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Abstract
Structural health monitoring (SHM) of engineered structures consists of an automated or semi-
automated survey system that seeks to assess the structural condition of an anthropogenic 
structure. The aim of an SHM system is to provide insights into possible induced damage or any 
inherent signals of deformation affecting the structure in terms of detection, localization, assessment,
and prediction. During the last decade there has been a growing interest in using several remote 
sensing techniques, such as synthetic aperture radar (SAR), for SHM. Constellations of SAR 
satellites with short repeat time acquisitions permit detailed surveys temporal resolution and 
millimetric sensitivity to deformation that are at the scales relevant to monitoring large structures. 
The all-weather multi-temporal characteristics of SAR make its products suitable for SHM systems, 
especially in areas where in situ measurements are not feasible or not cost effective. To illustrate this
capability, we present results from COSMO-SkyMed (CSK) and TerraSAR-X SAR observations 
applied to the remote sensing of engineered structures. We show how by using multiple-geometry 
SAR-based products which exploit both phase and amplitude of the SAR signal we can address the 
main objectives of an SHM system including detection and localization. We highlight that, when 
external data such as rain or temperature records are available or simple elastic models can be 
assumed, the SAR-based SHM capability can also provide an interpretation in terms of assessment 
and prediction. We highlight examples of the potential for such imaging capabilities to enable 
advances in SHM from space, focusing on dams and cultural heritage areas.

1.
INTRODUCTION
Developing a strategy for identifying and quantifying engineered infrastructure damage is usually 
referred to as a structural health monitoring (SHM) system where damage is intended as a change 
that affects the current or future system performance. The statistical pattern recognition paradigm [1]
provides a comprehensive definition of an SHM process in terms of operational evaluation, data 
acquisition, feature selection, information condensation and statistical model development. During 
the last decade SHM is one of the applications that most benefitted from remote sensing 
technologies [2-26-30]. Data acquisition in particular took advantage of the surge of data coming 
from aerial photography and optical satellite imagery and it is now beginning to adopt the second 
generation of synthetic aperture radar (SAR) technologies to boost operational evaluation, in 
complex systems such as cities [2], and statistical model development capabilities, e.g. in monitoring
concrete structures [3]. Since the launch of ERS-1 in 1991 SAR gained more importance as a tool 
for studying natural and anthropogenic phenomena [4], but only the second generation of SAR 
sensors designed as constellations of satellites enabled a near real time response capability [5,6]. 
Several examples have been recently published with regard to earthquakes, volcanoes, landslides, 
glaciers, and natural hazards, fully exploiting the short-repeat acquisition time of SAR constellations 
[7-12]. The all-weather multi-temporal characteristics of SAR make SAR-derived products suitable 
for SHM systems especially in areas where in situ measurements are not feasible or not cost-
effective. To illustrate this capability, we present results from COSMO-SkyMed (CSK) and TerraSAR-
X (TSX) observations applied to the remote sensing of engineered structures. We show how by 
using only multiple-geometry SAR based products which exploit both phase and amplitude of the 
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SAR signal we can address the main objectives of an SHM system, including detection and 
localization. A particular focus is dedicated to the engineering of dams where a detailed risk 
assessment is needed to avoid water impoundments, embankment breaks or overtopping and to 
mitigate the effects of earthquakes, landslides, hydrodynamic instability, erosion, and long-term 
deterioration of built structures. We show examples of different dams affected by several 
mechanisms of deformation, including thermal, hydrological and aging induced deformation. We also
provide examples relying on CSK observations that highlight the potential advances in 
archaeological and cultural heritage site monitoring.

2.
METHODS
We adopt well-established multi-temporal InSAR (MT-InSAR) techniques using time-series analysis 
of ground deformation extended to non-linear motion with no a priori information [13,14]. We carried 
out multiple sensor and parallel track analyses [15,16] to collect a sufficient number of images 
providing temporal continuity and thereby increasing the sensitivity to thermally and hydrologically 
induced deformation. We merged coherently (whenever the local incidence angle varies less than 
0.1 degrees between two adjacent tracks) and incoherently (during the geocoding step) two datasets
performing a very precise coregistration which is the main task for data combination from multiple 
tracks and different sensors together with the identification of multi-angle targets. In our case light 
poles and a fence are located near the dams. These targets ensure sufficient amplitude stability and 
they are chosen as ground control points to assist the geocoding process.

