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Abstract

Development of Statistical and Deterministic Approaches to Uncertainty Quantification
under Bound-to-Bound Data Collaboration

by

Wenyu Li

Doctor of Philosophy in Mechanical Engineering

and the Designated Emphasis in

Computational Data Science & Engineering

University of California, Berkeley

Professor Michael Frenklach, Chair

This dissertation is focused on developing methods under the uncertainty quantification
framework of Bound-to-Bound Data Collaboration (B2BDC). The framework systematically
combines models and data to validate the consistency of a dataset (i.e., the collection of data
and models) and generates more predictive models. Uncertainties in model parameters and
experimental data are characterized by deterministic bounds and propagated to bounds
of prediction uncertainty, resonating “Bound-to-Bound” in the name. Solution mapping
techniques are used to create polynomial and rational quadratic surrogate models, with
which advanced optimization techniques can be implemented to compute provable bounds.

The bound-form uncertainty adopted in the B2BDC framework naturally generates inequal-
ity constraints on model parameters. The collection of all the constraints, derived from prior
knowledge about model parameters and from requiring model prediction within experimen-
tal uncertainty, defines a region in the model parameter space termed the feasible set. The
agreement/disagreement among models and data is determined by inspecting whether there
exist parameter vectors in the feasible set: The dataset is consistent if the feasible set is
not empty and inconsistent otherwise. Numerically, examination of dataset consistency is
accomplished by calculating a quantity termed scalar consistency measure, defined as the
solution to a constrained optimization problem, and evaluating its sign. The dataset is incon-
sistent if the scalar consistency measure is negative and otherwise if it is positive. Prediction
uncertainty is computed by finding minimum and maximum values of the prediction models
in the feasible set. The constrained optimization problem is nonconvex and difficult to solve
globally in general as nonlinear optimization solvers usually converge to a local optimum.
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With quadratic, polynomial, and rational quadratic surrogate models, convex relaxation
techniques are used to derive semidefinite programming problems whose solution can be
computed efficiently and is a conservative bound on the solution of the original nonconvex
problems. As a result, dataset inconsistency can be proved if the conservative bound of the
scalar consistency measure is negative.

Starting from the bound-type uncertainty, more informative assumptions can be made to
obtain more informative results. For example, if a prior distribution is selected to represent
the prior uncertainty in model parameters and a likelihood function is selected to model
the measurement error in the data, Bayesian inference produces a posterior distribution of
the model parameters. Two physically inspired likelihood functions are investigated and
compared in the thesis. For the likelihood functions and surrogate models considered in the
thesis, the posterior distribution does not have a closed-form expression. Therefore, efficient
sampling methods are developed to generate samples from the posterior distribution for
further uncertainty quantification computations, for example, evaluating the uncertainty in
model predictions.

A dataset can be inconsistent in practice, which implies that something is wrong with the
system: the model (e.g., the model does not simulate the underlying process accurately), the
data (e.g, a misreported measurement), or both. Efficient strategies for resolving dataset
inconsistency are therefore necessary to use the framework. Methods motivated by physi-
cal reasoning can be advantageous since they may provide guidance on what factors cause
the trouble. The vector consistency measure strategy aims to recover dataset consistency
by relaxing the fewest experimental uncertainty bounds. Data points whose experimental
uncertainty bounds are suggested to be changed by the solution vector are labelled as po-
tentially suspicious to be examined further. Suspicious data points can also be determined
by comparing their influence to the computed scalar consistency measure. A new method,
suitable when the model is suspect, is developed in the dissertation that resolves dataset
inconsistency by including a scenario-dependent discrepancy function, which modifies model
output in a structured manner.

Syngas, a mixture of H2 and CO, is a popular candidate for high efficiency power generation
in hybrid turbines. A comprehensive and accurate knowledge of its combustion kinetics is
necessary for designing optimal operating conditions in different applications. In one study,
a B2BDC application to a syngas combustion dataset is carried out collaboratively by me
and a research group in the German Aerospace Center. A syngas reaction mechanism is
created by the German group with assessed uncertainty in the reaction rate parameters. A
set of experimental measurements, including ignition delay times and laminar flame speeds,
is collected by the German group with systematically assessed experimental uncertainty. I
apply the B2BDC methods to the dataset and examine its feasible set to obtain a more
predictive model of syngas combustion. In another study, I construct a different syngas
combustion dataset including only ignition delay time measurements, using which the vector
consistency measure method and the discrepancy function method are compared.
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Chapter 1

Introduction

During the past few decades, computational capabilities and data availability have sub-
stantially increased in many scientific and engineering fields. Physics-derived models are
used more frequently as the prototype of a simulation program. It is well known that
errors and uncertainty in the solution result from converting a mathematical model to a
programmable simulation model. For instance, discretization errors are produced when a
derivative is replaced by finite difference. Moreover, approximations made to mathematical
models in constructing simulation models add another level of uncertainty to the solution.
Such approximations can be motivated by limited computation resources, lack of knowledge
regarding some part of the underlying process, and so on.

Consider an illustrative example of a box sliding horizontally on a rough surface with an
initial velocity of v0 and an initial position at x0. We are interested in the evolution of the
velocity and position of the box. A physical model can be derived following Newton’s laws
of motion, Newtonian friction and the assumption that the friction force is the only force on
the box along the direction of motion. The resulting mathematical model is as follows:

dv

dt
= −sign(v)µmg

dx

dt
= v,

(1.1)

where sign(v) is the sign of the velocity, m the mass of the box, g the acceleration due to
gravity, and µ the coefficient of friction. We can measure m and g well, leaving only µ
unknown. If the unknown model parameter µ is specified, we can integrate the differential
equation system analytically to find x(t).

It is difficult to estimate µ from first principles. Nonetheless, a scientist or engineer
can design an experiment that measures this coefficient. The experiment may be subject
to measurement error, but the uncertainty can be reduced by repeating the measurement
many times, based on the law of large numbers. However, we may want to simulate µ
for a different surface. The coefficient of friction varies as the roughness and material of
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the surface change. Furthermore, the coefficient may also depend on other factors, such
as temperature. If we want to use the model in many different simulation conditions, the
strategy of measuring its value through designed experiments becomes impractical. Not only
it is impossible to experiment with every potential simulation condition, but the functional
form of the dependency is also rarely known. As such, it is more appropriate to accept
the uncertainties in the model and solution and develop systematic approaches to quantify
them. For example, we can inspect the model output at various model parameter values and
evaluate its agreement with the measured data. The data can help to rule out parameter
values that produce outputs that are too different from the measured data, and we are left
with a smaller set of parameter values. It is also possible that none of the parameter values
can generate a satisfactory agreement with the data. In the latter case, we consider the
model to be proved inaccurate, and a new model must be derived.

Recently, the growing demand for predictive and validated models with quantifiable un-
certainty has motivated the development of an active research area termed uncertainty quan-
tification (UQ) [88]. Two principal objectives of UQ considered in this dissertation are in-
ference of model parameters using a set of data (the training set), also known as the inverse
or calibration problem, and model prediction outside such a set with quantified uncertainty.

Theories and methods have been developed from both statistical and deterministic per-
spectives. From a statistical perspective, for instance, the Bayesian inference framework
[38], a prior distribution is selected to represent the uncertainty in model parameters, a
likelihood function is derived to model the probability of the observed data for any fixed set
of parameter values, and a posterior distribution characterizing the updated uncertainty in
model parameters is produced using Bayes’ theorem. Uncertainty in the prediction of other
quantities depending on the model parameters is inferred via statistical approaches.

From a deterministic perspective, for example, the Bound-to-Bound Data Collaboration
(B2BDC) method [23, 34, 35, 106] employed throughout this thesis, a prior region defined
by inequality constraints represents the initial uncertainty of the model parameters. For the
included data, an interval is assessed for each measurement as its uncertainty range. The
data collaboration process combines the prior parameter uncertainty and data uncertainty to
form a region in the parameter space. This region is defined by inequality constraints and is
referred to as the feasible set that quantifies the updated uncertainty in the model parameter
space. The prediction of other quantities is computed by solving constrained optimization
problems over the feasible set. Solution mapping and advanced optimization techniques are
implemented to circumvent the difficulty in finding a globally optimal solution to NP-hard
nonconvex optimization problems. More details are given in Chapter 2.

The two perspectives and the methods derived under them address essentially the same
problems while implementing different assumptions and numerical techniques. Remarked in
the work comparing the B2BDC method and a Bayesian inference method [33], interpre-
tation and comparison of the results from different methods are closely connected to the
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assumptions made therein. In Chapter 3, I compare two likelihood functions inspired by
realistic experimental conditions, which are based on the assumptions that the measurement
error is from a Gaussian or uniform distribution, respectively. Since the resulting posterior
distributions do not have a closed-form expression, efficient sampling methods are imple-
mented to generate samples for the comparison. Similar to the setup in [33], I compare
B2BDC computations to Bayesian inference with the uniform likelihood function using the
same 102-dimensional natural gas combustion example. The analysis provides further in-
sights regarding the similarities and differences between the two specific methods, as only
the Gaussian likelihood function was considered in [33].

In addition to Bayesian calibration methods, B2BDC also shares conceptual similarities
with Bayesian history matching [17] and methods under the set-membership framework
[16, 37, 80, 105]. Bayesian history matching retains a probabilistic interpretation of the
data and defines a nonimplausible region in the parameter space that contains all acceptable
parameter vectors. Although Bayesian history matching and B2BDC both seek a region
containing valid parameter vectors, they have some differences. Bayesian history matching
uses stochastic emulators and improves the quality of the emulators through iterative updates
of the nonimplausible region, whereas B2BDC employs polynomial response surfaces and
focuses primarily on the evaluation of uncertainty in predictions [34, 35].

Similar to the setup in B2BDC, the set-membership framework in robust control describes
uncertainty in prior information and data by constraints. Methods developed under this
framework also formulate the estimation/prediction of quantities of interest (QOIs) as regions
defined by inequality constraints or solutions to optimization problems [80, 128]. However,
these methods differ from B2BDC in that they often pursue a simply shaped approximation
of the formed complex regions (e.g., a bounding ellipsoid [25, 105] or minimum-volume
bounding parallelotope [16]). In contrast, B2BDC uses polynomial surrogate models and
handles the resulting nonconvexity through convex relaxation, leading to global guarantees
on optimality [106]. A previous analysis using B2BDC indicates that approximation of the
feasible set by a bounding ellipsoid or polytope may lead to overly conservative prediction
results [100, 101].

In the B2BDC framework, an empty feasible set identifies a disagreement among the
models and data and deems a dataset (i.e., the collection of models and data with assessed
uncertainty) inconsistent. Dataset inconsistency can be and often is encountered based on
our experience with realistic applications. We must resolve the dataset inconsistency before
moving to other computations that require a nonempty feasible set, for example, UQ of QOI
predictions. For an inconsistent dataset, three scenarios are possible: the models are accurate
but the data are flawed; the data are accurate, but the models are inadequate; both the
models and data are inaccurate. Motivated by the first scenario, strategies are developed to
resolve dataset inconsistency by finding suspicious data based on computations of the scalar
and vector consistency measure (VCM) [23, 52], followed by reexamining their estimated
uncertainty bounds [23] or removing them from the dataset [110]. In Chapter 5, I develop
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a new method, suitable when the model is inadequate, that resolves dataset inconsistency
by adding a scenario-dependent term to the model output. The discrepancy function is
expressed as a linear combination of basis functions, whose coefficients are assumed uncertain.
The definition of the feasible set and equations for B2BDC UQ computations are modified
accordingly. Strategies designed for the third scenario are a subject for future work.

The method of B2BDC has been successfully applied in several domains, including com-
bustion science [23, 28, 35, 56, 99, 110], engineering [92], atmospheric chemistry [112], quan-
tum chemistry [21], and system biology [22, 24]. In Chapter 4, I apply the B2BDC methods
to a syngas (a mixture of H2 and CO) combustion system. The reaction mechanism and used
experimental data are selected by a collaborative research group from the German Aerospace
Center (DLR) with systematically assessed uncertainty. The initial dataset inconsistency is
resolved by removing VCM identified data. For the consistent dataset, I examine the feasi-
ble set based on both B2BDC predictions and samples from it. Optimized reaction models
are computed and compared to a well-established reaction model over an extensive set of
simulation conditions.

Different from the strategies of resolving dataset inconsistency by finding suspicious data,
the method of including a discrepancy function can obtain dataset consistency without re-
vising the data. In Chapter 6, I construct a different syngas combustion dataset with a
modified reaction mechanism reported from the DLR group. I compare the two approaches
by applying them to the initially inconsistent dataset and examining the obtained feasible
sets. The results reveal some interesting distinctions between the two approaches.
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Chapter 2

Bound-to-Bound Data Collaboration

2.1 Introduction

Experimentation is arguably the most direct method for conducting scientific research
on a physical process because it reflects the underlying truth with or without knowing the
physics behind it. Models derived from either first principles or empirical domain insight
can be used to simulate the physical process systematically, for example, a set of differential
equations whose solution completely characterizes all the quantities of interest (QOIs) the
researcher is interested in. In certain situations, an analytical solution exists. However, a
numerical approach is more frequently implemented to obtain a solution using a computer
program.

In this dissertation, the models refer specifically to computer programs that output a
solution for a given set of input conditions. The model is further assumed to be deter-
ministic, meaning that the same solution is obtained when repeatedly running the program
with the same input conditions. As valuable as experimental data are, they can also be
challenging and expensive to obtain. Therefore, to improve our knowledge about the un-
derlying physical process (i.e., the models in the current context), the development of a
systematic method that uses the measured data effectively and efficiently is critical. During
the process, uncertainties in the models, which can stem from compromises between the
high-fidelity theory and computational feasibility or simply a lack of knowledge, must be ad-
dressed properly. Bound-to-Bound Data Collaboration (B2BDC) is an optimization-based
deterministic framework that systematically combines models and experimental data with
quantified uncertainty to produce more predictive models. In this chapter, the basic compo-
nents of the B2BDC framework are presented, which were developed by our research group
[23, 34, 35, 52, 106].
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2.2 Setup and Nomenclature

A QOI is defined as a scalar quantity that is directly measured in experiments or can
be deduced from experimental measurements. Each QOI, denoted by index e, is assumed
to have a nominal value de and an assessed uncertainty. The nominal value is a point
estimate of the QOI, for example, the reported experimental measurement. The uncertainty
is characterized by an interval with its lower and upper bounds denoted by Le and Ue, such
that de ∈ [Le, Ue]. A model Me(x) is assumed to be given for the eth QOI, which depends on
a set of model parameters denoted by x ∈ Rn. A prior uncertainty region of the parameter
set x based on domain knowledge is given and denoted as H. For a QOI, the nominal value
and its evaluated uncertainty bounds, simulation model, and prior uncertainty of the model
parameters form a dataset unit. The collection of all dataset units in a B2BDC analysis is
referred to as a dataset.

The feasible set, denoted by F , is defined for a dataset as

F = {x | x ∈ H, Le ≤Me(x) ≤ Ue, e = 1, 2, . . . , N}. (2.1)

The inequalities in Equation (2.1) are termed model-data constraints because they restrict
the model output of points in the feasible set to be within the experimental uncertainty
bounds. The feasible set represents our improved knowledge about the analyzed system as a
smaller, or at least not larger, region in the parameter space compared to H. The feasible set
is an essential component in the B2BDC framework because most uncertainty quantification
(UQ) computations rely on solving optimization problems over this region.

2.3 Prior Uncertainty of Parameters

The prior uncertainty region H is assumed to be a bounded polytope (i.e., a bounded
region defined by a finite set of linear inequalities in the model parameter space):

H = {x | li ≤ aTi x ≤ ui, i = 1, 2, . . . ,m}, (2.2)

where li and ui are finite numbers. Each of the m linear inequalities is represented as two-
sided in Equation (2.2) to clarify that H is bounded. In practice, a one-sided inequality can
be converted to the two-sided form by solving a linear programming (LP) problem [8]. For
example, suppose the prior uncertainty region is characterized as a collection of one-sided
inequalities:

H = {x | aTj x ≤ uj, j = 1, 2, . . . , m̂}. (2.3)

To calculate the lower bound associated with aj, the following LP problem is solved:

lj = minimize
x

aTj x

subject to aTj x ≤ uj, j = 1, 2, . . . , m̂.
(2.4)
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The simplest case is when {ai = 1i}ni=1, where 1i is the ith standard basis vector. In such
a case, the prior uncertainty region is an n-dimensional orthotope:

H = {x | li ≤ xi ≤ ui, i = 1, 2, . . . , n}. (2.5)

An orthotope H implies that the analyst determines the uncertainty interval in each model
parameter independently, whereas the polytope H can include knowledge coupling multiple
parameters. A potentially more accurate characterization of H can be achieved by replac-
ing the linear form in Equation (2.2) with more flexible nonlinear forms (e.g., quadratics or
higher-order polynomials). However, we deliberately restrict ourselves to the linear form in
Equation (2.2) because (1) we often need to generate optimal design points from the prior
uncertainty region and significantly more efficient sampling methods are available for an
orthotope or a polytope H. (2) Moreover, prior uncertainty assessment represented by non-
linear inequalities can always be included in the B2BDC analysis as model-data constraints.

2.4 Dataset Consistency

Whether the feasible set is empty or not classifies the analysis into two distinct categories.
This motivated the introduction of dataset consistency : a dataset is termed consistent if
its feasible set is not empty and is inconsistent otherwise [23]. Theoretically, we expect
the feasible set to converge to a nonempty region as data are increasingly included if the
models simulate the QOIs reasonably well and if the uncertainty assessments for the data
and model parameters are accurate. However, an inconsistent dataset is not uncommon in
realistic B2BDC applications. Dataset inconsistency is strong evidence for a disagreement
among the model and the data, which must be resolved before carrying out further UQ
computations. Therefore, the determination of dataset consistency is always the first step
in a B2BDC analysis.

A constrained optimization problem was formulated in [23] to determine dataset consis-
tency, which is given in Equation (2.6):

CD = maximize
x, γ

γ

subject to li ≤ aTi x ≤ ui, i = 1, 2, . . . ,m

Le + (de − Le)γ ≤Me(x) ≤ Ue − (Ue − de)γ,
e = 1, 2, . . . , N.

(2.6)

The maximized quantity CD is referred to as the scalar consistency measure (SCM). It
quantifies the maximal amount of relative change that all model-data constraints can afford
with respect to the nominal values for any model parameter vector from the prior uncertainty
region H. When CD is positive, a model parameter vector exists that satisfies all model-data
constraints with tightened uncertainty bounds. Therefore, at least one model parameter
vector exists that satisfies all model-data constraints with the original uncertainty bounds,
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and the dataset is consistent. The dataset is inconsistent when CD is negative. In that
situation, the magnitude of CD is the smallest amount that all model-data constraints must
be relaxed to achieve a nonempty feasible set. A model parameter vector in the feasible set
is equivalently referred to as a feasible point in this dissertation.

2.5 Prediction

When the dataset is consistent, the feasible set represents our improved knowledge about
the model parameters and the underlying system after taking advantage of the data collabo-
ration process. Uncertainty in predictions of other QOIs of the system is therefore quantified
based on the feasible set. In B2BDC, prediction uncertainty is characterized as an interval,
similar to that estimated for QOIs in the dataset. The simulation model for the predicted
QOI is denoted by Mp(x), and the prediction interval is denoted by [Lp, Up]. The uncertainty
bounds of the interval, Lp and Up, are calculated by solving the following minimization and
maximization problems [35]:

Lp = minimize
x

Mp(x)

subject to x ∈ H,
Le ≤Me(x) ≤ Ue, e = 1, 2, . . . , N.

(2.7)

and
Up = maximize

x
Mp(x)

subject to x ∈ H,
Le ≤Me(x) ≤ Ue, e = 1, 2, . . . , N.

(2.8)

The meaning of the methodology, B2BDC, is now clear: the bounds in the experimental
data and parameters are used collaboratively to calculate the bounds in QOI predictions.
For the prediction interval, we are interested in quantifying the range of the QOI predictions
and do not intend to make further comparisons among values within the interval without
additional information.

2.6 Vector Consistency Measure

When a dataset is inconsistent, the analysis indicates that something is wrong with
the dataset, and we want to have systematic and efficient approaches to resolve dataset
inconsistency. Based on the computation of SCM, two solutions are available. (1) We can
relax all model-data constraints, as suggested by the calculated SCM, or (2) we can remove
some “offending” experimental data whose model-data constraints have larger impact on
the calculated SCM. The impact is assessed by sensitivity coefficients, whose calculations
are given in Section 2.7.5. The former strategy has the drawback that the scalar quantity
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CD, by its definition in Equation (2.6), only represents the amount of bound expansion
needed to obtain a feasible point for the most “inconsistent” datum and lacks QOI-specific
information. In addition, this strategy usually results in a very small feasible set (sometimes
a single feasible point in the feasible set), which may lead to some numerical difficulties in
the following UQ computations.

The latter strategy can be effective when inconsistency is caused by a few outliers as
in the case of the GRI-Mech dataset presented in Section 2.8 [23]). When the dataset is
massively inconsistent like the DLR-SynG datasets discussed in Chapter 4, this strategy
may require tedious iterations without guarantee of any optimality of the solution [52]. For
example, the calculated CD usually has a relatively high sensitivity with respect to a few
data. The analyst decides empirically which QOIs to remove based on the sensitivity result.
For instance, one can choose to remove the QOI with the highest sensitivity value, calculate
CD for the new dataset, and then repeat the process until dataset consistency is obtained.
The strategy quickly becomes intractable if the dataset is massively inconsistent and many
iterations are required [52].

Motivated by the observed issues, another numerical quantity referred to as the vector
consistency measure (VCM) was introduced [52]. Let us consider one of the most general
formats of the VCM derived in [52], which is defined by the optimal value of the following
optimization problem:

V‖·‖1 = minimize
x,∆L,∆U , δl, δu

‖∆L‖1 + ‖∆U‖1 + ‖δl‖1 + ‖δu‖1

subject to li − wilδil ≤ aTi x ≤ ui + wiuδ
i
u,

i = 1, 2, . . . ,m,

Le −W e
L∆e

L ≤Me(x) ≤ Ue +W e
U∆e

U ,

e = 1, 2, . . . , N,

(2.9)

where ∆L, ∆U , δl, and δu are relaxation vectors and WL, WU , wl, and wu are associated
weights reflecting the subjective opinion of the analyst.

Compared to the SCM, the solution vectors to problem (2.9) provide a detailed resolution
of constraint-specific relaxations over uncertainty bounds of experimental data and model
parameters that can regain dataset consistency. The use of an L1 norm objective function
is a well-known heuristic strategy to obtain a sparse solution [8]. In other words, it provides
an approximate solution to the problem of how to regain dataset consistency with the fewest
nonzero relaxations. With the solution vector, we identify suspicious uncertainty estimates
in experimental data and model parameters as those associated with nonzero relaxations. We
can place subjective confidence in certain data by specifying nonuniform weight vectors. For
example, the assignment of zero values to wl and wu results in complete faith in the estimated
uncertainty of model parameters. In that situation, a consistent dataset is obtainable in a
single step by removing the QOIs with a nonzero relaxation.
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2.7 Numerical Implementation

Thus far, we introduced pertinent nomenclatures in B2BDC, defined the feasible set, and
formulated the optimization problems designed for computing prediction intervals for an
unmeasured QOI and SCM and VCM of the dataset. In this section, we provide the details
about the numerical techniques involved in fulfilling the B2BDC machinery.

2.7.1 Surrogate Models

In many scientific applications, the models used to simulate the underlying process can
be quite complex (e.g., a system of differential equations). As a result, the evaluation of the
model for any given instance of the model parameters can be computationally expensive.
Unfortunately, computations in B2BDC often require a decent number of model evaluations,
for example, solving the optimization problems constructed in the previous sections. In
addition, the optimization problems are mostly nonconvex and NP-hard to solve numerically
with general forms of the model. To alleviate these two difficulties, surrogate models are
generated and used to replace the original models in the computations.

A surrogate model, denoted by S, can be viewed in general as a cheaper simulator for the
original model. It approximates the model output with reasonable accuracy in a specified
parameter region and has a shorter runtime. The core technique involved is referred to
as Solution Mapping [32, 26], which includes running the original model at the designed
parameter points followed by fitting the numerical results with an algebraic function. In
the context of B2BDC, the implemented surrogate models are classified to three cases: (1)
quadratic models, (2) rational quadratic models, and (3) higher-order polynomial models.
The reasons behind the classification become clearer after reading the following subsections,
where the technical details about the strategies of circumventing the NP-hard optimization
problem are presented for different surrogate models.

The procedures for fitting a surrogate model include active parameter selection, design
point generation, and model coefficient calculation. The parameter vector x defined for the
feasible set and dataset represents the union of model parameters from all models included
in the analysis. A particular model may depend on a subset of x, whose influence on the
simulated QOI value is substantially stronger than other model parameters due to the effect
sparsity [6, 84]. Model parameters in this subset are referred to as active parameters. The
number of coefficients in a surrogate model and the number of design points are reduced
if fitting the surrogate model in the potentially lower-dimensional active parameter space.
For the following discussion, the surrogate model is constructed over the prior uncertainty
region H, an orthotope (2.5). The space-filling designs were employed in the present study,
the Latin hypercube sampling [76], and the Sobol quasi-random sequence [9].

To determine the active parameters for a model, a set of design points are generated
from H using the space-filling design, and the original model is evaluated at these points. A
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linear model Sl is calculated using the least squares regression such that

Sl =
n∑
i=1

cixi + c0. (2.10)

The computed coefficients define impact factors [36]:

IFi = |ci| · (ui − li) = |ci| ·∆xi. (2.11)

The coefficients ci and the impact factors IFi can be interpreted as the estimated partial
derivative with respect to xi and the change in model output if varying xi alone from its
lower bound to its upper uncertainty bound. Active parameters are selected by screening
the ranked impact factors with a preset threshold (e.g., 5% of the largest impact factor or
10% of length of the associated experimental uncertainty interval).

Once the active parameters are selected, a polynomial surrogate model with np terms in
the active parameter space can be expressed as follows:

P(xa) =

np∑
i=1

ciMi(xa), (2.12)

where xa is the active parameter vector and M(xa) is a monomial. New design points are
then generated in the active parameter space, with the nonactive parameters not fixed at
selected nominal values. A rule of thumb is to set the number of design points at least 2 times
the number of monomials in the surrogate model. However, it is beneficial to use a larger
number of designs when affordable (e.g., more than 10 times the number of monomials in
the surrogate model). A training basis matrix X with ns design points is defined as follows:

X =


M1(xa,1) M2(xa,1) · · · Mnp(xa,1)
M1(xa,2) M2(xa,2) · · · Mnp(xa,2)

...
...

. . .
...

M1(xa,ns) M2(xa,ns) · · · Mnp(xa,ns)

 (2.13)

where xa,j is the subset of the jth design point projected on the active parameter space. A
training prediction vector Y is defined as follows:

Y =


M(x1)
M(x2)

...
M(xns)

 , (2.14)

where M(xj) is the model output with the jth design point.
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The coefficients of the surrogate model are computed by minimizing the error measure
between the prediction vector Y and the surrogate model output Ŷ = Xc over the training
data, where c is the coefficient vector. Norm-based measures are used in B2BDC, such that
the obtained surrogate model minimizes the L2 norm or the L-infinity norm of the error
vector. To minimize the L2 norm of the error, the following optimization problem is solved:

c∗ = argmin
c

1

2
(Xc− Y )T (Xc− Y ), (2.15)

which has a well-known analytic solution c∗ = (XTX)−1XTY that can be calculated very
efficiently. To minimize the L-infinity norm of the error, the following optimization problem
is solved:

c∗ = argmin
c

|Xc− Y |inf. (2.16)

Problem (2.16) is equivalent to

c∗ = argmin
c, t

t

subject to Xi·c− Yi ≤ t

− (Xi·c− Yi) ≤ t, i = 1, 2, . . . , ns,

(2.17)

where Xi· represents the ith row in matrix X. The optimization problem (2.17) is an LP
problem and can be solved efficiently.

A rational quadratic surrogate model, denoted by Srq, is defined as a ratio of two
quadratic functions N(xa) and D(xa) [24]:

Srq(xa) =
N(xa)

D(xa)

subject to 1 ≤ D(xa) ≤ K, ∀xa ∈ Ha,

(2.18)

where Ha is the projection of H onto the active parameter space. The constraint ensures
D(xa) is positive and does not behave erratically over the region Ha. The constant K is a
user-specified regularization parameter that can be selected from a set of candidate values by
comparing their corresponding fitting performance. Only the L-infinity norm error measure
is used for the rational quadratic surrogate model. To better demonstrate the process,
we express the quadratic function in matrix multiplication form hereafter. The resulting
optimization problem can be written as follows:

Z∗n, Z
∗
d = argmin

Zn, Zd, t
t

subject to − t ≤
[

1
xa,i

]T
Zn
[

1
xa,i

][
1
xa,i

]T
Zd
[

1
xa,i

] − Yi ≤ t,

i = 1, 2, . . . , ns,

1 ≤
[

1
xa

]T
Zd
[

1
xa

]
≤ K, ∀ lja ≤ xja ≤ uja, j = 1, 2, . . . , na,

(2.19)
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where Zn and Zd are symmetric matrices containing the coefficients of the quadratic nu-
merator and denominator. The subscript i and superscript j are indices associated with
design points and active parameters, respectively. Despite its relatively simple form, the
optimization problem (2.19) is difficult to solve because the regularity constraint on D(xa)
is equivalent to an infinite number of inequalities.

One approach is to replace the regularity constraint with a semidefinite constraint and
solve the resulting problem using the semidefinite programming (SDP) technique [8]. The
orthotope constraint in the active parameter space can be equivalently described by na
quadratic inequalities:

lja ≤ xja ≤ uja ⇔ (xja − lja)(xja − uja) ≤ 0⇔
[

1
xa

]T
Zj
[

1
xa

]
≤ 0, j = 1, 2, . . . , na. (2.20)

If we further define two symmetric matrices Z1 and ZK such that[
1
xa

]T
Z1

[
1
xa

]
= 1,

[
1
xa

]T
ZK
[

1
xa

]
= K. (2.21)

then the regularity condition is satisfied if we only search over matrices Zd where

ZL = Zd − Z1 +
na∑
j=1

λj1Zj � 0,

λj1 ≥ 0, j = 1, 2, . . . , na,

ZU = Zk − Zd +
na∑
j=1

λjKZj � 0,

λjK ≥ 0, j = 1, 2, . . . , na,

(2.22)

where � 0 stands for the matrix being positive semidefinite. We can demonstrate this by

multiplying
[

1
xa

]T
and

[
1
xa

]
on both sides of ZL in Equation (2.22). For any xa ∈ Ha, we

have
[

1
xa

]T
(
∑na

j=1 λ
j
1Zj)

[
1
xa

]
≤ 0; therefore,

[
1
xa

]T
Zd
[

1
xa

]
≥
[

1
xa

]T
Z1

[
1
xa

]
= 1. Because the

denominator is enforced by the regularity constraint to be positive, we multiply it in all the
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related constraints and obtain the following optimization problem:

Z∗n, Z
∗
d = argmin

Zn, Zd, t
t

subject to
[

1
xa,i

]T
(Zn − (t+ Yi)Zd)

[
1
xa,i

]
≤ 0,[

1
xa,i

]T
(Zn + (t− Yi)Zd)

[
1
xa,i

]
≤ 0,

i = 1, 2, . . . , ns,

Zd − Z1 +
na∑
j=1

λj1Zj � 0,

λj1 ≥ 0, j = 1, 2, . . . , na

Zk − Zd +
na∑
j=1

λjKZj � 0,

λjK ≥ 0, j = 1, 2, . . . , na.

(2.23)

In Equation (2.23), the two semidefinite regularity constraints are convex, but the 2ns con-
straints associated with the prediction error are not, making the optimization problem non-
convex and NP-hard to solve. This is because the terms (t + Yi)Zd and (t − Yi)Zd are
quadratic in the optimized variables. If t is fixed, the constraints are linear in Zd, and the
optimization problem is convex. To determine whether the solution coefficient matrices Z∗n
and Z∗d exist for a given t = t∗, we can solve the following feasibility problem by setting a
constant objective function:

Z∗n, Z
∗
d = argmin

Zn, Zd

0

subject to
[

1
xa,i

]T
(Zn − (t∗ − Yi)Zd)

[
1
xa,i

]
≤ 0,[

1
xa,i

]T
(Zn + (t∗ − Yi)Zd)

[
1
xa,i

]
≤ 0,

i = 1, 2, . . . , ns,

Zd − Z1 +
∑
j

λj1Zj � 0, λj1 ≥ 0,

Zk − Zd +
∑
j

λjKZj � 0, λjK ≥ 0,

j = 1, 2, . . . , na.

(2.24)

If the problem is feasible, the returned Z∗n and Z∗d specify a rational quadratic surrogate
model whose infinite-norm error over the training data is less than t∗. The optimization
problem (2.24) is an SDP problem and can be solved efficiently.

Based on the above discussion, an iterative algorithm is developed to compute a rational
quadratic surrogate with a gradually decreasing infinite-norm error and is summarized in
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Algorithm 2.1. A practical choice of t̂ (the initial upper bound of the error norm) is the
infinite-norm error obtained with a quadratic surrogate model. This upper bound is always
valid because the rational quadratic model is guaranteed to have a lower error norm. The
computational effort for fitting a rational quadratic surrogate is generally significantly larger
than that for fitting a polynomial surrogate. This is attributed to not only the more expen-
sive SDP problems but also the additional iterations required for computing the regularity
constant K and coefficient matrices Zn and Zd. Consequently, the rational quadratic surro-
gate model is advised only when the polynomial surrogate model, especially the quadratic
surrogate model, produces unacceptably large errors.

Algorithm 2.1 Calculating Zn and Zd for a rational quadratic surrogate model

1: Setting tl ← 0, tu ← t̂.
2: Setting ε← 10−4tu.
3: while (tu − tl) ≥ ε do
4: Solve the feasibility problem with t = 1

2
(tl + tu).

5: if The problem is feasible then
6: Zn, Zd ← Z∗n, Z

∗
d .

7: tu ← 1
2
(tl + tu).

8: else
9: tl ← 1

2
(tl + tu).

10: end if
11: end while
12: Return Zn, Zd.

The quality of the generated surrogate model is evaluated by estimating its fitting error.
The cross-validation method [64] is used to provide a more realistic estimate compared to
the fitting error obtained over the training data. Once the surrogate models are generated,
they are used in the derived optimization problems in place of the original models. Although
the resulting optimization problems are still nonconvex and NP-hard to solve, a bounding
interval containing the global optimum can be computed with a tractable computational
expense.

The two endpoints of the bounding interval are referred to as the inner bound and outer
bound. The inner bound is a sub-optimal estimate of the global optimum, whereas the outer
bound is a conservative estimate. An inner bound can be computed by implementing general
nonconvex constrained optimization algorithms that produce a local optimal solution. In
practice, starting at multiple initial points can improve the quality of the calculated inner
bound. In addition, analytic gradient information, which is available for the three types of
surrogate models considered in the B2BDC, can further reduce the computational time. The
derivation for the outer bound is more involved and requires different techniques for different
types of surrogate models. This is addressed in the following three subsections.
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2.7.2 Outer Bound with Quadratic Surrogates

Let us consider the optimization problem for computing the SCM and replace the original
models with the quadratic surrogate models:

CD = maximize
x, γ

γ

subject to li ≤ aTi x ≤ ui, i = 1, 2, . . . ,m,

Le + (de − Le)γ ≤
[

1
x

]T [ Ze,0 ZTe,L
Ze,L Ze,Q

][
1
x

]
≤ Ue − (Ue − de)γ,

e = 1, 2, . . . , N.

(2.25)

The coefficient matrix of the quadratic surrogate model is intentionally decomposed into the
constant Ze,0, the linear part Ze,L, and the quadratic part Ze,Q for the following derivation.
Although individual surrogate models depend on their own set of active parameters, we rep-
resented all of them in the full-dimensional parameter space for simpler notation. Applying
the same trick used in Equation (2.20) for the linear inequalities and converting the two-
sided quadratic inequalities into the one-sided form, the problem is reformulated with only
one-sided quadratic inequalities in the augmented parameter vector y =

[
γ
x

]
:

CD = maximize
y

[
1
y

]T
Zγ
[

1
y

]
subject to

[
1
y

]T
Zi
[

1
y

]
≤ 0, i = 1, 2, . . . ,m,[

1
y

]T
ZL
e

[
1
y

]
≤ 0,[

1
y

]T
ZU
e

[
1
y

]
≤ 0, e = 1, 2, . . . , N,

(2.26)

where Zγ, Zi, Z
L
e , and ZU

e are defined as follows:

Zγ =
[ 0 0.5 0T

0.5 0 0T
0 0 0n

]
,

Zi =
[ li·ui 0 −0.5(li+ui)a

T
i

0 0 0T

−0.5(li+ui)ai 0 aia
T
i

]
,

ZL
e =

[ Le−Ze,0 0.5(de−Le) −ZTe,L
0.5(de−Le) 0 0T

−Ze,L 0 −Ze,Q

]
,

ZU
e =

[ Ze,0−Ue 0.5(Ue−de) ZTe,L
0.5(Ue−de) 0 0T

Ze,L 0 Ze,Q

]
.

(2.27)

The problem in (2.27) is a quadratically constrained quadratic program (QCQP). Because the
quadratics (i.e., Zγ, {Zi}mi=1, {ZL

e }Ne=1, and {ZU
e }Ne=1) are generally not positive semidefinite,

the QCQP is nonconvex.

Two convex relaxation strategies can be applied to convert the QCQP to a convex op-
timization problem whose solution is a conservative estimate of that of the original QCQP.
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We observe that the quadratic form
[

1
y

]T
Z
[

1
y

]
can be also expressed as Tr(ZY ), where Tr(·)

is the trace of a matrix and Y =
[

1
y

][
1
y

]T
. The matrix Y is a rank-one positive semidefinite

matrix. We can now rewrite the QCQP in variable Y by replacing the quadratic forms
with the trace expression for both the objective function and constraints. If we remove the
rank-one requirement, a convex optimization problem referred to as the SDP relaxation is
obtained:

CD,S = maximize
Y�0

Tr(ZγY )

subject to Tr(ZiY ) ≤ 0, i = 1, 2, . . . ,m,

Tr(ZL
e Y ) ≤ 0,

Tr(ZU
e Y ) ≤ 0, e = 1, 2, . . . , N.

