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Abstract Internet based volunteer computing
projects such as SETI@home are currently re-
stricted to performing coarse grained, embar-
rassingly parallel master-worker style tasks. This
is partly due to the “pull” nature of task dis-
tribution in volunteer computing environments,
where workers request tasks from the master
rather than the master assigning tasks to arbi-
trary workers. In this paper we propose algorithms
for computing batches of medium grained tasks
with deadlines in pull-style volunteer computing
environments. We develop models of unreliable
workers based on analysis of trace data from an
actual volunteer computing project. These mod-
els are used to develop algorithms for task dis-
tribution in volunteer computing systems with a
high probability of meeting batch deadlines. We
develop algorithms for perfectly reliable work-
ers, computation-reliable workers and unreliable
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workers. Finally, we demonstrate the effective-
ness of the algorithms through simulations using
traces from actual volunteer computing environ-
ments.
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Grid computing - Resource scheduling

1 Introduction

In recent years, public-resource computing or
“volunteer computing” projects have demon-
strated the power of performing distributed
computation using donated resources over the
Internet. Projects such as SETI@home [1] and
Folding@home [2] sustain computation speeds of
tens or hundreds of teraflops, comparable with
high end supercomputers. In these projects, inde-
pendent computational tasks are distributed and
executed on donated computer resources around
the world.

Volunteer computing (VC) systems use a
master-worker style of computing, where tasks are
distributed from a master machine to worker ma-
chines and executed. Because these systems are
composed of donated resources, they can make
few guarantees about network or machine relia-
bility. Therefore VC is usually applied to coarse
grained embarrassingly parallel computation with
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tasks that require hours or days to complete. Task
completion deadlines are generally on the order
of days or months because of the volatile nature
of the donated resources.

VC environments differ from traditional grid
computing environments in several important
ways. First, because the worker machines in VC
systems are owned by private individuals, com-
munication and computation reliability is signifi-
cantly lower than in most Grid systems. A worker
machine may often be disconnected from the net-
work, used for other purposes or completely quit
the computation without advanced warning. Sec-
ond, worker machines are often behind firewalls
and use NAT (network address translation) tech-
niques which only allow one-way worker to mas-
ter connections. This means that a “pull” model
of task distribution must be used, instead of the
common “push” model where the master distrib-
utes tasks to arbitrary workers. Finally, worker
machines provide virtually no resource reserva-
tion or querying capabilities, thereby making task
scheduling difficult.

In this paper, we propose algorithms for com-
puting batches of tasks with deadlines in VC
systems given varying types of worker reliabil-
ity. Rather than normal VC deadlines of days
or months, we deal with deadlines of minutes
or hours. We call this “low latency computing.”
Low latency computing in a VC system is appro-
priate for executing submitted batches of tasks
with quick turnaround, or performing large scale
barrier synchronous computations such as in the
bulk synchronous parallel model [3]. Examples
of such applications include molecular dynamics
simulations with multiple trajectories, evolution-
ary based optimization algorithms with periodic
swapping of solutions and any other problem
with medium grained tasks and periodic barrier
synchronizations. Applications such as Fold-
ing@home should have higher computing effi-
ciency if they use a low latency style scheme. For
pull-style task distribution in a VC system, the
key to meeting batch deadlines is ensuring that
all tasks are distributed to workers in a timely
manner and that workers complete the tasks be-
fore the deadline. Because of the nature of VC
systems, we use techniques similar to those from
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stochastic scheduling [4] to handle worker unreli-
ability.

Previous studies investigated task distribution
in grid and VC environments [5-7]. However,
some of these assume work may be distributed to
arbitrary workers, which is not valid for pull style
environments. Others describe methods to max-
imize total system throughput rather than meet
specific task deadlines. To the best of our knowl-
edge, this paper is the first to investigate methods
for computing low latency batches in a pull-style
VC environment.