In the case of archaeological and cultural heritage sites we use ascending and descending datasets 
to interpret deformation trends. RGB maps were generated by analyzing the SAR amplitude and 
used for visual inspection of the heritage assets.

3.
STRUCTURAL HEALTH MONITORING OF DAMS
Dams are anthropogenic barriers designed to modify the magnitude and timing of the downstream 
water movement. In addition to the enormous advantages in terms of water, flood protection and/or 
electricity production, dams can pose a risk to the surrounding area as a consequence of a possible 
structural failure. A detailed risk assessment is needed to avoid water impoundments, embankment 
breaks or overtopping and to mitigate the effects of earthquakes, landslides, hydrodynamic 
instability, erosion, and long-term deterioration of built structures. Advancing the knowledge of dam 
engineering, construction, planning, maintenance, and performance is considered of primary 
importance to reduce the socio-economic risk related to dams. In particular, ageing of dams and 
deterioration of their foundation are among the main concerns to engineers involved in their design, 
construction and maintenance. The combination of InSAR and deterministic models for seasonally 
and hydrologically induced dam deformation allows interpreting deformation at the dam wall in near-
real-time without the need of ground surveys [3]. The nature of these statistical models requires a 
copious number of acquisitions in order to stabilize the inverted parameters as required for 
interpretative models with pendulum or GPS measurements. The major limit of this kind of InSAR 
analysis is the relative non-orthogonal orientation of the dam walls to the satellite flight direction.

In the following paragraphs we show two examples related to the Pertusillo dam, Italy, and the Mosul
dam, Iraq. In the first case study, seasonal induced deformation can be monitored and integrated 
with hydrological-season-time (HST) and hydrological-temperature-time (HTT) models for 
interpreting displacements at the dam. Conversely, in Mosul the ongoing deformation/destabilization 
of the dam is linked to processes of dissolution of the local evaporites underlying the dam 
foundation. A dam failure would threat over 1.5 million inhabitants living in Mosul and the 
surroundings areas.
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3.1
The Pertusillo dam, Italy
The Pertusillo dam is a 98 m high and 357 m long arch-gravity dam impounding water coming from 
the Agri river collected in the “Lago di Pietra del Pertusillo”, an artificial lake built between 1957 and 
1962 in southern Italy (Fig 1a,c). The basin capacity amounts to 155 × 106 m3 and is mainly used for 
producing hydroelectric energy and irrigation of the Puglia and Basilicata regions. Given the relative 
LOS visibility of the Pertusillo dam [3] it is possible to monitor the thermal load and hydrostatic load 
due to the reservoir water variations. The thermal effect on the structural behavior of the dam is 
produced by solar radiation, air, and reservoir temperatures while the hydrostatic load depends on 
the relative water level at the dam wall. Statistical models are used to predict the structural response
and are usually known as quantitative interpretative models [3]. SAR data acquired from both 
ascending and descending geometries can be used to discriminate horizontal vs. vertical motions 
and drive parametric approaches to model the thermal and hydrostatic effects. By analyzing CSK 
and TSX ascending and descending datasets we generated a time-series of horizontal 
displacements perpendicular to the dam wall and applied the HTT and HST models highlighting the 
global response of the dam (Fig 1c,g) and showing how InSAR-based methods can be used in 
combination with ground surveys at the dam and to optimize the locations of the dam monitoring 
stations. The high resolution of SAR stripmap images also allows estimation of deformation at a 
larger number of points (dozens of PS against 1 or 2 GPS and pundulums) compared to traditional 
techniques (GPS or pendulum measurements). The combination of InSAR and deterministic models 
for seasonally and hydrologically induced dam deformation allows interpretation of deformation at 
the dam wall in near-real-time without the need of ground surveys [3].