(2.28)

The second strategy is to first linearize the objective function with an additional vari-
able, then combine all quadratic constraints to one quadratic constraint using Lagrangian
multipliers, followed by replacing the quadratic constraint with a linear matrix inequality.
The resulting problem is given in (2.29). The optimization problem (2.29) is convex and is
referred to as the Lagrangian relaxation:

CD,L = minimize
ρ, λ

ρ

subject to λi ≥ 0, i = 1, 2, . . . ,m,

λLe ≥ 0, λLe ≥ 0, e = 1, 2, . . . , N,

ρZ̃0 − Z̃γ +
m∑
i=1

λiZ̃i +
N∑
e=1

(λLe Z̃
L
e + λUe Z̃

U
e ) � 0,

(2.29)

where the tilde matrices are defined by

Z̃0 =
[

1 0T
0 0

]
,

Z̃γ =
[

0 0T
0 Zγ

]
,

Z̃L
e =

[
0 0T

0 ZLe

]
,

Z̃U
e =

[
0 0T

0 ZUe

]
.

(2.30)

The SDP and Lagrangian relaxations form a primal-dual pair and can be solved efficiently
by available SDP solvers, such as SeDuMi [122]. The derivation for the outer-bound solution
of the VCM and prediction uncertainty bounds is similar to that of the SCM and, therefore,
is not repeated.
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2.7.3 Outer Bound with Rational Quadratic Surrogates

We first consider the SCM problem and replace the original models with the rational
quadratic surrogate models:

CD = maximize
x, γ

γ

subject to li ≤ aTi x ≤ ui, i = 1, 2, . . . ,m,

Le + (de − Le)γ ≤
[

1
x

]T
Zn,e

[
1
x

][
1
x

]T
Zd,e

[
1
x

] ≤ Ue − (Ue − de)γ,

e = 1, 2, . . . , N.

(2.31)

The linear constraints are converted to quadratic constraints using Equation (2.27). Because
{Zd,e}Ne=1 is positive definite over the searched region, we can multiply the denominator on
both sides of the model-data constraints. By doing so, the constraints become cubic in x and

γ due to the product of (de−Le)γ or (Ue− de)γ and the quadratic terms in
[

1
x

]T
Zd,e

[
1
x

]
. If

we fix γ = γ∗, the optimization problem becomes a QCQP, and its feasibility is ensured if the
corresponding SDP or Lagrangian relaxed problems are feasible. The resulting optimization
problems for the two relaxations are as follows:

maximize
Y�0

0

subject to Tr(ZiY ) ≤ 0, i = 1, 2, . . . ,m,

Tr(ZL
e Y ) ≤ 0,

Tr(ZU
e Y ) ≤ 0, e = 1, 2, . . . , N

(2.32)

and

minimize
λ

n∑
i=1

λi +
N∑
e=1

(λLe + λUe )

subject to λi ≥ 0, i = 1, 2, . . . ,m,

λLe ≥ 0, λLe ≥ 0, e = 1, 2, . . . , N,

n∑
i=1

λi +
N∑
e=1

(λLe + λUe ) ≥ 1

n∑
i=1

λiZi +
N∑
e=1

(λLeZ
L
e + λUe Z

U
e ) � 0,

(2.33)

where Zi, Z
L
e , and ZU

e are defined by the following:

Zi =
[ −li·ui −0.5(li+ui)a

T
i

−0.5(li+ui)ai aia
T
i

]
,

ZL
e = (Le + (de − Le)γ∗)Zd,e − Zn,e

ZU
e = Zn,e − (Ue − (Ue − de)γ∗)Zde .

(2.34)
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For the Lagrangian relaxation, γ∗ is a valid outer bound if the computed minimum is 1.

Similar to the procedures of fitting a rational quadratic surrogate model, an iterative
algorithm is developed and summarized in Algorithm 2.2 to find an outer bound CD,S or
CD,L, depending on which relaxation is used. A practical recommendation for γ̂, the initial

Algorithm 2.2 Calculating an outer-bound CD,S or CD,L

1: Setting γl ← γ̂, γu ← 1.
2: Setting a tolerance ε← 10−4.
3: while (γu − γl) ≥ ε do
4: Solve the optimization problem (2.32) or (2.33) with γ∗ = 0.5(γl + γu).
5: if problem (2.32) is feasible or the minimum of problem (2.33) is 1 then
6: γl ← γ∗.
7: else
8: γu ← γ∗.
9: end if

10: end while
11: Return γl.

lower bound for CD,S or CD,L, is to compute the largest γ that makes a randomly selected
point in H satisfy all model-data constraints.

Computation of the outer bounds for the prediction uncertainty bounds of an unmeasured
QOI is simpler because no iteration is required compared to the computation for the SCM.
Without loss of generality, we considered the case in which the lower bound Lp is calculated.
After linearizing the objective function with an additional variable and replacing the original
models with the rational quadratic surrogates, the optimization problem (2.7) becomes

Lp = minimize
x

[
1
x

]T
Zn,p

[
1
x

][
1
x

]T
Zd,p

[
1
x

]
subject to li ≤ aTi x ≤ ui, i = 1, 2, . . . ,m,

Le ≤
[

1
x

]T
Zn,e

[
1
x

][
1
x

]T
Zd,e

[
1
x

] ≤ Ue,

e = 1, 2, . . . , N.

(2.35)

After applying Equation (2.20) to the linear inequalities and multiplying the denominator
in constraints containing a rational quadratic surrogate model, we convert all constraints
into quadratic constraints and are left with only a rational quadratic model in the objective
function. An additional constraint is included to enforce that, with the solution vector x∗, the
denominator of the predicted model equals 1, and the objective function becomes quadratic.
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The SDP relaxation is then applied to this QCQP, resulting in the following:

Lp,S = minimize
Y�0

Tr(Zn,pY )

subject to Tr(Zd,pY ) = 1,

Tr(ZiY ) ≤ 0, i = 1, 2, . . . ,m,

Tr(ZL
e Y ) ≤ 0,

Tr(ZU
e Y ) ≤ 0, e = 1, 2, . . . , N.

(2.36)

The matrices Zi, Z
L
e , and ZU

e are calculated by Equation (2.34) using γ∗ = 0.

The Lagrangian relaxation is derived similarly to the case with quadratic surrogates,
resulting in the following convex optimization problem:

Lp,L = maximize
ρ, λ

ρ

subject to λi ≥ 0, i = 1, 2, . . . ,m,

λLe ≥ 0, λLe ≥ 0, e = 1, 2, . . . , N,

Zp,n − ρZp,d +
n∑
i=1

λiZi +
N∑
e=1

(λLeZ
L
e + λUe Z

U
e ) � 0.

(2.37)

Again, the two relaxations form a primal-dual pair that can be solved efficiently using SDP
solvers. Both Lp,S and Lp,L are valid outer-bound solutions to Lp.

2.7.4 Outer Bound with Higher Order Polynomials

When the surrogate models are higher-order polynomials, the technique used to compute
an outer-bound solution is a generalization of the technique used in the derivation of the
Lagrangian relaxation for a QCQP. We consider the case of predicting the lower bound Lp
of a polynomial surrogate model with all the constraints expressed by one-sided polynomial
inequalities:

Lp = minimize
x

P0(x)

subject to Pi(x) ≥ 0, i = 1, 2, . . . , m̂.
(2.38)

The outer-bound derivation includes a key concept: the sum-of-squares (SOS) polynomial.
A polynomial is a SOS polynomial if it can be written as the sum of squared polynomials and
is nonnegative. However, a nonnegative polynomial is not necessarily an SOS polynomial.
More importantly, consider the following quadratic form of a polynomial P(x) with degree
2d:

P(x) = vTPMv, (2.39)

where v is a vector containing all monomials with degree not higher than d, and PM is a
symmetric matrix. The polynomial P(x) is an SOS polynomial if and only if the matrix PM
is positive semidefinite.
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Similar to the procedures involved in deriving the Lagrangian relaxation for a QCQP, we
linearize the objective function with an additional variable and combine all the polynomial
constraints into a single polynomial constraint with the generalized Lagrangian multipliers
(i.e., SOS polynomials). The last step is to replace the nonnegativity condition with the
SOS condition, resulting in the following optimization problem:

Lp,L = maximize
φ, ρ

ρ

subject to φi(x) ∈ SOSω−di , i = 1, 2, . . . , m̂,

P0(x)− ρ−
m̂∑
i=1

φi(x)Pi(x) ∈ SOSω,

(2.40)

where SOSω (ω ∈ 2Z) is the set of SOS polynomials whose degree is not higher than ω,
and di is the degree of polynomial Pi(x). Problem (2.40) is convex and can be solved using
general SDP solvers. However, in practice, the difference between the calculated outer-bound
solution and the true optimum can be unacceptably large if the relaxation order ω is too low,
whereas the computational burden can become unaffordable if ω is too high. As a result, the
use of higher-order polynomial surrogate models is not frequently encountered in B2BDC
applications and is usually limited to smaller problems.

2.7.5 Sensitivity Analysis

Sensitivity analysis contains a broad range of techniques that investigate the effect of
input perturbations on the output variations in a system or computational model [103]. In
B2BDC, we are interested in evaluating the influence of estimated uncertainty bounds to
computed quantities (e.g., consistency measures and prediction interval bounds) [99, 101].
The main course of the following derivation relies on the ability to compute the derivative
of the inner- and outer-bound solutions with respect to perturbations in uncertainty bounds
associated with data and model parameters. For illustration, we consider the optimization
problem of calculating the lower bound of a prediction interval.

Lp = minimize
x

[
1
x

]T
Zn,p

[
1
x

][
1
x

]T
Zd,p

[
1
x

]
subject to xi − ui ≤ 0,

li − xi ≤ 0, i = 1, 2, . . . , n,

Le −
[

1
x

]T
Zn,e

[
1
x

][
1
x

]T
Zd,e

[
1
x

] ≤ 0,[
1
x

]T
Zn,e

[
1
x

][
1
x

]T
Zd,e

[
1
x

] − Ue ≤ 0, e = 1, 2, . . . , N.

(2.41)
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The prior uncertainty regionH is assumed to be the orthotope defined in Equation (2.5), and
all surrogate models are rational quadratic functions. Results for the case with quadratic
surrogates are obtained by setting all denominators to 1.

A perturbed problem (2.41) parameterized by the perturbation vector θ = [δu, δl, ∆U,
∆L] is given in (2.42). The vectors δu and δl are perturbations associated with the uncer-
tainty upper and lower bounds of model parameters; ∆U and ∆L are associated with the
uncertainty upper and lower bounds of the experimental data. The unperturbed problem
corresponds to θ = 0:

Lp(θ) = minimize
x

[
1
x

]T
Zn,p

[
1
x

][
1
x

]T
Zd,p

[
1
x

]
subject to xi − ui ≤ (δu)i,

li − xi ≤ (δl)i, i = 1, 2, . . . , n,

Le −
[

1
x

]T
Zn,e

[
1
x

][
1
x

]T
Zd,e

[
1
x

] ≤ (∆L)e,[
1
x

]T
Zn,e

[
1
x

][
1
x

]T
Zd,e

[
1
x

] − Ue ≤ (∆U)e, e = 1, 2, . . . , N.

(2.42)

We first consider the inner-bound solution, which calculates a local optimum for (2.42)
with θ = 0 using general nonlinear constrained optimization solvers. Many such solvers,
for example, the MATLAB function fmincon, return a vector of Lagrangian multipliers
associated with the found solution. These multipliers, denoted by λl, λu, λL, and λU , are
partial derivatives of the optimum with respect to the corresponding perturbations:

∂Lp
∂(δl)i

∣∣∣∣
θ=0

= λli,

∂Lp
∂(δu)i

∣∣∣∣
θ=0

= λui ,

∂Lp
∂(∆L)e

∣∣∣∣
θ=0

= λLe ,

∂Lp
∂(∆U)e

∣∣∣∣
θ=0

= λUe .

(2.43)

Derivations of the partial derivatives are more complicated for the outer-bound solution
because the optimization problem (2.42) is converted to a somewhat different problem us-
ing SDP or Lagrangian relaxation before solving. Following similar procedures derived in
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Section 2.7.3, the following two relaxations are obtained:

Lp,S(θ) = minimize
Y�0

Tr(Zn,pY )

subject to Tr(Zd,pY ) = 1,

Tr(ZiY ) ≤ Tr(ẐiY ), i = 1, 2, . . . , n,

Tr(ZL
e Y ) ≤ (∆L)eTr(Zd,eY ),

Tr(ZU
e Y ) ≤ (∆U)eTr(Zd,eY ), e = 1, 2, . . . , N,

(2.44)

and

Lp,L(θ) = maximize
ρ, λ

ρ

subject to λi ≥ 0, i = 1, 2, . . . , n,

λLe ≥ 0, λLe ≥ 0, e = 1, 2, . . . , N,

Zp,n − ρZp,d +
n∑
i=1

λi(Zi − Ẑi)

+
N∑
e=1

(λLe (ZL
e − (∆L)eZd,e) + λUe (ZU

e − (∆U)eZd,e)) � 0.

(2.45)
The matrices Zi, Z

L
e , and ZU

e are presented in Equation (2.34), whereas the perturbation
matrix Ẑi is a sparse matrix with only three nonzero elements:

Ẑi(1, 1) = (δl)iui − (δu)ili + (δl)i(δu)i,

Ẑi(1, i+ 1) = Ẑi(i+ 1, 1) = 0.5((δu)i − (δl)i).
(2.46)

The convex optimization problems [(2.44) and (2.45)] form a primal-dual pair and can
be framed in the context of a conic linear program. The primal and dual variables, denoted
by V ∈ Rn+2N × Sn+1 and λ ∈ Rn+2N+1, are constructed as follows:

V = (r, Y ) = (ri, r
L
e , r

U
e , Y ),

λ = (ρ, λi, λ
L
e , λ

U
e ).

(2.47)

With the cone being K = Rn+2N
+ × Sn+1

+ , the problems (2.44) and (2.45) can be written in
variables V and λ:

Lp,S(θ) = minimize
V

C · V,

subject to V ∈ K,
b− AV = 0,

Lp,L(θ) = maximize
λ

bTλ,

subject to C − ATλ ∈ K.

(2.48)
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The coefficient matrices A, b, and C are defined as follows:

AV =



Tr(Zd,pY )
−r1 − Tr(Z1Y )

...
−rn − Tr(ZnY )
−rL1 − Tr(ZL

1 Y )
...

−rLN − Tr(ZL
NY )

−rU1 − Tr(ZU
1 Y )

...
−rUN − Tr(ZU

NY )


+



0

Tr(Ẑ1Y )
...

Tr(ẐiY )
(∆L)1Tr(Zd,1Y )

...
(∆L)NTr(Zd,NY )
(∆U)1Tr(Zd,1Y )

...
(∆U)NTr(Zd,NY )


,

b =


1
0
...
0

 , C =


0
...
0
Zn,p

 .

(2.49)

The parameterized Lagrangian function L(V, λ, θ) associated with problem (2.48) is defined
as follows:

L(V, λ, θ) = bTλ+ (C − ATλ) · V. (2.50)

For the current discussion, we further assume the following:

1. There is a strictly feasible point for the optimization problem (2.48) with θ = 0.

2. The denominators of all rational quadratic surrogates are strictly positive on the per-
turbed domain (i.e., {x | li − (δl)i ≤ xi ≤ ui + (δu)i, i = 1, 2, . . . n}).

With the above assumptions, the values of Lp,S(θ) and Lp,D(θ) coincide for all θ in a suf-
ficiently small neighborhood of θ = 0. Let Lp(θ) denote this common optimal value and
suppose that L(V, λ, θ) is a continuously differentiable function. Then, Lp(θ) is directionally
differentiable at θ = 0 [42, 107], and its directional derivative along a unit vector u is given
in Equation (2.51):

L
′
p(θ = 0;u) = inf

V ∈Sol(P)
sup

λ∈Sol(D)

uT∆θL(V, λ, θ), (2.51)

where Sol(P) and Sol(D) are the solution sets for the primal and dual problems, respectively.
The partial derivative with respect to each perturbation parameter is calculated based on
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Equation (2.51):
∂Lp
∂(δl)i

∣∣∣∣
θ=0

= λi(uiY (1, 1)− Y (1, i+ 1)),

∂Lp
∂(δu)i

∣∣∣∣
θ=0

= λi(Y (1, i+ 1)− liY (1, 1)),

∂Lp
∂(∆L)e

∣∣∣∣
θ=0

= λLe Tr(Zd,eY ),

∂Lp
∂(∆U)e

∣∣∣∣
θ=0

= λUe Tr(Zd,eY ),

(2.52)

where λi, λ
L
e , λUe , and Y are extracted from the optimal primal and dual variables.

The sensitivity of the inner- or outer-bound solution with respect to the perturbation
in uncertainty bounds is computed by scaling the partial derivative with the associated
uncertainty interval length:

Sl,i = (ui − li)
∂Lp
∂(δl)i

∣∣∣∣
θ=0

,

Su,i = (ui − li)
∂Lp
∂(δu)i

∣∣∣∣
θ=0

,

SL,e = (Ue − Le)
∂Lp

∂(∆L)e

∣∣∣∣
θ=0

,

SU,e = (Ue − Le)
∂Lp

∂(∆U)e

∣∣∣∣
θ=0

.

(2.53)

As a result, the derived sensitivity coefficients consider not only the effect of reducing an
uncertainty bound locally but also the maximal amount of reduction that the uncertainty
interval can achieve, as have been referred to as impact factors [36].

2.7.6 Parameter Optimization

The philosophy of B2BDC is to quantify and propagate uncertainties through the for-
mation of the feasible set, which generally contains an infinite number of parameter vectors
for a consistent dataset. However, the analyst may be confronted with a situation in which
a single parameter vector must be selected, for example, if the analyst wants to design a
power plant with a new fuel mixture based on simulation results. To characterize the burning
process of the fuel, the analyst constructs a reaction mechanism whose reaction rate param-
eters are determined by reviewing the existing literature. As typically seen in combustion
science, the rate parameters are accompanied by uncertainty. However, a bit different from
the goal of UQ in B2BDC, the analyst simply needs some approaches to choose a set of rate
parameters to simulate the performance of the power plant at various operating conditions
for the design. The infrastructure of B2BDC helps in such application scenarios [136].
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The approach of using numerical optimization techniques to improve combustion models
was first proposed by Frenklach [27, 31, 81]. Since then, this class of methods has been
developed and applied extensively in chemical kinetics research (e.g., [12, 69, 98, 108, 109,
110, 113, 126, 135, 136]). Many of the applications propose searching an optimal set of
rate parameters over a prior uncertainty region in the rate parameter space that minimizes
some user-defined error functions. An error function that is often encountered is the sum of
squared differences between model predictions and experimental measurements, and between
model parameters and their nominal values. This error function was applied by You et al.
[136] in B2BDC and this class of optimized parameter vectors was denoted as xLS-H, where
the subscript “LS” stands for least squares, and “H” represents the prior uncertainty region.
The associated optimization problem is given in Equation (2.54):

xLS-H = argmin
x∈H

∑
e

we(Me(x)− de)2 +
∑
i

wi(xi − xi,0)2, (2.54)

where we and wi are nonnegative scalar weights associated with the eth experimental datum
and ith model parameter. Despite its simple mathematical form, the optimization framework
Equation (2.54) is quite flexible and can consider numerous subjective opinions. For example,
domain expertise and user preference can be reflected by specifying different weights in the
problem. A larger weight implies that the analyst prefers a model parameter vector that
generates a smaller error with respect to the associated term.

In B2BDC, the feasible set is a region containing acceptable parameter vectors with
respect to the estimated experimental uncertainty. Therefore, we take advantage of the
data collaboration effort of B2BDC by searching in the feasible set instead of in the prior
uncertainty region. This error function was applied by You et al. [136] and this class
of optimized parameter vectors was denoted as xLS-F because it minimizes the weighted
squared differences between model predictions and experimental observations and between
the optimal parameter values and their nominal values over the feasible set F :

xLS-F = argmin
x∈F

∑
e

we(Me(x)− de)2 +
∑
i

wi(xi − xi,0)2. (2.55)

Besides the squared difference used in Equations (2.54) and (2.55), the relative or per-
centage error is also a commonly reported error measure in experimental literature. The
error is defined by the following:

εr =

∣∣∣∣yp − yobs

yobs

∣∣∣∣ , (2.56)

where yp and yobs are the model prediction and experimental observation, respectively. Mo-
tivated by this error form, we develop the following two classes of optimized parameter
vectors, denoted by xRel-H and xRel-F. The two methods search for a parameter vector that
minimizes the weighted sum of relative errors over H and F , respectively. The corresponding
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optimization problems are the following:

xRel-H = argmin
x∈H

∑
e

we

∣∣∣∣Me − de
de

∣∣∣∣ , (2.57)

and

xRel-F = argmin
x∈F

∑
e

we

∣∣∣∣Me − de
de

∣∣∣∣ . (2.58)

The one-norm heuristic was applied to obtain a sparsely perturbed parameter vector with
respect to a nominal parameter vector [101, 136]. The optimized parameter vector, denoted
by x1N-F, is calculated by solving the following optimization problem:

x1N-F = argmin
x∈F

∑
i

wi|xi − xi,0|. (2.59)

In the parameter optimization process, the goal is to obtain an optimal parameter vector
in the parameter space. As a result, we do not derive any outer-bound solutions for parameter
optimization because the relaxed problem is often in a different parameter space. The
optimization problems are solved directly using nonlinear constrained optimization solvers.
If a global optimum is preferred, we can initialize the optimization problems at multiple
starting points and select the one with the smallest error measure. In other cases, a local
optimum is sufficient. For example, the error measure may present itself as a long, narrow,
gently sloping valley in many applications in chemical kinetics [32]. Thus, the parameter
vector can change dramatically without discernible changes in the error measure, making
the desire for a global optimum less meaningful [26].

2.8 Example: GRI-Mech Dataset

The GRI-Mech dataset was created along with the work of developing an optimized
reaction mechanism for natural gas combustion modeling [113]. The dataset was initially
consisted of 77 experimental data with well-assessed uncertainty by domain experts. The
QOIs are listed in Table A.1 and cover a wide range of combustion-related phenomena, for
example, ignition delay times, species profiles, and laminar flame speeds. The estimated
uncertainty in QOIs is taken from the work by You et al. [136] and more details can be
found in the references cited above.

The reaction model [113] is based on a mechanism consisting of 325 chemical reactions
in 53 species, resulting in more than 650 model parameters, including rate constants, species
thermodynamic properties, and instrumental constants (e.g., absorption coefficients). A
quadratic surrogate model was generated for each QOI in the selected active parameter
space. A total of 102 active parameters remain in the final dataset, and all model param-
eters are normalized to have the prior uncertainty interval [−1, 1]. The 102 active model
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parameters are listed in Table A.2, where they are either logarithm of the pre-exponential
factor associated with a chemical reaction or enthalpy of formation of a species. If we denote
the pre-exponential factor of reaction rate coefficient and enthalpy of formation associated
with the ith entry in Table A.2 by Ai and hi, respectively, then the active model parameters,
denoted by xi, are

xi =

{
logAi−(logAi,max+logAi,min)/2

(logAi,max−logAi,min)/2
, i = 1, 2, . . . , 78, 80, . . . , 102

hi−(hi,max+hi,min)/2

(hi,max−hi,min)/2
, i = 79

. (2.60)

The MATLAB source codes used for the GRI-Mech example can be found in Appendix D
and at https://github.com/B2BDC/B2BDC/tree/master/GRIexample.

The dataset generates an SCM interval [−0.37,−0.27] and is therefore inconsistent. The
sensitivity of the computed SCM inner- and outer-bound solutions with respect to uncer-
tainty bounds is calculated using the formulas derived in Section 2.7.5. The ranked results
are given in Figures 2.1 and 2.2. The sensitivity results of the inner- and outer-bound
solutions are qualitatively similar.
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Figure 2.1: Ranked sensitivity of scalar consistency measure (SCM) inner-bound solutions
with respect to the quantity of interest (QOI) and model parameter uncertainty bounds.

As presented in [23], the two top-ranked QOIs with largest sensitivity of SCM (i.e., QOI
f4 and f5) were examined. Inspection of the two QOIs revealed that the removal of QOI

https://github.com/B2BDC/B2BDC/tree/master/GRIexample
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Normalized sensitivity wrt observation bounds
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Figure 2.2: Ranked sensitivity of scalar consistency measure (SCM) outer-bound solutions
with respect to the quantity of interest (QOI) and model parameter uncertainty bounds.

f5 results in a consistent dataset with the computed SCM within [0.12, 0.24], whereas the
removal of QOI f4 cannot regain dataset consistency. Using the consistent dataset obtained
by removing f5, the prediction interval of each model parameter is calculated by replacing
Mp(x) with {xi}102

i=1 in Equations (2.7) and (2.8). The computed intervals are the projection
of the feasible set along the one-dimensional (1D) coordinate directions. Among all 102
parameters, we select those whose prediction intervals are smaller than the prior uncertainty
interval [−1, 1] and present them in Figure 2.3. As another example, Figure 2.4 presents the
ranked sensitivity of the predicted outer-bound solution of the upper uncertainty bound for
parameter x20.

To demonstrate the practice of predicting unmeasured QOIs, a leave-one-out calculation
was conducted for the 76 QOIs in the consistent dataset. For each QOI, a new (consistent)
dataset was generated by removing the predicted QOI. The prediction interval of the selected
QOI was then calculated using the new dataset. The results are presented in Figure 2.5.
The results reveal that, in most cases, experimental uncertainty is completely contained
by both the inner- and outer-bound B2BDC prediction intervals with a noticeable margin.
This implies that the inclusion of the selected QOI benefits the data collaboration process
because feasible parameter vectors for the other 75 QOIs predict the target QOI outside
its experimental uncertainty interval. Adding the target QOI shrinks the feasible set and
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Figure 2.3: Computed prediction interval of model parameters whose posterior uncertainty
is reduced compared to its prior. The blue and red vertical bars represent inner- and outer-
bound solutions, respectively.
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Figure 2.4: The ranked sensitivity of the outer-bound solution for the posterior upper bound
of parameter x20.
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Figure 2.5: Leave-one-out prediction of quantities of interest (QOIs) in the GRI-Mech
dataset. The black, blue, and red bars are experimental uncertainty bounds and bound-
to-bound data collaboration (B2BDC) predicted inner and outer bounds, respectively.

improves our knowledge of the system. For QOI SR.10c, on the other hand, the outer-bound
prediction interval is completely contained by the experimental uncertainty interval. For
such a case, adding the target QOI to the dataset makes no change to the feasible set.

2.9 Chapter Summary

The advancement in modern computers and explosive growth in data availability offer
the opportunity to improve our knowledge about the uncertainty in a physical system using
data collaboration. The B2BDC framework provides a systematic approach to learning the
underlying system, which is to a) progressively reduce the uncertainty in the model param-
eter space, b) identify cases where models and data are in disagreement, and c) quantify
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uncertainty in model predictions. This chapter depicts the roadmap of the methodology and
details the numerical techniques implemented for its practical use, in particular, the Solution
Mapping technique and numerical optimization methods.

The essence of the B2BDC framework is (1) requiring a feasible point to reproduce all
QOIs within the estimated uncertainty intervals, and (2) quantifying uncertainty from the
bounds of model parameters and experimental QOIs to the bounds of the predicted QOIs.
Minimal attempts have been made to differentiate feasible points except for the parameter
optimization section, where subjective opinion from the analyst is included by selecting
different error measures and associated weights. Consequently, the obtained knowledge after
data collaboration and UQ computations (i.e., the feasible set and prediction intervals) can
be used as starting points on which more subjective/informative assumptions are based.
These assumptions can stem from domain expertise in specific applications. For example,
statistical assumptions about the prior uncertainty in model parameters and measurement
error distribution can be made, which, via the use of Bayes’ theorem, produces a more
nuanced probability characterization of the updated uncertainty in model parameters. The
topic is discussed in the next chapter.



33

Chapter 3

Statistical Analysis in
Bound-to-Bound Data Collaboration

The method of Bound-to-Bound Data Collaboration (B2BDC) presented in Chapter 2
uses inequality constraints to characterize the uncertainty in model parameters and experi-
mental measurements. The set-form characterization of uncertainty is quite “uniformative”
compared to the statistical assumptions made in Bayesian inference frameworks. If the given
information and domain expertise allow us to select a prior distribution of the model param-
eters and make a statistical assumption about the measurement error distribution (i.e., to
determine a likelihood function), the method of Bayesian inference can produce a posterior
distribution of the model parameters. Based on the posterior distribution, not only credi-
ble intervals of quantities of interest (QOIs) can be estimated, but also subjective belief in
different QOI values is reflected as the associated probability.

A comparison between the method of B2BDC and a Bayesian inference method was made
in [33]. Detailed derivation of the assumed uncertainty in both methods were presented and
discussed in that work. The same surrogate models were used in the B2BDC and the Bayesian
frameworks. In the Bayesian framework, a uniform distribution over the prior uncertainty
region H is employed to represent an unbiased belief in model parameter vectors from H.
The 102-dimensional GRI-Mech dataset was used for a numerical study with the Gaussian
measurement error distribution considered for the Bayesian framework. The results revealed
a qualitative agreement between the two methods. The B2BDC prediction intervals and
the Bayesian credible intervals are similar to each other for many model parameters and
QOIs, although a wide discrepancy between the two intervals was observed in a few cases.
The statistical nature of the Bayesian inference provides a tool for comparing different QOI
and model parameter values using their associated probability, which is not available from
B2BDC computations.

In this chapter, I compare two physically inspired measurement error distributions within
the context of Bayesian inference: the Gaussian and the uniform error distributions. For
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both likelihood functions investigated, the resulting posterior distributions do not have a
closed-form expression. Therefore, efficient sampling methods are developed based on well-
known algorithms to generate samples from both posterior distributions. The results from
the Bayesian inference with the two likelihood functions are compared using the GRI-Mech
dataset. The case with the uniform error distribution assumption, which results in a posterior
distribution of the model parameters that is uniformly distributed in the feasible set, is also
compared with the B2BDC computations to provide further insights of the two frameworks
in addition to the results reported in [33].

3.1 Bayesian Inference

We select the Bayesian inference framework [38, 89] in the current study. This class of
statistical methods was initiated in the statistical literature by Kennedy and O’Hagan [60]
and has since received substantial interest in the uncertainty quantification (UQ) field [1, 11,
55]. The method is founded on Bayes’ theorem, through which a posterior distribution of
model parameters is calculated by combining the prior distribution of the model parameters
and a likelihood function specifying the probability of observing the included experimental
data at any given parameter values.

Because we are interested in applying the method of Bayesian inference within the frame-
work of B2BDC, it is assumed that the Bayesian analysis starts from the B2BDC dataset
(i.e., the model and the experimental data with assessed uncertainty). The prior distribution
of model parameters, denoted by π(x), is assumed to be the uniform distribution over the
prior uncertainty region H:

π(x) = U(H) =

{
1

V (H)
, x ∈ H

0, otherwise,
(3.1)

where V (·) is the volume of a region. The likelihood function is denoted by L({De}Ne=1|x),
and its selection is discussed in the next section. The posterior distribution, denoted by
P (x|{De}Ne=1), is computed as follows:

P (x|{De}Ne=1) =
π(x)L({De}Ne=1|x)

P ({De}Ne=1)
∝ π(x)L({De}Ne=1|x)). (3.2)

The posterior distribution P (x|{De}Ne=1) characterizes the updated uncertainty of model
parameters for the Bayesian inference, conceptually similar to the feasible set for B2BDC.
Uncertainty in prediction QOIs that depend on the model parameters can be inferred using
general statistical approaches. Unlike the feasible set or the prediction interval, we can
now compare different values in model parameters or QOI predictions by evaluating their
probabilities: we believe more in values with a higher probability than those with a lower
probability. However, this extra analytical availability does not come for free: it relies on
the validity of the selected statistical assumptions.
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3.2 Uniform Versus Gaussian Likelihood

In Bayesian inference, the likelihood function characterizes the probability of observing
a given set of experimental measurements for a given model parameter vector and is the
bridge connecting model and data. We investigate two measurement error distributions
here: the Gaussian and the uniform distributions, and refer to the corresponding likelihood
functions as the Gaussian and the uniform likelihood hereafter. The Gaussian likelihood
assumption is probably the most well-known and widely applied distribution for representing
errors in experimental measurements [90, 119]. The assumption has a solid foundation in the
central limit theorem and provides many analytical benefits in theory development. However,
situations exist where the uniform likelihood may characterize experimental measurement
error more appropriately, for example, the ignition delay-time measurements in shock tubes
[2, 19, 33]. In the shock tube setup, the shock propagation is initiated by a random diaphragm
rupture, and the same experiment usually cannot be statistically reproduced. As a result, the
uncertainty in the measurement is often reported in a ± interval expressing the maximum-
error assessed based on various experimental factors [110] and/or the scattering of a series
of data points measured at close but not exact conditions (see, e.g., [36, 95]).

For both likelihood functions, we assume that the experimental observations are inde-
pendent of each other. For the Gaussian likelihood function, the information contained in
the eth dataset unit (i.e., {Le, de, and Ue}) is used to define the distribution of the eth mea-
surement [33]. In this study, we assume the measurement is from a Gaussian distribution
centered at de with standard deviation σe = 0.25(Ue − Le) (i.e., the measurement error is
from a zero-mean Gaussian distribution with the same standard deviation). Different choices
of the mean and standard deviation of the measurement distribution are also possible but
are not considered here. The resulting likelihood function, denoted by LN , is as follows:

LN ({De}Ne=1|x) =
N∏
e=1

1√
2πσ2

e

e
− (Me(x)−de)2

2σ2e , (3.3)

where Me(x) is the model for the eth QOI. With the Gaussian likelihood defined in Equa-
tion (3.3), the posterior distribution is proportional to an exponential function whose expo-
nent is the sum of the negative squared prediction error divided by the scaled measurement
variance over all QOIs if x ∈ H:

PN (x|{De}Ne=1) ∝

e−
∑N
e=1

(Me(x)−de)2

2σ2e , x ∈ H
0, otherwise

. (3.4)

For the uniform likelihood, we assume the eth measurement comes from a uniform dis-
tribution within [Le, Ue]. The likelihood function, denoted by LU , is as follows:

LU({De}Ne=1|x) =

{∏N
e=1

1
(Ue−Le) , Me(x) ∈ [Le, Ue] ∀e

0, otherwise
. (3.5)
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Inserting the uniform likelihood function into Equation (3.2) results in a posterior distribu-
tion that is uniformly distributed over the feasible set:

PU(x|{De}Ne=1) =

{
1

V (F)
, x ∈ F

0, otherwise
. (3.6)

Examination of Equations (3.4) and (3.5) reveals that PN (x|{De}Ne=1) and PU(x|{De}Ne=1)
have a nonzero probability over H and F , respectively. Because the feasible set specifies the
boundary for separating acceptable parameter vectors from unacceptable vectors, a posterior
distribution that only generates feasible parameter vectors is preferred for a potential joint
UQ analysis. Such a posterior distribution is defined as comparable with B2BDC in this
dissertation.

The uniform likelihood function is not the unique assumption that generates a compa-
rable posterior distribution. Any likelihood function that assumes the measurement having
nonzero probability only within the B2BDC assessed uncertainty interval generates a com-
parable posterior distribution (e.g. a Gaussian distribution truncated by the uncertainty
bounds). However, these likelihood functions are less justifiable by realistic experimental
setups compared to the uniform likelihood. Therefore, among all likelihood functions that
generate a comparable posterior distribution, we only considered the uniform likelihood
function in this dissertation. Furthermore, the resulting posterior distribution—the uniform
distribution over the feasible set—is itself an intuitively appealing choice for representing
our belief about model parameters as described by bounds in B2BDC.

3.3 Sampling Methods

The UQ of a QOI depending on the model parameters usually includes the computation of
its statistical moments and credible intervals. The computation often requires the integration
of functions over the posterior distribution. Except for limited cases where an analytical
solution exists, numerical approaches, such as the Monte Carlo methods, are applied to
accomplish the computation. The Monte Carlo methods rely on the ability to generate
samples from the posterior distribution, which can be quite an elaborate task, in particular,
for high-dimensional applications.

The rejection sampling method with bounding geometry is a conceptually simple strategy
to generate independent and identically distributed samples. However, numerical investiga-
tion (e.g., the work done in Russi’s thesis [101]) reveals that the method with a bounding
orthotope, ellipse, or polytope quickly becomes inefficient for a moderate problem dimen-
sion (> 7). After examining some popular sampling methods, the class of Markov chain
Monte Carlo (MCMC) methods was selected to generate samples from the two posterior
distributions investigated in the current study (i.e., PN (x|{De}Ne=1) and PU(x|{De}Ne=1)).
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To generate samples from PU(x|{De}Ne=1), the hit-and-run (HR) sampler and the Gibbs
sampler were considered. The HR sampler was proposed independently by Boneh and Golan
[5], and Smith [114, 115] for uniformly sampling a bounded region. The sampler has been
reported to have an outstanding mixing time in the literature [3, 4, 15, 137] and is considered
the most efficient algorithm for generating uniformly distributed samples if the region is
convex [71, 72]. The algorithm is summarized in Algorithm 3.1. The algorithm generates

Algorithm 3.1 The hit-and-run (HR) sampler

1: Xs ← ∅.
2: Find a starting point x0 ∈ F .
3: while |Xs| < Ns do
4: Generate a direction d ∼ N (0, In).
5: Calculate the line set Ld = {x |x ∈ F} ∩ {x |x = x0 + td, t ∈ R}.
6: Choose x uniformly from Ld.
7: Xs ← Xs ∪ {x} and x0 ← x.
8: end while
9: Return Xs.

the candidate direction d from a standard Gaussian distribution and updates all coordinate
components simultaneously in one step.