To develop suitable algorithms for low latency
VC, we first define the environment and worker
characteristics in Section 2. Using trace data from
an actual VC environment, we show how worker
task requests can be modeled as a Poisson process
and task computation time can be predicted from
past worker behavior in Section 3. From these
models, we develop algorithms for task distribu-
tion in Section 4. The algorithms are verified using
trace-driven simulations in Section 5. Finally, we
review related work and offer our conclusions in
Sections 6 and 7.

2 Computation Model

In this model for VC low latency batch com-
puting, there are M batches of work, denoted

By, ..., By. Each batch B; has N indepen-
dent tasks of equal computational size denoted
Ti,..., T, a submission time S; and a deadline

D; with S; < D;. All tasks in batch B; are available
for distribution at time S;. Batches are sequential
and do not overlap, i.e. Vi,n, (i <n) = D; < S,.
Figure 1a graphically shows the model of tasks and
batches used in this paper.

All tasks are initially on a single master server,
which tries to assign tasks to workers so as to
minimize the number of tasks completed after
their deadline. A task that is completed before
the batch deadline is called a satisfied task, and
a batch whose tasks are all satisfied is called a
satisfied batch. Note that batch submission and
deadline times need not be predetermined, mean-
ing that creation of the tasks in B; can depend on
completion of the tasks from B;_;. In fact, due to
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Fig. 1 Graphic depiction of tasks and batches in the low latency computing model, and three example workers with their
availability intervals. a Batch diagram. b Availability intervals and worker lifespan

the unpredictable nature of VC systems, it is often
difficult to predict S; and D; for batches far in the
future.

To compute the tasks of a batch, there are
P workers Wy, ..., Wp. In standard VC environ-
ments, connections may only be made from a
worker to the master, not vice-versa. A connec-
tion is made when the worker initially becomes
active, and at specified times afterwards called
“reconnection times”. At any given time, a worker
is in one of two states — available or unavailable.
The master is always available. Previous studies
[8, 9] have shown this to be a good approxi-
mation of actual systems, rather than measuring
availability as a fraction of available CPU power.
A period where a worker is in an uninterrupted
available state is called an availability interval, and
a period where a worker is in an uninterrupted
unavailable state is called an unavailability inter-
val. The lifespan of a worker is defined as the time
between the start of the earliest availability inter-
val and the end of the latest availability interval.
Average availability is the fraction of the worker
lifespan spent in the available state. Figure 1b
shows availability intervals for three workers with
different average availability (A: 95%, B: 65%
and C: 33%). Black sections indicate the worker
is available and white sections indicate the worker
is unavailable. The striped bars show the begin-

ning and end of the worker lifespan. As seen in
this figure, worker availability may be erratic and
difficult to predict.

A worker in the available state may per-
form computation or communication, an unavail-
able worker may do neither. Various factors
may cause transition between these states—user
activity/idleness, machine reboot/shutdown, ma-
chine/network failure, etc. If a worker transitions
from available to unavailable while executing a
task, the task is resumed at the same point when
the worker returns to the available state. This
behavior can be achieved through task check-
pointing. Each worker W; also has a task compu-
tation time C;, which is the number of seconds the
worker requires in the available state to complete
a task. This can be thought of as the inverse of the
computation speed.

In this paper we treat C; as a deterministic
variable, though in real systems it might be more
accurately treated as a probability distribution de-
pending on the worker and task characteristics.
For simplicity, we assume C; is constant and that
non-deterministic effects, such as swapping due to
insufficient memory, can be avoided by using stan-
dard worker selection techniques. In addition, ma-
licious or malfunctioning workers occurring in VC
systems are not explicitly considered in this paper.
These can be handled by computing redundant
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tasks or other techniques such as ringers and
magic numbers [10] or worker reputation mea-
surement [11], though the usage of these is outside
the scope of this paper.

