 2017. 

Statistical Analysis 
Dice scores and intersection over union scores were calculated for training and testing sets to 
compare deep learning model measurements with the 600 manual tracings of PMT areas of either 
side and SAT area. 

Kaplan-Meier estimates of incident HF for PMT, IMAT, EML, PAT, and SAT indexes 
(cm2/m2) were categorized using median values (Fig 5). Associations between PMT, SAT, PAT, 
EML, and IMAT indexes with incident HF in identified participants with complete data (n = 
1781) were studied using several Cox proportional hazards models. 
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Crude Models were unadjusted for potential confounders. Fully adjusted models were 
adjusted for age, sex, race, income, moderate to vigorous exercise (metabolic equivalent of task-
minutes/week), body mass index (BMI), pack-years of smoking, alcohol use, hypertension (JNC 
VI Criteria; systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg) (33), 
hemoglobin A1C (%), total cholesterol (NCEP guidelines) (34), hypertension medication use, 
insulin/hypoglycemic medication use, lipid-lowering agent use, creatinine (mg/dL), log 
(Phantom Adjusted Total Agatston score), left ventricular ejection fraction and mass (% of 
predicted). The clinical markers used in our adjustment models have been used in prior studies 
for adjustment when investigating incident HF (5,22). To facilitate the interpretation of our 
results in clinical practice, the above models were also repeated for raw area measurements 
instead of indexed measurements (Table E2). 

All models were tested for proportional hazards assumption using Schoenfeld residuals 
on time (35). Hazard ratio, 95% confidence intervals and P values for the pectoralis muscle and 
adipose measurements are reported. Harrell’s C-statistics (36) and Kent and O’Quigley Pseudo-
R2 (37) are reported for each set of models. 

A False Discovery Rate adjusted P value was used as the threshold for statistical 
significance for each set of models to account for the five distinct muscle measurements 
investigated. All analyses were performed using R (version 4.2.0; R Foundation for Statistical 
Computing; packages: haven, survival, dplyr, naniar, gtsummary). 

Results 

Participant Characteristics 
Of 3083 participants with available CT scans in MESArthritis, 52 participants were excluded due 
to inadequate CT scans (low-quality CT (n = 26); breast implants (n = 19); artificial cardiac 
pacemakers (n = 7)), 851 were excluded due to incomplete cardiac MRI data, and 93 were 
excluded due to incomplete demographic, clinical, and/or laboratory data. 

Subsequently, 306 participants who developed HF before their baseline MESArthritis 
visit (ie, fifth examination of MESA) were excluded. Hence, a total of 1,781 participants (median 
age, 68 [IQR, 61–75] years; 907 [51%] females, 874 [49%] males) from MESArthritis were 
selected for subsequent analysis (Fig 1). 

Table 1 shows descriptive statistics of included individuals (n = 1,781). Median pack-
years of smoking was found to be 0 years (IQR: 0 years-13.5 years). 53% of our sample was 
hypertensive, with a median hemoglobin A1C of 5.7%. 

Deep Learning Model Performance 
Compared with manual measurements, the Dice score of the training set was 0.90 (95% CI: 
0.90–0.91), and the intersection over-union score was 0.82 (95%CI: 0.82–0.83). Similar scores 
were found for the testing set (Dice Score: 0.90 (95%CI: 0.89–0.90) and intersection over union 
score: 0.81 (95%CI: 0.81–0.82)). Individual element scores are presented in Table 2. 



 
 

Page 9 of 25 
 

For a single patient, the mean time taken by the automated segmentation platform to load 
a DICOM series, select the primary axial frames and convert to PNG, select the single PNG 
directly above the aortic arch, process the image through segmentation, provide Hounsfield Unit 
information on the selected image, and provide measurements of all reported indexes was 2 
minutes and 43 seconds. In comparison, the mean time taken by 1 observer for manual 
measurements of 10 randomly selected participant for all of the above processes was found to be 
3 minutes and 21 seconds. 

Longitudinal Associations of Pectoralis Muscle and Adipose Indices with Incident 
HF 
A total of 41 participants developed incident HF over a median 2393 days (IQR: 2202, 2552 
days) of follow-up. In crude models, higher IMAT (Hazard Ratio (HR): 1.14, 95%CI: 1.03, 1.26) 
and PAT (HR: 1.19, 95%CI: 1.06–1.35) indexes predicted incident HF. These associations held 
true after consideration of potential confounders. Higher indexes of both IMAT (HR: 1.16, 
95%CI: 1.03, 1.31) and PAT (HR: 1.25, 95%CI: 1.07, 1.46) also predicted incident HF in fully 
adjusted models (Table 3). Repeated analyses using raw area measurements instead of indexed 
measurements showed similar results. HRs for IMAT and PAT were 1.05 and 1.08 in fully 
adjusted models, corresponding to a 5% and 8% increased risk of incident HF for every 1 cm2 
increase in IMAT and PAT, respectively (Table E2). 