The Gibbs sampler, proposed by Geman and Geman [40], was selected due to its practical
popularity in high-dimensional problems [13] despite being computationally more intensive.
The Gibbs sampler updates each coordinate component sequentially according to its condi-
tional distribution and is summarized in algorithm 3.2. For our target distribution PU , the

Algorithm 3.2 The Gibbs sampler

1: Xs ← ∅.
2: Find a starting point x0 ∈ F .
3: while |Xs| < Ns do
4: for i = 1 to n do
5: Set d = 1i.
6: Calculate the line set Ld = {x |x ∈ F} ∩ {x |x = x0 + td, t ∈ R}.
7: Choose x uniformly from Ld and set x0 ← x.
8: end for
9: Xs ← Xs ∪ {x0}.

10: end while
11: Return Xs.

conditional distribution of the ith coordinate component conditioned on all other coordinates
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becomes the uniform distribution over the line set L1i along that coordinate direction:

PU(xi|x1, . . . xi−1, xi+1, . . . , xn) =

{
1
|L1i
| , if [x1, . . . , xi, . . . , xn] ∈ L1i ,

0, otherwise,
(3.7)

where 1i is the ith standard basis vector. The symbol | represents “conditioned on” and
|L1i | is the length of the line set. It is observed that both samplers involve almost identical
computation steps, which are addressed next.

In both samplers, a starting feasible point is required. For a consistent dataset, this
starting point is always available as an auxiliary output when we compute the inner-bound
solution of the scalar consistency measure (SCM). We assume only quadratic or rational
quadratic surrogate models are used for the following derivation. Thus, the feasible set is
described by a finite set of linear and quadratic inequalities:

F = {x | Lα(x) ≤ 0, Qβ(x) ≤ 0, α = 1, 2, . . . , nl, β = 1, 2, . . . , nq},
Lα(x) = bα + aTαx,

Qβ(x) = c0,β + cT1,βx+ xTC2,βx,

(3.8)

where bα and c0,β are scalars, aα and c1,β are vectors, and C2,β is a symmetric matrix with
proper dimensions.

Once a direction d is generated, the line set in model parameters x can be equivalently
expressed in a scalar variable t:

Lt = {t | L̃α(t) ≤ 0, Q̃β(t) ≤ 0, α = 1, 2, . . . , nl, β = 1, 2, . . . , nq},
L̃α(t) = b̃α + ãαt,

Q̃β(t) = c̃0,β + c̃1,βt+ c̃2,βt
2.

(3.9)

The tilde coefficients in eq. (3.9) are calculated by the following Equation (3.10):

ãα = aTαd,

b̃α = bα + aTαx0,

c̃0,β = c0,β + cT1,βx0 + (x0)TC2,βx0,

c̃1,β = cT1,βd+ 2dTC2,βx0,

c̃2,β = dTC2,βd.

(3.10)

The line set Lt can be represented as a union of finite disjoint intervals whose endpoints
are the roots of one of the linear or quadratic functions in Equation (3.9). To calculate the

union, the roots of all linear functions {L̃α(t)}nlα=1 are calculated first. We denote the largest
negative and smallest positive roots by t and t, respectively. If no negative or positive roots
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exist, t and t are set to −∞ and∞ accordingly. Because t = 0 is feasible and linear functions
are monotonic, the line set Lt is contained in [ t, t ]. The roots of the quadratic functions

{Q̃β(t)}nqβ=1 are then calculated and the distinct real roots that lie within [ t, t ] are retained
for the subsequent computation. The remaining roots are sorted and denoted by {tk}rk=1

such that t = t1 < t2 < . . . < tr = t.

Figure 3.1: Sketch plot of a scalar quadratic function Q̃(t) = c̃0 + c̃1t+ c̃2t
2 with two distinct

real roots. The solid black line represents the quadratic function and the dashed red line
represents Q(t) = 0. Roots are labeled (i) and (ii) for a negative a value and (iii) and (iv)
for a positive a value.

An interval made of two adjacent roots, [tk, tk+1], is contained in Lt and is referred to as a
feasible interval if its midpoint is in Lt. A brute-force check over all these intervals scales with
the number of distinct real roots, r, can become inefficient when r is large. To accelerate the
computation, the search algorithm is modified based on the following observation. Consider
a scalar quadratic function with roots labeled as shown in Figure 3.1 depending on the
sign of c̃2, with the shaded regions denoting t values satisfying the feasibility condition in
Equation (3.9). When t increases, roots (i) and (iv) correspond to a transition from feasible
t values to infeasible values, whereas roots (ii) and (iii) do the opposite. A feasible interval
is termed isolated if it moves outside the interval from both endpoints corresponding to
a transition from feasible t values to infeasible values. Suppose moving toward smaller t
values violates the feasibility condition at a root tk. Therefore, tk is the left endpoint of an
isolated feasible interval in Lt. The corresponding right endpoint can be found by sequentially
checking the roots tk+1, tk+2, and so on until the first type (i) or (iv) root is found, denoted
by t∗k. If t∗k is a type (iv) root, no further isolated feasible intervals exist beyond t∗k because
any t value greater than t∗k breaks at least the quadratic inequality associated with t∗k. If t∗k
is a type (i) root, the left endpoint of the next isolated feasible interval must be no smaller
than the type (ii) root associated with the same quadratic function. Hence, we can start our
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Algorithm 3.3 Modified search algorithm

1: Lt ← ∅.
2: Find the index k such that tk ≤ 0 < tk+1.
3: Set k ← k and k ← k + 1.
4: while k > 1 and t = (tk + tk−1)/2 is feasible do
5: k ← k − 1.
6: end while
7: while k < r and t = (tk + tk+1)/2 is feasible do

8: k ← k + 1.
9: end while

10: Lt ← Lt ∪ [tk, tk].
11: while tk is a type (ii) root and the type (i) root of the same quadratic is in {tk}rk=1 do
12: Find index k such that tk is the type (i) root and set k ← k.
13: while k > 1 and t = (tk + tk−1)/2 is infeasible do
14: k ← k − 1
15: end while
16: if k > 1 then
17: Set Lr ← tk.
18: while k > 1 and t = (tk + tk−1)/2 is feasible do
19: k ← k − 1.
20: end while
21: Lt ← Lt ∪ [tk, Lr]
22: end if
23: end while
24: while tk is a type (i) root and the type (ii) root of the same quadratic is in {tk}rk=1 do
25: Find index k such that tk is the type (ii) root and set k ← k.
26: while k < r and t = (tk + tk+1)/2 is infeasible do

27: k ← k + 1
28: end while
29: if k < r then
30: Set Ll ← tk.
31: while k < r and t = (tk + tk+1)/2 is feasible do

32: k ← k + 1.
33: end while
34: Lt ← Lt ∪ [Ll, tk]
35: end if
36: end while
37: Return Lt.

check from the type (ii) root if it is in the root list, and all the roots between are skipped.
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The procedure for a given right endpoint, moving along the decreasing t direction, follows
similar arguments. The modified search algorithm is summarized in Algorithm 3.3.

To generate samples from PN , we selected the component-wise adaptive metropolis (AM)
method [47]. The AM sampler is summarized in Algorithm 3.4. The variance is updated

Algorithm 3.4 Adaptive metropolis sampler

1: Xs ← ∅.
2: Find a starting point x0 ∈ H.
3: Define an initial variance vi for each coordinate component xi.
4: while |Xs| < Ns do
5: for i = 1 to n do
6: Draw a candidate component ∆xi ∼ N (0, vi).
7: Define the candidate point x′ by x′ = x0 + ∆xi1n.
8: Accept the candidate with probability γ = PN (x′)

PN (x0)
and update x0 ← x′.

9: end for
10: Xs ← Xs ∪ {x0}.
11: Update the variance vi based on all samples.
12: end while
13: Return Xs.

according to Equation (3.11)

vit =

{
vi0, t ≤ t0

s(Var(xi0, x
i
1, . . . , x

i
t−1) + ε), t > t0,

(3.11)

where vi0 and t0 are the user-initiated variance and number of burning samples. The symbol
Var(xi0, x

i
1, . . . , x

i
t−1) calculates the variance of samples {xij}t−1

j=0. The parameter s is set to 2.4,
and ε is set to a smaller number depending on the application. With the notation that gt =
Var(xi0, x

i
1, . . . , x

i
t−1) and xt = Mean(xi0, x

i
1, . . . , x

i
t−1), the variance term in Equation (3.11)

has a simple recursive formula:

gt+1 =
t− 1

t
gt + x2

t +
1

t
x2
t −

t+ 1

t
x2
t+1, (3.12)

which is used to accelerate the computation.

3.4 Convergence Diagnosis

Iterative sampling methods, for example MCMC, converge to the stationary distribution
only asymptotically. Therefore, it is necessary to monitor the convergence of the generated
samples to validate the following inference analysis. We adopted the convergence test ap-
proach proposed by Gelman and Rubin [39] and Brooks and Gelman [10]. The idea is to
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generate multiple MCMC chains and monitor calculable statistics that should converge to
1 as the samples converge to the target distribution. The after-sample calculation is sum-
marized in Equation (3.13), with the notation that xpq (p = 1, 2, . . . , Ns, q = 1, 2, . . . ,m)
represents the pth sampled parameter vector in the qth MCMC chain.

x·q =
1

Ns

Ns∑
p=1

xpq,

x·· =
1

Nsm

Ns∑
p=1

m∑
q=1

xpq,

B =
1

m− 1

m∑
q=1

(x·q − x··)(x·q − x··)T ,

W =
1

m(Ns − 1)

Ns∑
p=1

m∑
q=1

(xpq − x·q)(xpq − x·q)T ,

V =
Ns − 1

Ns

W +
m+ 1

m
B,

λ1 = λmax(W−1B),

R =
Ns − 1

Ns

+
m+ 1

m
λ1.

(3.13)

The symbols x·q and x·· are averages in the qth MCMC chain and for all m chains. Moreover,
V andW are the estimated among-chain and within-chain covariance matrices, and

√
R is the

monitored statistic referred to as the multivariate potential scale reduction factor (MPSRF).
The notation λmax(·) denotes the largest eigenvalue of a matrix. The MPSRF provides a
scalar distance measure between the two covariance matrices as follows:

R = max
a

aTV a

aTWa
. (3.14)

We present two strategies to generate the initial points. The first strategy is to generate
one MCMC chain, for example, starting from the feasible point obtained by calculating the
inner-bound solution of the SCM, and choosing multiple points from that chain randomly
or with a preset step size. The second strategy is motivated by the emphasis addressed in
[10, 39] that the initial points should be over-dispersed relative to the target distribution.
For the uniform distribution in the feasible set, we aim to distribute the initial points to be
as widespread in the feasible set as possible. To achieve this goal, the following optimization
problem is solved for m initial feasible points where C is the estimated covariance matrix



CHAPTER 3. STATISTICAL ANALYSIS IN BOUND-TO-BOUND DATA
COLLABORATION 43

based on these m initial points:

maximize
{xj}mj=1

m−1∑
j=1

log λj(C)

subject to xj ∈ F , j = 1, 2, . . . ,m.

(3.15)

The formula is similar to the D-optimal design [62] over the feasible set. However, because
the covariance matrix can be singular when m + 1 is smaller than the problem dimension,
we maximize the product of the first m− 1 nonzero eigenvalues.

The initial points generated by the two strategies are respectively referred to as the
MCMC and optimized starting points. The computation is usually more costly for the second
strategy, in particular, for situations in which the number of model parameters and/or the
initial points is large.

3.5 Exploiting Sparsity and Generalization with

Polynomial Surrogates

As demonstrated in the GRI-Mech example given in Section 2.8, models for an individual
QOI can depend on a much smaller set of active parameters despite the dataset containing a
parameter list in a quite higher dimension (102). Detailed in Section 2.7.1, this sparsity fea-
ture is exploited in our strategies for generating surrogate models. Shown in [33], evaluating
surrogate models in the active parameter space compared to the full-dimensional parameter
space can result in substantial computational savings in MCMC calculations, for example,
the number of algebraic operations involved in evaluating a quadratic function with input
parameter vector scales with the square of its parameter dimension. In the HR and Gibbs
samplers, converting the line set in x to the line set in t using Equation (3.10) has the highest
computational cost, which, by the definitions given in Equations (3.9) and (3.10), has the
benefit of using active parameters similarly to surrogate model evaluations. For the AM
sampler, the step that involves the most computations is the calculation of the acceptance
probability γ, which essentially contains only surrogate model evaluations and, therefore, is
also enhanced. The Gibbs and AM sampler can further take advantage of such a sparsity
feature. When updating a coordinate component xi in the Gibbs sampler, roots are com-
puted only for quadratic (linear) functions that depend on xi. When the AM sampler is
used, the summation in the acceptance probability γ can be performed only over QOIs that
depend on xi.

The line set calculation in the HR and Gibbs samplers can be very challenging for models
whose complete list of roots along a given direction is difficult to compute. Fortunately,
the strategy discussed for quadratic surrogate models can be generalized for real-coefficient
polynomials with moderate modifications. In that situation, the line set Lt is defined by a
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finite number of scalar polynomial inequalities. Following similar logic, linear inequalities
are used first to calculate a bounding interval for Lt. The list of candidate roots is then
generated by considering the distinct real roots of the constraining polynomials. For a
scalar polynomial, efficient tools exist for computing all these roots (e.g., MATLAB function
roots). The search algorithm is modified accordingly. The calculation of the first isolated
interval remains unchanged (lines 2-10) in Algorithm 3.3). For a right endpoint of an isolated
interval, the roots of the same polynomial greater than this right endpoint are checked
sequentially to determine a lower bound for the next potential left endpoint: the first root of
the same polynomial that corresponds to a transition from infeasible to feasible and is in the
root list, or infinity if no such root is found. The same argument applies to the left endpoint.
The procedure of finding an isolated interval from one endpoint remains the same.

The developed HR and Gibbs samplers can generate samples from the B2BDC feasible set
defined with all three types of surrogate models. A set defined by a finite number of polyno-
mial inequalities is also known as a semi-algebraic set, which has gathered extensive research
interest in other scientific domains, such as control [53] and semidefinite programming [91].
The developed HR and Gibbs samplers may also be applied in other applications.

3.6 A Toy Example

A 2D toy example is used in this section for illustration. The feasible set is described by
the following four quadratic inequalities with a prior uncertainty region for model parameters
at [−1, 1]2:

−5.23 ≤ S1(x) = 4x2
1 − 11x2

2 + 2.5x1x2 − 1.8x1 − 1.2x2 − 0.4 ≤ −3.23

−1.45 ≤ S2(x) = 4x2
1 − x2

2 − 7.5x1x2 + 2.2x1 − 1.2x2 − 0.2 ≤ 0.55
. (3.16)

The Gaussian likelihood is based on the assumption that the two “measurements” are from
a Gaussian distribution centered at d1 = −4.23 and d2 = −0.45 with σ1 = σ2 = 0.5,
whereas the uniform likelihood assumes that they are from a uniform distribution within
the corresponding uncertainty intervals given in Equation (3.16). The HR, Gibbs, and AM
samplers were applied with 10 starting points. An MCMC chain with 200 samples was
generated from each initial point. The sample set including the second half of all 10 MCMC
chains was used for the convergence test. The calculated MPSRF and the determinant of
the among-chain and within-chain covariance matrices are presented in Figure 3.2. The
results suggest that the samples generated from all three samplers converged. The MPSRF
decreases to close to 1, and the two determinants have stabilized and reached values close to
each other.

This converged sample set of 103 total parameter vectors is used to further demonstrate
a typical analysis in UQ. The 1D projections of the samples on x1 and x2 are examined
first. The sample-based histograms and the computed outer-bound prediction intervals are
illustrated in Figure 3.3. The results reveal that the histograms of HR and Gibbs samples
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Figure 3.2: Convergence test results of the hit-and-run (HR), Gibbs, and adaptive metropolis
(AM) samples based on 10 Markov chain Monte Carlo (MCMC) chains. The black line is the
multivariate potential scale reduction factor. The blue and green lines are the logarithmic
determinants of the between-sample and within-sample covariance matrices, respectively.

cover an identical range of prediction intervals, whereas the histogram of the AM samples
goes slightly beyond the predicted bounds. Considering the random effects caused by the
finite sample size, the histograms based on the HR and Gibbs samples for x1 are reasonably
similar to each other and are different from the histogram based on the AM samples. The
histogram based on the AM samples exhibits a higher frequency of larger x1 values. The
three histograms of x2 display no significant differences among the three sample sets.

The samples are then visualized in the 2D space, and their scatter plots are given in
Figure 3.4 with the prior region H and feasible set F . The HR and Gibbs samples cover
the feasible set quite uniformly and completely, as expected from a converged sample set.
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Figure 3.3: Marginal histograms of the generated samples and computed Bound-to-Bound
data collaboration (B2BDC) prediction intervals for x1 and x2.

However, the AM samples exhibit a mild clustering at some interior regions of the feasible
set. A small portion of the AM samples (58 out of 1000) is outside the feasible set but
remains reasonably adjacent.

There are a couple of interesting observations from this 2D toy example. First, the
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Figure 3.4: Scatter plots of hit-and-run (HR), Gibbs, and adaptive metropolis (AM) samples
and the prior H (shaded gray) and the feasible set F (shaded red).

optimization-based prediction interval of any QOI is reproducible using the HR and Gibbs
samples because they cover almost the whole feasible set. Second, most of the AM samples
still fall in the feasible set. To determine whether the above observations hold for higher-
dimensional problems, in the next section, we use the 102-dimensional GRI-Mech dataset
for the demonstration.

3.7 GRI-Mech Example

Introduced in Section 2.8, the GRI-Mech dataset has 102 model parameters and 77 QOIs.
The prior uncertainty region of the model parameters is H = [−1, 1]102, and quadratic sur-
rogate models were generated for all QOIs. To obtain a consistent dataset with a nonempty
feasible set, QOI f5 was removed as detailed in Section 2.8. We first evaluate and compared
the performance of the HR and Gibbs samplers on generating uniform samples from the
GRI-Mech feasible set. The posterior distributions with the Gaussian and with the uniform
likelihoods are then compared. At last, we compare the B2BDC prediction intervals with
the statistical inferences based on uniformly distributed samples in the feasible set.
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3.7.1 Hit-and-run Versus Gibbs

To investigate the mixing performance of the HR and Gibbs samplers, multiple chains
were generated from both the MCMC and optimized starting points. The MCMC starting
points were generated with a step size of 100 from the MCMC chain initiated at the SCM
inner-bound solution point. The optimized points were computed as solutions to the opti-
mization problem (3.15). The number of starting points was set to 10. For each starting
point, an MCMC chain of length Ns = 104 was generated, applying both samplers.

The trace and sampled autocorrelation Âk, defined by Equation (3.17) for a scalar quan-
tity y, where y and k are the mean of the samples and the lag number, are displayed in
Figure 3.5 for parameter x32:

Ak =
1

Ns

Ns−k∑
j=1

(yj − y)(yj+k − y),

Âk =
Ak
A0

.

(3.17)

The results indicate that the autocorrelation is significantly higher in the HR samples
than in the Gibbs samples. The Gibbs samples traverse the entire prior uncertainty interval,
whereas the HR samples move within a much narrower region close to the upper uncertainty
bound. The chain starts from an optimized point (right column in Figure 3.5) that has a
slightly higher autocorrelation than from an MCMC point for the HR sampler. The difference
is negligibly small for the Gibbs sampler.

The component-wise and full-dimensional step sizes, denoted by ∆xi and ∆ ‖x‖2, are cal-
culated for each MCMC chain using Equation (3.18), and the results are given in Figures 3.6
and 3.7:

∆xi =
1

Ns − 1

Ns∑
j=2

|xij − xij−1|,

∆ ‖x‖2 =
1

Ns − 1

Ns∑
j=2

‖xj − xj−1‖2 .

(3.18)

The results reveal that the component-wise step sizes are distributed more unevenly in the
Gibbs samples compared to those in the HR samples, independent of the starting-point
type. The mean and standard deviation of component-wise step sizes are similar across all
coordinates for the HR samples; however, they are quite different for the Gibbs samples. The
results demonstrate that the Gibbs sampler can explore different coordinates with different
lengths of scales. The mean component-wise step sizes of the Gibbs samples exhibit negligible
dependence on the starting-point type, varying within 4% from one to another. In contrast,
roughly twice larger mean step sizes are observed across all coordinates for the HR samples
starting from an MCMC point compared to an optimized point. Using all 20 MCMC chains,
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Figure 3.5: Trace (blue line) and sampled autocorrelation (red line) of parameter x32. The
left and right columns contain results in a chain starting from an MCMC and optimized
point, respectively. The top and bottom two rows are results for the hit-and-run (HR) and
Gibbs samples, respectively.
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Figure 3.6: Component-wise step sizes in the generated Markov chain Monte Carlo (MCMC)
chains starting from MCMC points. The points and vertical bars are the computed means
and 1σ confidence intervals.

the computed ratio of the mean step sizes in the Gibbs samples compared to those in the
HR samples varies from 3.7 to over 1500 across the coordinates with an average value of over
300.

The averaged full-dimensional step sizes, consumed computer processing unit (CPU)
time, and ratio of feasibility evaluations in the modified to the brute-force search algorithms
are reported in Table 3.1 based on all chains. Examination of Table 3.1 shows that the full-
dimensional step size in the Gibbs samples is about 360 times of that in the HR samples. The
modified search algorithm provides 75% and 60% computation savings for the Gibbs and HR
sampler, respectively. The Gibbs sampler, which computes the line set 101 times more than
the HR sampler in generating one new sample point, only results in a computational time
of 30 times longer. Considering the relatively comparable savings obtained from using the
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Figure 3.7: Component-wise step sizes in the generated Markov chain Monte Carlo (MCMC)
chains starting from optimized points. The points and vertical bars are the computed means
and 1σ confidence intervals.

Table 3.1: Averaged full-dimensional step sizes, consumed computer processing unit (CPU)
time of generating 104 samples, and ratio of feasibility evaluation using modified and brute-
force searching algorithms.

Sampler ∆ ‖x‖2 CPU time (s)
Ratio of

feasibility evaluations (%)
HR 1.05× 10−2 11.0 43.2

Gibbs 3.85 335.3 25.4
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modified search algorithm, the observed acceleration in CPU time for the Gibbs sampler is
likely attributed to the further exploitation of the active parameter pattern while computing
the candidate roots.

The MPSRF was computed for both the HR and Gibbs samples to evaluate their conver-
gence. Only the last half of each chain was used, as suggested by Gelman and Rubin [39]. In
addition to the MPSRF, the determinants of the estimated among-chain and within-chain
covariance matrices, V and W , were also calculated for examination. The logarithmic deter-
minant of a matrix is proportional to the logarithm of the geometric mean of its eigenvalues
and is interpreted as a relative measure of how dispersed the samples are. The process
was repeated 10 times to reduce random effects, and the results are depicted in Figures 3.8
and 3.9.

For the HR sampler, runs with optimized initial points consistently result in a larger
MPSRF and smaller determinants of both V and W , at any given instance of the sampling
history. The HR sampler with optimized initial points also exhibits a larger variance over
repeated runs. The computed convergence result exhibits no sign of convergence with 104

samples. The MPSRF is still far from 1, and the logarithmic determinants have not sta-
bilized. For the Gibbs sampler, the computed MPSRF and the determinants of V and W
exhibit negligible dependence on the starting-point types. Both the mean and variance are
similar over the 10 repeated runs. The logarithmic determinants are also substantially larger
than those with the HR sampler, indicating the Gibbs samples are more widespread. The
test suggests the chain converged with 104 samples. The MPSRF decreases to a value close
to 1, and the logarithmic determinants of V and W stabilized and achieved values close to
each other.

Based on the chain mixing and convergence performance, the Gibbs sampler is strongly
favored in the relatively high-dimensional (102) GRI-Mech example. The chains generated
with the Gibbs sampler are significantly closer to convergence (i.e., achieving a much smaller
MPSRF) when the same amount of CPU time is consumed. The Gibbs sampler provided
a satisfactory performance by generating 5× 103 converged samples in this 102-dimensional
example within 6 minutes. This may be attributed to its observed ability to explore each
coordinate component with self-adjusted, significantly larger step sizes compared to the HR
sampler. Starting multiple chains at optimized initial points provides no benefit for the
Gibbs sampler in this test case. This is likely due to the outstanding mixing performance of
the Gibbs sampler, such that any influence from the initial points dissipates in the first half
of the chain. Among the 10 repeated runs, we selected the one with the smallest MPSRF
for the following analysis. The collection contains 5× 104 total samples after discarding the
first half of each chain.
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Figure 3.8: Computed multivariate potential scale reduction factors and logarithm determi-
nants of covariance matrices V and W in HR samples. The vertical bars represent the mean
and 1σ confidence interval over 10 repeated runs. The blue and green × symbols mark the
cases in which the determinant is smaller than machine precision.
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Figure 3.9: Computed multivariate potential scale reduction factors and logarithm determi-
nants of covariance matrices V and W in Gibbs samples. The vertical bars represent the
mean and 1σ confidence interval over 10 repeated runs.
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3.7.2 Gaussian Versus Uniform Likelihood

A converged set of 5 × 104 samples was generated from PN using the AM sampler for
the comparison of the two posterior distributions. The MCMC chain takes 2× 104 samples
to converge compared to 104 for the Gibbs sampler. Thus, only the last quarter of the
AM samples in each chain are used to maintain an identical sample size. The 1D marginal
empirical probability density functions (PDFs) for all model parameters were estimated
based on the samples, and the results are given in Figure 3.10.

The results show that the marginal posterior empirical PDFs are unimodal in most cases
for both likelihood assumptions, suggesting many parameters form a most probable value in
their posterior distributions. The unique mode of the PDF, however, can be located on either
side or in the middle of the prior uncertainty interval. Overall, the posterior distribution
with the Gaussian likelihood displays a lower peak and larger variance than the posterior
distribution with the uniform likelihood across the 1D projections. An observable difference
exists between the two PDFs in more than half of the parameters, more significantly for
parameters with a smaller index. As shown in Table A.2, in the GRI-Mech dataset, parame-
ters with a smaller index are associated with chemical reactions that are more influential to
the measured QOIs and are expected to experience a stronger influence from the Bayesian
analysis. To provide a quantifiable measure of the similarity between the two PDFs for
each model parameter, the two-sample Kolmogorov-Smirnov (KS) test [74] was applied to
each model parameter and the p-value of the test (i.e., the largest probability of incorrectly
rejecting the null hypothesis that the two histograms come from the same distribution) was
calculated. For each model parameter, both the Gibbs and the AM samples were thinned
(i.e., generating a subset of the original set by taking subsequent samples with a selected step
size) such that the generated subsets are almost independent (with a autocorrelation less
than 0.05). Since the marginal PDFs of parameters x37, x44, x77, x78, x90 and x91 are close
to their prior distributions, they are excluded from the KS tests since the effect of likelihood
function on them has not yet occurred. The distribution of the calculated p-values is shown
in Figure 3.11. If a typically used 0.05 significance level is employed, the results imply that
85 out of the 96 (88.5%) cases the two marginal PDFs are different.

Four parameters, x2, x12, x41, and x55, were selected to investigate the pairwise correlated
PDFs, which are associated with reactions H + O2 → O + OH, H + CH2O → H2 +
HCO, O2 + CH3 → CH3O + O, and HO2 + CH3 → O2 + CH4, respectively. These four
parameters exhibit comparable variances but slightly different modal locations in the two
sample sets. The results are provided in Figure 3.12 where the PDFs were computed using
a box kernel function with support over the prior uncertainty domain [−1, 1]2. Consistent
with the observation in the 1D results, the 2D PDF with the Gaussian likelihood has a
relatively larger variance because it covers a larger region with nontrivial probabilities. The
shape and location of the nontrivial region are more noticeably different than in the 1D
case between the two sample sets. The 2D PDFs in Figure 3.12 display a relatively weaker
pairwise correlation for the Gibbs samples. For example, parameter x2 is almost uncorrelated
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with the other three parameters because the contours are very close to concentric circles,
suggesting that adjusting the rate parameter associated with reaction H + O2 → O + OH
in one direction barely results in adjusting the rate parameters associated with the other
three reactions in the same or opposite direction. Only parameters x41 and x55 exhibit an
observable negative correlation, implying that increasing the rate parameter associated with
reaction O2 + CH3 → CH3O + O is likely to cause the decrease of the rate parameter
associated with reaction HO2 + CH3 → O2 + CH4. The results are caused by that both
reactions are competing over a common species, CH3. In comparison, the contours from the
AM samples are more distorted and asymmetrical.

The effect of the two likelihood assumptions on model prediction was evaluated using the
leave-one-out method. Each of the 76 QOIs was removed from the dataset, resulting in a
new dataset containing the remaining 75 QOIs. MCMC chains of 104 and 2 × 104 samples
were generated from the posterior distribution with the uniform and Gaussian likelihoods,
respectively. For both cases, the last 5000 samples of the chain were used, and the prediction
of the removed QOI was characterized by evaluating the model at the sampled parameter
vectors. The estimated empirical PDFs of all QOIs are provided in Figure 3.13.

The results show that the prediction PDFs are unimodal in most cases for both likelihood
assumptions. For both sample sets, the prediction PDF has a sizable probability over the ex-
perimental uncertainty bounds, except for QOI sf7, sno.c11, and nfr4. The prediction PDFs
with the Gaussian likelihood have larger variances overall, consistent with the larger variance
observed in the posterior parameter distributions. In a considerable number of cases, the
prediction PDF with the uniform likelihood covers a smaller region with noticeable density
than the experimental uncertainty interval. Similar to the case with model parameters, the
two-sample KS test was applied to each prediction QOI and the distribution of the calculated
p-values are shown in Figure 3.14. The results imply that all of the prediction QOI PDFs
are different with a significance level 0.05.

In addition to the observed differences in parameter and prediction PDFs, none of the
5 × 104 samples with the Gaussian likelihood are in the feasible set. This is quite different
from our experience with the 2D toy example given in Section 3.6, where the majority of the
samples are in the feasible set.



CHAPTER 3. STATISTICAL ANALYSIS IN BOUND-TO-BOUND DATA
COLLABORATION 57

x1 x2 x3 x4 x5 x6

x7 x8 x9 x10 x11 x12

x13 x14 x15 x16 x17 x18

x19 x20 x21 x22 x23 x24

x25 x26 x27 x28 x29 x30

x31 x32 x33 x34 x35 x36

x37 x38 x39 x40 x41 x42

x43 x44 x45 x46 x47 x48

x49 x50 x51 x52 x53 x54

x55 x56 x57 x58 x59 x60

x61 x62 x63 x64 x65 x66

x67 x68 x69 x70 x71 x72

x73 x74 x75 x76 x77 x78

x79 x80 x81 x82 x83 x84

x85 x86 x87 x88 x89 x90

x91 x92 x93 x94 x95 x96

x97 x98 x99 x100 x101 x102

Figure 3.10: Marginal empirical probability density function of the GRI-Mech model param-
eters based on samples with the uniform likelihood (red lines) and samples with the Gaussian
likelihood (blue lines). All axes are scaled to the prior uncertainty range [-1, 1].
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Figure 3.11: Distribution of the calculated p-values of the two-sample Kolmogorov-Smirnov
tests for model parameters. The red dashed vertical line indicates the 0.05 significance level.
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Figure 3.12: Projected probability distribution function on two-dimensional model parameter
pairs based on samples with the uniform likelihood (top panel) and samples with the Gaussian
likelihood (second panel). All axes are scaled to the prior uncertainty range [-1, 1].
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Figure 3.13: Marginal empirical probability density function of 76 GRI-Mech quantity of
interest predictions based on posterior samples with the Gaussian (blue line) and uniform (red
line) likelihood functions. The black horizontal bar represents the experimental uncertainty
bounds.
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Figure 3.14: Distribution of the calculated p-values of the two-sample Kolmogorov-Smirnov
tests for prediction quantities of interest. The red dashed vertical line indicates the 0.05
significance level.
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3.8 B2BDC Versus Bayesian with Uniform Likelihood

The method of B2BDC and the Bayesian inference method with the uniform likelihood
are compared in this section. The posterior distribution is approximated by the converged
Gibbs samples. The prediction interval of each model parameter was first calculated and
compared to the marginal histograms in Figure 3.15.

Examination of Figure 3.15 indicates that, different from the results in [33] but expected
from the present setup, the prediction intervals consistently contain the regions covered by
the histograms. In addition, a noticeable gap typically exists between the ranges covered
by the histogram and by both the inner-bound (blue) and outer-bound (red) prediction
intervals. The inner-bound prediction intervals are based on the found feasible points and
therefore have a nonzero probability from PU . The results suggest, as remarked in [117],
that the uniform assumption for representing prior parameter uncertainty region H and
the experimental uncertainty bounds is not equivalent to the constraints. With these more
informative assumptions and the resulting posterior distribution, typically used credible
intervals (e.g., a 95% credible interval) tend to be noticeably shorter than B2BDC prediction
intervals computed based on inequality constraints. Compared to the results observed in
the 2D toy example presented in Section 3.6, replacing B2BDC constraints by the more
informative uniform assumptions on model parameters and QOIs induces a stronger impact
on the generated results for higher dimensional problems.

The implemented statistical assumptions generated results that are more informative
than the B2BDC prediction intervals. Although the B2BDC prediction intervals remain un-
changed compared to the prior uncertainty interval for some parameters, the corresponding
Bayesian posterior histograms can tell a different story. For example, parameters x90, x91

and x92 show a relatively uniform histogram over the B2BDC prediction interval, whereas
the histograms of parameters x9, x11 and x50 are quite nonuniform and display negligible
probability over some portions of the prediction interval. The nonuniform histograms can
peak toward either side of the prior uncertainty interval despite the associated model pa-
rameters having identical B2BDC prediction intervals (e.g., parameters x100 and x101). This
feature is also observed and reported in [33] between B2BDC computations and Bayesian
inference with the Gaussian likelihood. Therefore, it suggests that the more informative
results are due to the more informative assumptions adopted in a Bayesian inference, but
not specific to a particular likelihood function.

The leave-one-out prediction interval of each QOI was computed following a similar
procedure defined in the previous section. The results are provided in Figure 3.16 with
the experimental uncertainty intervals. Examination of Figure 3.16 shows that, similar to
the case for model parameters, the computed prediction intervals consistently cover a larger
enclosed uncertainty region than the sample-based credible intervals with a noticeable gap
for most QOI predictions. The histograms provide a quantifiable measure (the probability)
to the prediction values within B2BDC prediction intervals. The histograms provide an
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instrument for evaluating and comparing values within the B2BDC prediction intervals. For
cases in which the B2BDC outer-bound prediction interval is completely contained within
the experimental uncertainty bounds (e.g., QOI ch3.c1b, ch3.c1a, and sr.10c), removal of the
QOI has provable effect on the feasible set; every feasible point without the QOI generates
a model prediction within its experimental uncertainty. Similar provable arguments are
difficult to make with statistical samples. For example, considering QOI f6, sch.c13, and
nfr4, although the ranges covered by the prediction histogram and experimental bounds are
disjoint, we cannot argue that the QOIs are inconsistent with the remaining QOIs. In fact, we
know that these QOIs are consistent with the remaining QOIs because the dataset including
all 76 QOIs is consistent. Unlike for the model parameters, the prediction histograms are
centered roughly around the midpoint of the corresponding B2BDC inner-bound prediction
intervals.

The results shown in Figures 3.15 and 3.16 are different from those reported in [33],
where the B2BDC computations were compared to Bayesian inference with the Gaussian
likelihood. In that case, the credible intervals were comparable to, or sometimes longer than
the B2BDC prediction intervals for model parameters and for leave-one-out predictions.
The results resonate with the observations given in Section 3.7.2 that the two likelihood
functions have a substantial influence on the subsequent UQ analysis, and imply that the
comparison between B2BDC and Bayesian inference depends on the implemented statistical
assumptions.
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Figure 3.15: Marginal histograms and Bound-to-Bound Data Collaboration posterior pre-
diction intervals of GRI-Mech model parameters. The green histograms are based on 5×104

samples uniformly distributed on the feasible set. The blue and red bars are computed inner-
and outer-bound intervals, respectively. All axes are scaled by the prior uncertainty range
[-1, 1].
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Figure 3.16: Leave-one-out distribution, Bound-to-Bound Data Collaboration prediction,
and experimental data bounds of 76 GRI-Mech quantities of interest. The green histograms
are based on samples uniformly distributed on the feasible set. The blue, red, and black bars
are the calculated inner- and outer-bound prediction intervals and experimental uncertainty
bounds, respectively.
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3.9 Chapter Summary

We presented a Bayesian inference workflow starting from a B2BDC dataset, in which
uncertainties in model parameters and experimental QOIs are characterized by inequalities.
In the Bayesian inference, we assumed a uniform prior distribution over the prior parameter
uncertainty region. Two physically motivated likelihood assumptions, the Gaussian and
uniform likelihoods, were investigated and compared. Efficient samplers were developed to
generate samples from the resulting posterior distributions. We demonstrated that the two
posterior distributions exhibit a growing difference in their lower dimensional projections
with increased problem dimension. In the 102-dimensional GRI-Mech example, via the
two-sample KS tests, the resulting posterior distributions exhibited substantial differences
in their 1D projections on many model parameters and all leave-one-out predictions. The
difference between the two posterior distributions in 2D projections can be more noticeable
than in the 1D case. The comparison between the B2BDC prediction intervals and the
Bayesian marginal histograms with the uniform likelihood shows that the credible intervals
are consistently contained by the prediction intervals with noticeable gaps. The gaps are
more significant in the higher dimensional case (the GRI-Mech example) than in the lower
dimensional case (the 2D toy example). The results complements the previous work [33] by
demonstrating that the comparison of the UQ analysis from B2BDC and Bayesian inference
depends strongly on the implemented assumptions.

The HR and Gibbs samplers performed comparably for the illustrative 2D toy exam-
ple. However, the latter dominated the former in the 102-dimensional GRI-Mech dataset
by generating much quickly converged MCMC chains. Although both samplers are capable
in principle of moving from one feasible point to any other feasible point along the pro-
posed direction in one step, the Gibbs sampler can generate a coordinate-dependent step
size that is orders of magnitude larger than that generated by the HR sampler. Thus, it
provided a much faster-converged set of samples. The developed search algorithm for the
line set calculation exhibited promising efficiency improvement compared to a brute-force
implementation. Although only quadratic inequalities were considered in this case study, the
developed sampler can be generalized to the situation with general polynomial inequalities
with modest modifications.