In terms of communication and computation,
workers can be termed either reliable or semi-
reliable. A worker is “communication-reliable”
if it can guarantee communication with the
master at an arbitrary time R. A worker is “semi-
communication-reliable” if it cannot guarantee
communication at time R, but behaves like
a standard VC worker. A worker W; is
“computation-reliable” if it can guarantee task
completion within the task computation time of
the worker (C;). A worker is “semi-computation-
reliable” if it cannot guarantee task completion
within C;, but behaves like a standard VC worker.
Communication-reliable and computation-reli-
able workers are only theoretical constructs, but
we use them as a basis to develop algorithms in
later sections.

3 Analysis of Volunteer Computing Workers

In this section we examine workers from an ac-
tual VC environment and create models of them
based on analysis. In Section 3.1 we describe the
experimental data taken from a VC system used
to model the workers. Analysis of worker avail-
ability is performed in Section 3.2. In Section 3.3
we examine communication reliability in work-
ers and demonstrate that connections from VC
workers can be modeled using a Poisson process.
In Section 3.4 we examine computation reliabil-
ity in workers, and derive a model for predict-
ing worker computation reliability based on prior
worker availability.

3.1 Worker Trace Data

To perform the analysis and experiments in this
paper, we used a set of worker availability trace
data. This trace data was measured using the
Berkeley Open Infrastructure for Network Com-
puting (BOINC) [12]. The BOINC middleware is
used to perform large scale VC over the Internet.
The BOINC client software currently runs on
over 1 million computers throughout the world.
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The BOINC client was augmented to record the
start and stop times of CPU availability on each
worker machine. In BOINC, CPU availability is
determined by user preferences and whether the
machine is running. For example, some users only
allow BOINC to run when the computer is idle
or only on weekends, while other users shut down
the machine every night.

Volunteer participants downloaded this
BOINC client, which recorded the CPU availabil-
ity intervals and reported the intervals back to the
main server. A total of 112,268 worker machines
ran the client during the period between April
1, 2007 to February 12, 2008, though none of the
worker lifespans covered the entire period. In
total, the modified client recorded 16,293 years
worth of CPU availability. Among the worker
operating systems, 66% ran Windows XP, 12%
ran Windows Vista, 9% ran Mac OS X, 7% ran
a variant of UNIX/Linux, and the remaining 6%
ran a variant of Windows. Further analysis of the
trace data is available in [13].

3.2 Analyzing Worker Availability

To learn more about the typical worker machine
in a VC system, we performed several analyses of
the trace data in regards to worker availability.
These analyses were performed to confirm the
validity of the trace data compared with previ-
ous studies, and to examine the characteristics of
worker availability.

Figure 2a shows the number of available work-
ers over the trace recording period. This was ob-
tained by measuring the number of workers in the
available state every 8 h over the entire trace pe-
riod. The oscillation of available workers is caused
by computers being shut down at night and on the
weekends. Although this oscillation grows over
time, the oscillation relative to the total number
of workers stays relatively constant and doesn’t
affect the algorithms described here.

Figure 2b shows cumulative distribution plots
of worker lifespan and worker availability. The
point (x,y) on the dotted line means that x fraction
of workers have lifespans less than y, and on the
solid line means that x fraction of workers spend
less than y of their lifespan in the available state.
From this graph we see that only a small fraction
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Fig. 2 Worker availability and lifespan characteristics. a Number of available workers. b Worker availability over trace

period

of workers (roughly 5%) are available over 80%
of their lifespan and that half of the workers are
available for less than 40% of their lifespan. This
environment of high unreliability and downtime
makes traditional scheduling algorithms difficult
to use.

In this paper we assume that worker unavail-
ability is transient rather than permanent, in other
words workers do not become permanently un-
available. For actual systems this is not a cor-
rect assumption due to machine failures, volun-
teers ending their participation, etc. An analysis
of VC projects indicates worker lifespan roughly
follows an exponential distribution with a mean of
3 months [14]. As seen in Fig. 2b, the mean and
median worker lifespan are on the order of 2 to
3 months. This means that for low latency tasks
less than 15 h in length, fewer than 1% of tasks
will fail due to permanent worker unavailability.
Therefore, we can simplify our model by ignoring
permanent worker unavailability without signifi-
cant effect.