Harrell’s C-statistics and Kent and O’Quigley Pseudo-R2 values are reported in Table E1. 
Log Likelihood Ratio tests comparing models with and without pectoralis muscle and adipose 
indexes showed significant differences in models including IMAT (log-likelihood ratio, +2.32; P 
= .03) and PAT (log-likelihood ratio, +2.87; P = .02). 

Discussion 
In crude models and full models adjusted for clinical and imaging variables, higher CT-based 
IMAT and PAT indexes derived from a deep learning model were predictive of incident HF 
within a multiethnic cohort of participants. Analyses repeated using raw area (cm2) 
measurements instead of indexed measurements revealed similar associations, with fully 
adjusted models conferring a 5% (IMAT) and 8% (PAT) increased chance of incident HF with 
every 1 cm2 increase. 

Our study is distinct from previous works in several ways (4,22). The deep learning 
algorithm developed for our study can potentially be implemented on any conventional chest CT 
examination. This is advantageous in clinical practice as chest CT examinations are often 
acquired in individuals at-risk for common cardiothoracic disorders (eg, Agatston score in 
individuals at-risk for coronary artery disease or lung cancer screening in long-time smokers) 
(38,39). Of > 7 million CT scans performed in the United States each year, 0.5 million are 
estimated to be CAC CT scans (40,41). Our findings may be especially applicable to patients 
with identifiable risk factors for both incident HF and coronary artery disease, including 
hypertension, dyslipidemia, and smoking (42). 
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Importantly, pectoralis muscle and adipose measurements may be derived from 
alternative cross-sectional imaging such as cardiac MRI. As such, these measurements may be 
used instead of CT-derived measurements depending on which type of scan is available. In 
particular, while individuals without HF may be more likely to have a chest CT acquisition (eg, 
CAC CT scan), individuals already diagnosed with HF may likely have cardiac MRI acquisitions 
for evaluation of ejection fraction, wall motion abnormalities, and microvascular obstruction 
(43). 

In this regard, cardiac MRI-derived measurements may be used for prediction of 
downstream events after the initial HF diagnosis. For example, Cunha et al have shown that 
lower cardiac MRI-derived pectoralis muscle area measurements were an independent predictor 
of all-cause death or HF hospitalization in patients with HF with reduced ejection fraction (44). 
Similarly, Kumar et al found that a lower cardiac MRI-derived pectoralis muscle area was 
associated with a higher risk of mortality in patients both with and without HF, regardless of 
ejection fraction (45). While PMT area was not specifically found to be associated with incident 
HF in our study and cardiac MRI-derived pectoralis measurements of adiposity (eg, IMAT) were 
not studied by Cunha et al and Kumar et al, our results suggest that pectoralis muscle and 
adipose measurements may play an essential role in both HF incidence and downstream adverse 
events. Further studies may investigate the role of tissue-specific pectoralis muscle and adipose 
measurements at different points in the context of HF (eg, the difference in predictive value of 
PMT for HF incidence as opposed to its value for downstream events after an established 
diagnosis of HF). In particular, there is a need to investigate the utility of cardiac-MRI derived 
pectoralis adipose measurements (ie, IMAT, PAT, EML etc) for HF and HF-related events. 

Our study demonstrates that deep learning algorithms may provide reliable muscle 
measurements. Deep learning algorithms can eliminate barriers like time consuming and 
complicated manual postprocessing and measurement techniques. Our study also takes 
advantage of MESA, which made robust analysis feasible given the availability of relevant 
databases for clinical and imaging confounders like cardiac MRI parameters and Agatston score. 

The clinical value of these CT-based muscle measurements for various general medical 
diseases remains to be investigated. Deep learning algorithms (like ours employing semantic 
segmentation) are highly accurate methods of determining muscle measurements using CT, 
which has been robustly documented in the general literature (24,32,46). Additionally, previous 
studies have successfully implemented deep learning algorithms to measure imaging biomarkers 
and demonstrated predictive value in downstream events (47). 