The GRI-Mech example demonstrates benefits of combining B2BDC prediction intervals
and Bayesian inference with the uniform likelihood. The optimization techniques efficiently
compute the boundary of the uncertainty in QOIs, whereas the samples provides a quan-
tifiable measure of subjective belief for values within the uncertainty region. In the next
chapter, the B2BDC methods are applied to a syngas combustion dataset, implementing
both optimization-based computations and Bayesian inference based on samples from the
feasible set.
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Chapter 4

Syngas Combustion Application

Syngas (a mixture of H2 and CO) is a popular candidate for high efficiency power gen-
eration in hybrid turbines. In this chapter, I apply the methods of Bound-to-Bound Data
Collaboration (B2BDC) to a syngas combustion system. A syngas reaction mechanism and
a set of related experimental data were generated by a research group from the German
Aerospace Center (DLR), with systematically assessed uncertainty. The dataset contains
55 model parameters and 167 quantities of interest (QOIs), including shock-tube ignition
delay time and laminar flame speed measurements. The initial dataset was found to be
inconsistent, and the vector consistency measure (VCM) method was used to resolve the
inconsistency. The feasible set of the resulting consistent dataset was examined via both
prediction interval computations and Bayesian inference with the uniform likelihood func-
tion. Optimized models were computed and compared to a well-established reaction model
obtained with a different set of data.

4.1 Reaction Model

The study of syngas combustion has received increased interest in recent years [20, 61, 70,
104, 116, 123, 126]. The work is of great practical value because the syngas mixture (i.e., the
mixture of primarily H2 and CO) is a popular fuel in many industrial fields. In addition, the
work contributes to general combustion research because the syngas mixture constitutes the
next complex system other than the hydrogen system. Because the combustion mechanism
of larger fuels inevitably includes the combustion mechanism of smaller fuels generated from
them, comprehensive knowledge about the chemical kinetics of syngas plays an essential role
in developing reliable reaction models of larger hydrocarbons.

The assembled reaction model for syngas combustion is a submodel of the DLR C0-C2

reaction model [111], which is the base chemistry of the DLR reaction database for heavy-
hydrocarbon oxidation. The syngas reaction model contains 55 chemical reactions in 17
species. The reaction mechanism and the nominal reaction rate parameters are summarized
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in Table B.1 and more details can be found in [110].

For each reaction in the mechanism, an uncertain multiplier λi is defined to represent the
uncertainty in the associated reaction rate such that

ki = λiki,0, i = 1, 2, . . . , 55, (4.1)

where ki,0 is the nominal rate constant computed using the parameter values given in Ta-
ble B.1. The prior uncertainty range of each λi was assessed separately [110], and the results
are summarized in Table B.2.

The model parameters xi are selected as logarithms of λ and denoted by x ∈ R55:

xi = lnλi, i = 1, 2, . . . , 55. (4.2)

In the present study, each model parameter xi has a nominal value 0, resulting in the prior
uncertainty region H being a 55-dimensional orthotope with the nominal value at the origin.

4.2 Experimental Data

As detailed in [110], two types of commonly used QOIs in a combustion reaction kinetics
study were collected: the ignition delay time measurements in a shock-tube facility and
laminar flame speed measurements. The selected ignition delay time QOIs [41, 54, 58,
65, 73, 75, 78, 82, 93, 95, 125, 127, 136] cover a wide range of temperatures (800 to 2500
K), pressures (0.5 to 50 bar) and equivalence ratios (φ = 0.5 to 1.5). The laminar flame
speed QOIs included in the dataset [18, 43, 44, 48, 50, 51, 66, 68, 77, 85, 86, 123, 124, 130,
131, 133, 134, 138] were measured at 0.1 to 0.5 MPa using a variety of techniques. The
selected laminar flame speed QOIs cover the full range of operating conditions available in
the literature. The uncertainties in the experimental data were taken from [110] and are
reproduced in Tables B.3 and B.4. The current analysis includes a total of 122 ignition delay
time QOIs and 45 laminar flame speed QOIs.

4.3 Simulation and Surrogate Models

Ignition delay time QOIs were simulated using ReactionLab [29] with the homogeneous
constant-volume adiabatic reaction model, and the laminar flame speed QOIs were simulated
using the Chemkin software [59]. Quadratic surrogate models were selected for the current
analysis. Because the ignition delay time QOIs can vary by orders of magnitude for different
parameter vectors in H, the corresponding response surfaces were constructed with the
logarithmic transformation of the QOIs. The response surfaces of laminar flame speed QOIs
were generated without the logarithmic transformation. As a result,

Se(x) ≈ ye(x) =

{
log10 tign(x), e = 1, 2, . . . , 122

v(x), e = 123, 124, . . . , 167,
(4.3)
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where tign(x) and v(x) denote the simulated ignition delay time and laminar flame speed
with parameter vector x, respectively.

The maximum absolute fitting error εe, defined as

εe := max
x∈H
|ye(x)− Se(x)| , (4.4)

was estimated as ε̂e using a test set of design points denoted by Xtest:

ε̂e = max
x∈Xtest

|ye(x)− Se(x)| . (4.5)

The distribution of the estimated fitting errors for ignition delay time and flame speed QOIs
is given in Figure 4.1. The calculated ε̂e was included in the corresponding model-data

Figure 4.1: Distribution of the estimated fitting errors for ignition delay time and laminar
flame speed quantities of interest (QOIs).

constraints to maintain their validity with respect to the surrogate model. The model-data
constraint with fitting error is as follows:

Le − ε̂e ≤ Se(x) ≤ Ue + ε̂e, e = 1, 2, . . . , 167. (4.6)

The initial dataset with all 167 QOIs is denoted as DLR-SynG 0.
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4.4 Consistency Analysis

The dataset DLR-SynG 0 turned out to be massively inconsistent with the computed
scalar consistency measure (SCM) being within [-2.84, -2.25]. Eight QOIs, listed in Table 4.1,
were found to be self-inconsistent: no parameter vector exists in H to predict these QOIs
individually within their respective experimental uncertainty bounds. The self-inconsistent
QOIs were removed and the resulting dataset was denoted as DLR-SynG 1. Moreover, DLR-
SynG 1 was also proven to be inconsistent, with the computed SCM within [-2.29, -1.62]. The
VCM method (Section 2.6) was then applied to the DLR-SynG 1 dataset with a unit weight
for relaxation associated with QOI uncertainty bounds and a zero weight for relaxation
associated with model parameter uncertainty bounds. An inner-bound solution was found
using a nonlinear constrained optimization solver, where the optimal relaxation vector has 37
nonzero entries. The corresponding QOIs and their suggested change of uncertainty bounds
are given in Table 4.2.

Table 4.1: Eight self-inconsistent quantities of interest (QOIs) in the DLR-SynG 0 dataset

PrIMe ID QOI type
a00000309 ignition delay time
a00000352 ignition delay time
a00000355 ignition delay time
a00000358 ignition delay time
a00000359 ignition delay time
a00000360 ignition delay time
a00000503 ignition delay time
a00000504 ignition delay time

A consistent dataset was obtained by removing these 37 QOIs from the DLR-SynG 1
dataset. The resulting consistent dataset is denoted as DLR-SynG 2 and contains 122 QOIs,
of which 84 and 38 are the ignition delay time and laminar flame speed QOIs, respectively.
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Table 4.2: Calculated vector consistency measure result for DLR-SynG 1 dataset.

PrIMe ID QOI type
Estimated

uncertainty (%)
Lower bound
change (%)

Upper bound
change (%)

a00000110 ignition delay time 50 -14.84
a00000113 ignition delay time 40 13.00
a00000189 ignition delay time 30 0.92
a00000190 ignition delay time 30 10.14
a00000191 ignition delay time 50 431.95
a00000228 ignition delay time 35 -12.78
a00000236 ignition delay time 30 -2.56
a00000237 ignition delay time 35 -13.48
a00000241 ignition delay time 30 86.11
a00000308 ignition delay time 30 1.46
a00000310 ignition delay time 40 187.12
a00000311 ignition delay time 30 28.59
a00000312 ignition delay time 30 48.63
a00000316 ignition delay time 35 175.15
a00000335 ignition delay time 25 11.94
a00000353 ignition delay time 30 17.76
a00000354 ignition delay time 40 44.21
a00000356 ignition delay time 25 6.02
a00000357 ignition delay time 35 28.49
a00000490 ignition delay time 30 -4.55
a00000498 ignition delay time 30 -16.77
a00000499 ignition delay time 30 -1.25
a00000500 ignition delay time 30 51.79
a00000505 ignition delay time 30 51.07
a00000507 ignition delay time 30 14.50
a00000491 ignition delay time 20 -79.93
a00000492 ignition delay time 50 -6.40
a00000495 ignition delay time 50 -34.47
a00000496 ignition delay time 50 -44.16
a00000497 ignition delay time 50 -10.55
a00000128 flame speed 10 -0.73
a00000129 flame speed 10 -0.30
a00000260 flame speed 10 2.43
a00000269 flame speed 10 4.74
a00000271 flame speed 10 -6.75
x00000471 flame speed 20 -6.18
a00000534 flame speed 10 5.34
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4.5 Uncertainty Quantification

The feasible set of DLR-SynG 2 is embedded in a 55-dimensional parameter space and is
difficult to visualize. Instead, its 1D projections onto each model parameter coordinate were
examined. The projections are the prediction intervals of the model parameters and were
computed by solving the prediction problems in Equations (2.7) and (2.8) with Mp = xi.
The multipliers whose outer-bound prediction intervals are different from their corresponding
prior uncertainty intervals are listed in Table 4.3, with the changed uncertainty bounds
marked in red.

Table 4.3: Reaction rate multipliers with posterior uncertainty bounds in DLR-SynG 2 that
are different from their prior bounds.

Index Reaction
λ prior bounds λ posterior bounds
lower upper lower upper

3 H2+O → OH+H 0.63 1.58 0.81 1.58
4 H2+OH → H2O+H 0.65 1.63 0.65 1.52
6 O2+H → OH+O 0.80 1.26 0.90 1.26
10 H+O → OH 0.20 5.00 0.96 5.00
11 HO2+H → H2+O2 0.50 2.00 0.56 2.00
17 HO2+OH → H2O+O2 0.32 3.16 0.39 3.16
23 CO+OH → CO2+H 0.80 1.26 0.80 1.08
24 CO+O → CO2 0.50 2.00 0.50 1.97

The sensitivity of these eight changed bounds with respect to experimental or model
parameter uncertainty bounds was computed using the formulas given in Section 2.7.5. The
ranked results are illustrated in Figure 4.2 for the top 15 contributors. The results reveal
that both experimental uncertainty bounds and prior uncertainty bounds of parameters can
exhibit comparable influence on the predicted parameter bounds. A few entries appear
frequently in all subplots. For example, the ignition delay time QOI a00000107 appears in 6
out of 8 cases. The flame speed QOI a00000261 appears in 7 out of 8 cases. Model parameter
x10, which is associated with reaction H+O → OH, appears 6 out of 8 cases. The model
parameter x11, which is associated with reaction HO2+H → H2+O2, appears in 6 out of 8
cases. Entries exist that are unique to one of the eight subplots (e.g., the flame speed QOI
a00000282 for the predicted lower bounds of reaction HO2+H → H2+O2).
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Figure 4.2: Ranked sensitivity of the shrunk posterior bounds (the lower or upper uncertainty
bound marked red in Table 4.3) of parameters x3, x4, x6, x10, x11, x17, x23 and x24 with
respect to the experimental uncertainty bounds and parameter prior bounds. The red and
blue horizontal bars denote the upper and lower uncertainty bounds, respectively, of the
contributing experimental uncertainty bounds or parameter prior bounds.
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Four QOIs that were removed using the VCM method were selected to investigate their
prediction intervals and the associated sensitivity using the DLR-SynG 2 dataset. The
prediction intervals are given in Table 4.4 along with the experimental uncertainty intervals.
The results indicate that the inner-bound prediction intervals of a00000308 and a00000129

Table 4.4: Prediction intervals of the four selected quantities of interest. The units for
ignition delay time and flame speed measurements are millisecond and centimeter per second,
respectively.

PrIMe ID QOI type
Prediction interval

Exp. interval
Inner bound Outer bound

a00000236 ignition delay time [955.7, 1216.2] [715.7, 2052.9] [1267, 2353]
a00000308 ignition delay time [408.8, 437.4] [372.2, 504.4] [221.9, 412.1]
a00000129 flame speed [132.3, 136.1] [126.5, 139.2] [135.9, 166.1]
a00000260 flame speed [35.4, 36.2] [33.4 37.5] [28.8, 35.2]

share some common regions with the experimental uncertainty intervals, whereas the other
two do not. All outer-bound prediction intervals are partially overlapped with the associated
experimental uncertainty interval. The sensitivity of the prediction outer lower bound of the
four QOIs is presented in Figure 4.3. Again, the results suggest that both the experimental
uncertainty bounds and parameter prior uncertainty bounds can contribute comparably to
the prediction intervals. Experimental data from the same type of QOI are more influential
on the prediction interval bounds. The sensitivity results for the ignition delay time QOI
a00000236 demonstrate that 7 out of 8 experimental data entries in the plot are QOIs of the
same type, except for QOI x00000471. For ignition delay time QOI a00000308, 5 out of 7
experimental data entries are from the same type, except for QOIs a00000261 and a00000517.
For flame speed QOIs, a00000129 and a00000260, QOIs of the same type occupy 6 out of
the top 10 and 5 out of the top 8 contributing experimental data entries, respectively. These
observations underlie the collaborative part of the B2BDC methodology.
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Figure 4.3: Ranked sensitivity of prediction lower bound for the four quantities of interest
listed in Table 4.4 with respect to experimental uncertainty bounds and parameter prior
bounds. The red and blue horizontal bars denote the upper and lower uncertainty bounds,
respectively, of the contributing experimental uncertainty bounds or parameter prior bounds.
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4.6 Sampling the Feasible Set

The Bayesian inference method was applied to the DLR-SynG 2 dataset with the uniform
prior distribution and uniform likelihood function, resulting in a posterior distribution that is
uniformly distributed over the feasible set. The Gibbs sampler developed in Section 3.3 was
used to generate samples from the posterior distribution. To monitor the convergence, 10
starting points were generated by drawing every 100th point from the Markov chain Monte
Carlo (MCMC) chain initialized at the feasible point obtained while computing the SCM.
For each starting point, an MCMC chain of length 8× 104 was generated. The convergence
test results are presented in Figure 4.4 based on a sample set including the second half of
each chain. An examination of Figure 4.4 indicates that the chain has converged to the target
distribution. The MPSRF decreases to close to 1, and the logarithmic determinants of the
among-chain and within-chain covariance matrices have stabilized and reached values close
to each other. The converged sample set of 4 × 105 total points was used for the following
analysis.
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Figure 4.4: Convergence test results of samples from the DLR-SynG 2 feasible set. The
results are based on 4 × 105 sampled points using the second half of the 10 Markov chain
Monte Carlo chains.

The marginal histogram of each model parameter xi is presented in Figure 4.5 with the
B2BDC inner-bound and outer-bound prediction intervals. Besides the model parameters
listed in Table 4.3 whose outer-bound prediction intervals are different compared to the prior
uncertainty intervals, other parameters exhibit a reduced uncertainty in their inner-bound
prediction intervals (e.g., x5 and x12). The histograms indicate that more parameters have
a different posterior distribution compared to the prior uniform distribution compared to
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the observation with the inner-bound prediction intervals. For example, parameters x5, x8,
x9, x16, x30, x22, x30, x40 have a posterior distribution concentrated toward the prior upper
bound whereas parameters x14, x20, x24, x25, x33 have a posterior distribution concentrated
toward the prior lower bound.

Correlations among model parameters and QOI predictions based on the generated sam-
ples were investigated. A couple of cases are displayed in Figure 4.6 where a relatively strong
correlation is observed between model parameters, between QOI predictions, and between
a model parameter and a QOI prediction. Because the model parameters have a uniform
prior distribution in H, the observed correlation among model parameters and the small
occupation of the histograms compared to H are direct consequences of data collaboration.

The first row in Figure 4.6 reveals that, to be consistent with all experimental data,
increasing the rate of reaction HO2+O → OH+O2 (x19) is likely to require increasing and
decreasing rates of reactions HO2+HO2 → H2O2+O2 (x21) and CO+OH → CO2+H (x23),
respectively. The subplots in the second row reveal that the 8th and 23rd, and the 33rd
and 48th ignition delay QOIs have a positive correlation over feasible parameter vectors.
A parameter vector that predicts a longer ignition delay time for QOI8 and QOI33 is likely
to result in predicting a longer ignition delay time for QOI23 and QOI48. Inspection of the
last row indicates that, QOI40 and QOI4 are (linearly) dependent on the rate constants of
reactions CH+ O2 → CO2+H (x1) and H2+OH → H2O+H (x32). A larger reaction rate of
CH+ O2 → CO2+H or H2+OH → H2O+H in the feasible set is more likely to increase or
decrease the respective QOI prediction. Correlations are the simplest coupled information
on two scalar quantities. Although coupled relations involving more quantities are difficult
to visualize, they are, in principle, fully calculable from the samples.
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Figure 4.5: Marginal histograms and Bound-to-Bound Data Collaboration predicted inner-
bound (blue lines) and outer-bound (red lines) posterior intervals of model parameters. The
axis limits are scaled by the prior uncertainty bounds of each xi.
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Figure 4.6: Observed two-dimensional correlations between model parameters (first row),
between quantities of interest (second row), and between a model parameter and a quantity
of interest (third row). The axis limits are scaled to the prior and experimental uncertainty
bounds (including fitting error) for model parameters and quantities of interest, respectively.
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4.7 Reaction Model Optimization

Optimized reaction models were obtained using the criteria presented in Section 2.7.6.
The DLR-SynG 1 dataset is inconsistent, and only the H-based methods are applicable
in this case, whereas both H- and F -based optimization methods apply to DLR-SynG 2.
Therefore, the LS-H optimized models were computed for both the DLR-SynG 1 and DLR-
SynG 2 datasets. For DLR-SynG 2, 1N-F and LS-F optimized models were also computed.
Their performance was evaluated by calculating (1) the average squared prediction error,
and (2) the number of QOI predictions that violate the experimental uncertainty interval.
The results are presented in Figure 4.7 for the optimized and original models (with nominal
rate constants) and the VCM model (the model parameter vector obtained in solving the
inner-bound solution of the VCM).

Figure 4.7: Left: Average squared deviation of the optimized model predictions from the
experimental observations. Right: Number of optimized model predictions that are outside
of their experimental uncertainty bounds. Red and blue denote models computed using the
DLR-SynG 1 and DLR-SynG 2 datasets, respectively.

Comparison of both performance criteria indicates that, for both datasets, DLR-SynG 1
and DLR-SynG 2, all optimized models (including the VCM model) produce a significantly
better agreement with the experimental data than the original model. As remarked in [28],
the results imply that simply putting together the literature-recommended rate constants
in a derived syngas combustion mechanism is insufficient to guarantee its predictivity for
macroscopic syngas combustion properties, such as the ignition delay time and laminar flame
speed. As in [136], the LS-H models generate a smaller average prediction error compared
to the LS-F and 1N-F models because the method searches an enclosed region (H compared
to F). However, the LS-H models predict 44 and 13 QOIs outside of their experimental
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uncertainty bounds for DLR-SynG 1 and DLR-SynG 2, respectively. The LS-F and 1N-F
models, by design, generate predictions within all QOI uncertainty bounds.

Figure 4.8: Relative model parameter (x) adjustments in the LS-H (left) and 1N-F (right)
optimized models. Both models were computed using the DLR-SynG 2 dataset.

The model parameter vectors associated with the LS-H and 1N-F model computed for the
DLR-SynG 2 dataset are depicted in Figure 4.8. The parameter vector of the LS-H model
changes all model parameters, and many of them are adjusted to their respective lower or
upper prior uncertainty bounds. In comparison, the parameter vector of the 1N-F model
suggests a sparser change across the model parameters and retains a noticeable number of
the parameters at their nominal values.

The original model and the LS-H, LS-F, 1N-F, and VCM optimized models were com-
pared with another recently published syngas reaction model [126] that has been reported to
outperform 19 other models. This model is referred to as Varga’s model, and its prediction
performance was calculated for the data collected in this study. The results for the igni-
tion delay times and laminar flame speeds are given in Figures 4.9 to 4.11 and Figures 4.12
to 4.14, respectively.

The results demonstrate that all optimized models perform with about the same overall
quality. Some models perform better in one set of conditions, whereas others make pre-
dictions closer to the experimental observations for different sets of conditions. The results
highlight the focus of B2BDC on systematically quantifying uncertainty in model parameters
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Figure 4.9: Ignition delay time data in [58, 73] simulated using the original model (black
line), Varga’s model (gray line), LS-H model (dotted red line), vector consistency measure
(VCM) model (red dashed-dotted line), LS-F model (dashed blue line), and 1N-F model
(short-dashed blue line). Symbols are experimental data with uncertainty represented by
vertical bars. Black stars are quantities of interest (QOIs) in the DLR-SynG 2 dataset. Red
stars are self-inconsistent QOIs; green stars are QOIs detected through VCM analysis.

through data collaboration instead of computing a solution that best fits the experimental
observations.

We then tested all models at relatively extreme operating conditions of a combustor,
with a fuel with a low heating value initialized at low temperatures and high pressures.
Specifically, we selected a fuel mixture containing 1.0% H2, 5.3% CO, 42.7% H2O, and 51.1%
CO2 that is mixed with preheated air under fuel-lean conditions with φ = 0.5, P = 12 bar,
and T=720 to 820K. The prediction results are illustrated in Figure 4.15. The LS-H model,
which produces the smallest prediction error over the dataset, significantly underpredicts all
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Figure 4.10: Ignition delay time data in [54, 127] simulated using the original model (black
line), Varga’s model (gray line), LS-H model (dotted red line), vector consistency measure
(VCM) model (dash-dotted red line), LS-F model (dashed blue line), and 1N-F model (short-
dashed blue line). Symbols are experimental data with uncertainty represented by vertical
bars. Black stars are quantities of interest (QOIs) in the DLR-SynG 2 dataset. Green stars
are QOIs detected through VCM analysis.

targets relative to their B2BDC prediction intervals.
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Figure 4.11: Ignition delay time data in [65, 75] simulated using the original model (black
line), Varga’s model (gray line), LS-H model (dotted red line), vector consistency measure
(VCM) model (dashed-dotted red line), LS-F model (dashed blue line), and 1N-F model
(short-dashed blue line). Symbols are experimental data with uncertainty represented by
vertical bars. Black stars are quantities of interest (QOIs) in the DLR-SynG 2 dataset. Red
stars are self-inconsistent QOIs. Green stars are QOIs detected through VCM analysis.
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Figure 4.12: Laminar flame speed data in [123] simulated using the original model (black
line), Varga’s model (gray line), LS-H model (dotted red line), vector consistency measure
(VCM) model (dashed-dotted red line), LS-F model (dashed blue line), and 1N-F model
(short-dashed blue line). Symbols are experimental data with uncertainty represented by
vertical bars. Black stars are quantities of interest (QOIs) in the DLR-SynG 2 dataset.
Green stars are QOIs detected through VCM analysis.
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Figure 4.13: Laminar flame speed data in [82, 133, 131] simulated using the original model
(black line), Varga’s model (gray line), LS-H model (dotted red line), vector consistency
measure (VCM) model (dashed-dotted red line), LS-F model (dashed blue line), and 1N-F
model (short-dashed blue line). Symbols are experimental data with uncertainty represented
by vertical bars. Black stars are quantities of interest (QOIs) in the DLR-SynG 2 dataset.
Green stars are QOIs detected through VCM analysis.
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Figure 4.14: Laminar flame speed data in [43, 86, 66, 44] simulated using the original model
(black line), Varga’s model (gray line), LS-H model (dotted red line), vector consistency
measure (VCM) model (dashed-dotted red line), LS-F model (dashed blue line), and 1N-F
model (short-dashed blue line). Symbols are experimental data with uncertainty represented
by vertical bars. Black stars are quantities of interest (QOIs) in the DLR-SynG 2 dataset.
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Figure 4.15: Ignition delay time predicted with the original model (black line), Varga’s model
(red), vector consistency measure (VCM) model (blue), LS-H model (green), LS-F model
(orange), 1N-F model (purple), and bound-to-bound data collaboration (B2BDC) prediction
interval (vertical black bar).
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4.8 Chapter Summary

The B2BDC method was applied to a syngas combustion dataset with shock-tube ignition
delay time and laminar flame speed QOIs. The initial dataset turned out to be massively
inconsistent, and dataset inconsistency was effectively resolved using the VCM method. The
feasible set of the consistent dataset was examined by computing the prediction intervals
of model parameters and a few VCM-identified QOIs. A converged set of samples was
generated using the Gibbs sampler that is uniformly distributed in the feasible set. Marginal
histograms of model parameters and 2D correlations were examined based on the sample
set. Optimized models were obtained and compared to another well-established model. All
compared models perform comparably over the data in the dataset. However, the LS-H
model exhibits a significantly deteriorated performance at conditions different from those
considered in the dataset.

In addition to the eight self-inconsistent QOIs, the VCM method detects a sizable num-
ber of data with a nonzero uncertainty bound relaxation: 37 out of 159 (≈23%). Removal
of experimental data from an analysis is always the last choice, especially when no strong
evidence supports such an operation. For example, in the present analysis, the identified
QOIs exhibit no obvious similarities among them. They are not from the same research
institute, nor do they have similar experimental conditions. Yet we must remove the QOIs
suggested by the VCM computation to proceed with computations that apply only to a con-
sistent dataset. However, the inconsistency may not, or at least may not entirely be caused
by the incorrectly assessed experimental uncertainty. The underlying model may be inade-
quate to represent the experimental measurements faithfully. The question is whether we can
compensate for the influence of model discrepancy in B2BDC and resolve the inconsistency
without discarding experimental data. This is the topic of the next chapter.
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Chapter 5

Representation of Model Discrepancy

The uncertainty quantification (UQ) analysis with the syngas combustion dataset in
Chapter 4 demonstrates a situation where a large number of data (37 out of 159) are detected
by the vector consistency measure (VCM) method in addition to eight self-inconsistent ones.
Removal of such a considerable number of experimental data without a clear justification
is accompanied with serious concern and raises the question: is there any missing factors
in the analysis that we have not considered? In this chapter, I investigate another source
of uncertainty caused by the potential difference between the model and the underlying
physical process it simulates, termed as model discrepancy, and develop new methods in
Bound-to-Bound Data Collaboration (B2BDC) framework to explicitly compensate for the
model inadequacy in the computations.

5.1 Definition of Model Discrepancy

In the work of Kennedy and O’Hagan [60], experimental observations are assumed to be
noisy measurement of the underlying true process which represents reality,

y = R(s) + ε, (5.1)

where ε is the measurement noise, s are the scenario parameters, and R(s) represents reality.
The scenario parameters are controllable properties known from the experimental setup and
can vary from experiment to experiment, for example the initial temperature and pressure
for a shock tube ignition delay time measurement. In any scientific endeavor, knowledge of
the true process is an idealization; a model, considered as tentatively entertained [7], may
have a systematic error in its prediction. Kennedy and O’Hagan [60] suggest to describe the
uncertainty in the model form as an additive term δ, referred to as model discrepancy, to
the model output,

R(s) = M(x∗, s) + δ(s), (5.2)
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where x∗ is the underlying true calibration parameter vector. The model parameters are
uncertain parameters intrinsic to the model, M(·), and share a common set of values across
all experiments.

The assumption that the discrepancy term δ depends on scenario parameters s is an
important characteristic of the setup: it attempts to describe systematic errors at different
scenarios by a structured function. This structure puts an implicit constraint on values
the discrepancy term can take at different experimental conditions and provides an oppor-
tunity to infer the discrepancy through UQ analysis. Discrepancy with different types of
quantity of interest (QOI), for example the ignition delay time and laminar flame speed
QOIs encountered in the syngas application in Chapter 4, should be compensated for by
different discrepancy terms since the systematic error associated with them is unlikely to be
correlated.

This approach of compensating for model discrepancy has received substantial interest
and following under the Bayesian calibration framework (see, e.g., [1, 11, 55, 57, 63, 96, 97,
121, 129]). While referring to model discrepancy as model inadequacy, model bias, model
form uncertainty, model error, and model form error, some use a Gaussian process (GP) [102,
118] to represent δ(s) [11, 55, 96, 97, 121, 129] and others a functional decomposition [57, 63].
Efforts have also been made to overcome the difficulty in identifying model discrepancy and
model parameters individually, and to improve prediction performance at conditions different
from the training data. For example, Brynjarsdóttir and O’Hagan [11] put constraints on the
GP realization of model discrepancy at specific conditions derived from domain knowledge.
Plumlee [96] argued that the prior distribution of model discrepancy should be orthogonal
to the gradient of the model under certain assumptions. Wang et al. [129] estimated the
model discrepancy and model parameters separately. Joseph and Melkote [57] constructed
a statistical model of discrepancy in a sequential manner, limiting its contribution to the
prediction.

5.2 B2BDC with Model Discrepancy

We adopt the definition of model discrepancy proposed by Kennedy and O’Hagan in
Equation (5.2) and on that basis introduce a scenario-dependent discrepancy function δ(s)
into the model-data constraint,

Le ≤Mk(x, se) + δk(se) ≤ Ue, (5.3)

where the subscript k is the index representing the type of the eth QOI. We assume that the
discrepancy takes the form of a linear combination of nk basis functions, {Φk

i }
nk
i=1,

δk(s) =

nk∑
i=1

cki Φ
k
i (s), (5.4)
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where ck = {cki }
nk
i=1 are unknown coefficients, and nk = 0 refers hereafter to a zero discrepancy

function (i.e., δk = 0). Substitution of Equation (5.4) into Equation (5.3) results in,

Le ≤Mk(x, se) +

nk∑
i=1

cki Φ
k
i (se) ≤ Ue. (5.5)

Let c denote the vector containing all discrepancy related coefficients. The linear form in
Equation (5.4) is motivated by the fact that existing tools in B2BDC are directly applicable
with Equation (5.5) in the extended parameter space (x, c). While {Φk

i }
nk
i=1 can be any set

of nonlinear functions, the modified model-data constraints are linear in c. Representing
model discrepancy by a linear combination of basis functions has also been used by others
[57]. However, our method is different that it does not fit a particular model discrepancy
function during the analysis. As a result, orthogonality among basis functions that provides
a better performance regarding function estimation is not required.

We define the joint feasible set in the extended parameter space of x and c by combining
the prior uncertainty and modified model-data constraints,

Fδ = {(x, c) |x ∈ H, c ∈ Hc, Le ≤Mk(x, se) +

nk∑
i=1

cki Φ
k
i (se) ≤ Ue, e = 1, 2, . . . , N}, (5.6)

where Hc represents the prior uncertainty region of the discrepancy-function coefficients c.
The projection of Fδ on the model parameter space is,

F̃ = {x | ∃ĉ : (x, ĉ) ∈ Fδ}, (5.7)

which represents the set of feasible model parameters after including the discrepancy func-
tions. When the joint feasible set is not empty, prediction at an unmeasured scenario sp can
be obtained by solving the modified versions of Equations (2.7) and (2.8) as following:

Lp = minimize
x, c

Mk′(x, sp) +

nk′∑
i=1

ck
′

i Φk′

i (sp)

subject to x ∈ H,
c ∈ Hc,

Le ≤Mk(x, se) +

nk∑
i=1

cki Φ
k
i (se) ≤ Ue, e = 1, 2, . . . , N,

(5.8)

and

Up = maximize
x, c

Mk′(x, sp) +

nk′∑
i=1

ck
′

i Φk′

i (sp)

subject to x ∈ H,
c ∈ Hc,

Le ≤Mk(x, se) +

nk∑
i=1

cki Φ
k
i (se) ≤ Ue, e = 1, 2, . . . , N,

(5.9)
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where k′ represents the QOI type of the prediction model. To simplify the notation for a
more concise demonstration of the method, we assume a unique type of QOIs and remove
the index k hereafter.

The proposed method treats the observed data as the sum of model output and discrep-
ancy function as implied by Equation (5.2). The joint feasible set, defined over the extended
parameter space (x, c), therefore represents only combinations of the model and discrepancy
function that are consistent with the data. It is not possible to learn the model or the
discrepancy function separately without further assumptions and/or information.

Conceptually, the discrepancy function should be included whenever an analyst is aware
of any potential model inadequacy based on domain expertise. However, this criterion is
rather overoptimistic and can be difficult to operate with: if the prior knowledge is enough
to indicate the existence of a systematic error, why don’t we improve the implemented model
before the analysis; if it is not evident enough, how can we make the judgement? Therefore,
from a practical perspective the developed method simply provides another resolution to
dataset inconsistency in addition to the VCM method, motivated by that model discrepancy
can be a competitive contributor to the observed disagreement between data and models.
With this interpretation, a challenge is the choice of basis functions since there are infinitely
many sets of basis functions that can regain dataset consistency. An analyst may simply
choose the set with the least number of basis functions that resolves dataset inconsistency
following similar logic in developing Akaike’s criterion: to penalize larger number of pa-
rameters and prevent overfitting. If extra insight is provided, various forms of discrepancy
function can be investigated before making the final decision based on considerations besides
the requirement that dataset consistency is recovered.

The developed framework with model discrepancy expressed using Equation (5.4) has a
general feature that, for a given dataset and a prediction QOI, the prediction interval [Lp, Up]
becomes systematically wider if additional basis functions are included. To understand this,
suppose two sets of basis functions are used in an analysis, with the second being a superset
of the first. Let vector c represent the coefficients for the shared basis functions {Φi}ni=1 and
c′ the coefficient vector for the additional basis functions {Φ′j}n

′
j=1 as following:

δ1(s) =
n∑
i=1

ciΦi(s)

δ2(s) = δ1(s) +
n′∑
j=1

c′jΦ
′
j(s).

(5.10)

The corresponding joint feasible sets formed by Equation (5.6) are denoted by F1
δ and F2

δ .
Any feasible point (x, c) ∈ F1

δ is also feasible for F2
δ by setting c′ to a zero vector, i.e.,

(x, c, c′)|c′=0 ∈ F2
δ . Therefore, the prediction interval of a QOI computed over F1

δ is always
contained by that computed over F2

δ . The increased uncertainty in the prediction interval
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can depend on the prediction model, the dataset, and the selected basis functions, as will be
demonstrated in Sections 5.3 and 5.4.

Previous work (e.g., [11, 96]) has demonstrated the value of including prior knowledge of
the model discrepancy function when applying statistical UQ methods. In B2BDC, this can
be accomplished by incorporating additional constraints. For example, sign constraints on
the discrepancy function, or its derivatives, can be enforced at specified scenario conditions
by introducing linear inequalities in c. An example of forcing model discrepancy function to
be positive at selected scenarios is

n∑
i=1

ciφi(sj) > 0, j = 1, 2, . . . . (5.11)

The effect of such constraints is automatically propagated to predictions through augmenting
the feasibility constraint in Equations (5.8) and (5.9). Another example of constraining the
magnitude of model discrepancy function is given in Section 5.3.

The posterior uncertainty of the model discrepancy function at any specified scenario sp
can be calculated by solving the prediction problems in Equations (5.8) and (5.9) with the
objective function replaced by δ(sp) as following:

Lδ = minimize
x, c

n∑
i=1

ciΦi(sp)

subject to x ∈ H,
c ∈ Hc,

Le ≤Mk(x, se) +

nk∑
i=1

cki Φ
k
i (se) ≤ Ue, e = 1, 2, . . . , N,

(5.12)

and

Uδ = maximize
x, c

n∑
i=1

ciΦi(sp)

subject to x ∈ H,
c ∈ Hc,

Le ≤Mk(x, se) +

nk∑
i=1

cki Φ
k
i (se) ≤ Ue, e = 1, 2, . . . , N,

(5.13)

Repeating this computation at various conditions in the scenario parameter space can identify
regions where uncertainty in the model discrepancy function is large. In a similar manner,
the posterior uncertainty can be calculated for each discrepancy-function coefficient ci.

Application of this developed method is demonstrated with two examples in the follow-
ing sections: an illustrative mass-spring-damper system and a realistic hydrogen combustion
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system. In each example, we started with a postulated “true” model to represent the under-
lying true process. An inadequate model for the analysis was then created by omitting some
parts of the true model and a true calibration parameter value was selected. The developed
framework was applied to the inadequate model and the following results are reported and
discussed for different choices of basis functions:

1. Dataset consistency

2. If the dataset is consistent, a) the prediction intervals at interpolated and extrapolated
conditions; b) whether the true process values are contained in the prediction inter-
vals, and to a secondary point, whether the true calibration parameter x∗ is in the
(projected) feasible set.

The computation was conducted for two levels of experimental uncertainty to provide a
more comprehensive characterization of the developed method. To clarify the nomenclature,
δ∗ and δ are used to represent the true model discrepancy defined in Equation (5.2) and the
linear combination in Equation (5.4), respectively. We also differentiate between interpolated
and extrapolated predictions, where the former refers to sp lying within the training domain
and the latter outside. For the simpler mass-spring-damper example, no surrogate models
were used; quadratic surrogate models were used for the hydrogen combustion example. In
both examples, only the inner-bound solutions were calculated and examined.

5.3 One-dimensional Mass-Spring-Damper System

5.3.1 Problem Statement

The force, F , needed to extend or compress a spring by a small distance, z, is expressed
using Hooke’s law

F = −kz, (5.14)

where k is a constant characteristic of the spring, its stiffness. We now consider a simple
system: a ball attached to a spring, whose other end is fixed at a wall, sketched in Figure 5.1.
The ball has a mass m = 1 and is placed initially at z0 = −1.5 with an initial velocity
v0 = 1. In addition to the force exerted by the spring, the motion of the ball is also affected
by a damping force proportional to the ball’s velocity. Thus, the evolution of the ball’s
displacement is described by

d2z

dt
= −kz − bdz

dt
,

z|t=0 = z0 = −1.5,

dz

dt

∣∣∣∣
t=0

= v0 = 1,

(5.15)
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Figure 5.1: Sketch plot of the mass-spring-damper system.

where b is the constant coefficient of the damping force and its value is set to 0.05. For a given
k, displacement evolution of the system described in Equation (5.15)—the “true” model in
this example—is the solution to a second order, constant coefficient, ordinary differential
equation and has analytic form

z∗(k, t) = e−bt/2

[
v0 + 0.5bz0√
k − b2/4

sin
(√

k − b2/4 t
)

+ z0 cos
(√

k − b2/4 t
)]

. (5.16)

The “inadequate” model is constructed by neglecting the damping force (i.e., b = 0), which
results in the solution

z(k, t) =
v0√
k

sin
(√

k t
)

+ z0 cos(
√
k t). (5.17)

In both the true and inadequate models, the stiffness k is the model parameter and the time t
is the scenario parameter. The true stiffness of the spring — the true calibration parameter
value — is selected to be k∗ = 0.25 with the prior uncertainty interval H = [0.2, 0.3].
The real displacement is evaluated with z∗(k∗, t). The displacements computed by the two
models with k = k∗ and their difference, the model discrepancy defined by Equation (5.2),
are demonstrated in Figure 5.2 for t ∈ [0, 4].