To create algorithms for performing low la-
tency computation in a VC environment, it is
crucial to understand and model the behavior of
workers in terms of availability and unavailability.
Many studies have investigated worker availabil-
ity in desktop grids [8, 9, 15, 16] and in VC type
environments [13, 17, 18]. In the following two
sections, we develop models of VC workers partly
based on our own analysis and partly based on the
work in these studies.

3.3 Modeling VC Worker Communication

In this section we examine the effect of worker
unavailability on task requests and propose a
model for task requests from VC workers. To de-
velop a model of task requests from VC workers,
we perform simulations using worker trace data.
The simulation results indicate that task requests
from VC workers can be modeled as a Poisson
process. Furthermore, the task request rate of this
process can be controlled through the worker re-
connection period 7. This means that rather than
scheduling communication for individual work-
ers, we treat the entire worker pool as a tunable
stream.

To perform the simulations, we used a subset of
11,320 randomly selected workers from the entire
trace data set. We performed a wide range of
simulations to test multiple reconnection periods,
worker pools and stretches of time. In a simula-
tion, the workers transition between available and
unavailable based on the trace data. Each worker
W connects to the master at the start of their lifes-
pan. After each connection, the worker is assigned
a reconnection time R;= CurTime()+T. If a
worker is unavailable at time R;, the connection is
initiated when the worker next becomes available.
Because the number of active workers changes
over the course of the trace data, we define the
number of recently active workers (Peive) as the
number of workers which have connected in the
last 27 seconds.
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To analyze the results of the simulations, we
recorded each time a worker connected to the
master. These times were recorded during inter-
vals [So + XL, So+ (X + 1)L]for X € [0, M-2].
This effectively emulates the task request be-
havior of the workers performing M batches.
The parameters for the simulations are shown in
Table 1.

The results of one simulation are shown in
Fig. 3a with the time gaps between consecutive
connections to the master plotted as a histogram
and cumulative fraction. The parameters of this
simulation are 7 =4 h, L =1h, S =08 Dec 2007,
and at the start of the simulation P, = 4024.
Note that this represents connections from all
workers, not from a single worker. For a reconnec-
tion time 7" with P,.,. active workers, the average
expected rate of connection is one connection
every T/ Puuive seconds. In Fig. 3a, the average
time gap between connections of 3.76 s closely
matches the expected time gap of 4 hours/4024 =
3.58 s. The cumulative distribution of time gaps in
this simulation and others appears similar in shape
to that of an exponential distribution function.

We made QQ and PP plots for the simulation
shown in Fig. 3a. Figure 4 also shows QQ/PP plots
for the same simulation. As seen, there is a close fit
between the simulation results and an exponential
distribution. There is a slight deviation for larger
values as seen in the QQ plot (left). The PP plot
(right) also shows a good fit. Based on these re-
sults we offer Hypothesis 1.

Hypothesis 1 Let T be a positive time period. P
workers with availability characteristics common
to VC system workers are assigned reconnection
times (T) as described above. Then the time gap

between connections to the master can be modeled
as an exponential distribution function (EDF).

To confirm Hypothesis 1, we apply the
Kolmogorov-Smirnov (KS) test [19] to all simu-
lation results. This allows comparison of the sim-
ulation results with EDFs using the parameter
based on the expected time between connections
A = P/ T.The KS test is sensitive to imperfections
in large data sets, so each KS p-value is based on
the average from 100 random samplings of 100
data points each from each data set. Generally,
the minimum acceptable p-value for the KS test
is 0.05, so p-values higher than this indicate good
fit with the EDF and the validity of Hypothesis 1.