The ability to use IMAT and PAT indexes as predictors of incident HF cannot only 
improve HF prediction models but is also potentially useful in the monitoring of at-risk 
individuals. Detection of at-risk individuals can lead to higher clinical suspicion of HF. Early 
detection of HF in this context is critical to not only improve overall patient survival rate, but 
also to improve quality of life and slow the rate of disease progression (48). 

Moreover, these indexes are potentially modifiable, unlike the nonmodifiable effects of 
predictors such as age and sex. As such, skeletal muscle loss may be a future target of secondary 
preventative measures (eg, nutritional and physical rehabilitation (16–18), leading to potentially 
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lower downstream risk of developing HF. For instance, aerobic exercises may have a protective 
effect on both skeletal and cardiac muscles (49). Additionally, in individuals who undergo 
consecutive CT examinations, interval changes in muscle and adipose measurements may be 
used to monitor the efficacy of these preventive measures. 

Our study has several limitations. First, causal inference cannot be determined by our 
observational study. However, we attempted to address all available potential confounders in our 
studied association in a stepwise and thorough methodology, including all the available relevant 
data like imaging biomarkers (Agatston score and cardiac MRI). Second, the number of events 
for our longitudinal analysis was relatively small (n = 41). As such, extensive adjustment may 
contribute to overfitting of the final complete models. However, we have shown the association 
between the muscle and adipose parameters by showing both crude and fully adjusted models 
which show consistent trends. Moreover, MESA is one of the largest cohorts with robust clinical 
data and imaging available for such observational analysis. Third, our study used the most 
superior CT section including aortic arch as the landmark at which muscle parameters were 
extracted. Moreover, the aortic arch (used as our landmark for slice selection) typically increases 
in diameter and length with age (50). Additionally, arm position, respiratory phase, and 
conditions like kyphosis may affect slice quality. Consequently, the reliability of extracted 
muscle parameters from the eldest participants in the study may have been affected, though we 
attempted to standardize slice selection in a method similar to that in available literature (24). 
Fourth, our deep learning model was trained on an internal validation set due to data availability. 
External model validation is required to increase confidence in its reliability, though our model 
was trained, validated, and tested on CT scans from six different scanners, lending a degree of 
heterogeneity to the CT studies. Interobserver reliability of the CT-derived pectoralis muscle and 
adipose measurements was not formally assessed in this study. However, this exact methodology 
was manually implemented in a prior study on a similar cohort of patients to investigate 
longitudinal outcomes (24). Fifth, use of pectoralis muscle alone as opposed to or in conjunction 
with other muscle groups like paraspinal/abdominal muscles or volumetric analysis is also a 
limitation, as whole-body assessments could be more comprehensive. Still, the use of pectoralis 
muscle alone has been studied in literature as a validated predictor of health outcomes like 
mortality (eg, among individuals who underwent left ventricular device implantation) (24), 
(51,52). Sixth, the focus of our study was CT-based measurements as CT examinations may be 
more readily available because of their use as screening tools. However, cardiac MRI is another 
modality of choice to evaluate cardiac cachexia in individuals with known HF. As such, cardiac 
MRI may be a viable alternative imaging technique for pectoralis muscle and adipose 
measurements for prediction of events in individuals with established HF, such as all-cause 
mortality, hospitalization, and sudden cardiac death (44,45,53). Cardiac MRI may also provide 
information on additional markers such as epicardial fat (54) and lung water (55). Serial cardiac 
MRI measurements may also identify individuals with HF with ejection fraction recovery, who 
may have distinct HF outcomes (56). Finally, our study does not include intramyocellular lipids 
as an adiposity measure, as their detection and segmentation cannot be accurately performed 
using conventional CT. Other advanced imaging techniques like MRI spectroscopy are 
warranted for such analysis, which could be a subject for future investigations (57). 
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In conclusion, our study shows that deep learning derived pectoralis muscle and adipose 
area measurements can be reliably extracted from conventional chest CT. Although causal 
inference cannot be established in this observational study, higher intermuscular and 
perimuscular adipose area measurements were found to be associated with incident HF, 
demonstrating potential predictive value. As these measures may also be potentially modifiable 
(16–18), secondary preventive measures may be investigated for their ability to mitigate HF 
incidence in at-risk populations. 
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Figure 1: MESA study timeline and participant selection. MESA = Multi-Ethnic Study 
of Atherosclerosis. 
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Figure 2: Workflow of deep learning algorithm development. SAT = Subcutaneous 
Adipose Tissue, IMAT = Intermuscular Adipose Tissue, PAT = Perimuscular Adipose 
Tissue, EML = Extramyocellular Lipid, R-CNN = region-based convolutional neural 
network. 
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Figure 3: Automatic selection of slice above the aortic arch using analysis of pixel 
intensities. 
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Figure 4: Visualization of individualized thresholding framework to identify 
intermuscular adipose tissue and its subcomponents. SAT = Subcutaneous Adipose 
Tissue, IMAT = Intermuscular Adipose Tissue, PAT = Perimuscular Adipose Tissue, 
EML = Extramyocellular Lipid. The cross-hatched sections represent trimmed values 
from the upper and lower distribution chart. 