The QOIs for this example were chosen to be the displacements of the ball at specified
times te. The dataset is composed of twenty of these QOIs in the scenario region t ∈ [0, 3].
For each QOI, an “observed” value was generated by adding uniform noise with a prescribed
maximum magnitude ε to the true process value,

ze = z∗(k∗, te) + ε ue,

ue ∼ U(−1, 1), e = 1, 2, . . . , 20.
(5.18)

QOI uncertainty bounds were generated by setting Le = ze− ε and Ue = ze+ ε. The analysis
was performed with ε values of 0.05 and 0.1. Three prediction QOIs were generated for t
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Figure 5.2: The true model solution z∗(k∗, t), the inadequate model solution z(k∗, t) and the
model discrepancy function δ∗(t) = z∗(k∗, t)− z(k∗, t).

values of 1.5, 3.2, and 4. The first prediction case occurs at a scenario within the training-
set domain of [0, 3] and is an interpolated prediction. The second and third cases occur at
scenarios outside the training-set domain and are extrapolated predictions.
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5.3.2 Dataset Consistency and QOI Prediction

I first consider the ideal situation where the true model, given by Equation (5.16), and
the formulas in Chapter 2 are used in the B2BDC calculations. The computed prediction
intervals for the three prediction QOIs are displayed in Figure 5.3. With this setup, the
dataset is consistent with k∗ being feasible and the prediction intervals contain the true
process values at all three times for both tested ε’s. The length of the prediction intervals
at each prediction scenario is shorter for a smaller value of ε, indicating that more accurate
measurements produce more accurate predictions.
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Figure 5.3: Computed QOI prediction intervals for the mass-spring-damper example using
the true model. The horizontal red dashed lines mark the displacement computed with
the true model and true calibration parameter value, z∗(k∗, t). The vertical blue solid lines
designate the B2BDC predicted intervals, computed by solving optimization problems in
Equations (2.7) and (2.8).

I then move to a more realistic situation where an inadequate model, given by Equa-
tion (5.17), was examined with the new method proposed and described in Section 5.2. Four
different model discrepancy functions,

δ(t) =
n∑
i=1

ci−1t
i−1, n = 1, 2, 3, 4, (5.19)

were tested in addition to the case where δ = 0. The discrepancy function is a polynomial
in t of degree n− 1.

The outcome of the dataset consistency analysis is summarized in table 5.1. Examination
of these results shows that the dataset is inconsistent for both values of ε when n = 0, i.e.,
when no model discrepancy function is used. For ε = 0.05, a quadratic δ is required to obtain
dataset consistency. In this case, k∗ is also found to be feasible. For ε = 0.1, a constant δ
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Table 5.1: Results of the dataset consistency analysis

ε
n

0 1 2 3 4

0.05 inconsistent inconsistent inconsistent k∗ ∈ F̃ k∗ ∈ F̃
0.10 inconsistent k∗ 6∈ F̃ k∗ ∈ F̃ k∗ ∈ F̃ k∗ ∈ F̃

is enough to achieve consistency. However, k∗ becomes a feasible point only after using a
linear δ.

The computed QOI prediction intervals are displayed in fig. 5.4 for t = 1.5, 3.2, and
4. As expected, the prediction intervals with a higher order δ are wider for both ε values.
In the cases where δ produces a consistent dataset for both ε values, a shorter prediction
interval is observed with the smaller ε. For ε = 0.1, the calculated QOI prediction interval
using a constant δ does not contain the true value at all time instances. With a linear δ,
the prediction interval contains the true value at all three time instances. The prediction
interval contains the true value for all tested times and for both values of ε with a quadratic
and cubic δ.
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Figure 5.4: Predicted quantity of interest intervals at t = 1.5, 3.2 and 4. The horizontal
red dashed lines are the displacement derived with the true model and evaluated at the true
model parameter value, z∗(k∗, t). The vertical blue solid lines designate the B2BDC predicted
intervals, computed by solving the optimization problems in Equations (5.8) and (5.9). The
×’s mark dataset inconsistency.
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5.3.3 Posterior Bounds of Model Parameter and
Discrepancy-Function Coefficients

I now examine the posterior uncertainty bounds of model parameter k and discrepancy-
function coefficients {ci}ni=1 obtained for different polynomial orders of δ. These bounds
are the 1D projection of the joint feasible set Fδ onto coordinate directions. The volume
ratio of the joint feasible set and the multidimensional orthotope, whose sides are the pos-
terior projections of the parameters, was calculated as the fraction of 106 samples uniformly
distributed in the orthotope, that lay in Fδ. The results are presented in Table 5.2. For
comparison, the prediction interval of k obtained with the true model is also listed. The
computed volume ratio results show that the joint feasible set becomes progressively smaller
relative to the orthotope as dimension increases.

Table 5.2: Projection of the joint feasible set, computed with the inadequate model given in
Equation (5.17) and different model discrepancy functions defined in Equation (5.19), onto
coordinate directions of model parameter k and discrepancy-function coefficients {ci}ni=1, as
well as computed volume ratio of the joint feasible set to the box made of the projected
intervals. The symbol ∅ represents an empty posterior uncertainty due to dataset inconsis-
tency.

n k c0 c1 c2 c3 Volume ratio

ε = 0.05
[0.24, 0.25]∗

0 ∅
1 ∅ ∅
2 ∅ ∅ ∅
3 [0.20, 0.30] [-0.02, 0.03] [-0.08, 0.06] [-0.05, 0.00] 5.2× 10−3

4 [0.20, 0.30] [-0.02, 0.03] [-0.12, 0.06] [-0.13, 0.14] [-0.05, 0.03] 2.3× 10−4

ε = 0.10
[0.24, 0.26]∗

0 ∅
1 [0.20, 0.21] [0.00, 0.01] 5.2× 10−1

2 [0.20, 0.30] [-0.01, 0.04] [-0.11, 0.01] 4.9× 10−2

3 [0.20, 0.30] [-0.02, 0.04] [-0.13, 0.06] [-0.05, 0.03] 1.2× 10−2

4 [0.20, 0.30] [-0.04, 0.05] [-0.19, 0.19] [-0.31, 0.22] [-0.07, 0.09] 2.0× 10−4

∗Posterior uncertainty interval obtained with the true model.

The B2BDC analysis with the true model results in a significantly narrower posterior
uncertainty interval for model parameter k as compared to its prior; the interval in this case,
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by design, contains the true calibration parameter value. With the inadequate model and a
constant model discrepancy function (n = 1) at ε = 0.1, an even narrower posterior interval
is obtained. However, the true value k∗ is completely missed. With a higher order δ, the
posterior interval covers the same range as the prior. This outcome can be explained by
considering two factors that affect the prediction interval of k.

Firstly, the inadequate model has a different functional dependency on the model param-
eter k, resulting in a problem specific change of the posterior bounds: feasible k values for
the true model can become infeasible for the inadequate model and vice versa. In the current
example, this can be visually observed by comparing the displacement predicted using the
true and inadequate models and its dependency on model parameter k, as demonstrated in
Figure 5.5. Plotted in this figure are z∗(k, t) and z(k, t) computed for different k’s drawn
from its prior interval along with the experimental uncertainty intervals for the case where
ε = 0.1. For a given t, larger k values produce larger displacements for both models. The re-
sulting displacement bands (shown in cyan) cover similar vertical regions at smaller t values
but the band for the inadequate model gradually shifts upward with increasing magnitude at
larger t values comparing to that for the true model. For the last two observations, shown in
the right inset plot, only a small portion of the band satisfies the QOI uncertainty bounds.
Note that this portion corresponds to smaller k values. However, predictions with these
smaller k values invalidate at least one other QOI bound since the dataset is inconsistent,
motivating the use of δ to resolve inconsistency.

The second factor, as discussed in Section 5.2, is that inclusion of a higher order δ always
results in a wider prediction interval. For a constant δ at ε = 0.1, the posterior interval
widens from the empty set (with a zero δ) to an interval with finite length. With the
constant δ, feasible (k, c0) can be found with k limited to a very small region close to the
prior lower bound. The red dashed curve in Figure 5.5 corresponds to the prediction with
one of the feasible (k, c0).

The posterior uncertainty intervals of {ci}ni=1 also become systematically wider with a
higher polynomial order of δ, as expected. The enlarged posterior uncertainty intervals
associated with individual parameters k and {ci}ni=1 are related to the phenomenon usually
referred to in statistical literature (e.g., [11]) as confounding, manifesting itself in the presence
of a strong correlation between model parameter(s) and model discrepancy despite their
relatively wider marginal posterior distributions. We demonstrate this from a deterministic
perspective by the plots shown in Figure 5.6, generated for the case of a linear δ at ε = 0.1.
The plots display the joint feasible set of k, c0 and c1 along with its 2D projections. The
three-dimensional plot clearly shows that the joint feasible set occupies only a small fraction
of the enclosing cube. Inspection of the projections indicates that at a fixed k value, the
uncertainty in c0 and c1 is reduced, on average, to 66 and 46%, of their posterior ranges. At
a fixed c0, the uncertainty in c1 is reduced, on average, to 26% of its posterior range.
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Figure 5.5: Displacements computed with the true (left) and the inadequate (right) models
for various k values drawn from its prior interval [0.2, 0.3] (cyan regions). The black vertical
bars are observation quantity of interest bounds. The red dashed line is one feasible real-
ization of z(k, t) + c0 with k = 0.2 and c0 = 0.005. The insets are zoomed on the last two
observations for t ∈ [2.3, 2.8].



CHAPTER 5. REPRESENTATION OF MODEL DISCREPANCY 105

Figure 5.6: Joint feasible set of k, c0, and c1 and its 2-dimensional projections (colored in
red), computed with linear δ and ε = 0.1. The color bar in the upper-left figure color codes
the values of c1. The axes’ limits of k, c0, and c1 were set to their calculated posterior
uncertainty bounds.
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5.3.4 Posterior Uncertainty of Model Discrepancy

I now examine the lower and upper bounds of δ predicted at 1000 discrete time points, ti,
equally spaced in [0, 4]. The inner-bound solutions were calculated by solving the problems
(5.12 and 5.13) with nonlinear constrained optimization solvers. This region is divided into
the interpolation zone (t ∈ [0, 3]), where data exists, and the extrapolation zone (t ∈ [3, 4])
for comparison. The uncertainty bands are shown in Figure 5.7 for quadratic and cubic δ;
they were generated by linearly interpolating adjacent upper and lower bounds.
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Figure 5.7: Uncertainty bounds of quadratic and cubic δ (blue lines). The red line is the
true model discrepancy δ∗.

Inspection of these results shows that the computed uncertainty bounds enclose δ∗ in
both the interpolation and extrapolation zones for both quadratic and cubic δ. The width
of the predicted uncertainty band is effectively constrained within the interpolation zone.
The predicted uncertainty band starts to widen toward the end of the interpolation zone and
diverges rapidly in the extrapolation zone. The observed divergence is more dramatic for a
cubic δ than for a quadratic δ. The uncertainty band for a fixed δ is overall narrower with
a smaller ε in both interpolation and extrapolation zones.
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5.3.5 Additional Constraints on Model Discrepancy

As discussed in Section 5.2, constraints derived from domain knowledge about the model
discrepancy can be included in the B2BDC calculations. Let us assume that although we
introduce a discrepancy function, we would still like to rely on the inadequate model more
than on the introduced correction when making predictions. This idea reflects the general
spirit of some existing work in the literature (e.g., [57]). This requirement can be attained
by selecting among all feasible values of δ those that have their magnitude, averaged over
data and prediction scenarios, below a prescribed threshold, α,

1

N + 1
(|δ(tp)|+

N∑
i=1

|δ(ti)|) ≤ α, (5.20)

where N is the number of experimental data. This constraint was added to the joint feasible
set construction and prediction intervals were calculated with varying values of α. The
results for ε = 0.1 and cubic δ are shown in Figure 5.8. As expected, the prediction interval
increases for larger α, reaching the value obtained without constraint eq. (5.20) eventually,
as this additional constraint becomes inactive.
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Figure 5.8: Interpolation and extrapolation intervals computed by solving Equations (5.8)
and (5.9) with the extra constraint defined in Equation (5.20) for cubic δ at ε = 0.1. The
red dashed lines are the true prediction values.

5.4 Hydrogen Combustion Example

5.4.1 Problem Statement

In this section I apply the approach to a hydrogen combustion model: a homogeneous
adiabatic H2-air reaction system at constant volume. The evolution of the system states (i.e.,
species concentrations and temperature) was simulated numerically by solving a set of ordi-
nary differential equations. The time derivatives of species concentrations and temperature
were calculated based on the specified chemical reaction mechanism and the energy equation.
Simulations with detailed (21 reactions [135]) and reduced (5 reactions [132]) mechanisms,
listed in Table 5.3, are considered as the true and inadequate models, respectively. The
model parameters, denoted by λ ∈ R5, are logarithm of the multipliers associated with the
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five rate constants shared by both mechanisms, with their prior uncertainties taken from
[135]. The true calibration parameter value is specified as λ∗ = 0, where 0 is a vector of
zeros.

The normalized scenario parameters, s1, s2 and s3, are defined by

s1 =
1000/T − 1000/Tcenter

1000/Tlow − 1000/Thigh

,

Tcenter = 1370 K, Tlow = 1200 K, Thigh = 1600 K,

s2 =
lnP − lnPcenter

lnPhigh − lnPlow

,

Pcenter = 3.2 atm, Plow = 1 atm, Thigh = 10 atm,

s3 =
φ− φcenter

φhigh − φlow

,

φcenter = 1, φlow = 0.75, φhigh = 1.25,

(5.21)

where T , P and φ are initial temperature, initial pressure and equivalence ratio of the
mixture, respectively. In this example, equivalence ratio is the ratio of hydrogen to oxygen
concentrations in the initial mixture to that in a stoichiometric mixture. The use of inverse
temperature and logarithmic pressure for defining s1 and s2 are common in the combustion
field (e.g., [132]).

A dataset was constructed using a second-order orthogonal design [83] over the scenario
region [−1, 1]3. The corresponding scenario parameter values are listed in Table 5.4. For each
of the scenario conditions, the corresponding QOI is defined as the time when the hydrogen
concentration drops to half of its initial value. This QOI was computed numerically from the
simulated hydrogen concentration profile and denoted by t∗1/2(λ, T, P, φ) and t1/2(λ, T, P, φ)
for the true and inadequate models, respectively. Measurements of these QOIs, denoted by
ti, were generated by adding a relative noise to the true process values, specified as evaluating
t∗1/2 at the true calibration parameter value λ∗,

ti = t∗1/2(λ∗, Ti, Pi, φi)(1 + ε ui),

ui ∼ U(−1, 1), i = 1, 2, . . . , 15,
(5.22)

where U(−1, 1) is the uniform distribution within [−1, 1]. The maximum noise magnitude,
ε, was assigned with values of 0.01 and 0.005. As before, the data uncertainty bounds
were generated by computing [(1− ε)ti, (1 + ε)ti]. In this example the QOIs computed with
the inadequate model have no analytic solution and a quadratic surrogate model Si was
generated for each QOI such that Si(λ) ≈ ln(t1/2(λ, Ti, Pi, φi)). As in the previous example,
we consider a polynomial model discrepancy function (Table 5.5), but now with the scenario
parameters s1, s2 and s3.
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Table 5.3: Detailed and reduced H2-O2 reaction sets and associated parameters of the rate
coefficients, AT ne−E/RT , in the units of cm3, mol, s, cal, K (from [135]).

Reduced Reactions A n E
X 1 H + O2 = O + OH 2.65× 1016 -0.6707 17041
X 2 O + H2 = H + OH 3.87× 104 2.7 6260
X 3 OH + H2 = H + H2O 2.16× 108 1.51 3430

4 OH + OH = O + H2O 3.57× 104 2.4 -2110
5a H + H + M = H2 + M 1.00× 1018 -1.0 0

H + H + H2 = H2 + H2 9.00× 1016 -0.6 0
H + H + H2O = H2 + H2O 6.00× 1019 -1.25 0

6b O + O + M = O2 + M 1.20× 1017 -1.0 0
7c O + H + M = OH + M 4.71× 1018 -1.0 0
8d H + OH + M = H2O + M 2.20× 1022 -2.0 0

X 9e H + O2 + M = HO2 + M 5.75× 1019 -1.4 0
H + O2 = HO2 4.65× 1012 0.44 0

10 H + HO2 = O + H2O 3.97× 1012 0.0 671
X 11 H + HO2 = H2 + O2 2.99× 106 2.12 -1172

12 H + HO2 = OH + OH 8.40× 1013 0.0 635
13 O + HO2 = OH + O2 2.00× 1013 0.0 0
14 OH + HO2 = H2O + O2 2.89× 1013 0.0 -497
15 HO2 + HO2 = H2O2 + O2 1.30× 1011 0.0 -1630

HO2 + HO2 = H2O2 + O2 4.20× 1014 0.0 12000
16f OH + OH + M = H2O2 + M 1.46× 1011 0.868 -8548

OH + OH = H2O2 8.71× 109 0.869 -2191
17 H + H2O2 = H2O + OH 1.00× 1013 0.0 3600
18 H + H2O2 = HO2 + H2 1.21× 107 2.0 5200
19 O + H2O2 = HO2 + OH 9.63× 106 2.0 4000
20 OH + H2O2 = H2O + HO2 1.74× 1012 0.0 318

OH + H2O2 = H2O + HO2 7.59× 1013 0.0 7272
21c O + OH + M = HO2 + M 8.00× 1015 0.0 0

aCollision efficiency: Ar = 0.63.
bCollision efficiencies: H2 = 2.4, H2O = 15.4, Ar = 0.83.
cCollision efficiencies: H2 = 2, H2O = 12, Ar = 0.7.
dCollision efficiencies: H2 = 0.73, H2O = 3.65, Ar = 0.38.
eCollision efficiencies: H2O = 12, Ar = 0.53; Troe parameters: a = 0.5, T ∗∗∗ = 10−30, T ∗ = 1030, T ∗∗

= 10100.
fCollision efficiencies: H2 = 2, H2O = 6, Ar = 0.67; Troe parameters: a = 1.0, T ∗∗∗ = 10−30, T ∗ =

1030, T ∗∗ = 1030.
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Table 5.4: Design conditions for the training data.

Design index s1 T (K) s2 P (atm) s3 φ
1 1 1200 1 10 1 1.25
2 1 1200 1 10 -1 0.75
3 1 1200 -1 1 1 1.25
4 1 1200 -1 1 -1 0.75
5 -1 1600 1 10 1 1.25
6 -1 1600 1 10 -1 0.75
7 -1 1600 -1 1 1 1.25
8 -1 1600 -1 1 -1 0.75
9 0 1370 0 3.2 0 1
10 1.215 1170 0 3.2 0 1
11 -1.215 1660 0 3.2 0 1
12 0 1370 1.215 12.8 0 1
13 0 1370 -1.215 0.78 0 1
14 0 1370 0 3.2 1.215 1.3
15 0 1370 0 3.2 -1.215 0.7

Table 5.5: Tested model discrepancy functions.

Model discrepancy Number of basis function n
No δ 0

δ = c0 1

δ = c0 +
∑3

i=1 cisi 4

δ = c0 +
∑3

i=1 cisi +
∑3

i,j=1; i≤j ci,jsisj 10
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5.4.2 Dataset Consistency and QOI Prediction

Dataset consistency is calculated first and the results are given in Table 5.6. Inspection

Table 5.6: Results of dataset consistency and the distance between true model parameter
value λ∗ and the feasible set.

n Dataset consistency dλ∗

ε = 0.01
0 Inconsistent —
1 Inconsistent —
4 Consistent 0.167
10 Consistent 0.047

ε = 0.005
0 Inconsistent —
1 Inconsistent —
4 Inconsistent —
10 Consistent 0.072

of these results shows that with ε = 0.01, the dataset is inconsistent for both the zero δ
and constant δ cases, and becomes consistent when linear and quadratic δ are used. After
ε is lowered to 0.005, linear δ is insufficient to keep the dataset consistent. For cases where
the dataset is consistent, the distance between the true calibration parameter value and the
feasible set, denoted by dλ∗ and defined in Equation (5.23), is calculated and the results are
also reported in Table 5.6. In all these cases, the true calibration parameter value is not in
the feasible set. Its distance from the feasible set is larger when lower order δ or smaller ε is
used.

d2
λ∗ = min

(λ,c)∈Fδ
(λ− λ∗)T (λ− λ∗). (5.23)

For cases where the dataset is consistent, prediction intervals are computed at one in-
terpolated and four extrapolated scenarios, which are specified in Table 5.7. The results
are depicted in Figure 5.9. Again the lengths of the prediction intervals are shorter with
linear δ as compared to quadratic δ. Similarly, smaller values of ε produce shorter prediction
intervals. At ε = 0.01, the prediction interval with a linear δ contains the true value for
cases 1, 2 and 3, but underpredicts the target for cases 4 and 5. With a quadratic δ, the
prediction intervals contain the true values for all tested cases at both ε values.
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Table 5.7: Scenario parameter values for model prediction.

Case index Prediction s1 T (K) s2 P (atm) s3 φ
1 Interpolation -0.6 1500 0.4 5 0 1
2 Extrapolation -1.67 1800 0.4 5 0 1
3 Extrapolation -1 1600 1.16 12 0 1
4 Extrapolation -1 1600 0.4 5 1.6 1.4
5 Extrapolation -1.67 1800 1.16 12 1.6 1.4
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Figure 5.9: QOI prediction intervals for the five cases in table 5.7. The black dashed lines
are the true QOI values. The predicted QOI intervals are drawn as blue (ε = 0.01) and red
(ε = 0.005) vertical lines. The red ×’s mark dataset inconsistency.

5.4.3 Inference of Model Discrepancy

The projection of the feasible set on the parameter space of discrepancy-function coeffi-
cients, c, describes not one but a set of discrepancy functions that are consistent with the
data. The following analysis with the linear δ and ε = 0.01 shows an example of infer-
ring model discrepancy from B2BDC calculations. The posterior uncertainty bounds of the
discrepancy-function coefficients were calculated and the results are given in Table 5.8. The
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volume ratio of the joint feasible set to the multidimensional orthotope, specified similarly as
in Section 5.3, is 2.6× 10−8 based on 109 samples. The results show that all feasible c2 and

Table 5.8: Projection of the joint feasible set, computed with linear δ at ε = 0.01, onto
coordinate directions of each discrepancy-function coefficient.

Coefficient Posterior uncertainty bounds

c0 [-0.139, 0.112]
c1 [-0.018, 0.005]
c2 [-0.015, -0.006]
c3 [-0.042, -0.013]

c3 are negative since the calculated posterior upper bounds are negative for these two coef-
ficients. For the linear δ, the coefficients are also the partial derivatives of the discrepancy
function with respect to the scenario parameters, meaning

ci =
∂δ

∂si
. (5.24)

All feasible δ’s are therefore smaller at larger s2 or s3 values given other scenario parameters
fixed.

The prediction interval of δ (i.e., [Lδ, Uδ]) defined in Equations (5.12) and (5.13), was
then calculated in the s2-s3 (P -φ) space at three fixed s1 (T ) values. The computed intervals
were examined to determine the sign of feasible δ’s at each specified scenario condition and
the results are shown in Figure 5.10. Similar patterns are observed for the three tested tem-
perature values: except for a lower left triangle region where both pressure and equivalence
ratio are relatively small, all feasible δ’s are negative. As a result of dataset consistency,
predictions made at the grey-region scenarios always add a negative correction to the model
output, suggesting that the inadequate model systematically overpredicts the QOI. Combin-
ing the results that c2 and c3 are negative in the feasible set, the overprediction is likely to
be stronger at larger s2 and s3 values (i.e., at higher pressures and equivalence ratios).
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Figure 5.10: The sign of model discrepancy function in the scenario region (s2, s3) ∈ [−1, 1]2

for temperature values 1600, 1370 and 1200 K. The grey region represents scenarios where
Uδ < 0 and the white one indicates where the interval [Lδ, Uδ] contains 0. The black points
are design scenarios in Table 5.4.

5.5 Discrepancy As a Consistency Measure

The above examples and discussion primarily focus on the impact of model discrepancy
on predictions. The inclusion of discrepancy into B2BDC also provides the opportunity
to calculate a more general consistency measure. For a given collection of basis functions
{Φi}ni=1, define this consistency measure as

minimize
x, c

f(c)

subject to x ∈ H,
c ∈ Hc,

Le ≤M(x, se) +
n∑
i=1

ciΦi(se) ≤ Ue, e = 1, 2, . . . , N,

(5.25)

where the objective f(·) is a function of only the coefficients c and reflects the “complexity”
of the discrepancy function. In essence, Equation (5.25) asks the following question: what
is the least complex discrepancy function required to recover dataset consistency? Different
choices of f(·) and {Φi(·)}ni=1 produce different consistency measures. For example, defining
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the complexity and discrepancy functions as

f(c) =
N∑
i=1

|ci|

Φi(s) = −1{si}(s) =

{
−1 s = si

0 otherwise

(5.26)

where n = N and the {si}Ni=1 are the dataset scenarios. Note that with this choice of
discrepancy, the eth model-data constraint in Equation (5.25) becomes

Le ≤Me(x)− ce ≤ Ue. (5.27)

This is exactly a version of the VCM presented in [52, Equation (4.4)]. Other choices of f ,
such as the integral over Hc of the squared discrepancy (or its squared derivatives, should
each {Φi(·)}ni=1 be differentiable), can also be handled in the B2BDC framework.

Consistency measures formulated in this fashion gauges the disagreement between models
and observations based on the “simplest” (or least complex) discrepancy required to render a
dataset consistent. One potential application of this type of consistency measure is for model
comparison. For a fixed set of basis functions {Φi(·)}ni=1, multiple models can be compared
by evaluating Equation (5.25).

5.6 Chapter Summary

A new method was developed under the B2BDC framework to compensate dataset incon-
sistency caused by model inadequacy. The method adds a scenario-dependent discrepancy
function to model output. Model-data constraints, feasible set and B2BDC computation
formulas are modified accordingly. This discrepancy function is represented by a linear com-
bination in basis functions whose coefficients are uncertain. Therefore, existing B2BDC
machinery, including derivation of outer-bound solutions and developed sampling methods,
is directly applicable in the extended parameter space composed of model parameters and
discrepancy-function coefficients.

Application of this method shows some promising results in both the mass-spring-damper
and the hydrogen examples as it resolves dataset inconsistency without removing any exper-
imental data, the issue we struggle with the VCM method. How does the method perform
in a realistic engineering application with massively inconsistent dataset, for example, the
syngas combustion system analyzed in Chapter 4? In the next chapter, a syngas combus-
tion dataset including only ignition delay time data is constructed, using which the two
approaches for resolving dataset inconsistency (i.e., the method of including a discrepancy
function and the VCM method) are compared.
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Chapter 6

Syngas Combustion Dataset with
Discrepancy Functions

The application of the Bound-to-Bound Data Collaboration (B2BDC) method to the
syngas combustion dataset in Chapter 4 encountered a massively inconsistent initial dataset,
which requires the removal of eight self-inconsistent quantities of interest (QOIs) and 37 QOIs
detected using the vector consistency measure (VCM) method to obtain dataset consistency.
The method presented in Chapter 5 provides an alternative approach for resolving dataset
inconsistency without removing experimental data.

In this chapter, a syngas combustion dataset is constructed including only ignition delay
time data. A homogeneous constant-volume adiabatic reaction model was used to simulate
the ignition delay time QOIs. The model is valid if the experimental shock-tube design is
realized ideally but can be inadequate for nonideal situations observed and reported in the
literature [2, 14, 79, 94]. I apply two approaches, the method of including a discrepancy
function and the VCM method, to resolve the initial inconsistency. The resulting feasible
sets of the obtained consistent datasets and the B2BDC computations are analyzed and
compared.

6.1 Experimental Data

Ignition delay time data measured in a shock-tube facility were collected for the current
analysis. The uncertainty in the experimental measurements was estimated using the rules
detailed in [110]. The investigated scenario factors are the temperature and pressure after
the reflected shock wave, denoted by T5 and P5, respectively, the temperature increment,
denoted by ∆T and defined as the temperature increase in the system after a simulation
time that is 10 times the experimentally measured ignition delay time where the system
has reached its steady state. Moreover, another factor is the initial concentration ratio of
H2 to CO and syngas (H2+CO) to O2 in the mixture, denoted respectively by nH2/CO and
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n(H2+CO)/O2. Training and test sets of ignition delay time measurements were constructed,
containing 112 and 37 data points, respectively. The range of scenario factors and measured
ignition delay times is summarized in Table 6.1, and the detailed information is given in
Tables 6.2 and 6.3. The test set includes primarily low temperature measurements, where
the ignition delay times are relatively long and the model discrepancy is expected to be more
significant.

Table 6.1: Range of the initial temperature, pressure, concentration ratio of H2 to CO and
syngas to O2, temperature increment, and experimental measurements in the training and
test datasets.

Training set Test set
T5 (K) 900-2004 933-1319
P5 (atm) 0.9-32.5 1-35.1
∆T (K) 6.68-1880 16.82-1862
nH2/CO 0.053-4 0.053-3.97

n(H2+CO)/O2 0.989-1.999 0.989-1.999
tign (µs) 25-4340 44-3950

Table 6.2: Summary of ignition delay time data of the training set.

T5 (K) P5 (atm) ∆T (K) nH2/CO n(H2+CO)/O2 tign (µs) Unc. (%) Ref.

1 956 1.44 1853.4 0.109 0.989 878 35 [78]
2 965 1.46 1847.5 0.109 0.989 629 35 [78]
3 933 1.16 1879.4 0.251 1.987 1001 40 [78]
4 947 1.21 1871.6 0.251 1.987 618 35 [78]
5 932 1.39 1869.3 0.109 0.989 1169 40 [78]
6 1008 1.9 183.7 1 0.989 1380 50 [75]
7 1361 12.1 176.6 1 0.989 43 30 [75]
8 1122 13.3 186.3 1 0.989 705 30 [75]
9 1291 30.2 178.2 1 0.989 51 30 [75]
10 1233 31.6 185.6 1 0.989 252 30 [75]
11 1150 31.9 185.1 1 0.989 1482 30 [75]
12 1784 1.5 69.0 1 0.999 72 30 [75]
13 1883 1.5 67.2 1 0.989 56 30 [75]
14 1147 2 108.4 1 0.999 480 30 [75]
15 1398 11.7 94.0 1 0.999 29 30 [75]
16 1285 12.5 63.7 1 0.999 49 30 [75]
17 1101 12.9 6.7 1 0.999 980 30 [75]
18 1299 29.4 20.0 1 0.999 38 30 [75]
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Table 6.2 (continued)

T5 (K) P5 (atm) ∆T (K) nH2/CO n(H2+CO)/O2 tign (µs) Unc. (%) Ref.

19 1186 32.5 39.5 1 0.999 504 30 [75]
20 1065 1.3 1315.9 0.769 1.999 182 20 [127]
21 1135 1.2 1268.1 0.769 1.999 80 20 [127]

22 975 1.72 1380.5 0.769 1.999 1720 20 [127]
23 999 1.8 1368.4 0.769 1.999 951 20 [127]
24 1048 1.7 1337.4 0.769 1.999 199 20 [127]
25 981 1.24 1364.3 0.769 1.999 1360 20 [127]
26 916 1 1505.1 3.971 1 2011 50 [58]
27 1126 11.9 1529.9 0.109 0.989 472 35 [58]
28 1265 17.1 1482.4 0.109 0.989 25 30 [58]
29 968 1.2 1536.4 0.055 0.994 1365 40 [58]
30 1057 1.1 1484.6 0.055 0.994 297 30 [58]
31 1263 1.1 1352.8 0.055 0.994 82 30 [58]
32 1149 2 1460.1 0.055 0.994 114 30 [58]
33 1304 1.7 1359.7 0.055 0.994 51 30 [58]
34 1110 12.7 1549.0 0.055 0.994 1186 40 [58]
35 1074 1.1 1436.3 3.971 1 68 30 [58]
36 1151 1 1395.2 3.971 1 52 30 [58]
37 914 1 1519.4 1.451 1.012 2277 50 [58]
38 951 1.1 1504.8 1.451 1.012 687 40 [58]
39 996 1.1 1483.4 1.451 1.012 181 35 [58]
40 1072 1.1 1445.9 1.451 1.012 87 30 [58]
41 1175 1 1388.1 1.451 1.012 55 30 [58]
42 1187 1 1381.6 1.451 1.012 39 30 [58]
43 1241 1 1351.7 1.451 1.012 29 30 [58]
44 900 0.9 1536.1 0.673 1 2935 50 [58]
45 954 1.2 1493.2 3.971 1 462 35 [58]
46 1026 1.1 1479.2 0.673 1 153 30 [58]
47 1162 1 1401.9 0.673 1 57 30 [58]
48 936 1.2 1545.6 0.25 1.006 1331 40 [58]
49 1015 1.1 1500.8 0.25 1.006 219 30 [58]
50 1183 1.1 1406.1 0.25 1.006 63 30 [58]
51 992 2.6 1543.6 0.25 1.006 1015 40 [58]
52 1058 2.6 1511.3 0.25 1.006 108 30 [58]
53 1063 3.1 1515.2 0.25 1.006 120 30 [58]
54 1015 13.7 1580.4 0.25 1.006 2278 50 [58]
55 993 1 1470.9 3.971 1 144 30 [58]
56 1114 14.9 1543.4 0.25 1.006 638 35 [58]
57 1190 16.8 1515.7 0.25 1.006 82 35 [58]
58 960 1.2 1531.5 0.109 0.989 1307 40 [58]
59 1052 1.1 1479.0 0.109 0.989 274 30 [58]
60 1197 1.1 1396.4 0.109 0.989 101 30 [58]
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Table 6.2 (continued)

T5 (K) P5 (atm) ∆T (K) nH2/CO n(H2+CO)/O2 tign (µs) Unc. (%) Ref.

61 981 2.7 1548.2 0.109 0.989 2284 50 [58]
62 1048 2.5 1513.1 0.109 0.989 236 30 [58]
63 1118 2.5 1477.6 0.109 0.989 94 30 [58]
64 1063 14.3 1560.7 0.109 0.989 1695 40 [58]
65 943 22.3 1537.7 0.755 1.002 3340 35 [95]
66 1033 23.7 1509.9 0.755 1.002 2150 35 [95]
67 1148 21.4 1469.0 0.755 1.002 380 35 [95]
68 1299 12.3 191.8 4 1 48.76 25 [65]
69 1264 31.3 193.0 4 1 61.39 30 [65]
70 1243 31.3 195.2 4 1 139.5 30 [65]
71 1185 31.3 196.4 4 1 938.24 35 [65]
72 1325 32.3 193.9 1 1 32.13 30 [65]
73 1204 32.3 203.4 1 1 552.85 35 [65]
74 1179 32.3 203.5 1 1 864.31 35 [65]
75 1327 31.3 195.8 0.111 1 76.42 30 [65]
76 1259 31.3 191.1 0.111 1 180.08 30 [65]
77 1166 31.3 96.6 0.111 1 1493.81 40 [65]
78 1695 1.65 121.5 4 1 51.84 30 [65]
79 1182 12.3 191.7 4 1 93.63 25 [65]
80 1351 1.65 184.6 4 1 183.92 30 [65]
81 980 1.65 194.9 4 1 1467.71 40 [65]
82 2004 1.65 67.6 1 1 40.24 25 [65]
83 1273 1.65 193.2 1 1 311.48 25 [65]
84 992 1.65 201.5 1 1 1640.74 35 [65]
85 1975 1.59 74.0 0.111 1 115.41 25 [65]
86 1436 1.59 166.3 0.111 1 296.1 25 [65]
87 1027 1.59 198.4 0.111 1 1725.99 35 [65]
88 1096 12.3 196.7 4 1 1796.82 30 [65]
89 1383 11.9 195.1 1 1 41.13 25 [65]
90 1235 11.9 196.6 1 1 86.2 25 [65]
91 1099 11.9 203.7 1 1 1060.78 30 [65]
92 1387 12 199.4 0.111 1 82.95 25 [65]
93 1228 12 199.9 0.111 1 191.9 25 [65]
94 1116 12 211.5 0.111 1 1450.14 35 [65]
95 1046 16.6 1451.1 0.053 1.001 4340 30 [54]
96 1159 16.0 692.5 0.053 1.001 1350 30 [54]
97 1206 16.2 690.7 0.053 1.001 588 35 [54]
98 1165 15.8 365.6 0.053 1.001 3900 30 [54]
99 1207 16.2 364.9 0.053 1.001 1730 30 [54]
100 1259 15.7 364.0 0.053 1.001 630 30 [54]
101 1019 13.9 1417.7 1 1.001 3430 30 [54]
102 1051 15.1 1410.9 1 1.001 1810 30 [54]
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Table 6.2 (continued)

T5 (K) P5 (atm) ∆T (K) nH2/CO n(H2+CO)/O2 tign (µs) Unc. (%) Ref.