Figure 3b shows the results of applying the KS
test to the simulation results. In this figure, the x
and y axes represent the reconnection time 7" and
interval length L. The z axis represents the 5th
percentile p-value over all simulations for a given
T and L (i.e. 95% of simulations had a higher p-
value than indicated in the graph). In other words,
the graph shows the validity of Hypothesis 1 for a
range of 7 and L. For example, with 7 =4 h and
L =2 h, 95% of simulation results had a p-value
greater than 0.22.

In this figure, the accuracy of modeling worker
connection time gaps as an EDF varies depending
on the ratio of 7 to L. If T is much greater than L,
then few workers will connect in a given interval
and the KS test will show a poor fit. For example,
with T =4 h, L = 5 min and P = 1000, an average
interval will have only 4.2 connections even with
full worker availability. For a lower ratio of T to
L, worker connections fit an EDF very well.

A Poisson process [20] is defined as a process
with time between events following an EDF.
Since Hypothesis 1 showed that time gaps be-

Table 1 Task request Parameter

Values

simulation parameters
Number of workers ( Pyorar)

Reconnection time (7))
Interval lengths (L)
Number of intervals (M)
Test period start times (.So)

11320
Sm,15m,1h,2h,4h,12h, 1 day, 2 days, 4 days, 10 days
1m,5m,15m,1h,2h,4h
200
Sun, 01 Jul 2007, Wed, 01 Aug 2007, Mon, 01 Oct 2007,
Sat, 01 Sep 2007, Thu, 01 Nov 2007,
Sat, 01 Dec 2007, Tue, 01 Jan 2008
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tween worker connections follow an EDF, we
offer Corollary 1.

Corollary 1 Let T be a positive time period. Then
connections from P volunteer computing workers
can be modeled as a Poisson process with rate
parameter A = P/ T.

Fundamentally, this means that we can handle
worker communication unreliability by treating
the group of all workers as a Poisson process

with a tunable connection rate parameter. Based
on the results shown in Fig. 3, we maintain that
Corollary 1 is correct for short reconnection peri-
ods (< 12 h) with long interval lengths (> 5 min).
These are well within the range expected in low
latency batch computing. With greater numbers of
workers, Corollary 1 may apply for longer 7" and
shorter L. The idea of a tunable Poisson process
is used in Section 4 to develop algorithms for
maintaining a continuous stream of workers for
computing low latency batches.

QQ and PP Plots of Simulation Data verses Exponential

Simulation Cumulative Distribution
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3.4 Modeling VC Worker Computation

Here we propose a model of worker computation
reliability based on worker availability prediction.
Previous studies [13, 17] demonstrated techniques
to ensure future worker availability based on
correlated worker behavior, Bayesian classifiers
and other techniques. These techniques provided
means of organizing workers into groups based on
training data for performing simultaneous compu-
tation. In this study, we use a simpler method of
recent worker availability, which is more suited
for low latency batches where workers need not
be simultaneously active.

Although the other methods could possibly be
used for low latency batch computing, we chose
not to for a couple reasons. First, the other two
methods discard roughly half of the worker popu-
lation and require weeks of training data, which
can discourage many VC projects from using
them. Also, by using only highly available and pre-
dictable workers, the algorithms can cause cycli-
cal unavailability in workers which share CPU
time between projects in a round-robin fashion.
Therefore, in this paper we focus on the technique
described below.

To examine worker predictability, we per-
formed 1 million simulations using the trace data
subset described earlier. The goal of these sim-
ulations is to determine how well a workers

S
2 L 04
go”

recent past state can predict the future availabil-
ity. Our hypothesis is that worker availability/
unavailability can be predicted based on periodic
worker behavior. Each simulation involves ran-
domly selecting a worker with a chance propor-
tional to its lifespan. The availability state of the
worker is examined at a randomly selected time R
in the workers lifespan. Next, for a range of time
lengths 7" we examine worker availability at times
R—TX for X €[1,10]. The same analysis was
performed for worker unavailability prediction
based on previous unavailable states. The results
of these analyses are shown in Fig. 5.