Figure 1
Overview of the study site (A) South Italian Peninsula; the red outline shows the location of the 
Pertusillo artificial lake in B. (B) Google-Earth Optical Image showing the “Lago di Pietra del 
Pertusillo”. Seismicity at the Pertusillo dam recorded by the ISIDE-INGV network. Yellow (orange) 
dots indicate earthquakes with 0–10 (10–20) km depth. The red box shows the extent of the dam in 
C. (C) Cumulative displacement maps at the Pertusillo dam as observed from different SAR sensors 
and different look geometries. Negative values indicates motion away from the satellite. Optical 
image from Bing Maps. (D) Projected horizontal displacement perpendicular to the dam recorded at 
the center of the dam. Legend: black squares: data; magenta triangles: HTT model; green circles: 
HST model. (E) Temperature records and (F) water height variation at the dam wall. (G) Residuals; 
Legend: magenta triangles: HTT mode;, green circles: HST model. Figure modified from [3].
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3.2
The Mosul dam, Iraq
The Mosul dam (Lat. 36.630° N, Lon. 42.823° E) is located on the Tigris river in the north of Iraq and 
is the biggest hydraulic structure in Iraq. It was built in 1984 as a multipurpose dam, including water 
supply, irrigation flood control, and power generation. The dam is an earth-fill dam 113 m tall, 3.4 km 
long, 10 m wide at its crest and has a storage capacity of 11.1 billion cubic meters. The geologic 
composition beneath its foundation is characterized by soluble soils (evaporates). The continuously 
dissolving bedrock results in the formation of cavities and voids beneath the dam structure and this 
requires a regular grouting program to mitigate the risk of dam failure. Because of these pre-existing 
geological constraints, grouting has been repeatedly implemented since the 1980s. Starting in 2005 
a sinkhole appeared very close to the dam and raised concerns about the possibility of subsurface 
failure of the foundation. A United States (US) military report [17] indicates that the dam was 
constructed on a very poor foundation that should have had an inverted dam foundation identifying 
ongoing water seepage coming from the access gallery and the right and left sides of the spillway. 
Since 2007, a reconstruction project was initiated by the US government and operated by the US 
Army Corps of engineers to establish a more effective grouting system. The project obtained modest
results toward maintaining the structural health of the dam [17]. In 2014, following the conflict in the 
area, regular maintenance and grouting stopped. An Italian company is now in charge of 
reestablishing the grouting. This hiatus in grouting has led to an opportunity to examine the response
of the structure to potential changes in the stability of the dam’s foundation. Single Look Complex 
(SLC) SAR images were produced using the SARPROZ software [18]. We use the 90 m resolution 
SRTM [19] digital elevation model, resampled to 3 m using bi-cubic interpolation, to calculate and 
remove topographic residuals and for geocoding. We co-registered a set of 62 images spanning 
from December 2012 to July 2015 from an ascending geometry (satellite moving from South to North
and looking towards East) with a right-looking radar direction and a ground incidence angle of 35.5 
degrees. The data have been acquired with a regular frequency of 16 days from December 2012 
through September 2013, using only the second satellite (CSK2) while the full constellation of four 
satellites acquired data during the period from September 2013 to July 2014 with 4 irregularly 
spaced acquisitions over 16 days. This allowed us to better constrain the transient deformation that 
occurred during this time interval. Figure 2B shows the cumulative deformation map localizing the 
dissolution process on the east side of the dam while figure 2C shows the CSK time-series 
highlighting the dynamic behavior of the deformation and the increase in the dissolution rate after the
dam maintenance stopped.

Figure 2
(A) Schematic description of the different forces acting on the Mosul dam wall re-projected along the 
CSK line of sight. Vertical subsidence translates in motion away from the sensor while increased 
pressure at the dam walls result in motion toward the SAR sensors. In this particular case the 
heading angle makes the CSK data insensitive to the hydrological induced signal. (B) Cumulative 
deformation map over the Mosul dam covering December 2012 – July 2015. (C) Time series 
showing the dynamic of deformation at the starred point in (B).
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4.
ARCHEOLOGICAL AND CULTURAL HERITAGE SITES
There is already a plethora of studies demonstrating that space-borne SAR can be effectively used 
for monitoring archeology and cultural heritage. One of the earliest uses was archaeological 
prospection by exploiting the SAR penetration capabilities and dates back to the 1980’s when [20] 
identified ancient structures hidden beneath the canopy and agricultural signatures trying to 
reconstruct ancient Maya population land use using SEASAT data. Many more studies followed [21-
25] making SAR a powerful means of site discovery. As time series analysis techniques developed 
[13,14], there has been a growing interest in InSAR and its potential to enable advances in 
archeology and cultural heritage areas monitoring. Several examples in literature show a SAR based
structural health monitoring system successfully applied to cultural heritage areas and monuments 
[26-29]. These advancements in the techniques are increasingly used by archeologists [30] and 
have become of interest for structural engineers interested in surveying archeological sites and 
cultural heritage areas [31].