103 1097 15.4 1399.0 1 1.001 470 35 [54]
104 1048 15.8 682.6 1.017 1.003 3210 30 [54]
105 1086 15.3 681.3 1.017 1.003 1310 30 [54]
106 1128 15.3 680.0 1.017 1.003 374 30 [54]
107 1054 15.4 346.9 1.017 1.003 3960 30 [54]
108 1090 15.6 346.6 1.017 1.003 1850 30 [54]
109 1140 15.7 346.0 1.017 1.003 448 30 [54]
110 1072 15.6 1442.4 0.053 1.001 2660 30 [54]
111 1132 15.9 1424.4 0.053 1.001 986 35 [54]
112 1107 16.0 694.5 0.053 1.001 3970 30 [54]
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Table 6.3: Summary of ignition delay time data of the test set.

T5 (K) P5 (atm) ∆T (K) nH2/CO n(H2+CO)/O2 tign (µs) Unc. (%) Ref.

1 959 1.37 1846.9 0.109 0.989 760 35 [78]
2 941 1.39 1862.3 0.109 0.989 1080 40 [78]
3 1107 13.2 187.0 1 0.989 1373 30 [75]
4 1251 1.9 105.6 1 0.999 273 30 [75]
5 1319 12.2 85.3 1 0.999 44 30 [75]
6 1252 35.1 16.8 1 0.999 72 30 [75]
7 1209 31.5 37.6 1 0.999 326 30 [75]
8 1062 1.9 181.9 1 0.989 787 50 [75]
9 1081 1.19 1302.2 0.770 1.999 139 20 [127]
10 1020 1.84 1357.1 0.770 1.999 482 20 [127]
11 1017 1.92 1360.5 0.770 1.999 823 20 [127]
12 988 1.28 1361.4 0.770 1.999 1225 20 [127]
13 1029 1.25 1335.9 0.770 1.999 358 20 [127]
14 977 1.2 1531.6 0.055 0.994 1099 40 [58]
15 1064 1 1437.9 3.971 1 80 30 [58]
16 1005 2.3 1540.8 0.055 0.994 1005 40 [58]
17 1074 19.2 1574.9 0.055 0.994 1823 40 [58]
18 936 1 1496.4 3.971 1 1085 40 [58]
19 933 1.1 1526.1 0.673 1 1471 40 [58]
20 957 1.1 1489.6 3.971 1 311 35 [58]
21 934 1.2 1546.6 0.25 1.006 1427 40 [58]
22 938 1.2 1544.6 0.25 1.006 1015 40 [58]
23 1046 1.1 1483.9 0.25 1.006 139 30 [58]
24 972 1.1 1483.0 3.971 1 191 30 [58]
25 1080 14.5 1556.3 0.25 1.006 1153 40 [58]
26 1033 1.1 1489.4 0.109 0.989 289 30 [58]
27 1053 18.7 1499.1 0.755 1.002 1560 35 [95]
28 947 20.9 1535.6 0.755 1.002 3520 35 [95]
29 987 23.8 1524.8 0.755 1.002 2010 35 [95]
30 1013 21.6 1514.9 0.755 1.002 2030 35 [95]
31 1180 16.1 691.7 0.053 1.001 884 30 [54]
32 1048 16.0 1449.9 0.053 1.001 3950 30 [54]
33 1078 15.6 1404.4 1 1.001 692 35 [54]
34 1055 15.6 682.3 1.017 1.003 2750 30 [54]
35 1064 15.5 346.8 1.017 1.003 3230 30 [54]
36 1094 15.3 346.5 1.017 1.003 1710 30 [54]
37 1131 15.5 693.6 0.053 1.001 2500 30 [54]
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6.2 Simulation Model and Model Discrepancy

The ignition delay time QOIs were simulated using a homogeneous constant-volume adia-
batic (CONSTVA) reaction model in the ReactionLab software [29]. The reaction mechanism
proposed in [110] was used with few modifications. The complete reaction set and updated
nominal rate parameters are given in Table B.5.

An uncertain multiplier, denoted by λi, was assigned for each reaction rate ki such that,

ki = λiki,0, i = 1, 2, . . . , 55, (6.1)

where ki,0 is the reaction rate coefficient computed with the nominal parameter values. The
prior uncertainty of each multiplier is given in Table B.6.

Measuring the ignition delay time in a shock-tube facility has been extensively adopted
in combustion chemistry studies [2, 19, 49, 113]. If the mixture after the reflected shock wave
is stationary and uniform under ideal conditions, the implemented CONSTVA model is ade-
quate to simulate the system evolution with relatively fast run-time. However, nonidealities,
including boundary layer development [2, 30, 94] and inhomogeneous mild ignition [14, 79],
have been observed experimentally in long ignition time scenarios (several milliseconds or
longer), which supports the motivation to apply the method with a discrepancy function.

Although revised simulating strategies have been proposed to account for these non-
idealities (e.g., [45, 46, 67]), we argue that the application of the discrepancy-function method
is by no means limited to the CONSTVA model and may be preferred in other situations.
First, the revised models can be too computationally demanding to be implemented using
the B2BDC method, in which a decent number of simulation runs at various parameter
vectors are required. Second, despite being relatively more rigorous than the CONSTVA
model, the revised models may still miss some physical parts of the system and could be
subject to a different model discrepancy.

6.3 Surrogate models, model and scenario

parameters, and discrepancy function

In the current study, the model parameter x was set as the logarithm of the multipliers,

xi = lnλi, i = 1, 2, . . . , 55, (6.2)

and the prior uncertainty region H is a 55-dimensional orthotope roughly centered at the
origin, which represents the vector of nominal values. The simulated ignition delay times
can vary by orders of magnitude with different model parameter vectors in H. To ensure
better response surface behavior [26, 32], the QOIs were specified as the logarithmic ignition
delay time:

ye(x) = log10 (tign,e(x)), e = 1, 2, . . . , 149. (6.3)
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For each QOI ye, the Latin hypercube sampling method [76] was applied to generate 104

design points from H for computer experiments. A linear model Le(x) was first fitted to the
55-dimensional parameter space using the least squares method,

Le(x) =
55∑
i=1

aixi + a0. (6.4)

The influence of each model parameter on the specific QOI ye was evaluated based on the
impact factor discussed in Section 2.7.1 and defined as

IFi = |ai| ×∆xi, (6.5)

where ∆xi is the length of the prior uncertainty interval for model parameter xi. A parameter
is selected as active if its impact factor is greater than 5% of the largest impact factor over
all model parameters or 10% of the corresponding experimental uncertainty interval length.
Once active parameters xea are determined, a quadratic surrogate model Qe(xea) is computed
using the least squares method only in the active parameter space. The fitting error is
denoted by ε and defined by the following:

εe = max
x∈H

|Qe(xea)− ye|. (6.6)

The fitting error was estimated using 10-fold cross-validation criterion [120] and the distri-
bution histograms are given in Figure 6.1. In the following analysis, the fitting error was
considered by expanding the lower and upper bounds with the estimated ε in the model-data
constraint if the QOI is in the dataset or in the prediction interval otherwise.

Five normalized scenario parameters representing the scenario factors listed in Table 6.1
are constructed as follows:

s1 =
(1000/T5)− (1000/T5)center

(1000/T5)max − (1000/T5)min

,

s2 =
P5 − P5,center

P5,max − P5,min

,

s3 =
∆T −∆Tcenter

∆Tmax −∆Tmin

,

s4 =
nH2/CO − (nH2/CO)center

(nH2/CO)max − (nH2/CO)min

,

s5 =
n(H2+CO)/O2 − (n(H2+CO)/O2)center

(n(H2+CO)/O2)max − (n(H2+CO)/O2)min

,

(6.7)

where the center, minimum, and maximum values are computed based on the QOIs in the
training set.
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Figure 6.1: Histograms of the estimated fitting error in the training and test sets of quantities
of interest.

Polynomial discrepancy functions were used in the current study. If two scenario param-
eters are selected, for example s1 and s2, the polynomial is specified by three parameters: n1,
n2, and m, where n1 and n2 represent the highest power in s1 and s2, and m represents the
highest power in the coupled monomials. The discrepancy function is described as follows:

δ(s;n1, n2,m) = c0 +

n1∑
i=1

cis
i
1 +

n2∑
j=1

cn1+js
j
2 +

i=m−1, j=m−i∑
i=1, j=1

ci,js
i
1s
j
2. (6.8)

If three scenario parameters are selected, for example s1, s2, and s3, the following four
discrepancy functions labelled by I are investigated:

δ(s; I) =


c0 +

∑3
i=1 cisi, I = 1,

c0 +
∑3

i=1

∑2
n=1 c2(i−1)+ns

n
i +

∑3
i,j=1;i 6=j ci,jsisj, I = 2,

c0 +
∑3

i=1

∑3
n=1 c3(i−1)+ns

n
i +

∑3
i,j=1;i 6=j ci,jsisj + c1,2,3s1s2s3, I = 3,

c0 +
∑3

i=1

∑3
n=1 c3(i−1)+ns

n
i +

∑3
i,j=1;i<j

∑n=2, m=3−n
n=1, m=1 cn,mi,j s

n
i s

m
j , I = 4.

(6.9)
The discrepancy function δ(s; I) is linear and quadratic for I = 1 and 2. It is partial (not
containing all coupled monomials) and fully cubic for I = 3 and 4.

If four scenario parameters are used, for example s1 to s4, the following four discrepancy
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functions labelled by I are investigated:

δ(s; I) =



c0 +
∑4

i=1 cisi, I = 1,

c0 +
∑4

i=1

∑2
n=1 c2(i−1)+ns

n
i +

∑4
i,j=1;i 6=j ci,jsisj, I = 2,

c0 +
∑4

i=1

∑3
n=1 c2(i−1)+ns

n
i +

∑4
i,j=1;i 6=j ci,jsisj, I = 3,

c0 +
4∑
i=1

3∑
n=1

c2(i−1)+ns
n
i +

4∑
i,j=1;i 6=j

ci,jsisj

+
4∑

i,j,k=1;i 6=j;i 6=k;j 6=k

ci,j,ksisjsk, I = 4.

(6.10)

The discrepancy function δ(s; I) is linear and quadratic for I = 1 and 2. While containing
cubic monomials in a single variable, δ(s; I) includes coupled monomials of two and three
variables for I = 3 and 4.

If all five scenario parameters are used, the discrepancy function is restricted to only
linear and quadratic functions:

δ(s; I) =

{
c0 +

∑5
i=1 cisi, I = 1,

c0 +
∑5

i=1

∑2
n=1 c2(i−1)+ns

n
i +

∑5
i,j=1;i 6=j ci,jsisj, I = 2.

(6.11)

6.4 Consistency Analysis

The initial dataset with 112 QOIs and 30 active parameters produces a scalar consistency
measure (SCM) CD within [-0.77, -0.67] and hence is inconsistent. The VCM was then
computed and an inner-bound solution is summarized in Table 6.4. A consistent dataset
was obtained by removing the detected 12 QOIs and is denoted by DVCM.

We examined the case in which a model discrepancy function was included in the analysis.
The scenario parameters s1 and s2 were considered first because the temperature and pressure
after the reflected shock wave (i.e., T5 and P5) are the properties that determine the state of
the reacting system. The discrepancy functions given in Equation (6.8) were implemented
with n1 and n2 varying from 2 to 5, and m from 2 to 4. None of the investigated discrepancy
functions resolved the dataset inconsistency, suggesting that these two scenario parameters
may be insufficient to characterize the inadequacy of the model.

When s2 is replaced by s3 (i.e., the temperature increment ∆T and T5 are used in the
discrepancy function), some tested discrepancy functions resulted in a consistent dataset.
The results are summarized in Table 6.5. The results demonstrate that, although the combi-
nation of s1 and s3 regains dataset consistency, relatively high-order monomials are required
in the corresponding discrepancy function.

The combinations of scenario parameters s1-s3, s1-s4, and s1-s5 were investigated using
the discrepancy functions specified in Equations (6.9) to (6.11), respectively. The results are
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Table 6.4: Suggested changes in experimental uncertainty bounds from the vector consistency
measure (VCM) computation to obtain a consistent dataset.

QOI index Lower bound change (%) Upper bound change (%)
12 — 26.2
14 — 62.2
17 — 106.7
24 0.6 —
25 26.9 —
35 — 6.6
55 — 30.8
65 — 31.0
67 3.2 —
81 — 40.3
87 — 53.5
92 5.1 —

Table 6.5: Dataset consistency with discrepancy function δ(s;n1, n3,m) in scenario param-
eters s1 and s3.

n1
n3 (m = 2) n3 (m = 3) n3 (m = 4)

2 3 4 5 2 3 4 5 2 3 4 5
2 No No No Yes No No Yes Yes Yes Yes Yes Yes
3 No No No Yes No Yes Yes Yes Yes Yes Yes Yes
4 No No No Yes No Yes Yes Yes Yes Yes Yes Yes
5 No No No Yes No Yes Yes Yes Yes Yes Yes Yes

summarized in Table 6.6. The results reveal that, for three scenario parameters s1 to s3, the
dataset consistency is not recovered with a linear (I = 1) or quadratic (I = 2) discrepancy
function. The dataset inconsistency is resolved for I = 3 and 4. When four or five scenario
parameters are used, dataset consistency is obtained with a quadratic (I = 2) discrepancy
function.

The dataset inconsistency can be resolved by removing the VCM-detected QOIs from
the dataset or adding a scenario-dependent polynomial discrepancy function (except for the
case in which only s1 and s2 are used). The ability to maintain all experimental data in the
analysis may be an advantage for the latter strategy because experiments are still considered
the most accurate representation of reality. Further examination of the VCM result reveals
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Table 6.6: Dataset consistency with various choices of scenario parameter combinations and
the corresponding discrepancy functions.

Discrepancy function
Dataset consistency

s1-s3 s1-s4 s1-s5

I = 1 No No No
I = 2 No Yes Yes
I = 3 Yes Yes —
I = 4 Yes Yes —

that the detected QOIs are distributed over a relatively wide range of scenario conditions and
are from different research groups, which makes the reasoning to label them as “suspicious”
data challenging.

6.5 Prediction

For a consistent dataset obtained using the VCM method or by including a discrepancy
function, the prediction intervals of the 37 QOIs of the test set were computed. To keep
the analysis conservative, only the outer-bound prediction intervals were considered for the
following analysis. The number of cases in which the computed outer-bound interval inter-
sects with the experimental uncertainty bounds, termed a valid prediction hereafter, was
computed. The dataset DVCM makes a valid prediction for 32 out of 37 QOIs of the test set.
The results for consistent datasets with a discrepancy function are summarized in Tables 6.7
and 6.8.

Table 6.7: Number of valid predictions computed using a discrepancy function δ(s;n1, n3,m)
with the scenario parameters s1 and s3.

n1
n3 (m = 2) n3 (m = 3) n3 (m = 4)

5 3 4 5 2 3 4 5
2 32 — 33 34 35 35 35 36
3 32 33 33 34 35 35 35 36
4 32 33 33 34 35 35 35 37
5 32 33 33 35 35 35 36 37

The results reveal that, when a discrepancy function with s1 and s3 resolves dataset
inconsistency, it results in at least as many valid predictions as the dataset DVCM. The
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Table 6.8: Number of valid predictions computed using a discrepancy function in three, four,
and five scenario parameters.

Discrepancy function
Number of valid predictions

δ(s1 − s3; I) δ(s1 − s4; I) δ(s1 − s5; I)
I = 1 — — —
I = 2 — 34 36
I = 3 36 37 —
I = 4 37 37 —

dataset can validly predict all 37 QOIs with δ(s; 4, 5, 4) and δ(s; 5, 5, 4). When three scenario
parameters are used, the dataset only misses one QOI for I = 3 and is perfect for I = 4
regarding making valid predictions. When four scenario parameters are used, the dataset
misses three targets with a quadratic δ and predicted all QOIs within their uncertainty
bounds for I > 2. When all five scenario parameters are used, the dataset with a quadratic
discrepancy function (I = 2) misses one QOI.

Another test was conducted using DVCM and the dataset with the simplest discrepancy
function that generates a perfect prediction performance or quadratic discrepancy function
for five scenario parameters (i.e., δ(s1, s3; 4, 5, 3), δ(s1− s3; 4), δ(s1− s4; 3) and δ(s1− s5; 2)).
Suppose a fixed number of QOIs are drawn randomly from the test set and added to the
dataset, the question arises regarding whether the dataset consistency would break down.
The number of added QOIs in the test varied from one to eight, and 100 runs were repeated
for each case. The results are presented in Figure 6.2.

The results indicate that including a discrepancy function considerably improves the
chance of maintaining dataset consistency when extra data were added to the analysis com-
pared to using DVCM. For DVCM, the rate decreases to below 50% if more than three QOIs
are added and to about 20% if more than six QOIs are added. The rate remains roughly
above 60% for all cases with a discrepancy function. Among the four examined discrepancy
functions, δ(s1 − s3; 4) preserves the highest rate of maintaining dataset consistency. The
performance of the other three discrepancy functions is comparable across various numbers
of added QOIs.
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Figure 6.2: Percentage of dataset that remains consistent after adding a randomly selected
group of quantities of interest from the test set. The computed results are based on 100
repeated runs.

6.6 Sensitivity Analysis

As the scenario parameters were selected a priori in this study, it is of interest to deter-
mine which scenario parameter plays a more important role in the discrepancy function once
the dataset inconsistency is resolved. We compared the effect by evaluating the averaged
partial derivative of the discrepancy function with respect to each scenario parameter over an
ensemble of feasible discrepancy functions. The coefficient vectors of the assembled discrep-
ancy functions were generated by projecting uniform samples from the joint feasible set onto
the discrepancy-function coefficient space. Because the basis functions are differentiable, the
partial derivative can be calculated for a given set of discrepancy-function coefficient vectors
{cj}nj=1 as follows:

∂δ

∂si
(s; cj) =

n∑
j=1

cj
∂Φj(s)

∂si
. (6.12)

The resulting partial derivatives are also functions of the scenario parameters. To provide
a comparable measure of this function, we evaluated the generalized p-norm of the function
over a region of interest in the scenario space, denoted by S. For a positive value of p, this
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value is calculated as follows: ∥∥∥∥ ∂δ∂si
∥∥∥∥
p

= (

∫
S

∣∣∣∣ ∂δ∂si (s)
∣∣∣∣p ds)1/p. (6.13)

In practice, the integral is replaced by averaging it over scenario conditions either uniformly
distributed in the normalized scenario box [−1, 1]ns or over scenario conditions of QOIs in
the dataset. As a result, the final formula for computing the partial derivative is given in
Equation (6.14). The computation includes two levels of averaging: over feasible discrepancy
functions and over scenario conditions:∥∥∥∥ ∂δ∂si

∥∥∥∥
p

=
1

MN

N∑
j=1

(
M∑
k=1

∣∣∣∣ ∂δ∂si (sk; cj)
∣∣∣∣p
)1/p

. (6.14)

The computed results with p = 2 over the normalized scenario cube and over the training
set scenarios are summarized in Tables 6.9 and 6.10. The parameter N was set to 104 for
both cases, and M was set to 104 for case with the normalized scenario cube.

Table 6.9: Generalized 2-norm of the partial derivative function over the normalized cube.

Discrepancy ∂δ/∂s1 ∂δ/∂s2 ∂δ/∂s3 ∂δ/∂s4 ∂δ/∂s5

δ(s1, s3; 4, 5, 4) 5.31 — 8.09 — —
δ(s1 − s3; 4) 2.08 1.63 3.15 — —
δ(s1 − s4; 3) 0.69 1.10 1.35 0.31 —
δ(s1 − s5; 2) 0.81 2.06 0.91 1.24 2.20

Table 6.10: Generalized 2-norm of the partial derivative function over the scenarios in the
training set.

Discrepancy ∂δ/∂s1 ∂δ/∂s2 ∂δ/∂s3 ∂δ/∂s4 ∂δ/∂s5

δ(s1, s3; 4, 5, 4) 1.71 — 3.11 — —
δ(s1 − s3; 4) 0.81 1.61 1.81 — —
δ(s1 − s4; 3) 0.57 1.43 1.48 0.40 —
δ(s1 − s5; 2) 0.55 1.03 0.77 0.59 2.58

The results reveal that the 2-norm partial derivatives are qualitatively similar over the
two investigated regions in the scenario space. The values reduced significantly when more
than two scenario parameters were included in the discrepancy function. The partial deriva-
tive with respect to s3, the scenario parameter representing the temperature increment of
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the system, displays the largest value in both Tables 6.9 and 6.10 except for δ(s1 − s5; 2).
The partial derivative with respect to s2 exhibits a relatively large value consistently for all
tested δ values, implying that the initial pressure P5 is an important factor for the discrep-
ancy function. When both the ratio of H2 to CO (s4) and syngas to O2 (s5) are included, the
partial derivatives with respect to s5 and s2 become the largest and second-largest deriva-
tives, suggesting that the mixture composition, in particular the fuel to oxygen ratio, is also
important to the discrepancy function. The results demonstrate that the partial derivative
values can be affected nontrivially by the selection of the scenario parameters. The order
among them arranged by magnitude can change if other scenario parameters are added or
removed.

6.7 Discrepancy Function Behavior

The behavior of the discrepancy functions was examined within the normalized scenario
cube for different numbers of scenario parameters. The same group of discrepancy func-
tions was used, and the sampled mean discrepancy-function coefficient vectors were chosen
to represent the feasible discrepancy functions. The function δ(s1, s3; 4, 5, 4) is plotted in
Figure 6.3. The discrepancy function is relatively smooth over the region where data are

Figure 6.3: Discrepancy function δ(s1, s3; 4, 5, 4) in the normalized scenario region [−1, 1]2.
Black points represent the scenario conditions of quantities of interest in the dataset.

provided, although higher-order monomials exist in the basis functions. The function changes
quickly outside this training domain, reaching significantly larger values toward the corner
specified by s1 = −1 and s3 = 1, indicating that the discrepancy function puts a substan-
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tially positive correction on the model output at low initial temperature and high initial
pressure conditions.

The discrepancy function δ(s1 − s3; 4) is plotted in the projected space of s2 and s3

at three fixed s1 values considering their relatively larger partial derivative values. Each
dataset QOI was assigned to the closest s1 slice. The results are displayed in Figure 6.4.
The function is again relatively smooth over regions where the data exist. However, this
effective training domain becomes smaller compared to that observed in Figure 6.3 due to
the diluted data density in the projected slices embedded in a higher-dimensional scenario
space. A significantly larger curvature is observed outside the training domain, and the
behavior of the function surface can be quite different for different slices. The value of the
discrepancy function quickly increases toward the [s2 = 1, s3 = 1] corner for the s1 = −0.75
and s1 = 0 slices, indicating that the discrepancy function makes a positive correction to
the model output at high initial pressure conditions with large temperature increase if the
initial temperature is relatively low. The value decreases toward the [s2 = 1, s3 = −1]
corner at s1 = 0.75, implying that a negative correction is placed on the model output by
the discrepancy function at high initial pressure conditions with small temperature increase
if the initial temperature is relatively high. Figure 6.4.

Figure 6.4: Discrepancy function δ(s1− s3; 4) in the projected s2-s3 space at fixed s1 values.
Black points represent scenario conditions of quantities of interest in the dataset.

The discrepancy function δ(s1− s4, 3) is plotted in the projected space of s2-s3 at centers
of the four quadrants in the s1-s4 space. Dataset QOIs were assigned to each case based
on the shortest Euclidean distance in the s1-s4 space. The results are given in Figure 6.5.
Although the training data density in each case is further diluted due to another increment
of the scenario parameter dimension, the function displays overall smoother behavior in
the 2D projected scenario space compared to that observed in Figures 6.3 and 6.4. The
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function remains comparably flat over the whole normalized square region for s1 = 0.5 and
s4 = ±0.5. The value of the function increases moderately toward the [s2 = 1, s3 = 1] corner
for s1 = −0.5 and s4 = ±0.5. The observed results may be attributed to the addition of
another scenario parameter in the analysis, the reduced complexity in the basis functions
and the moderated irregularity of the function behavior.

Figure 6.5: Discrepancy function δ(s1 − s4; 3) in the projected s2-s3 space at fixed s1-s4

value pairs. Black points represent scenario conditions of quantities of interest (QOIs) in the
dataset.

Although δ(s1 − s5; 2) exhibits the largest partial derivative value with respect to s5, it
is computed and plotted in the projected space of s2-s3 considering the observed extremely
bifurcated distribution of s5 in the training set. The results are presented in Figure 6.6. The
two scenario parameters not shown in each subfigure were set to zero. The function surface
displays a moderately small curvature in most of the cases, except at s5 = 0.75, where the
function value decreases quickly toward the [s2 = 1, s3 = −1] corner. The results suggest
that, with an average value of H2 to CO ratio and initial temperature and a relatively high



CHAPTER 6. SYNGAS COMBUSTION DATASET WITH DISCREPANCY
FUNCTIONS 135

fuel to oxygen ratio, the discrepancy function exhibits a considerable negative correction to
the model output at high initial pressures with small temperature increase. In this last case,
the function value experiences larger changes in regions where no training data exist.

Figure 6.6: Discrepancy function δ(s1−s5; 2) in the projected s2-s3 space at fixed {s1, s4, s5}
value sets. Black points represent scenario conditions of quantities of interest (QOIs) in the
dataset.

6.8 Feasible Set Analysis

The modified feasible set F̃ (i.e., the projection of the joint feasible set on the model
parameter space) was examined with the four discrepancy functions discussed in the pre-
vious section. For comparison, the feasible set of DVCM was also included in the analysis.
The prediction interval for each model parameter was calculated by substituting xi into
the objective function in Equations (5.8) and (5.9) or Equations (2.7) and (2.8). The com-
puted outer-bound intervals are plotted in Figure 6.7 for rate multipliers whose posterior
uncertainty bounds are reduced compared to the prior uncertainty bounds.

The results demonstrate that the prediction intervals are similar to each other if δ(s1 −
s3; 4), δ(s1 − s4; 3), δ(s1 − s5; 2), and DVCM are used. When δ(s1, s3; 4, 5, 4) was used, the
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Figure 6.7: Bound-to-bound data collaboration predicted outer-bound intervals for reaction
rate multipliers whose posterior uncertainty is smaller than the prior uncertainty.

upper uncertainty bound was significantly reduced for multipliers of reaction HO2 + HO2 →
H2O2 + O2 (#21) and CO + O2 → CO2+ O (#22). No systematic difference was observed
in the predicted model parameter intervals computed using a discrepancy function or DVCM.

A uniform distribution assumption was then selected for the joint feasible set for a statis-
tical analysis. A total of 3×105, 4×105, 4×105, 5×105, and 105 samples were generated for
cases with δ(s1, s3; 4, 5, 4), δ(s1− s3; 4), δ(s1− s4; 3), δ(s1− s5; 2) and DVCM by applying the
Gibbs sampler discussed in Section 3.3. The convergence of the samples was monitored and
ensured using the test method detailed in Section 3.4. The two-sigma confidence interval
of each model parameter, truncated by the prior uncertainty bounds, is estimated using the
samples and plotted in Figure 6.8.

For the four cases where a discrepancy function was used, the estimated confidence
intervals are consistent overall. The majority of them overlap for each multiplier, except λ18,
the multiplier associated with reaction OH + H2O2 → HO2 + H2O, where the confidence
intervals with δ(s1 − s4; 3) and δ(s1 − s5; 2) barely intersect. In general, the length of
the confidence interval for δ(s1, s3; 4, 5, 4) is the longest and that of either δ(s1 − s4; 3) or
δ(s1 − s5; 2) is the shortest. The estimated confidence interval for DVCM, however, exhibits
a noticeable difference for λ3, λ17, λ18, λ21, and λ22, whose associated reactions are listed in
Table 6.11.

In addition to the confidence interval, the 1D marginal empirical probability density
function (PDF) of each model parameter was computed. The results for the six parame-
ters appeared most frequently as active parameters for the 112 training QOIs are given in
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Figure 6.8: Estimated two-sigma confidence interval truncated by prior uncertainty bounds
for reaction rate multipliers whose posterior uncertainty is smaller than the prior uncertainty.

Table 6.11: Reactions whose estimated posterior confidence interval in the multipliers are
different for DVCM compared to using discrepancy functions.

Index Reaction
3 H2 + O → OH + H
17 HO2 + OH → H2O + O2

18 OH + H2O2 → HO2 + H2O
21 HO2 + HO2 → H2O2 + O2

22 CO + O2 → CO2+ O

Figure 6.9. The associated reactions are listed in Table 6.12.

Examination of the results shows some differences in the empirical PDFs generated from
the dataset with discrepancy functions and from DVCM. In the following discussion, the
description about the relative magnitude of the reaction rate values is regarding their nominal
values (i.e., a multiplier with value 1). Both VCM and discrepancy function methods result
in higher probabilities in lower rate values of reaction O2 + H → OH + O (λ6) and higher
rate of reaction O2 + H → HO2 (λ7). However, for reactions H2 + O → OH + H (λ3) and
CO + O2 → CO2+ O (λ22), the VCM method produces a PDF with higher probabilities for
higher rate values whereas the opposite is observed in PDFs generated from the discrepancy
method, except for the case with δ(s1, s3; 4, 5, 4) where a relatively flat PDF is produced.
For reaction HO2 + H → H2 + O2 (λ11), the PDF produced by the VCM method displays
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Figure 6.9: Estimated marginal probability density for multipliers λ3, λ6, λ7, λ11, λ12, λ22.
The color codes are red lines: δ(s1, s3; 4, 5, 4); blue lines: δ(s1−s3; 4); green lines: δ(s1−s4; 3);
cyan lines: δ(s1 − s5; 2); and black lines: DVCM.

Table 6.12: Reactions whose multipliers appear most frequently in the surrogate models as
active parameters for the 112 training quantities of interest.

Index Reaction
3 H2 + O → OH + H
6 O2 + H → OH + O
7 O2 + H → HO2

11 HO2 + H → H2 + O2

12 HO2 + H → OH + OH
22 CO + O2 → CO2+ O

a bell shape centered at a higher rate value whereas the PDFs generated by the discrepancy
function method, except for the case with δ(s1−s5; 2), show higher probabilities in lower rate
values. For the case with δ(s1 − s5; 2), the PDF exhibits a bell shape centered at a different
location. For reaction HO2 + H→ OH + OH (λ12), the VCM method generates a PDF with
higher probabilities in higher rate values whereas the discrepancy function method produces
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relatively flat PDFs.

Figure 6.10: Estimated two-dimensional probability density functions in the λ6-λ7 and λ11-
λ12 space based on samples generated with DVCM. The axis limits are the prior uncertainty
bounds.

The 2D correlated PDFs on the projected λ6-λ7 and λ11-λ12 spaces were computed and
the results are given in Figures 6.10 to 6.12. The two reactions associated with λ6 and λ7, O2

+ H → OH + O and O2 + H → HO2, compete over the same reactants. The PDF resulted
from the VCM method exhibits a high probability in the parameter region that moderately
enhances reaction O2 + H → HO2 and strongly suppresses reaction O2 + H → OH +
O, pushing the reaction rate value close to the lower uncertainty bound. For discrepancy
functions δ(s1, s3; 4, 5, 4) and δ(s1 − s3; 4), the resulted PDFs have a high probability in the
parameter region that inhibits reaction O2 + H→OH + O mildly and reinforces substantially
reaction O2 + H → HO2. For δ(s1 − s4; 3), the resulting PDF has a high probability region
that suppresses reaction O2 + H → OH + O and enhances reaction O2 + H → HO2 both
significantly and push the reaction rate values to the respective lower and upper uncertainty
bounds. For δ(s1−s5; 2), the produced PDF covers a large parameter region with noticeable
probabilities. The region with the highest probability, however, indicates a suppression on
both reaction rates.

The two reactions associated with λ11 and λ12, HO2 + H → H2 + O2 and HO2 + H
→ OH + OH, also compete over the same reactants. The VCM method generates a PDF
that has a high probability in the parameter region that enhances reaction HO2 + H → OH
+ OH strongly and reaction HO2 + H → H2 + O2 weakly. For δ(s1, s3; 4, 5, 4), completely
distinct from the VCM result, the produced PDF has a high probability in the parameter
region that suppresses both reactions substantially. For δ(s1 − s3; 4) and δ(s1 − s4; 3), the
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Figure 6.11: Estimated two-dimensional probability density functions in the λ6-λ7 space
based on samples generated using a (a) dataset with δ(s1, s3; 4, 5, 4), (b) dataset with δ(s1−
s3; 4), (c) dataset with δ(s1 − s4; 3), and (d) dataset with δ(s1 − s5; 2). The axis limits are
the prior uncertainty bounds.

resulting PDFs have a high probability in inhibiting reaction HO2 + H → H2 + O2 but do
not display a observable preference in increasing or decreasing the reaction rate of HO2 + H
→ OH + OH. For δ(s1 − s5; 2), the obtained PDF has a high probability in the parameter
region that mildly enhances reaction HO2 + H → H2 + O2 and suppresses reaction HO2 +
H → OH + OH. The PDF also demonstrates a noticeable positive correlation between the
two reaction rate values.



CHAPTER 6. SYNGAS COMBUSTION DATASET WITH DISCREPANCY
FUNCTIONS 141

Figure 6.12: Estimated two-dimensional probability density functions in the λ11-λ12 space
based on samples generated with a (a) dataset with δ(s1, s3; 4, 5, 4), (b) dataset with δ(s1 −
s3; 4), (c) dataset with δ(s1 − s4; 3), and (d) dataset with δ(s1 − s5; 2). The axis limits are
the prior uncertainty bounds.

6.9 Chapter Summary

In this chapter, a syngas combustion dataset consisted of only ignition delay time data
was constructed. The CONSTVA model, which is adequate at ideal experimental conditions,
was selected as the original simulation models for the ignition delay time QOIs. Both the
VCM method and the method of including a discrepancy function were applied to resolve the
initial dataset inconsistency. The discrepancy function method was able to obtain dataset
consistency without removing experimental data. The selection of combinations of scenario
parameters that can recover dataset consistency is not unique, nor are the choices of the
basis functions. However, the method may fail with certain basis functions if important
scenario parameters are not included in the analysis. The resulting dataset consistency is
significantly less vulnerable to addition of extra data compared to that obtained by remov-
ing the VCM-identified QOIs. The sensitivity analysis revealed that the initial pressure,
temperature increment and fuel-to-oxygen ratio are important scenario parameters for the
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discrepancy function. The latter two scenario parameters were reported in [87] as effective
contributors to the experimentally observed inhomogeneous circumferential ignition. There-
fore, the experimental data included in this study are likely subject to such nonideal ignition
phenomena. The discrepancy function exhibited relatively regularized behavior in regions
where data exist but can change quickly outside this training domain. Although the training
data density dilutes quickly as the dimension of the scenario parameters increases, the dis-
crepancy function with more scenario parameters and lower order polynomial basis functions
exhibits an overall flatter surface in the 2D projected scenario parameter spaces.

The 1D prediction intervals of model parameters are qualitatively similar between the
feasible sets obtained by applying the discrepancy function method and the VCM method,
and among feasible sets obtained by applying different discrepancy functions. However, the
sample-based credible intervals and lower-dimensional (1D and 2D) empirical PDFs of the
model parameters can differ from each other. The difference is more substantial between the
two methods than among different discrepancy functions. The empirical PDFs from feasible
sets obtained using the two methods can exhibit different, sometimes opposite results for rate
values of reactions that are important to syngas ignition delay times. Therefore, a careful
assessment of the source for dataset inconsistency is crucial for UQ as the correspondingly
selected resolution method has significant influence on the computed results.

In this study, the scenario parameters were selected based on our prior knowledge about
shock-tube ignition experiments. They are factors with physical meanings. In practice, cor-
relations can and are likely to exist in these scenario parameters, as shock-tube experiments
are usually conducted with a similar mixture composition at different temperatures and
pressures. The temperature increment is also related to pressure and mixture composition
through thermodynamic laws. Future work may focus on developing more efficient rules for
selecting scenario parameters and potentially uncorrelated linear combinations of physically
defined scenario parameters.
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Chapter 7

Summary and Conclusions

This dissertation explored and expanded the method of Bound-to-Bound Data Collabora-
tion (B2BDC) in uncertainty quantification (UQ). The B2BDC framework combines models
and experimental data with assessed uncertainty to systematically improve the knowledge of
the underlying physical process. The updated uncertainty after data collaboration is char-
acterized by the feasible set, a generally smaller region in the parameter space compared to
its prior uncertainty region. The feasible set is mathematically defined by inequality con-
straints that are derived by requiring model outputs at a set of model parameter vectors
to be within the assessed experimental uncertainties. The dataset is inconsistent when the
feasible set is empty, and this inconsistency must be resolved before moving to predictions.
When the dataset is consistent, uncertainty in other quantities of interest (QOIs) can be
computed. Dataset consistency is determined by the sign of the scalar consistency measure,
which is calculated by solving a constrained optimization problem. The QOI predictions are
calculated by solving a pair of constrained minimization and maximization problems. The
Solution Mapping technique is used to create quadratic, rational quadratic, and polynomial
surrogate models that replace the original simulation models in B2BDC computations. The
difficulty in finding a globally optimal solution to NP-hard nonconvex optimization problems
is alleviated by computing an interval that contains the global optimum. The bounds of the
interval are calculated by finding a local solution to the nonconvex problem and finding a
solution to a convex semidefinite programming problem, which is derived from the nonconvex
problem via convex relaxation approaches.

Compared to the optimization-based B2BDC framework, Bayesian inference method can
provide a more informative assessment about the underlying problem with more informative
assumptions. In a Bayesian inference, a prior distribution and a likelihood function need
to be selected to characterize the prior knowledge of the model parameters and the model
describing the measurement error. The Gaussian and the uniform measurement error as-
sumptions are two statistical models inspired by realistic experimental setups. Numerical
study presented in Chapter 3 based on a 2D toy example and the 102-dimensional GRI-Mech
dataset shows that, with the uniform prior distribution, these two likelihood assumptions
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generate a growing and noticeably larger difference in their posterior distributions and QOI
predictions in a higher dimensional application. Therefore, careful evaluation and validation
of the selected statistical models are crucial to guarantee the quality of a Bayesian inference
application in realistic engineering problems. The Bayesian framework with the uniform
prior distribution and uniform likelihood assumption generates a posterior distribution that
is uniformly distributed over the feasible set. Numerical studies show that this Bayesian
posterior distribution, while providing a quantifiable measure (the probability) to each QOI
value, can generate noticeably less-conservative credible intervals compared to B2BDC pre-
diction intervals, particularly for higher dimensional problems.