 

Figure 5: Kaplan-Meier estimates of incident heart failure using muscle indexes, 
categorized by median values. The x-axis shows time (in days), and the y-axis shows 
the survival probability. The following indexes were studied: Intermuscular Adipose 
Tissue (IMAT, Median: 1.2 cm2/m2), Extramyocellular Lipid, (EML, Median: 0.4 cm2/m2), 
Perimuscular Adipose Tissue (PAT, Median: 0.8 cm2/m2), Pectoralis Muscle Tissue 
(PMT, Median: 11.6 cm2/m2), and Subcutaneous Adipose Tissue (SAT, Median: 12.4 
cm2/m2). Lower than median curves are shown in yellow. Higher than median curves 
are shown in black. 

Table 1 

Baseline Descriptive Statistics of MESA Participants without Heart Failure 
Characteristic n = 1,7811 
Age (y) 68 (61, 75) 
Sex  
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Female 907 (51%) 
Male 874 (49%) 
Race/Ethnicity  
Black 463 (26%) 
White/Caucasian 696 (39%) 
Other 622 (35%) 
Total Gross Family Income  
≤$5,000 20 (1.1%) 
$5,000-$24,999 314 (18%) 
$24,999–49,999 616 (35%) 
≥$50,000 831 (47%) 
Body Mass Index (kg/m2) 27.5 (24.4, 30.9) 
Pack Years of Smoking 0.0 (0.0, 13.5) 
Presently Drink Alcohol  
No 1,013 (57%) 
Yes 768 (43%) 
Moderate to Vigorous Activity (MET-min/week) 3,577.5 (1,672.5, 7,012.5) 
Left Ventricular Ejection Fraction (%) 69.1 (65.1, 72.8) 
Hemoglobin A1C (%) 5.7 (5.5, 6.1) 
Serum Creatinine (mg/dL) 0.9 (0.7, 1.0) 
Hypertension  
No 834 (47%) 
Yes 947 (53%) 
Total Cholesterol  
<200 mg/dL 1,208 (68%) 
≥200 mg/dL 573 (32%) 
Hypertension Medication Use  
No 834 (47%) 
Yes 947 (53%) 
Lipid-lowering Medication Use  
No 1,124 (63%) 
Yes 657 (37%) 
Insulin/Hypoglycemic Medication Use  
No 1,528 (86%) 
Yes 253 (14%) 
Phantom-adjusted Total Agatston Calcium Score 32.03 (0.00, 225.70) 
Intermuscular Adipose Tissue Index 1 (Intermuscular 
Adipose Tissue Area by Height Squared (cm2/m2) 

1.18 (0.58, 2.28) 

Extramyocellular Adipose Tissue Index 1 (Extramyocellular 
Adipose Tissue Area by Height Squared (cm2/m2) 

0.37 (0.20, 0.70) 

Perimuscular Adipose Tissue Index 1 (Perimuscular 
Adipose Tissue Area by Height Squared (cm2/m2) 

0.79 (0.37, 1.58) 

Pectoralis Muscle Index (Pectoralis Muscles Area by 
Height Squared (cm2/m2) 

11.60 (8.99, 14.59) 

Subcutaneous Adipose Tissue Index (Subcutaneous 
Adipose Tissue Area by height Squared (cm2/m2) 

12.35 (7.24, 21.17) 

Note.—MESA = Multi-Ethnic Study of Atherosclerosis. 
1 Median (IQR); n (%). 