Figure 5a shows the accuracy of using the re-
cent past availability to predict current availability
and Fig. 5b shows the same for unavailability.
For a given time period T and number of recent
(un)available states X, these graphs show how ac-
curate a prediction of (un)available is. For almost
all of the simulations, (un)availability at all recent
time periods is a strong indicator that the worker
will be (un)available at time R.

In both graphs, shorter time periods yield bet-
ter accuracy for predicting worker state. Figure 5a
shows that using older states gives a poor predic-
tion of worker availability. An interesting feature
in this graph is the jump in accuracy for time pe-
riods of 1 day, implying that daily usage patterns
exist for workers. Worker unavailability is also
well predicted with time periods of 1 week and 3

10.8

rHor

T"'?e Peyi. b \:;m-'-.-"h‘
i -

%"yfﬁj W . ®

(b)

Fig. 5 Simulation results for worker availability and unavailability prediction. a Worker availability prediction results. b

Worker unavailability prediction results
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weeks, which would capture night and weekend
downtime. We use these results in Section 4.3 to
predict whether a worker will finish an assigned
task before a deadline.

To confirm these results, we performed 100,000
simulations to examine the accuracy of using past
worker availability to predict task completion suc-
cess. In these experiments, we randomly select a
worker and a time R when the worker is active.
We simulate the worker receiving 10 tasks at times
R—TX for X €[1,10] with each task having
deadline R — TX + 2C (twice the task computa-
tion time). We then check whether the worker
completes the task by the deadline.

Figure 6 shows the results of the simulations.
The left graph shows the accuracy of the past
simulation results in predicting task completion in
the present. In this graph we show the accuracy of
predicting deadline satisfaction given the number
of tasks which met their past deadlines. The lower
axis shows the minimum number of past simula-
tions that must have satisfied the deadline (out of
10) in order for a current prediction of “Will Meet
Deadline”. As seen, the accuracy of this method
increases as the bounds on past failures get tighter.

The right graph shows the tradeoff of tight-
ening the bounds for prediction. As the bounds
get tighter, the fraction of failure predictions and
thus the number of denied work requests grows.
This is equivalent to a worker connecting to the

master but not receiving a task due to poor past
performance.

4 Task Distribution Algorithms

In order to meet batch deadlines, tasks must be
distributed to workers in a timely manner. Pull-
style VC task requests go from workers to the
master. Thus, a sufficient number of task requests
must occur between the batch submission and
deadline. In a VC system, this is done by request-
ing workers to connect at certain times. This is
known as the “reconnection time” and is denoted
R for worker W;.

A simple method for performing low latency
batches is to estimate the submission time §; of
each batch B; and request a number of workers
to connect soon after that. However, even for
synchronous batch computing, due to the unreli-
able nature of VC workers it is nearly impossible
to predict when a given batch will complete and
the next batch will begin. This is particularly true
when a worker fails to complete a task and delays
the generation of the next batch. For this reason,
we assume that submission times cannot be known
accurately far in advance.

In this section, we describe algorithms for en-
suring a high probability of sufficient task requests
to complete all batches before their deadlines.
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We start by developing an algorithm for fully reli-
able workers, then modify it to handle communi-
cation and computation unreliability. Section 4.1
presents an algorithm for fully reliable (communi-
cation-reliable and computation-reliable) work-
ers, and proves that it satisfies all deadlines in
certain conditions. In Section 4.2 we provide an
algorithm for semi-communication-reliable work-
ers with a probabilistic bound on failure. The
algorithm for semi-reliable (semi-communication-
reliable and semi-computation-reliable) workers
is given in Section 4.3, and also provides a prob-
abilistic bound on failure. The effectiveness of
these algorithms is demonstrated in Section 5.