In the following paragraph we show two examples. The first one relates to a SAR based structural 
health monitoring system applied to the Tramontano medieval castle in Matera to assess the 
effectiveness of the restoration works. The second shows the changes in the archeological area of 
Palmyra in Syria, where the Syrian army prepared the battlefield modifying archeological sites and 
surrounding areas.

4.1
The Tramontano castle, Matera (Italy)
The Tramontano castle (Lat. 40.663° N, Lon. 16.606° E) is located on the Lapillo hill next to the 
ancient town of Matera, Basilicata (Italy). It was build starting in 1501 by the Count Giovan Carlo 
Tramontano and it was never finished. As observed in several other medieval sites of this region 
[32,33], the castle is characterized by evident collapses due to landslides, cracks, structural 
discontinuities, unstable rock blocks, accumulate debris and discontinuity crests signs of ongoing 
morphogenetic dynamics [34]. Analysis of the Italian Landslide Inventory (IFFI) revealed the 
presence of a dormant, relatively shallow landslide affecting the area of the castle and north-eastern 
slope of the Lapillo hill [40]. Restoration works to preserve the castle and the surrounding area 
started in 2008 and are still ongoing. We processed 121 COSMO-SkyMed StripMap images covering
the period 2008-2015 acquired from both ascending (56 images Fig. 3A) and descending (65 
images Fig. 3B) geometries to monitor the stability of the Tramontano castle. By interpreting both the
SAR time-series we found that since November 2012 the area is mainly characterized by a downhill 
horizontal movement (Fig 3C-3D) affecting the southern side of the castle. We performed ground 
measurements to validate the deformation estimates and found ~2 cm opening cracks in the 
southern side and the southern tower (Fig 3E-H). This partially confirms the MT-InSAR results. The 
ground measurements were then used as an input to analyze in more detail the location of the 
scatters observed in the SAR data. By looking at the SAR ascending and descending mean 
amplitudes it is apparent that different geometries observe different targets located on the front 
façade and the backward side of the tower, respectively (Fig3E and 3G). In particular, the difference 
between the observed cracks and MT-InSAR results arise when looking at the the descending time 
series (Fig. 3D) where a linear trend is evident starting 2008 and accounts for a total cumulative 
displacement of ~4 cm while the ground measurements evidenced ~2 cm cracks affecting the south 
tower. This discrepancy between InSAR and ground measurements can be explained by taking into 
account the ongoing restoration works which covered the evidence of previously existing cracks. In 
this case the complementarity of the InSAR time-series and the ground measurements was 
fundamental to confirm the deformation trends, locate precisely the scatter imaged by the SAR 
sensor and assess the effectivity of the restoration works. As found in earlier InSAR studies of 
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building damage assessment [35,36], this iterative approach is recommended to find a match 
between the ground truth and the satellite evidence, in order to assess in a more quantitative way 
the accuracy of the deformation estimates along the satellite LOS. Given that the area is 
characterized by soluble bedrock, further research might use ancillary data such as rain records to 
investigate the role of groundwater levels to trigger dissolution and cause structural destabilization of
the castle.

Figure 3
(A) Ascending and (B) descending mean amplitude images of the Tramontano castle, Matera. The 
numbers 1) and 2) represent the scatterers the cumulative displacement time series of which are 
showed in figure 3D. The images are in radar coordinates to preserve the initial resolution and make
the scatterers identification easier. (C) Google earth optical view of the castle. Blue triangles 
represent the perspective of the photographs showed in (E) and (G).(D) Cumulative deformation 
time-series from ascending and descending CSK data (E) View of the west façade of the castle, with
a zoom in inset (F) showing ~2 cm crack found in the stone block pavement along the west façade. 
(G) South tower of the castle showing evident cracks. Adjacent cracks have been covered in 
previous restoration works. (H) Zoom view of the crack running vertically with ~2 cm of opening.