 
 

Page 21 of 25 
 

Table 2 

Intersection Over Union and Dice Similarity Coefficients of the Deep Learning 
Model 
 Intersection Over 

Union (95% CI) 
Dice Similarity 
Coefficient (95% CI) 

Overall 0.82 (0.82, 0.83) 0.90 (0.90, 0.91) 
Left Pectoralis Muscle Masks 0.79 (0.78, 0.80) 0.88 (0.87, 0.89) 
Right Pectoralis Muscle Masks 0.79 (0.78, 0. 80) 0.88 (0.87, 0.89) 
Subcutaneous Adipose Tissue Masks 0.75 (0.74, 0.76) 0.85 (0.84, 0.86) 

Table 3 

Cox-proportional Hazard Models Using Pectoralis Muscle and Adipose Indices to 
Predict Incident Heart Failure 
 Crude Models1 Full Imaging (Coronary Artery Calcium Score + 

Cardiac MRI)2 
Muscle Parameter Hazard Ratio (95% CI) P value Hazard Ratio (95% CI) P value 
Pectoralis Muscle Index3 0.98 [0.92, 1.04] 0.48 0.98 [0.91, 1.05] 0.57 
Intermuscular Adipose Index4 1.14 [1.03, 1.26] 0.01 1.16 [1.03, 1.31] 0.02 
Extramyocellular Adipose Index5 1.45 [0.97, 2.16] 0.07 1.37 [0.89, 2.13] 0.16 
Perimuscular Adipose Area Index6 1.19 [1.06, 1.35] 0.01 1.25 [1.07, 1.46] 0.01 
Subcutaneous Adipose Index7 1.00 [0.97, 1.03] 0.83 1.02 [0.98, 1.06] 0.29 

1 Unadjusted Models. 
2 Adjusted for Age, Race, Sex, Moderate to Vigorous Physical Activity (MET-min/week), log (Phantom 
Adjusted Total Agatston Calcium Score), Left Ventricular Ejection Fraction, Left Ventricular Mass 
Percentage of Predicted, Total Gross Family Income, Pack Years of Smoking, Present Alcohol 
Consumption, Hypertension, Total Cholesterol (NCEP Guidelines), Hemoglobin A1C (%), Hypertension 
Medication Use, Insulin/Hypoglycemic Medication Use, Lipid-lowering Medication use, and Creatinine 
(mg/dL). 
3 Pectoralis Muscle Area (cm2) by Height (m2). 
4 Intermuscular Adipose Area (cm2) by Height (m2). 
5 Extramyocellular Adipose Area (cm2) by Height (m2). 
6 Perimuscular Adipose Area (cm2) by Height (m2). 
7 Subcutaneous Adipose Area (cm2). 

 

Appendix–Supplementary Text 

Figure E1 provides a visual comparison between inferences drawn by the deep-learning 
algorithm and a schematic representation of the different adipose distributions. These were 
shown using the same example frame selected directly superior to the aortic arch. 

Figure E2 highlights the process of region of interest creation for the subcutaneous 
adipose tissue, right pectoralis muscle, and left pectoralis muscles. 
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Figure E3 highlights the segmentations acquired by the deep-learning algorithm across 
different patients, showcasing the performance of our algorithm in nonideal conditions. The 
algorithm begins by removing abdominal frames and selecting the slice above the aortic arch 
based on mediastinal pixel intensities before automated segmentation of the pectoralis muscle 
groups and the subcutaneous adipose tissue. The colors of the masks vary across acquisitions but 
were correctly assigned to the appropriate anatomic segments. 

To help determine the discrimination and goodness-of-fit of the various models presented 
in this article, we calculated the Harrell’s C-statistic and Kent and O’Quigley Pseudo-R2 metrics 
for each set of Cox-Proportional Hazards Models (Table E1). 

To increase clinical interpretability of our results, we also reconstructed our initial 
analyses using metrics of raw area measurements (cm2) in lieu of indexed measurements (Table 
E2). 

 

 

Figure E1: (A) Inferences of Pectoralis Muscle Area Measurements using the Deep-
Learning Algorithm and Quantitative Assessment Framework. (B) Sample Image Slice. 
(C) Schematic Representation of Muscle Area (Orange), Extramyocellular Lipids 
(Green) and Perimuscular Adipose Tissue (Blue). SAT = Subcutaneous Adipose Tissue, 
PMT = Pectoralis Muscle Tissue, IMAT = Intermuscular Adipose Tissue, PAT = 
Perimuscular Adipose Tissue, EML = Extramyocellular Lipid. 
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Figure E2: Example regions of interest for subcutaneous adipose tissue (yellow), right 
pectoralis muscle (red), and left pectoralis muscle (green). 

 

Figure E3: Example segmentations derived using the automated deep-learning 
segmentation platform across from different patients. The algorithm begins by removing 
abdominal frames and selecting the slice above the aortic arch based on mediastinal 
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pixel intensities before automated segmentation of the pectoralis muscle groups and the 
subcutaneous adipose tissue. The colors of the masks vary across acquisitions but 
were correctly assigned to the appropriate anatomic segments. 