Dataset inconsistency indicates a provable disagreement among the collected model and
experimental data. Strategies resolving dataset inconsistency are developed focusing on dif-
ferent scenarios. For example, the developed vector consistency measure (VCM) method [52]
focuses on identifying the fewest experimental data points, adjusting/removing which recov-
ers a consistent dataset. The model discrepancy function method presented in Chapter 5
focuses on adding a scenario-dependent correction to model output that resolves dataset in-
consistency without modifying experimental data and their assessed uncertainty. In the VCM
method, different weights can be assigned to different model parameters and experimental
data points to reflect domain expertise. In the model discrepancy function method, expert
opinions can be included by choosing different sets of basis functions or scenario parameters.
The development enriches the B2BDC framework and enables an analyst, when the dataset
is inconsistent, to design and choose resolution strategies that better reflect his/her under-
standing of the specific application. More importantly, the comparison analysis for a syngas
combustion dataset shown in Chapter 6 demonstrates that different resolution strategies can
produce quite different UQ results, highlighting the necessity of incorporating application-
specific information in the analysis and the ability of the B2BDC framework to provide such
an option.

The practical value of the B2BDC framework in realistic engineering problems is reit-
erated in the DLR syngas combustion dataset presented in Chapter 4. The initial dataset
inconsistency can be resolved by removing VCM-identified QOIs. The B2BDC analysis on
the obtained consistent dataset generates improved understanding of the uncertainty in the
reaction rate parameters of the syngas combustion mechanism. The B2BDC prediction in-
tervals show that some parameters have a shorter uncertainty than their prior uncertainty
interval. The uniform samples from the feasible set visualize correlations among different
parameters/QOIs. Optimized sets of model parameters obtained from the feasible set exhibit
better performance compared to those obtained from the prior uncertainty region, especially
in predictions at relatively extreme conditions not reflected by experimental data points in
the dataset. The result highlights the essence of the B2BDC framework, which gradually and
systematically improves our knowledge of the system with an expanding dataset by forming
the converging feasible set.

The field of UQ has by no means found a solution that is agreed upon by all researchers.
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In the author’s opinion, three main challenges remain for future study: 1) How can we iden-
tify all sources of uncertainty in an underlying system? 2) How can we accurately quantify
and characterize each uncertainty source in the analysis? 3) How can we practically real-
ize the analysis? These points are reflected on throughout this dissertation. For example,
considering the first question, model discrepancy, an uncertainty source that has received
growing attention recently, is included in the B2BDC framework to resolve dataset inconsis-
tency as shown in Chapter 5. However, there could be other sources that contribute to the
disagreement in the system, whether detected or not.
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Appendix A

GRI-Mech Dataset

Table A.1: Quantities of interest in the GRI-Mech dataset [113]. Measure-
ments from the same research institute are grouped together.

Label QOI

IG.1a, IG.1b, IG2,
IG.St3a, IG.St3b

Ignition delay measurement
in shock tube

IG.6a, IG.6b
Ignition delay measurement
in shock tube

IG.T1
Ignition delay measurement
in shock tube

IG.T2, IG.St1a, IG.St1b
Ignition delay measurement
in shock tube

IG.St4a, IG.St4b
Ignition delay measurement
in shock tube

CH3.C1a, CH3.C1b,
CH3.C2, CH3.C4

Maximum CH3 concentration

CH3.T1a, CH3.T1b, CH3.T2 Time of CH3 maximum
CH3.C3 Maximum CH3 concentration
CH3.T4, CH3.StC6,
CH3.StC7, CH3.T3

Time of CH3 maximum

OH.1a, OH.1b, OH.2 Time to half of OH maximum
OH.3a, OH.3b, OH.3c,
OH.3d, OH.ST8

Time to half of
OH maximum

CO.C1a, CO.C1b, CO.C1c,
CO.C1d, CO.SC8,CO.T1a,
CO.T1b, CO.T1c

Maximum CO concentration

BCO.T1, BCO.T2, BCO.T3,
BCO.T4, BCO.T5,
BCO.T6, BCO.T7

Time to half
of CO maximum
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Table A.1 (continued)

Label QOI

BCH2O.T1, BCH2O.T2,
BCH2O.T3

Time to half of
CO maximum

SR.10c
Temperature where
[CO2] = 500ppm

F1, StF8 Laminar flame speed
F2, F3 Laminar flame speed
F4 Laminar flame speed
F5, F6 Laminar flame speed
SF7 Laminar flame speed
SNO.C11 NO (2 cm) concentration
SCH.C11 Maximum CH concentration
SCH.C12, SCH.C13 Maximum CH concentration

CH.St
Maximum of CH concentration
without NO doping

NFR1 HCN relative concentration
NFR2 NO relative concentration
NFR3 N2O relative concentration
NF6 Maximum NO mole fraction
NF7 Maximum CN mole fraction

NF11
Ratio of CH maximum concentrations
at two levels of NO doping

NF12/13
Ratio of CN maximum concentrations
for NO and N2O doping

NFR4
NO mole fraction
at reactor exit

NFR5
HCN mole fraction
at reactor exit

CHNO.St
Maximum of CH concentration
with NO doping

Table A.2: Active model parameters in GRI-Mech dataset [113]

Index Reaction/Species Parameter type
1 O2 + CH2O → HO2 + HCO log pre-exponential factor
2 H + O2 → O + OH log pre-exponential factor
3 H + HO2 → O2 + H2 log pre-exponential factor
4 H + HO2 → OH + OH log pre-exponential factor
5 OH + OH + M → H2O2 + M log pre-exponential factor
6 OH + CH2O → HCO + H2O log pre-exponential factor
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Table A.2 (continued)
Index Reaction/Species Parameter type
7 HO2 + HO2 → O2 + H2O2 log pre-exponential factor
8 HO2 + CH2O → HCO + H2O2 log pre-exponential factor
9 HCO + M → H + CO + M log pre-exponential factor
10 HCO + O2 → HO2 + CO log pre-exponential factor
11 H + HCO → H2 + CO log pre-exponential factor
12 H + CH2O → H2 + HCO log pre-exponential factor
13 H + HCO + M → CH2O + M log pre-exponential factor
14 OH + HO2 → O2 + H2O log pre-exponential factor
15 H2 + CO + M → CH2O + M log pre-exponential factor
16 O + CH2O → OH + HCO log pre-exponential factor
17 H + O2 + M → HO2 + M log pre-exponential factor
18 H + CH → H2 + C log pre-exponential factor
19 H + CH2 + M → CH3 + M log pre-exponential factor
20 H + CH3 + M → CH4 + M log pre-exponential factor
21 O2 + CH → O + HCO log pre-exponential factor
22 CH + H2 → H + CH2 log pre-exponential factor
23 CH + CH3 → H + C2H3 log pre-exponential factor
24 CH2 + CH3 → C2H4 + H log pre-exponential factor
25 CH2(S) + H2 → CH3 + H log pre-exponential factor
26 CH + H2 + M → CH3 + M log pre-exponential factor
27 O + CH3 → CH2O + H log pre-exponential factor
28 O + CH3 → H2 + H + CO log pre-exponential factor
29 O + CH4 → CH3 + OH log pre-exponential factor
30 H + CH4 → CH3 + H2 log pre-exponential factor
31 OH + CH3 → CH2(S) + H2O log pre-exponential factor
32 OH + CH4 → CH3 + H2O log pre-exponential factor
33 CH3 + CH3 → C2H5 + H log pre-exponential factor
34 H + C2H5 + M → C2H6 + M log pre-exponential factor
35 H + C2H6 → H2 + C2H5 log pre-exponential factor
36 CH2 + CH4 → CH3 + CH3 log pre-exponential factor
37 CH2(S) + CH4 → CH3 + CH3 log pre-exponential factor
38 CH3 + CH3 + M → C2H6 + M log pre-exponential factor
39 CH3 + C2H6 → C2H5 + CH4 log pre-exponential factor
40 OH + CH3 → CH2 + H2O log pre-exponential factor
41 O2 + CH3 → CH3O + O log pre-exponential factor
42 H + CH2OH → OH + CH3 log pre-exponential factor
43 O2 + CH2 → H + H + CO2 log pre-exponential factor
44 H2 + CH2 → CH3 + H log pre-exponential factor
45 CH + NO → HCN + O log pre-exponential factor
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Table A.2 (continued)
Index Reaction/Species Parameter type
46 OH + CO → CO2 + H log pre-exponential factor
47 CH2 + O2 → OH + H + CO log pre-exponential factor
48 CH2(S) + N2 → CH2 + N2 log pre-exponential factor
49 CH2(S) + O2 → H + OH + CO log pre-exponential factor
50 OH + H2 → H2O + H log pre-exponential factor
51 O + H2 → H + OH log pre-exponential factor
52 O + C2H2 → H + HCCO log pre-exponential factor
53 O2 + CH3 → CH2O + OH log pre-exponential factor
54 H + CH2O + M → CH3O + M log pre-exponential factor
55 HO2 + CH3 → O2 + CH4 log pre-exponential factor
56 CH3O + O2 → HO2 + CH2O log pre-exponential factor
57 H + O2 + H2O → HO2 + H2O log pre-exponential factor
58 HO2 + CH3 → OH + CH3O log pre-exponential factor
59 H + OH + M → H2O + M log pre-exponential factor
60 HCO + H2O → H + CO + H2O log pre-exponential factor
61 H + C2H4 + M → C2H5 + M log pre-exponential factor
62 C2H5 + O2 → HO2 + C2H4 log pre-exponential factor
63 CH3 + C2H5 + M → C3H8 + M log pre-exponential factor
64 H + C3H8 → H2 + C3H7 log pre-exponential factor
65 CH + H2O → CH2O + H log pre-exponential factor
66 CH2 + NO → H + HNCO log pre-exponential factor
67 N + O2 → NO + O log pre-exponential factor
68 N + OH → NO + H log pre-exponential factor
69 N2O + H → N2 + OH log pre-exponential factor
70 NH + H → H2 + N log pre-exponential factor
71 NH + NO → N2O + H log pre-exponential factor
72 CH3 + N → H2CN + H log pre-exponential factor
73 N + NO → N2 + O log pre-exponential factor
74 NH + O → NO + H log pre-exponential factor
75 HCN + O → NCO + H log pre-exponential factor
76 H + H + H2O → H2 + H2O log pre-exponential factor
77 CN + OH → NCO + H log pre-exponential factor
78 CN + H2 → HCN + H log pre-exponential factor
79 HCN enthalpy of formation at 298K
80 OH + OH → H2O + O log pre-exponential factor
81 CN + H2O → HCN + OH log pre-exponential factor
82 HCN + OH → HOCN + H log pre-exponential factor
83 NCO + O → NO + CO log pre-exponential factor
84 NCO + OH → NO + H + CO log pre-exponential factor
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Table A.2 (continued)
Index Reaction/Species Parameter type
85 NCO + NO → N2O + CO log pre-exponential factor
86 NCO + NO → N2 + CO2 log pre-exponential factor
87 CH2(S) + O2 → H2O + CO log pre-exponential factor
88 OCH2(S) + H2O → CH2 + H2O log pre-exponential factor
89 CH + N2 → HCN + N log pre-exponential factor
90 O + C2H6 → C2H5 + OH log pre-exponential factor
91 H + C2H5 → H2 + C2H4 log pre-exponential factor
92 OH + C2H4 → H2O + C2H3 log pre-exponential factor
93 CH2 + NO → OH + HCN log pre-exponential factor
94 CH3 + NO → HCN + H2O log pre-exponential factor
95 HCNO + H → H + HNCO log pre-exponential factor
96 HCNO + H → OH + HCN log pre-exponential factor
97 HCCO + O2 → OH + CO + CO log pre-exponential factor
98 NH2 + O → H + HNO log pre-exponential factor
99 NH2 + H → H2 + NH log pre-exponential factor
100 H + NO + M → HNO + M log pre-exponential factor
101 HNO + H → H2 + NO log pre-exponential factor
102 HCCO + NO → HCNO + CO log pre-exponential factor
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Appendix B

Syngas Combustion Datasets

Table B.1: The initial syngas combustion mechanism and associated reac-
tion rate constants [110], k = AT nexp(−Ea/T ) in units of cm3, mol, s, and
K.

Index Reaction A n Ea
1 H2 + O2 → OH + OH 2.4E+13 0.47 35121
2 H + H (+Ar) → H2 (+Ar) 6.53E+17 -1 0

H + H (+H2) → H2 (+H2) 1.0E+17 -0.6 0
H + H (+N2) → H2 (+N2) 5.4E+18 -1.3 0
H + H (+H2O) → H2 (+H2O) 1.00E+19 -1 0
H + H (+H) → H2 (+H) 3.2E+15 0 0
H + H (+M) → H2 (+M) 7.47E+17 -1 0
Collider efficiency: CO2=3.75, CO=1.875,
He=0.87

— — —

3 H2 + O → OH + H 3.82E+12 0 4000
H2 + O → OH + H 8.79E+14 0 9650

4 H2 + OH → H2O + H 2.16E+08 1.52 1740
5 OH + OH (+H2O)→ H2O2 (+H2O)1 1.59E+13 0 0

Low-pressure limit 1.45E+18 0 0
OH + OH (+M)→ H2O2 (+M)1 1.59E+13 0 0
Low-pressure limit 2.4E+19 -0.8 0
Collider efficiency: H2=2.5, CO=1.875,
CO2=3.75, Ar=0.875

— — —

6 O2 + H → OH + O 1.9E+14 -0.097 7560
7 O2 + H (+He) → HO2 (+He)2 4.66E+12 0.44 0

Low-pressure limit 6.13E+18 -1.2 0
O2 + H (+Ar) → HO2 (+Ar)2 4.66E+12 0.44 0

1Tore parameters: a = 1, T ∗∗∗ = 1, T ∗ = 1, T ∗∗ = 243
2Tore parameters: a = 0.5, T ∗∗∗ = 1E − 30, T ∗ = 1E + 30
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Table B.1 (continued)

Index Reaction A n Ea
Low-pressure limit 7.43E+18 -1.2 0
O2 + H (+O2) → HO2 (+O2)2 4.66E+12 0.44 0
Low-pressure limit 5.69E+18 -1.09 0
O2 + H (+N2) → HO2 (+N2)2 4.66E+12 0.44 0
Low-pressure limit 1.75E+19 -1.23 0
O2 + H (+H2O) → HO2 (+H2O)1 4.66E+12 0.44 0
Low-pressure limit 3.67E+19 -1 0
O2 + H (+M) → HO2 (+M)2 4.66E+12 0.44 0
Low-pressure limit 1.75E+19 -1.23 0
Collider efficiency: H2=1.5, CO2=1.06 — — —

8 O + O (+M) → O2 (+M) 5.4E+13 0 -899.69
Collider efficiency: H2=2.5, H2O=16.25,
Ar=0.87, He=0.87, CO=1.875, CO2=3.75

— — —

9 OH + H (+Ar) → H2O (+Ar)2 2.511E+13 0.234 -57.5
Low-pressure limit 3.114E+20 -1.53 185
OH + H (+M) → H2O (+M)2 2.511E+13 0.234 -57.5
Low-pressure limit 4.533E+21 -1.81 251
Collider efficiency: H2=2.5, H2O=16.25,
He=0.87, CO=1.875, CO2=3.75

— — —

10 H + O (+M) → OH (+M) 7.73E+18 -1 0
Collider efficiency: H2=2.5, H2O=16.25,
Ar=0.87, He=0.87, CO=1.875, CO2=3.75

— — —

11 HO2 + H → H2 + O2 2E+14 0 1030
12 HO2 + H → OH + OH 4E+14 0 700
13 HO2 + H → H2O + O 1.44E+12 0 0
14 H2O2 + H → H2 + HO2 1.69E+12 0 1889.58
15 H2O2 + H → OH + H2O 1.02E+13 0 1800.58
16 OH + OH → H2O + O 3.35E+04 2.42 -970
17 HO2 + OH → H2O + O2 9.27E+15 0 8810

HO2 + OH → H2O + O2 2.89E+13 0 -250
18 OH + H2O2 → HO2 + H2O 1.64E+18 0 14800

OH + H2O2 → HO2 + H2O 1.93E+12 0 215
19 HO2 + O → OH + O2 1.63E+13 0 -224
20 O + H2O2 → OH + HO2 8.43E+11 0 2000
21 HO2 + HO2 → H2O2 + O2 4.22E+14 0 6030.79

HO2 + HO2 → H2O2 + O2 1.32E+11 0 -820.3
22 CO + O2 → CO2+ O 1.26E+13 0 23682.94
23 CO + OH → CO2 + H 1.01E+13 0 8050

CO + OH → CO2 + H 9.03E+13 0 2300

1Tore parameters: a = 0.6, T ∗∗∗ = 1E − 30, T ∗ = 1E + 30
2Tore parameters: a = 0.72, T ∗∗∗ = 1E + 33, T ∗ = 1E + 33
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Table B.1 (continued)

Index Reaction A n Ea
CO + OH → CO2 + H 1.01E+11 0 30

24 CO + O (+M) → CO2 (+M) 1.362E+10 0 1242
Low-pressure limit 1.173E+24 -2.79 2095
Collider efficiency: H2=2, H2O=12,
Ar=0.7, He=0.7, CO=1.75, CO2=3.6

— — —

25 CO + HO2 → CO2 + OH 1.15E+05 2.28 8775
26 HCO + O2 → CO + HO2 1.35E+10 0.68 -236
27 HCO + O2 → OH + CO2 1.35E+10 0.68 -236
28 HCO + H → CO + H2 9E+13 0 0
29 HCO + O → CO + OH 3.01E+13 0 0
30 HCO + O → CO2 + H 3.01E+13 0 0
31 HCO + OH → CO + H2O 1.02E+14 0 0
32 HCO + HO2 → OH + CO2 + H 3E+13 0 0
33 HCO (+M) → CO + H (+M) 4.75E+11 0.66 7485

Collider efficiency: H2=2.5, H2O=16.25,
Ar=0.87, He=0.87, CO=1.87, CO2=3.75

— — —

34 HCCO + O2 → CO2 + CO + H 1.4E+09 1 0
35 HCCO + O2 → CO + CO + OH 1.63E+12 0 430.6
36 HCCO + O2 → HCO + CO + O 1.63E+12 0 430
37 HCCO + OH → HCO + HCO 1E+13 0 0
38 HCCO + O → CO + CO + H 9.64E+13 0 0
39 CH + O2 → CO + OH 1.66E+13 0 0
40 CH + O2 → CO2 + H 1.66E+13 0 0
41 CH + CO → HCCO 2.77E+11 0 -860
42 CH + CO2 → HCO + CO 3.43E+12 0 345.2
43 CH + O → CO + H 3.97E+13 0 0
44 CH + OH → H + HCO 3E+13 0 0

45 O + H (+M) → OH* (+M) 1.5E+13 0 25
Collider efficiency: H2=1, H2O=6.5,
O2=0.4, Ar=0.35, N2=0.4, CO=0.75,
CO2=1.5

— — —

46 CH + O2 → OH* + CO 1.8E+11 0 0

47 OH* → OH 1.45E+06 0 0

48 OH* + O2 → OH + O2 2.1E+12 0.5 -242.96

49 OH* + H2O → OH + H2O 5.93E+12 0.5 -434.21

50 OH* + H2 → OH + H2 2.95E+12 0.5 -223.72

51 OH* + CO2 → OH + CO2 2.76E+12 0.5 -488.33

52 OH* + CO → OH + CO 3.23E+12 0.5 -396.92

53 OH* + OH → OH + OH 6.01E+12 0.5 -383.69

54 OH* + H → OH + H 1.31E+13 0.5 -84.2

55 OH* + Ar → OH + Ar 1.69E+12 0 2083.23
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Table B.2: Prior uncertainty range of the reaction rate multipliers [110].

Index Reaction Lower bound Upper bound
1 H2 + O2 → OH + OH 0.1 10
2 H + H → H2 0.32 3.16
3 H2 + O → OH + H 0.63 1.58
4 H2 + OH → H2O + H 0.65 1.63
5 OH + OH → H2O2 0.5 2
6 O2 + H → OH + O 0.8 1.26
7 O2 + H → HO2 0.85 1.15
8 O + O → O2 0.77 1.13
9 OH + H → H2O 0.8 1.2
10 H + O → OH 0.2 5
11 HO2 + H → H2 + O2 0.5 2
12 HO2 + H → OH + OH 0.7 1.4
13 HO2 + H → H2O + O 0.32 3.16
14 H2O2 + H → H2 + HO2 0.32 3.16
15 H2O2 + H → OH + H2O 0.5 2
16 OH + OH → H2O + O 0.7 1.4
17 HO2 + OH → H2O + O2 0.32 3.16
18 OH + H2O2 → HO2 + H2O 0.5 2
19 HO2 + O → OH + O2 0.32 3.16
20 O + H2O2 → OH + HO2 0.5 2
21 HO2 + HO2 → H2O2 + O2 0.4 2.5
22 CO + O2 → CO2+ O 0.2 5
23 CO + OH → CO2 + H 0.8 1.26
24 CO + O → CO2 0.5 2
25 CO + HO2 → CO2 + OH 0.32 3.16
26 HCO + O2 → CO + HO2 0.4 2.5
27 HCO + O2 → OH + CO2 0.4 2.5
28 HCO + H → CO + H2 0.5 2
29 HCO + O → CO + OH 0.5 2
30 HCO + O → CO2 + H 0.5 2
31 HCO + OH → CO + H2O 0.5 2
32 HCO + HO2 → OH + CO2 + H 0.2 5
33 HCO → CO + H 0.5 2
34 HCCO + O2 → CO2 + CO + H 0.5 2
35 HCCO + O2 → CO + CO + OH 0.2 5
36 HCCO + O2 → HCO + CO + O 0.2 5
37 HCCO + OH → HCO + HCO 0.5 2
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Table B.2 (continued)
Index Reaction Lower bound Upper bound

38 HCCO + O → CO + CO + H 0.5 2
39 CH + O2 → CO + OH 0.32 3.16
40 CH + O2 → CO2 + H 0.32 3.16
41 CH + CO → HCCO 0.8 1.25
42 CH + CO2 → HCO + CO 0.8 1.25
43 CH + O → CO + H 0.32 3.16
44 CH + OH → H + HCO 0.8 1.25
45 O + H → OH* 0.5 2
46 CH + O2 → OH* + CO 0.5 2
47 OH* → OH 0.5 2
48 OH* + O2 → OH + O2 0.5 2
49 OH* + H2O → OH + H2O 0.5 2
50 OH* + H2 → OH + H2 0.5 2
51 OH* + CO2 → OH + CO2 0.5 2
52 OH* + CO → OH + CO 0.5 2
53 OH* + OH → OH + OH 0.5 2
54 OH* + H → OH + H 0.5 2
55 OH* + Ar → OH + Ar 0.5 2

Table B.3: List of ignition delay time quantities of interest and their es-
timated uncertainty. T 5 and P 5 are the initial temperature and pressure
behind the reflected shock wave [110].

T 5 (K) P 5 (MPa) tign (µs) PrIMe ID Uncertainty (%)
916 0.11 1812 a00000179 50
954 0.12 462 a00000181 35
993 0.10 175 a00000183 30
1074 0.11 65 a00000186 30
1151 0.10 64 a00000188 30
914 0.11 2277 a00000105 50
951 0.11 687 a00000131 40
996 0.11 181 a00000132 35
1072 0.11 87 a00000133 30
1175 0.10 55 a00000135 30
1187 0.10 39 a00000136 30
1241 0.10 29 a00000107 30
900 0.06 2935 a00000110 50
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Table B.3 (continued)
T 5 (K) P 5 (MPa) tign (µs) PrIMe ID Uncertainty (%)
1026 0.11 153 a00000111 30
1162 0.10 57 a00000112 30
936 0.12 1331 a00000113 40
1015 0.11 219 a00000189 30
1183 0.11 63 a00000190 30
929 0.26 2593 a00000191 50
992 0.26 1015 a00000192 40
1058 0.26 108 a00000114 30
1063 0.31 120 a00000193 30
1015 1.39 2278 a00000213 50
1114 1.51 638 a00000194 35
1190 1.70 82 a00000115 35
960 0.12 1307 a00000116 40
1052 0.11 274 a00000195 30
1197 0.11 101 a00000196 30
981 0.27 2284 a00000197 50
1048 0.25 236 a00000198 30
1118 0.25 94 a00000117 30
1063 1.45 1695 a00000199 40
1126 1.20 472 a00000200 35
1265 1.73 25 a00000118 30
968 0.12 1167 a00000307 40
1033 2.40 1760 a00000317 35
1148 2.17 380 a00000318 35
909 0.119 1900 a00000322 40
933 0.116 660 a00000323 40
947 0.121 560 a00000324 35
932 0.14 1169 a00000223 40
956 0.14 878 a00000224 35
965 0.15 629 a00000225 35
1046 1.70 4340 a00000226 30
1072 1.60 2660 a00000227 30
1132 1.64 986 a00000228 35
1107 1.64 3970 a00000229 30
1159 1.64 1350 a00000230 30
1206 1.66 588 a00000231 35
1165 1.63 3900 a00000232 30
1207 1.66 1730 a00000233 30
1259 1.61 630 a00000234 30
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Table B.3 (continued)
T 5 (K) P 5 (MPa) tign (µs) PrIMe ID Uncertainty (%)
1019 1.43 3430 a00000235 30
1051 1.55 1810 a00000236 30
1097 1.58 692 a00000237 35
1048 1.62 3210 a00000238 30
1086 1.57 1310 a00000239 30
1128 1.57 374 a00000240 30
1054 1.58 3960 a00000241 30
1090 1.60 1850 a00000242 30
1140 1.61 448 a00000243 30
1057 0.11 317 a00000308 30
1263 0.11 87 a00000309 30
977 0.23 1654 a00000310 40
1149 0.20 102 a00000311 30
1304 0.17 54 a00000312 30
1110 1.29 944 a00000313 40
943 2.26 3430 a00000316 35
1299 1.22 48.8 a00000334 25
1182 1.22 93.6 a00000335 25
1096 1.22 1796.8 a00000336 30
1383 1.22 41.1 a00000337 25
1235 1.22 86.2 a00000338 25
1099 1.22 1060.8 a00000339 30
1387 1.22 83 a00000340 25
1228 1.22 191.9 a00000341 25
1116 1.22 1450.1 a00000342 35
1264 3.24 61.4 a00000343 30
1243 3.24 139.5 a00000344 30
1185 3.24 938.2 a00000345 35
1325 3.24 32.1 a00000346 30
1204 3.24 552.9 a00000347 35
1179 3.24 864.3 a00000348 35
1327 3.24 76.4 a00000349 30
1259 3.24 180.1 a00000350 30
1166 3.24 1493.8 a00000351 40
1695 0.16 51.8 a00000352 30
1351 0.16 183.9 a00000353 30
980 0.16 1467.7 a00000354 40
2004 0.16 40.2 a00000355 25
1273 0.16 311.5 a00000356 25
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Table B.3 (continued)
T 5 (K) P 5 (MPa) tign (µs) PrIMe ID Uncertainty (%)

992 0.16 1640.7 a00000357 35
1975 0.16 115.4 a00000358 25
1436 0.16 296.1 a00000359 25
1027 0.16 1726 a00000360 35
996 10 5854.1 a00000510 51
1062 10 1143.6 a00000511 86
940 5 8499.6 a00000512 55
1042 5 1432.4 a00000513 90
968 15 7357 a00000514 74
1037 15 2169.5 a00000515 74
998 1.6 1444.7 a00000489 50
1146 1.6 477.37 a00000490 30
1786 1.6 71.81 a00000493 30
1397 12.5 28.544 a00000498 30
1284 12.5 48.121 a00000499 30
1100 12.5 973.24 a00000500 30
1299 32 37.8 a00000501 30
1186 32 500.37 a00000502 30
1883 1.6 55.99 a00000503 30
1008 1.6 1347.4 a00000504 50
1360 12.5 42.39 a00000505 30
1122 12.5 701.53 a00000506 30
1291 32 51.447 a00000507 30
1233 32 253.23 a00000508 30
1150 32 1459 a00000509 30
981 1.24 1360 a00000491 20
1065 1.3 182 a00000492 20
1135 1.19 83 a00000494 20
975 1.72 1720 a00000495 20
999 1.8 951 a00000496 20
1048 1.7 199 a00000497 20
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Table B.4: List of laminar flame speed quantities of interest and their esti-
mated uncertainty [110]. T 0, P 0 and φ are the initial temperature, pressure
and equivalence ratio of the mixture.

T 0 (K) P 0 (MPa) φ Flame speed (cm/s) PrIMe ID Uncertainty (%)
300 0.10 0.8 80 a00000128 10
300 0.10 1.2 151 a00000129 10
300 0.10 2.5 162 a00000130 15
300 0.51 2.0 60 a00000249 15
300 1.01 0.75 20 a00000250 15
300 1.01 1.4 47 a00000252 15
300 2.03 1.0 29 a00000253 20
300 4.05 1.4 32 a00000257 20
300 0.51 3.5 80.3 a00000124 25
300 1.01 1.0 100 a00000125 15
300 1.01 1.8 150 a00000126 15
300 1.01 3.5 42 a00000127 20
700 0.10 0.7 350 a00000282 10
700 0.10 0.9 450 a00000280 10
300 0.10 1.0 32 a00000260 10
300 0.10 1.5 47 a00000261 10
300 0.05 1.0 34 a00000269 10
300 0.10 0.6 20 a00000271 10
300 2.03 1.6 41.3 x00000460 20
300 2.03 3.0 20 x00000460 25
300 4.05 2.0 28 x00000461 25
600 1.52 0.6 60 x00000471 20
600 1.52 0.6 80 a00000471 20
298 0.51 0.7 32.1 a00000516 10
298 0.30 1.0 13.7 a00000517 10
298 0.91 0.6 32 a00000518 10
298 1.01 0.5 11.1 a00000519 15
295 0.10 0.6 35.5 a00000520 10
295 0.10 1.4 102 a00000521 10
295 0.10 1.0 73 a00000522 10
400 0.10 1.2 240 a00000523 10
298 0.10 1.2 87.21 a00000524 10
298 0.10 2.0 49.12 a00000525 12
298 0.10 0.6 20.83 a00000526 10
298 0.10 0.6 205.3 a00000527 10
298 0.10 1.2 144.86 a00000528 10
298 0.10 2.0 253.35 a00000529 10
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Table B.4 (continued)
T 0 (K) P 0 (MPa) φ Flame speed (cm/s) PrIMe ID Uncertainty (%)

298 0.10 1.2 160.5 a00000530 10
298 0.10 0.6 48.31 a00000531 10
373 0.10 2.5 238 a00000532 15
373 0.10 2.0 184.4 a00000533 15
373 0.10 1.2 138.4 a00000534 10
373 0.10 1.25 80.3 a00000535 10
373 0.51 1.2 105.4 a00000536 15
298 0.10 0.5 22.7 a00000537 10

Table B.5: The initial syngas combustion mechanism and associated reac-
tion rate constants [110], k = AT nexp(−Ea/T ) in units of cm3, mol, s, and
K.

Index Reaction A n Ea
1 H2 + O2 → OH + OH 2.4E+13 0.47 35121
2 H + H (+Ar) → H2 (+Ar) 6.53E+17 -1 0

H + H (+H2) → H2 (+H2) 1.0E+17 -0.6 0
H + H (+N2) → H2 (+N2) 5.4E+18 -1.3 0
H + H (+H2O) → H2 (+H2O) 1.00E+19 -1 0
H + H (+H) → H2 (+H) 3.2E+15 0 0
H + H (+M) → H2 (+M) 7.47E+17 -1 0
Collider efficiency: CO2=3.75, CO=1.875,
He=0.87

— — —

3 H2 + O → OH + H 3.82E+12 0 4000
H2 + O → OH + H 8.79E+14 0 9650

4 H2 + OH → H2O + H 2.16E+08 1.52 1740
5 OH + OH (+H2O)→ H2O2 (+H2O)1 1.59E+13 0 0

Low-pressure limit 1.45E+18 0 0
OH + OH (+M)→ H2O2 (+M)1 1.59E+13 0 0
Low-pressure limit 2.4E+19 -0.8 0
Collider efficiency: H2=2.5, CO=1.875,
CO2=3.75, Ar=0.875

— — —

6 O2 + H → OH + O 1.9E+14 -0.097 7560
7 O2 + H (+He) → HO2 (+He)2 4.66E+12 0.44 0

Low-pressure limit 6.13E+18 -1.2 0
O2 + H (+Ar) → HO2 (+Ar)2 4.66E+12 0.44 0

1Tore parameters: a = 1, T ∗∗∗ = 1, T ∗ = 1, T ∗∗ = 243
2Tore parameters: a = 0.5, T ∗∗∗ = 1E − 30, T ∗ = 1E + 30
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Table B.5 (continued)

Index Reaction A n Ea
Low-pressure limit 7.43E+18 -1.2 0
O2 + H (+O2) → HO2 (+O2)2 4.66E+12 0.44 0
Low-pressure limit 5.69E+18 -1.09 0
O2 + H (+N2) → HO2 (+N2)2 4.66E+12 0.44 0
Low-pressure limit 1.75E+19 -1.23 0
O2 + H (+H2O) → HO2 (+H2O)1 4.66E+12 0.44 0
Low-pressure limit 3.67E+19 -1 0
O2 + H (+M) → HO2 (+M)2 4.66E+12 0.44 0
Low-pressure limit 1.75E+19 -1.23 0
Collider efficiency: H2=1.5, CO2=1.06 — — —

8 O + O (+M) → O2 (+M) 5.4E+13 0 -899.69
Collider efficiency: H2=2.5, H2O=16.25,
Ar=0.87, He=0.87, CO=1.875, CO2=3.75

— — —

9 OH + H (+Ar) → H2O (+Ar)2 2.511E+13 0.234 -57.5
Low-pressure limit 3.114E+20 -1.51 185
OH + H (+M) → H2O (+M)2 2.511E+13 0.234 -57.5
Low-pressure limit 4.533E+21 -1.81 251
Collider efficiency: H2=2.5, H2O=16.25,
He=0.87, CO=1.875, CO2=3.75

— — —

10 H + O (+M) → OH (+M) 7.73E+18 -1 0
Collider efficiency: H2=2.5, H2O=16.25,
Ar=0.87, He=0.87, CO=1.875, CO2=3.75

— — —

11 HO2 + H → H2 + O2 2E+14 0 1030
12 HO2 + H → OH + OH 4E+14 0 700
13 HO2 + H → H2O + O 1.44E+12 0 0
14 H2O2 + H → H2 + HO2 1.69E+12 0 1889.58
15 H2O2 + H → OH + H2O 1.02E+13 0 1800.58
16 OH + OH → H2O + O 3.35E+04 2.42 -970
17 HO2 + OH → H2O + O2 9.27E+15 0 8810

HO2 + OH → H2O + O2 2.89E+13 0 -250
18 OH + H2O2 → HO2 + H2O 1.64E+18 0 14800

OH + H2O2 → HO2 + H2O 1.93E+12 0 215
19 HO2 + O → OH + O2 1.63E+13 0 -224
20 O + H2O2 → OH + HO2 8.43E+11 0 2000
21 HO2 + HO2 → H2O2 + O2 4.22E+14 0 6030.79

HO2 + HO2 → H2O2 + O2 1.32E+11 0 -820.3
22 CO + O2 → CO2+ O 1.26E+13 0 23682.94
23 CO + OH → CO2 + H 1.01E+13 0 8050

CO + OH → CO2 + H 9.03E+13 0 2300

1Tore parameters: a = 0.6, T ∗∗∗ = 1E − 30, T ∗ = 1E + 30
2Tore parameters: a = 0.72, T ∗∗∗ = 1E + 33, T ∗ = 1E + 33
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Table B.5 (continued)

Index Reaction A n Ea
CO + OH → CO2 + H 1.01E+11 0 30

24 CO + O (+M) → CO2 (+M) 1.362E+10 0 1242
Low-pressure limit 1.173E+24 -2.79 2095
Collider efficiency: H2=2, H2O=12,
Ar=0.7, He=0.7, CO=1.75, CO2=3.6

— — —

25 CO + HO2 → CO2 + OH 1.15E+05 2.28 8775
26 HCO + O2 → CO + HO2 2.5E+10 0.68 -236
27 HCO + O2 → OH + CO2 2E+09 0.68 -236
28 HCO + H → CO + H2 9E+13 0 0
29 HCO + O → CO + OH 3.01E+13 0 0
30 HCO + O → CO2 + H 3.01E+13 0 0
31 HCO + OH → CO + H2O 1.02E+14 0 0
32 HCO + HO2 → OH + CO2 + H 3E+13 0 0
33 HCO (+M) → CO + H (+M) 4.75E+11 0.66 7485

Collider efficiency: H2=2.5, H2O=16.25,
Ar=0.87, He=0.87, CO=1.87, CO2=3.75

— — —

34 HCCO + O2 → CO2 + CO + H 4.78E+12 -0.142 575
35 HCCO + O2 → CO + CO + OH 1.91E+11 -0.02 511
36 HCCO + O2 → HCO + CO + O 2.18E+02 2.692 1770
37 HCCO + OH → HCO + HCO 1E+13 0 0
38 HCCO + O → CO + CO + H 9.64E+13 0 0
39 CH + O2 → CO + OH 1.66E+13 0 0
40 CH + O2 → CO2 + H 1.66E+13 0 0
41 CH + CO → HCCO 2.77E+11 0 -860
42 CH + CO2 → HCO + CO 3.43E+12 0 345.2
43 CH + O → CO + H 3.97E+13 0 0
44 CH + OH → H + HCO 3E+13 0 0

45 O + H (+M) → OH* (+M) 1.5E+13 0 3007.5
Collider efficiency: H2=1, H2O=6.5,
O2=0.4, Ar=0.35, N2=0.4, CO=0.75,
CO2=1.5

— — —

46 CH + O2 → OH* + CO 1.8E+11 0 0

47 OH* → OH 1.45E+06 0 0

48 OH* + O2 → OH + O2 2.1E+12 0.5 -242.96

49 OH* + H2O → OH + H2O 5.93E+12 0.5 -434.21

50 OH* + H2 → OH + H2 2.95E+12 0.5 -223.72

51 OH* + CO2 → OH + CO2 2.76E+12 0.5 -488.33

52 OH* + CO → OH + CO 3.23E+12 0.5 -396.92

53 OH* + OH → OH + OH 6.01E+12 0.5 -383.69

54 OH* + H → OH + H 1.31E+13 0.5 -84.2

55 OH* + Ar → OH + Ar 1.69E+12 0 2083.23
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Table B.6: Prior uncertainty range of the reaction rate multipliers[110].