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10003/1/Structural-health-monitoring-of-engineered-structures-using-a-space-borne/10.1117/12.2241620.full/conference-proceedings-of-spie/10003/1/Structural-health-monitoring-of-engineered-structures-using-a-space-borne/10.1117/12.2241620.full#f3
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10003/1/Structural-health-monitoring-of-engineered-structures-using-a-space-borne/10.1117/12.2241620.full/conference-proceedings-of-spie/10003/1/Structural-health-monitoring-of-engineered-structures-using-a-space-borne/10.1117/12.2241620.full#c36
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10003/1/Structural-health-monitoring-of-engineered-structures-using-a-space-borne/10.1117/12.2241620.full/conference-proceedings-of-spie/10003/1/Structural-health-monitoring-of-engineered-structures-using-a-space-borne/10.1117/12.2241620.full#c35




4.2
The Palmyra archeological site, Syria
Located in the middle of the Syrian desert, the ancient city of Palmyra (Lat. 34.568° N, Lon. 38.290° 
E) is one of the most important archeological sites in Syria. Inscribed in the UNESCO World heritage
list since 1980, Palmyra has been threatened since 2012 when military units of the Syrian army were
deployed in the nearby city of Tadmor [37] to protect the area from ISIL. According to the report of 
the association for the protection of Syrian archaeology during this period the Syrian army made 
several changes within the archeological site including removal of soil, digging trenches and building
roads. One of these roads was built in the archeological site of Palmyra in order to directly connect 
the police station with the center of military operations close to the telecommunications tower on 
Gabal al-Rwissat (Fig 4C)[37]. This 10 m wide road is protected by lateral levees and caused partial 
damage to the Diocletian rampart and led to the removal of some funerary towers foundations. A 2 
meter-high leave of earthen dyke has been erected as protection of the police station in the west-
east direction, parallel to the main road.

Figure 4
(A) RGB map of the Bel sanctuary in Palmyra, Syria, showing a supplementary road (red) and dykes
built for defense purposes against ISIL by the Syrian army; (B) Palmyra archeological site, the blue 
lines highlight the dykes protecting the police station and the road connecting the city with the 
battlefield. (C) Google earth optical view (modified from [37]) dykes close to the police station. (D) 
Inset of the Palmyra airport showing that parts of the fence have been removed.
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A SAR qualitative analysis comparing pre- and post-event amplitude images reveals these changes 
occurred in 2 years. We generated an RGB map using two CSK stripmap images acquired on 
November 13th 2011 (red channel) and December 7th 2013 (green and blue channesl) (Fig. 4). The 
main source of noise is speckle and soil moisture variation which affect the calibrated SAR 
amplitudes and introduce false alarms in the visual classification. The RGB map shows blue features
for targets increasing backscattered signal in 2013 while red pixels highlight targets that lowered 
their radar cross section loosing visibility to the SAR antenna. The main blue features can be 
attributed to the creation of scatterers such as levees (Fig 4A-B) while the red areas can be 
classified as roads as in the case of the road created close to the Sanctuary of Bel (Fig 4A), 
removed barriers (Fig 4D) and likely destroyed structures nearby the airport (Fig 4D). As proved in 
recent research in other Syrian sites [30,39], although not quantitative and characterized by a 
performance that might be constrained by visibility to the LOS satellite, this change detection method
is quite effective to highlight new structures and features that are due to operations during armed 
conflicts and can act as a knowledge gap filler with regard to optical satellite imagery (e.g. those 
available via freely access commercial imagery tools like Google Earth).

5.
CONCLUSIONS
We presented results from COSMO-SkyMed (CSK) and TerraSAR-X SAR observations applied to 
the remote sensing of engineered structures and archeological sites. We used multiple-geometry 
SAR-based products exploiting both phase and amplitude of the SAR signal addressing the main 
objectives of an SHM system including detection and localization. We monitored two different 
processes related to dams engineering concerning seasonal induced deformation and 
destabilization linked to dissolution of local evaporites underlying the Mosul dam foundation. We 
performed a stability analysis of the Tramontano castle (Matera, Italy) monitoring the restoration 
work status in the period 2008-2015 and performed a qualitative analysis of the archeological area of
Palmyra in 2011-2013 to identify changes made by the Syrian army while preparing the battlefield for
the incoming ISIL offensive. In these examples we highlighted how low latency data access 
combined with short-interval imaging is enhancing the ability to track anthropogenic changes on the 
Earth’s surface making a SAR SHM system a fundamental tool for hazard assessment and 
response.
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