4.1 Fully Reliable Homogeneous Workers

In this section we consider fully reliable workers,
with guaranteed communication and computation
times. Using fully reliable workers, we develop
an algorithm for task distribution that provides a
basis for later algorithms with unreliable workers.
In this section, workers are considered computa-
tionally homogeneous and reliable, meaning that
a task always takes C seconds and finishes at time
R;+ C. To meet the deadline D;, all tasks in B;
must be distributed to workers before the distri-
bution deadline L; = D; — C. We assume that all
workers connect before 5.

Algorithm 1 shows the algorithm for the master
when dealing with fully reliable workers. The al-
gorithm works by pre-assigning a task to a worker
using the variables Assign Batch and AssignTask.
Worker W; connects at time R; or immediately
if the current time is past R;. Upon connection
the worker receives a task (line 5) and next con-
nection time, then executes the task. The master
gives workers reconnection times that ensure the
workers will receive tasks at the necessary time.
Because all workers are homogeneous and reli-
able, task assignment is in a simple round-robin
fashion and the algorithm needs only ensure
that N task requests occur during each batch.
It is worth noting that the calculation of R;
(line 12) does not simply assign the batch sub-
mission time §; to a worker. Instead, the algo-
rithm spreads worker connections over the entire
batch. This prevents the master from being over-
whelmed by connections, and is also necessary
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in later algorithms for semi-reliable workers.
Given this algorithm and constraints on the task
length, deadline/submission times, and number of
tasks/workers, Theorem 1 proves that all batches
will meet their deadlines.

Algorithm 1 Fully

Workers
1: AssignBatch < 1, AssignTask < 1, Send Batch <
1, SendTask < 1

Reliable Homogeneous

2: while SendBatch < M do
3 Get connection from W)
4 if CurrentTime() > SsendBaich then
5: Send task T5<dBaich 1 vy ;
6 SendTask < SendTask + 1
7 end if
8. if SendTask > N then
9: SendTask < 1, Send Batch < Send Batch + 1
10:  endif
11:  if AssignBatch < M then
12: Rj < S AssignBaten + (AssignTask — 1) *
(LAssignBatch - SAssignBatch)/(N -1
13: AssignTask < AssignTask + 1
14:  end if
15:  if AssignTask > N then
16: AssignTask < 1, Assign Batch <
AssignBatch + 1
17:  endif

18: end while

Theorem 1 If, for all batches, the deadline time is
greater than the submission time plus the maxi-
mum execution time among workers (Vi, D; > S; +
C (%1 ) then Algorithm 1 results in all batches meet-
ing their execution deadlines.

Proof Proof by induction. At time Sy, by defin-
ition no workers are executing a task and all P
workers have connection times. Next, assume that
no workers are executing a task and all workers
have been given connection times by time S;. We
now demonstrate that if D; > S; + C (%1, then all
tasks in B; will be finished at or before D; and at
time S;;; there will be no workers executing tasks.

If P > N then at time S; all tasks for batch B;
have been assigned, and each worker will receive
at most 1 task from the batch. The latest task
distribution time will be §; + (N — D&=3 = [, =
D; — C and the latest task completion time will
be D;, meaning that no workers are executing a
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task after D;. If D; < §; + C, then L; < S;, which
is a contradiction because no tasks from B; can be
distributed before ;.

If P < N then at time S; only P tasks from
batch B; have been assigned. During the execu-
tion of batch B;, a worker will request and exe-
cute either L%J or (%1 tasks. Because a worker
executes tasks one by one, the latest a worker
will request a task is at time max(L;, C( (%1 -
1)) and the latest task completion time will
be max(D;, C[¥7). If D; < S; + C[ %7, the batch
completion time will be C[%7] > D; and the dead-
line will not be met. In this case, there can be no
guarantees about the execution state of workers
at time ;. If D; > §; + C(%L the batch com-
pletion time will be D; and no workers will be
executing tasks at Si;.