Index Reaction Lower bound Upper bound
1 H2 + O2 → OH + OH 0.1 10
2 H + H → H2 0.32 3.16
3 H2 + O → OH + H 0.63 1.58
4 H2 + OH → H2O + H 0.65 1.63
5 OH + OH → H2O2 0.5 2
6 O2 + H → OH + O 0.8 1.26
7 O2 + H → HO2 0.85 1.15
8 O + O → O2 0.77 1.13
9 OH + H → H2O 0.8 1.2
10 H + O → OH 0.2 5
11 HO2 + H → H2 + O2 0.5 2
12 HO2 + H → OH + OH 0.7 1.4
13 HO2 + H → H2O + O 0.32 3.16
14 H2O2 + H → H2 + HO2 0.32 3.16
15 H2O2 + H → OH + H2O 0.5 2
16 OH + OH → H2O + O 0.7 1.4
17 HO2 + OH → H2O + O2 0.32 3.16
18 OH + H2O2 → HO2 + H2O 0.5 2
19 HO2 + O → OH + O2 0.32 3.16
20 O + H2O2 → OH + HO2 0.5 2
21 HO2 + HO2 → H2O2 + O2 0.4 2.5
22 CO + O2 → CO2+ O 0.2 5
23 CO + OH → CO2 + H 0.8 1.26
24 CO + O → CO2 0.32 3.16
25 CO + HO2 → CO2 + OH 0.32 3.16
26 HCO + O2 → CO + HO2 0.6 1.65
27 HCO + O2 → OH + CO2 0.6 1.65
28 HCO + H → CO + H2 0.5 2
29 HCO + O → CO + OH 0.5 2
30 HCO + O → CO2 + H 0.5 2
31 HCO + OH → CO + H2O 0.5 2
32 HCO + HO2 → OH + CO2 + H 0.2 5
33 HCO → CO + H 0.5 2
34 HCCO + O2 → CO2 + CO + H 0.5 2
35 HCCO + O2 → CO + CO + OH 0.5 2
36 HCCO + O2 → HCO + CO + O 0.5 2
37 HCCO + OH → HCO + HCO 0.5 2
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Table B.6 (continued)
Index Reaction Lower bound Upper bound

38 HCCO + O → CO + CO + H 0.5 2
39 CH + O2 → CO + OH 0.32 3.16
40 CH + O2 → CO2 + H 0.32 3.16
41 CH + CO → HCCO 0.8 1.25
42 CH + CO2 → HCO + CO 0.8 1.25
43 CH + O → CO + H 0.32 3.16
44 CH + OH → H + HCO 0.8 1.25
45 O + H → OH* 0.5 2
46 CH + O2 → OH* + CO 0.5 2
47 OH* → OH 0.5 2
48 OH* + O2 → OH + O2 0.5 2
49 OH* + H2O → OH + H2O 0.5 2
50 OH* + H2 → OH + H2 0.5 2
51 OH* + CO2 → OH + CO2 0.5 2
52 OH* + CO → OH + CO 0.5 2
53 OH* + OH → OH + OH 0.5 2
54 OH* + H → OH + H 0.5 2
55 OH* + Ar → OH + Ar 0.5 2
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Appendix C

The MATLAB Toolbox

The framework of Bound-to-Bound Data Collaboration (B2BDC) and the methods devel-
oped in previous Chapters are implemented in computer programs. MATLAB is selected as
the programming language considering its comprehensive list of well maintained toolboxes
relevant to our applications. The collection of all the relevant codes is referred to as the
B2BDC toolbox hereafter and can be found using the Github link https://github.com/

B2BDC/. In this appendix, we introduce the main objects and functions of the B2BDC tool-
box. A class diagram of the toolbox is given in Figure C.1 for illustration. As the toolbox
is developed using object-oriented programming style, the following sections are ordered by
different objects in the toolbox.

https://github.com/B2BDC/
https://github.com/B2BDC/
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Figure C.1: The class diagram of the B2BDC toolbox.

B2BDC.B2Bvariables.ModelVariable

This object represents a single parameter.

Properties

• NominalValue: the nominal value of the parameter.

• LowerBound: the lower uncertainty bound of the parameter.

• UpperBound: the upper uncertainty bound of the parameter.

• Name: the name of the parameter.
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B2BDC.B2Bvariables.VariableList

This object represents a list of parameters.

Properties

• ExtraLinConstraint: save the information of linear constraints of the parameter vector
in addition to the specified interval uncertainty of each individual parameter.

• Length: the number of parameters in the list.

• Value: the array of B2BDC.B2Bvariables.ModelVariable objects.

Functions

newobj = addList(obj, varList)

Input:

• obj: a B2BDC.B2Bvariables.VariableList object.

• varList: a B2BDC.B2Bvariables.VariableList object.

Output:

• newobj: a B2BDC.B2Bvariables.VariableList object.

Cases:

• newobj = addList(obj,varList) adds the variable list saved in varList to the variable list
saved in obj and returns the extended variable list as newobj. If any parameters are
in common between obj and varList, the intersection of their respective uncertainties
is used in the extended parameter list.

xSample = makeDesignSample(obj, nSample, method)

Input:

• obj: B2BDC.B2Bvariables.VariableList object.

• nSample: number of design points you want to generate.
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• method: a character array specifying the approach using which the samples are gener-
ated (‘lhs’, ‘sobol’, or ‘uniform’, case insensitive).

Output:

• xSample: a 2-D array containing the design points (each row corresponds to a design
point).

Cases:

• xSample = makeDesignSample(obj, nSample, method) generates nSample i.i.d (inde-
pendently and identically distributed) samples using the approach specified by method.

• xSample = makeDesignSample(obj, nSample) generates nSample i.i.d samples using
the latin hypercube design approach.

newobj = deleteVariable(obj, varIdx)

Input:

• obj: B2BDC.B2Bvariables.VariableList object.

• varIdx: a character array or a scalar.

Output:

• newobj: B2BDC.B2Bvariables.VariableList object.

Cases:

• newobj = deleteVariable(obj, varIdx) removes the variable specified by varIdx in the
variable list specified by obj. The new variable list is returned as newobj.

varBD = calBound(obj)

Input:

• obj: B2BDC.B2Bvariables.VariableList object.

Output:
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• varBD: a 2-D numerical array.

Cases:

• varBD = calBound(obj) returns the prior interval uncertainty of each individual vari-
able as a 2-D array varBD. The first and second columns of varBD are the lower and
upper bounds, respectively.

varOB = calNominal(obj)

Input:

• obj: B2BDC.B2Bvariables.VariableList object.

Output:

• varOB - a 1-D column array.

Cases:

• varOB = calBound(obj) returns the nominal value of each individual variable as a 1-D
column array varOB.

newobj = changeBound(obj, newBD, idx)

Input:

• obj: B2BDC.B2Bvariables.VariableList object.

• newBD: a 2-D numerical array.

• idx: a 1-D cell array or a 1-D numerical array.

Output:

• newobj: B2BDC.B2Bvariables.VariableList object

Cases:
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• newobj = changeBound(obj, newBD, idx) updates the uncertainty bounds (if newBD
has two columns) and the nominal values (if newBD has three columns and the last
column corresponds to the new nominal value) in obj and returns the updated variable
list as newobj. The variables updated are specified by the input idx, a cell array of the
variable names or a numerical array of the positions of the variables in the list.

• newobj = changeBound(obj, newBD) updates the uncertainty bounds (if newBD has
two columns) and the nominal values (if newBD has three columns and the last column
corresponds to the new nominal value) of all variables in obj and returns the updated
variable list as newobj.

newVar = addLinearConstraint(obj, A, b, c)

Input:

• obj: B2BDC.B2Bvariables.VariableList object.

• A: a 2-D numerical array.

• b: a 1-D numerical array.

• c: a 1-D numerical array.

Output:

• newVar: B2BDC.B2Bvariables.VariableList object.

Cases:

• newVar = addLinearConstraint(obj,A,b) adds linear constraints to the variables such
that Ax¡=b. Since the constraints are saved as LB¡=Ax¡=UB in the object, the corre-
sponding lower bounds are calculated by solving a linear programming.

• newVar = addLinearConstraint(obj,A,b,c) adds linear constraints to the variables such
that b¡=Ax¡=c.

newVar = makeSubset(obj, varIdx)

Input:

• obj: B2BDC.B2Bvariables.VariableList object.

• varIdx: a 1-D cell array or 1-D numerical array.
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Output:

• newVar: B2BDC.B2Bvariables.VariableList object

Cases:

• newVar = makeSubset(obj,varIdx) generates a new variable list that contains a subset
of the original variable list. The subset is specified by the names contained in the cell
array varIdx or by the index contained in the numerical array varIdx.

xNew = changeCoordinate(obj, xOld, newVList)

Input:

• obj: B2BDC.B2Bvariables.VariableList object.

• xOld: a 2-D numerical array.

• newVList: B2BDC.B2Bvariables.VariableList object.

Output:

• xNew: a 2-D numerical array.

Cases:

• xNew = changeCoordinate(obj,xOld,newVList) creates a new 2D numerical array xNew,
whose corresponding parameter values are assigned from the input xOld for those over-
lapped between the two variable lists. Parameters not overlapped are assigned to zeros.

B2BDC.B2Bmodels.Model

This object represents the abstract prototype of any models used in B2BDC.

Properties

• Variables: a B2BDC.B2Bvariables.VariableList object contains the parameters of the
model.

• ErrorStats: a strcuture array contains the estimated fitting error, if relevant, of the
surrogate model.
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• VarRanges: a 2-D numerical array contains the prior uncertainty interval of the pa-
rameters.

• VarNames: a 1-D cell array contains the names of the parameters.

Functions

y = eval(obj,X,varObj)

Input:

• obj: B2BDC.B2Bmodels.Model object.

• X: a 2-D numerical array.

• varObj: B2BDC.B2Bvariables.VariableList object.

Output:

• y: a 1-D column array.

Cases:

• y = eval(obj, X) evaluates the model output at input design points specified by X.
Each row of X corresponds to a design point.

• y = eval(obj, X, varObj) evaluates the model output at input design points specified
by X and varObj. Each row of X corresponds to a design point. The column of X is
specified by the given input varObj.

B2BDC.B2Bmodels.LModel

This object represents a linear surrogate model. It is a subclass of B2BDC.B2Bmodels.Model
object.

Properties

• CoefVec: a 1-D column array contains the coefficient of the linear model.
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B2BDC.B2Bmodels.QModel

This object represents a quadratic surrogate model. It is a subclass of B2BDC.B2Bmodels.Model
object.

Properties

• CoefMatrix: a 2-D symmetric array contains the coefficient of the quadratic model.

• Hessian: a 2-D symmetric array contains the Hessian of the quadratic model.

Functions

pModel = convertToPoly(obj)

Input:

• obj: B2BDC.B2Bmodels.QModel object.

Output:

• pModel: B2BDC.B2Bmodels.PolyModel object.

Cases:

• pModel = convertToPoly(obj) converts a B2BDC.B2Bmodels.QModel object to a B2BDC.B2Bmodels.PolyModel
object.

B2BDC.B2Bmodels.RQModel

This object represents a rational quadratic surrogate model. It is a subclass of B2BDC.B2Bmodels.Model
object.

Properties

• Numerator: a 2-D symmetric array contains the coefficient of the numerator quadratic
of the model.

• Denominator: a 2-D symmetric array contains the coefficient of the denominator
quadratic of the model.

• K: the regulatory constant for the denominator.
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B2BDC.B2Bmodels.PolyModel

This object represents a general polynomial surrogate model. It is a subclass of B2BDC.B2Bmodels.Model
object.

Properties

• SupportMatrix: a 2-D array contains the list of monomials. Each row corresponds to
a monomial: its coefficient specifies the order of the corresponding parameter in the
monomial.

• Coefficient: a 1-D column array contains the coefficient of each monomial in the poly-
nomial model.

• Degree: the degree of the polynomial model.

Functions

sparsePoly = createSparsePOP(obj, flag)

Input:

• obj: B2BDC.B2Bmodels.PolyModel object.

• flag: a numerical scalar.

Output:

• sparsePoly: a structure array.

Cases:

• sparsePoly = createSparsePOP(obj) creates a structure array that is compatible for
sparsePOP toolbox. The input obj corresponds to an inequality or objective polyno-
mial.

• sparsePoly = createSparsePOP(obj, flag) creates a structure array that is compatible
for sparsePOP toolbox. The input obj corresponds to an inequality constraint or
objective polynomial if flag is 1 and corresponds to an equality constraint polynomial
otherwise.
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newPoly = expandDimension(obj, newVar)

Input:

• obj: B2BDC.B2Bmodels.PolyModel object.

• newVar: B2BDC.B2Bvariables.VariableList object.

Output:

• newPoly: B2BDC.B2Bmodels.PolyModel object.

Cases:

• newPoly = expandDimension(obj, newVar) replaces the variable list in obj by the input
newVar.

B2BDC.B2Bdataset.DatasetUnit

This object represents a dataset unit of B2BDC.

Properties

• Name: a character array contains the name of the dataset unit.

• LowerBound: a scalar specifies the lower bound of the dataset unit.

• ObservedValue: a scalar specifies the nominal value of the dataset unit.

• UpperBound: a scalar specifies the upper bound of the dataset unit.

• SurrogateModel: a B2BDC.B2Bmodels.Model object contains the surrogate model of
the dataset unit.

• VariableList: a B2BDC.B2Bvariables.VariableList object that contains the parameters
of the surrogate model.

• ScenarioParameter: a structure array contains the scenario parameter information.
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Functions

y = changeBounds(obj, newbd)

Input:

• obj: B2BDC.B2Bdataset.DatasetUnit object.

• newbd: a 1-D numerical array.

Output:

• y: B2BDC.B2Bdataset.DatasetUnit object.

Cases:

• y = changeBounds(obj, newbd) changes the lower and upper bounds of the dataset
unit if newbd has 2 elements; it changes the lower and upper bound, as well as the
nominal value if newbd has 3 elements.

newOBJ = setScenarioParameter(oldOBJ, sv, sname)

Input:

• obj: B2BDC.B2Bdataset.DatasetUnit object.

• sv: a 1-D numerical array.

• sname: a 1-D cell array.

Output:

• newOBJ: B2BDC.B2Bdataset.DatasetUnit object.

Cases:

• newOBJ = setScenarioParameter(oldOBJ, sv, sname) sets the scenario parameter of
the dataset unit. The values and names of the scenario parameters are specified by sv
and sname, respectively.
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y = eval(obj,x, varObj)

Input:

• obj: B2BDC.B2Bdataset.DatasetUnit object.

• x: a 2-D numerical array.

• varObj: B2BDC.B2Bvariables.VariableList object.

Output:

• y: a 1-D column array.

Cases:

• y = eval(obj, x) evaluates the model output at input design points specified by X.
Each row of X corresponds to a design point.

• y = eval(obj, x, varObj) evaluates the model output at input design points specified
by X and varObj. Each row of X corresponds to a design point. The column of X is
specified by the given input varObj.

B2BDC.B2Bdataset.DatasetUnitList

This object represents a list of dataset units.

Properties

• Length: a scalar specifies the length of the list.

• Values: a 1-D array of B2BDC.B2Bdataset.DatasetUnit objects.

B2BDC.B2Bdataset.Dataset

This object represents a B2BDC dataset.
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Properties

• Name: a character array specifies the name of the dataset.

• DatasetUnits: a B2BDC.B2Bdataset.DatasetUnitList object contains the list of dataset
units.

• Variables: a B2BDC.B2Bvariables.VariableList object specifies the parameter list of
the dataset.

• FeasiblePoint: a 1-D column array contains a feasible point if there exists one returned
from consistency measure calculation.

• Length: a scalar specifies the number of QOIs in the dataset.

• VarNames: a cell array contains the name of the parameters.

• QOINames: a cell array contains the name of the QOIs.

• ConsistencyMeasure: a 1-D numerical array contains the scalar consistency measure.

• ConsistencySensitivity: a structure array contains the sensitivity of the scalar consis-
tency measure with respect to parameter and QOI uncertainty bounds.

• ModelDiscrepancy: a structure array contains the information related to the considered
model discrepancy.

• FeasibleFlag: a logical scalar indicates whether the fitting error is included in the
analysis.

• ModelDiscrepancyFlag: a logical scalar indicates whether model discrepancy is consid-
ered in the analysis.

Functions

addDSunit(obj, dsUnitObj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• dsUnitObj: B2BDC.B2Bdataset.DatasetUnit object.

Cases:

• addDSunit(obj, dsUnitObj) adds a dataset unit, specified by the input dsUnitObj, to
the dataset.
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y = isConsistent(obj, opt)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• opt: B2BDC.Option.Option object.

Output:

• y: a logical scalar.

Cases:

• y = isConsistent(obj, opt) calculates the scalar consistency measure of the dataset with
user-specified option opt, and returns dataset consistency in y.

• y = isConsistent(obj) calculates the scalar consistency measure of the dataset with the
default option, and returns dataset consistency in y.

deletedUnits = deleteUnit(obj, id)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• id: a 1-D column cell array or 1-D column numerical array.

Output:

• deletedUnits: a 1-D B2BDC.B2Bdataset.DatasetUnit array.

Cases:

• deletedUnits = deleteUnit(obj, id) removes the QOIs specified by the input id from
the dataset and retures these QOIs in deletedUnits.
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changeBound(obj, newBD, idx)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• newBD: a 2-D numerical array with 2 or 3 columns.

• idx: a 1-D cell array or 1-D numerical array.

Cases:

• changeBound(obj, newBD) updates the QOI uncertainty bounds by the input newBD.
If newBD has 2 columns, they correspond to the lower and upper uncertainty bounds;
if newBD has 3 columns, the third column corresponds to the nominal value.

• changeBound(obj, newBD, idx) updates the uncertainty bounds of the QOIs specified
by input idx. If newBD has 2 columns, they correspond to the lower and upper
uncertainty bounds; if newBD has 3 columns, the third column corresponds to the
nominal value.

changeVarBound(obj, newBD, idx)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• newBD: a 2-D numerical array with 2 or 3 columns.

• idx: a 1-D cell array or 1-D numerical array.

Cases:

• changeVarBound(obj, newBD) updates the parameter uncertainty bounds by the input
newBD. If newBD has 2 columns, they correspond to the lower and upper uncertainty
bounds; if newBD has 3 columns, the third column corresponds to the nominal value.

• changeVarBound(obj, newBD, idx) updates the uncertainty bounds of the parameters
specified by input idx. If newBD has 2 columns, they correspond to the lower and
upper uncertainty bounds; if newBD has 3 columns, the third column corresponds to
the nominal value.
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[units, unitIdx] = findDSunit(obj, unitName)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• unitName: a 1-D column cell array.

Output:

• units: a B2BDC.B2Bdataset.DatasetUnit array.

• unitIdx: a 1-D numerical array.

Cases:

• [units, unitIdx] = findDSunit(obj, unitName) finds the target QOIs specified by unit-
Name in the dataset. The dataset units are returned in units and their indices returned
in unitIdx.

dsNew = clone(obj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

Output:

• dsNew: B2BDC.B2Bdataset.Dataset object.

Cases:

• dsNew = clone(obj) makes a copy of the dataset object and returns it as dsNew.

bounds = calBound(obj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

Output:
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• bounds: a 2-D numerical array.

Cases:

• bounds = calBound(obj) calculates the QOI uncertainty bounds.

observes = calObserve(obj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

Output:

• observes: a 1-D column array.

Cases:

• observes = calObserve(obj) calculates the measured QOI values.

y = eval(obj, X, DSIdx)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• X: a 2-D numerical array.

• DSIdx: a 1-D column cell array or 1-D column numerical array.

Output:

• y: a 2-D numerical array.

Cases:

• y = eval(obj, X) evaluates all QOI outputs at input design points specified by X. Each
row of X corresponds to a design point. Each column of y corresponds to a QOI.

• y = eval(obj, X, DSIdx) evaluates some QOI outputs, specified by DSIdx, at input
design points specified by X. Each row of X corresponds to a design point. Each
column of y corresponds to a QOI.
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clearConsis(obj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

Cases:

• clearConsis(obj) clears consistency-related properties of the dataset.

clearModelDiscrepancy(obj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

Cases:

• clearModelDiscrepancy(obj) clears discrepancy-related properties of the dataset.

[sv, sname] = getScenarioParameter(obj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

Output:

• sv: a 2-D numerical array.

• sname: a 1-D cell array.

Cases:

• [sv, sname] = getScenarioParameter(obj) calculates the scenario-parameter values and
names of the dataset.
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clearFeasiblePoint(obj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

Cases:

• clearFeasiblePoint(obj) clears the saved feasible point.

makeSubset(obj, idx)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• idx: a 1-D column cell array or 1-D column numerical array.

Cases:

• makeSubset(obj, idx) updates the dataset by keeping only the QOIs specified by input
idx.

[isFeas, xFea] = isFeasiblePoint(obj, point, addError)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• point: a 2-D numerical array.

• addError: a logical scalar.

Output:

• isFeas: a 1-D logical array.

• xFea: a 2-D numerical array.

Cases:
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• [isFeas, xFea] = isFeasiblePoint(ds, point) returns a logical array isFeas corresponds
to whether the input point is feasible or not. Each row of point corresponds to a
parameter vector of the dataset. The subset of feasible points are returned in xFea.

• [isFeas, xFea] = isFeasiblePoint(ds, point, addError) returns a logical array corresponds
to whether the input point is feasible or not. Each row of point corresponds to a
parameter vector of the dataset. The estimation includes fitting error if addError is
true. The subset of feasible points are returned in xFea.

[vcReport, EXITFLAG] = vectorConsistency(dsObj, wY, wX, opt)

Input:

• dsObj: B2BDC.B2Bdataset.Dataset object.

• wY: a 2-D numerical array or a character array.

• wX: a 2-D numerical array or a character array.

• opt: a B2BDC.Option.Option object.

Output:

• vcReport: a structure array.

• EXITFLAG: a numerical scalar.

Cases:

• [vcReport, EXITFLAG] = vectorConsistency(dsObj, wY, wX) calculates the vector
consistency measure of the dataset. When wY and wX are 2-column numerical ar-
rays, they specify the weights associated with QOI and parameter uncertainty bounds,
respectively. When they are charracter arrays, they specify certain types of weights:
’perc’ for percentage weights; ’uwidth’ for uncertanty width weights; ’unit’ for unit
weights and ’null’ for zero weights. In this case, the option variable is the default
B2BDC.Option.Option object. The vector consistency measure results are stored in
vcRport whereas EXITFLAG indicates the solution status of the inner bound from
fmincon.

• [vcReport, EXITFLAG] = vectorConsistency(dsObj, wY, wX, opt) calculates the vec-
tor consistency measure of the dataset. When wY and wX are 2-column numerical ar-
rays, they specify the weights associated with QOI and parameter uncertainty bounds,
respectively. When they are charracter arrays, they specify certain types of weights:
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’perc’ for percentage weights; ’uwidth’ for uncertanty width weights; ’unit’ for unit
weights and ’null’ for zero weights. In this case, the option variable is specified by opt.
The vector consistency measure results are stored in vcRport whereas EXITFLAG
indicates the solution status of the inner bound from fmincon.

[QOIrange, QOISensitivity, xOpt] = predictQOI(obj, QOIobj, B2Bopt,
QOIcorrection)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• QOIobj: B2BDC.B2Bmodels.Model object.

• B2Bopt: B2BDC.Option.Option object.

• QOIcorrection: a structure array.

Output:

• QOIrange: a structure array.

• QOISensitivity: a structure array.

• xOpt: a structure array.

Cases:

• [QOIrange, QOISensitivity, xOpt] = predictQOI(obj, QOIobj, B2Bopt) predicts the
uncertainty interval of the QOI specified by QOIobj using the dataset obj. The option
variable is specified by B2Bopt. The calculated uncertainty interval, sensitivity, and
optimal points for the inner bounds, are saved in QOIrange, QOISensitivity, and xOpt,
respectively.

• [QOIrange, QOISensitivity, xOpt] = predictQOI(obj, QOIobj, B2Bopt, QOIcorrection)
predicts the uncertainty interval of the QOI specified by QOIobj using the dataset obj.
Model discrepancy is considered in the analysis and the corresponding information of
the QOI is specified by QOIcorrection. The option variable is specified by B2Bopt. The
calculated uncertainty interval, sensitivity, and optimal points for the inner bounds,
are saved in QOIrange, QOISensitivity and xOpt, respectively.
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dsUnitList = checkSelfConsistency(obj, opt)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• opt: B2BDC.Option.Option object.

Output:

• dsUnitList: a B2BDC.B2Bdataset.DatasetUnit array.

Cases:

• dsUnitList = checkSelfConsistency(obj) calculates self-inconsistent dataset units in the
dataset. The option variable is the default B2BDC option object.

• dsUnitList = checkSelfConsistency(obj,opt) calculates self-inconsistent dataset units
in the dataset. The option variable is specified by the input opt.

xPos = calVarBounds(obj, index, opt)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• index: a 1-D cell array or 1-D numerical array.

• opt: B2BDC.Option.Option object.

Output:

• xPos: a 2-D numerical array.

Cases:

• xPos = calVarBounds(obj) calculates the posterior uncertainty bound of all parame-
ters. The option variable is set to be the default B2BDC option.

• xPos = calVarBounds(obj, index) calculates the posterior uncertainty bound of the
parameters specified by index. The option variable is set to be the default B2BDC
option.

• xPos = calVarBounds(obj, index, opt) calculates the posterior uncertainty bound of
the parameters specified by index. The option variable is specified by opt.
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qoiPos = calQOIBounds(obj, index, opt)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• index: a 1-D cell array or 1-D numerical array.

• opt: B2BDC.Option.Option object.

Output:

• qoiPos: a 2-D numerical array.

Cases:

• qoiPos = calQOIBounds(obj) calculates the posterior uncertainty bound of all QOIs
in the dataset. The option variable is set to be the default B2BDC option.

• qoiPos = calQOIBounds(obj, index) calculates the posterior uncertainty bound of the
QOIs specified by index. The option variable is set to be the default B2BDC option.

• qoiPos = calQOIBounds(obj, index, opt) calculates the posterior uncertainty bound of
the QOIs specified by index. The option variable is specified by opt.

addScenarioParameter(obj, Svalue, Sname)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• Svalue: a 2-D numerical array.

• Sname: a 1-D cell array.

Cases:

• addScenarioParameter(obj,Svalue,Sname) adds the input scenario parameters to the
dataset. The values and names of the scenario parameters are specified by the input
Svalue and Sname, respectively.
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changeScenarioParameter(obj, Svalue, Sname, QOIindex)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• Svalue: a 2-D numerical array.

• Sname: a 1-D cell array.

• QOIindex: a 1-D numerical array.

Cases:

• changeScenarioParameter(obj,Svalue,Sname) updates the values of existing scenario
parameters in the dataset for all QOIs. The values and names of the scenario param-
eters are specified by the input Svalue and Sname, respectively.

• changeScenarioParameter(obj,Svalue,Sname,QOIindex) updates the values of existing
scenario parameters in the dataset for QOIs specified by QOIindex. The values and
names of the scenario parameters are specified by the input Svalue and Sname, respec-
tively.

clearScenarioParameter(obj)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

Cases:

• clearScenarioParameter(obj) clears all existing scenario parameters in the dataset.

setModelDiscrepancy(obj, QOIindex, fMD, Range)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• QOIindex: a 1-D numerical array or a 1-D cell array.

• fMD: a function handle or a 1-D cell array.

• Range: a numerical scalar or a 1-D numerical array.
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Cases:

• setModelDiscrepancy(obj, QOIindex, fMD) sets the discrepancy-function, specified by
fMD, to the QOIs specified by QOIindex. If QOIindex and fMD are cell arrays, they
correspond to different QOI groups. In this case, the discrepancy-function coefficients
have a default prior uncertainty range of [-10 10].

• setModelDiscrepancy(obj, QOIindex, fMD, Range) sets the discrepancy-function, spec-
ified by fMD, to the QOIs specified by QOIindex. If QOIindex and fMD are cell arrays,
they correspond to different QOI groups. In this case, the prior uncertainty range of
discrepancy-function coefficients is specified by Range.

[xSample, status] = collectSample(obj, N, x0, opt)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• N: a numerical scalar.

• x0: a 1-D numerical array.

• opt: B2BDC.Option.Option object.

Output:

• xSample: a structure array.

• status: a structure array.

Cases:

• [xSample,status] = collectSample(obj, N) computes uniformly distributed samples from
the (joint) feasible set. The samples and associated sampler information are saved in
xSample and status, respectively. In this case, the chain starts at the SCM point and
the option variable is the default B2BDC option.

• [xSample, status] = collectSample(obj, N, x0) computes uniformly distributed samples
from the (joint) feasible set. The samples and associated sampler information are
saved in xSample and status, respectively. In this case, the option variable is the
default B2BDC option.
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• [xSample, status] = collectSample(obj, N, x0, opt) computes uniformly distributed
samples from the (joint) feasible set. The samples and associated sampler information
are saved in xSample and status, respectively. In this case, the option variable is
specified by opt.

[xopt, yopt] = optimize Parameter(obj, logFlag, weight,opt)

Input:

• obj: B2BDC.B2Bdataset.Dataset object.

• logFlag: a 1-D logical array or an empty array.

• weight: a 1-D numerical array.

• opt: B2BDC.Option.Option object.

Output:

• xopt: a 1-D numerical array.

• yopt: a numerical scalar.

Cases:

• [xopt, yopt] = optimize Parameter(obj, logFlag, weight) calculates an optimized pa-
rameter vector based on a specified criteria. The logFlag indicates whether the response
surface of the corresponding QOI is in the log scale. The minimized object function is
specified by the option variable and the weights asscoiated with individual terms in the
object function is specified by weight. In this case, the option variable is the default
B2BDC option. The calculated optimal parameter vector and minimized object value
are saved in xopt and yopt.

• [xopt, yopt] = optimize Parameter(obj, logFlag, weight, opt) calculates an optimized
parameter vector based on a specified criteria. The logFlag indicates whether the
response surface of the corresponding QOI is in the log scale. The minimized object
function is specified by the option variable and the weights asscoiated with individual
terms in the object function is specified by weight. In this case, the option variable is
specified by opt. The calculated optimal parameter vector and minimized object value
are saved in xopt and yopt.
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B2BDC.Option.Option

This object represents a general B2BDC option variable.

Properties

• ConsistencyMeasure: a character array, ’relative’ or ’absolute’, indicates which scalar
consistency measure is calculated.

• ExtraLinFraction: a scalar between 1 to 100 indicates the percentage of extra quadratic
inequalities generated by combining two linear inequalities, or -1 indicates that extra
quadratic inequalities whose influence factor are greater than 5% of the most influential
quadratic inequality are included.

• Display: a logical scalar indicates whether to show the computation details during the
process.

• AddFitError: a logical scalar indicates whether to inlcude fitting error in the calcula-
tion.

• Prediction: a character array, ’inner’, ’outer’, or ’both’, specifying which uncertainty
bounds to calculate.

• SampleOption: a B2BDC.Option.SampleOption object contains optional information
related to sampling.

• POPOption: a B2BDC.Option.POPOption object contains optional information re-
lated to polynomial optimization.

• OptimOption: a B2BDC.Option.OptimOption object contains optional information
related to optimized parameter vector calculation.

B2BDC.Option.SampleOption

This object represents a B2BDC option variable related to sampling.

Properties

• SampleMethod: a character array, ’Gibbs’, ’HR’, ’AM’, or ’CWAM’, indicates which
sampler to use.

• StepInterval: a numerical scalar specifies the thinning parameter, i.e., the number of
samples that are discarded between two returning sampled points.
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• WarmStart: a structure array specifies the recorded sampling information related to
the AM sampler.

B2BDC.Option.POPOption

This object represents a B2BDC option variable related to polynomial optimization.

Properties

• relaxOrder: a numerical scalar specifies the relaxation order.

• sparseSW: a numerical scalar indicates the relaxation type: 1 - use sparse relaxation;
0 - use dense relaxation; 2 - use a smaller dense relaxation; 3 - use a smaller sparse
relaxation.

• perturbation: a numerical scalar, typically very small such as 10−5, that is added to
the objective polynomial.

• SDPsolver: a character array specifies the name of the SDP solver.

• printFileName: a numerical scalar or a character array for how to print the solution
information: 0 - save no solution information; 1 - save solution information; a character
array of the file name - print the solution in the file.

• printLevel: a numerical array contains 2 elements, [a, b], where a and b specifies what
information to be saved in the result and in the file, respectively: 0 - no information
on the computational result; 1 - some information without an optimal solution; 2 -
detailed solution information.

• POPsolver: a character array specifies the solver used for computing the inner bound.

• mex: a numerical scalar indicates whether to use C++ subroutines (1) or not (0).

B2BDC.Option.OptimOption

This object represents a B2BDC option variable related to optimizing parameter vectors.

Properties

• OptimizationMethod: a character array, ’LSF’, ’LSH’, or ’1NF’, specifies the type of
the optimization framework.
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• PenaltyWeight: a character array, ’relative’, ’absolute’, or ’user-defined’, specifies the
type of the weight.

• RandomStart: a numerical scalar specifies the number of starting points.

• Logtype: a character array, ’nature’ or ’log10’, specifies the type of the log scale.
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Appendix D

B2BDC Application: GRI-Mech

Application of Bound-to-Bound Data Collaboration (B2BDC) to a realistic problem typi-
cally includes dataset construction, dataset consistency determination, dataset inconsistency
resolution if encountered and uncertainty quantification for a consistent dataset. The process
is abstractly summarized in Figure D.1.
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Figure D.1: Procedures of application of Bound-to-Bound Data Collaboration to engineering
problems.
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The MATLAB source codes used to generate the results presented in Section 2.8 are
given as follows. The ‘data.mat’ file can be found at https://github.com/B2BDC/B2BDC/

tree/master/GRIexample.

% B2BDC example: GRI−Mech 3.0
% In this example file, we assume the QOIs and the model parameters are
% given with their assessed uncertainty, as well as the quadratic surrogate
% models for simulating the QOIs
%% set a seed number
rng(1);
%% load data
load('GRI data.mat');
QOINames = data.QOINames; % a 77−by−1 cell array containing the name of ...

the QOIs
VariableNames = data.VariableNames; % a 102−by−1 cell array containing ...

the name of the model parameters
QOIInfo = data.QOIInfo; % a 77−by−3 numerical array containing the lower ...

and upper bounds, and the measured value of the QOIs
VariableInfo = data.VariableInfo; % a 77−by−3 numerical array containing ...

the lower and upper bounds, and the measured value of the QOIs
ModelCoefficients = data.ModelCoefficients; % a 77−by−1 cell array ...

containing the coefficient matrix of the quadratic surrogate model for ...
the QOIs

ActiveVariables = data.ActiveVariables; % a 77−by−1 cell array containing ...
the indices of the active variable for the QOIs

%% dataset construction
dsGRI = generateDataset('GRI−Mech 3.0'); % create a ...

B2BDC.B2Bdataset.Dataset object
variable list GRI = ...

generateVar(VariableNames,VariableInfo(:,1:2),VariableInfo(:,3)); % ...
create the B2BDC.B2Bvariables.VariableList object containing all 102 ...
model parameters

nQOI = 77;
for i = 1:nQOI

CoefMatrix = ModelCoefficients{i};
active variable id = ActiveVariables{i};
variable list current QOI = ...

variable list GRI.makeSubset(active variable id); % create the ...
B2BDC.B2Bvariables.VariableList object containing active variables ...
for the current QOI

model current QOI = ...
generateModel(CoefMatrix,variable list current QOI); % create the ...
B2BDC.B2Bmodel.QModel object for the current QOI

datasetunit current QOI = ...
generateDSunit(QOINames{i},model current QOI,QOIInfo(i,1:2),QOIInfo(i,3)); ...
% create the B2BDC.B2Bdataset.DatasetUnit object for the current QOI

dsGRI.addDSunit(datasetunit current QOI); % add the dataset unit to ...
the dataset object

end

https://github.com/B2BDC/B2BDC/tree/master/GRIexample
https://github.com/B2BDC/B2BDC/tree/master/GRIexample
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%% dataset consistency determination
B2B option = generateOpt('AddFitError',false); % create a ...

B2BDC.Option.Option object, no fitting error is included in this analysis
dsGRI.isConsistent(B2B option); % calculate the scalar consistency ...

measure (SCM)
scm = dsGRI.ConsistencyMeasure % check the SCM value
%% plot of the sensitivity of SCM to QOI and model parameter uncertainty ...

bounds
dsGRI.plotConsistencySensitivity;
%% remove QOI f5 to obtain a consistent dataset
removed unit = dsGRI.deleteUnit('f5');
%% dataset consistency calculation
dsGRI.isConsistent(B2B option);
scm = dsGRI.ConsistencyMeasure
%% B2BDC prediction interval of model parameters
nVar = 102;
x posterior bounds = dsGRI.calVarBounds(1:nVar,B2B option); % calculates ...

the posterior bounds
x posterior bounds inner = x posterior bounds.InnerBound; % the ...

inner−bound prediction intervals
x posterior bounds outer = x posterior bounds.OuterBound; % the ...

outer−bound prediction intervals
%% leave−one−out prediction
nQOI = 76;
QOI prediction inner = zeros(nQOI,2);
QOI prediction outer = zeros(nQOI,2);
for i = 1:nQOI

dsGRI new = dsGRI.clone; % copy the GRI−dataset with 76 QOIs
pred QOI = dsGRI new.deleteUnit(i); % remove the prediction QOI from ...

the dataset (leave−one−out)
prediction result = ...

dsGRI.predictQOI(pred QOI.SurrogateModel,B2B option); % calculate ...
B2BDC prediction interval

QOI prediction inner(i,:) = [prediction result.min(2) ...
prediction result.max(1)]; % the inner−bound prediction intervals

QOI prediction outer(i,:) = [prediction result.min(1) ...
prediction result.max(2)]; % the outer−bound prediction intervals

end
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