Table E1 

Harrell’s C-statistic and Kent and O’Quigley Pseudo R2 of Cox-proportional 
Hazard Models Using Pectoralis Muscle and Adipose Indices to Predict Incident 
Heart Failure 
 Crude Models1 Full Imaging (Coronary Artery Calcium Score + 

Cardiac MRI)2 
Muscle Parameter Harrell’s C-statistic 

(95% Confidence 
Interval) 

Kent and O'Quigley 
Pseudo R2 

Harrell’s C-statistic 
(95% Confidence 
Interval) 

Kent and O'Quigley 
Pseudo R2 

Pectoralis Muscle Index3 0.54 [0.47, 0.61] 0.007 0.85 [0.79, 0.90] 0.482 
Intermuscular Adipose Index4 0.57 [0.47, 0.67] 0.038 0.85 [0.79, 0.91] 0.499 
Extramyocellular Adipose Index5 0.54 [0.44, 0.64] 0.027 0.85 [0.79, 0.90] 0.489 
Perimuscular Adipose Area Index6 0.57 [0.47, 0.67] 0.035 0.85 [0.79, 0.81] 0.504 
Subcutaneous Adipose Index7 0.49 [0.41, 0.57] 0.001 0.85 [0.71, 0.81] 0.487 

1 Unadjusted Models. 
2 Adjusted for Age, Race, Sex, Moderate to Vigorous Physical Activity (MET-min/week), log (Phantom 
Adjusted Total Agatston Calcium Score), Left Ventricular Ejection Fraction, Left Ventricular Mass 
Percentage of Predicted, Total Gross Family Income, Pack Years of Smoking, Present Alcohol 
Consumption, Hypertension, Total Cholesterol (NCEP Guidelines), Hemoglobin A1C (%), Hypertension 
Medication Use, Insulin/Hypoglycemic Medication Use, Lipid-lowering Medication use, and Creatinine 
(mg/dL). 
3 Pectoralis Muscle Area (cm2) by Height (m2). 
4 Intermuscular Adipose Area (cm2) by Height (m2). 
5 Extramyocellular Adipose Area (cm2) by Height (m2). 
6 Perimuscular Adipose Area (cm2) by Height (m2). 
7 Subcutaneous Adipose Area (cm2). 

Table E2 

Cox-proportional Hazard Models Using Raw Pectoralis Muscle and Adipose Areas 
to Predict Incident Heart Failure 
 Crude Models1 Full Imaging (Coronary Artery Calcium Score + 

Cardiac MRI)2 
Muscle Parameter Hazard Ratio (95% 

Confidence Interval) 
P value Hazard Ratio (95% CI) P value 

Pectoralis Muscle Index3 0.99 [0.97, 1.01] 0.49 0.99 [0.96, 1.02] 0.57 
Intermuscular Adipose Index4 1.05 [1.01, 1.09] 0.02 1.05 [1.01, 1.11] 0.03 
Extramyocellular Adipose Index5 1.15 [0.99, 1.34] 0.07 1.13 [0.95, 1.34] 0.17 
Perimuscular Adipose Area Index6 1.06 [1.02, 1.11] 0.001 1.08 [1.02, 1.15] 0.01 
Subcutaneous Adipose Index7 0.99 [0.99, 1.01] 0.87 1.01 [0.99, 1.03] 0.25 

1 Unadjusted Models. 
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2 Adjusted for Age, Race, Sex, Moderate to Vigorous Physical Activity (MET-min/week), log (Phantom 
Adjusted Total Agatston Calcium Score), Left Ventricular Ejection Fraction, Left Ventricular Mass 
Percentage of Predicted, Total Gross Family Income, Pack Years of Smoking, Present Alcohol 
Consumption, Hypertension, Total Cholesterol (NCEP Guidelines), Hemoglobin A1C (%), Hypertension 
Medication Use, Insulin/Hypoglycemic Medication Use, Lipid-lowering Medication use, and Creatinine 
(mg/dL). 
3 Pectoralis Muscle Area (cm2) by Height (m2). 
4 Intermuscular Adipose Area (cm2) by Height (m2). 
5 Extramyocellular Adipose Area (cm2) by Height (m2). 
6 Perimuscular Adipose Area (cm2) by Height (m2). 
7 Subcutaneous Adipose Area (cm2). 

 

 

 