Therefore all batches will meet their execution
deadlines if and only if Vi, D; > §; + C[%}. O

4.2 Semi-Communication-Reliable
Homogeneous Workers

Algorithm 2 Semi-Communication-Reliable Ho-
mogeneous Workers
1: Calculate A from K and N; estimate P; T <« %

2: SendBatch < 1, SendTask < 1
3: while SendBatch < M do

4:  Get connection from W;

5. if CurrentTime() > SsendBatch then
6: Send task T5dBaich 1 vy ;

7 SendTask < SendTask + 1

8: endif

9:  R; < CurrentTime() + T; Send R to W;
10:  if SendTask > N then

11: SendTask < 0, Send Batch < SendBatch+1
12: P,ciive = num connections in last 27 seconds,
0.9 Pycrive L
T < r
13:  endif

14: end while

In this section we consider homogeneous
workers that are computation-reliable and semi-
communication-reliable. In other words, they be-
have like VC workers when requesting tasks, but
will always complete a task on time once it is
received. Here we modify Algorithm 1 to use the
model of worker requests from Section 3.3 and
ensure enough task requests for a given batch.

Predicting the availability state of an arbitrary
VC worker at a specific time is extremely difficult,
especially for times far in the future. Algorithm 1
cannot be used in such environments because it
requires each worker W to be available at R;. As
previously mentioned, Algorithm 1 does not re-
quest all workers to connect at time S; but instead
maintains a constant rate of task requests between
S; and L;. In the same way, computing low latency
batches with semi-communication-reliable work-
ers is possible by maintaining a stream of task
requests.

In Section 3.3, we demonstrated that task re-
quests from VC workers can be modeled as a Pois-
son process. Given this model, we now determine
how to calculate the reconnection period T so as
to distribute all tasks before the batch deadline L.
Given Corollary 1, we can control the probability
K of at least N task requests being sent to the
master from P workers in a time period L. This
probability is controlled by specifying a reconnec-
tion period 7 based on P, L and N. Although in
this algorithm we use P to calculate 7, there is no
intrinsic dependence of T on P. Other techniques
for counting active workers are just as suitable, as
long as the active time period is greater than 7.

The number of task requests occurring in a
Poisson process follows the Poisson distribution.
This gives the probability of exactly N task re-
quests occurring in a given time period. Because
this is a probabilistic model we can only put a
bound on the probability K of a specified number
of task requests occurring. For a probability K of
at least N task requests in a given time period L,
A must satisfy:

(1)

Based on our observations, roughly 10% of work-
ers become inactive in a daily cyclical pattern. A is
calculated assuming large numbers of workers do
not become inactive simultaneously. To compen-
sate, we calculate the reconnection period using
90% of the active worker count. In Section 3.3
we showed worker connections can be modeled as
a Poisson process with rate parameter A = P/T.
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Given X from the above equation we can rewrite
this as the reconnection period:

09PL
A

T= 2
The number of active workers P can change over
long time periods, though A and L are assumed to
be constant. Therefore the value of 7' must change
during the course of the computation. One way
to track active workers is to count the number of
workers which connected recently, in this case, the
number of unique workers which connected in the
last 27 seconds.

Algorithm 2 demonstrates how to use the ac-
tive worker count to distribute tasks to semi-
communication-reliable workers. This algorithm
ensures sufficient task requests to the master be-
fore the distribution deadline even with individual
worker unreliability and daily fluctuations. Algo-
rithm 2 differs from Algorithm 1 in that it does
not track the pre-assignment of tasks to workers.
Instead, the goal of N task requests is implicitly
achieved by altering the reconnection rate (line
12). We demonstrate the effectiveness of this al-
gorithm in Section 5.

4.3 Semi-reliable Heterogeneous Workers

Finally, we propose an algorithm to replicate
and distribute tasks to semi-reliable heteroge-
neous workers. These are semi-communication-
reliable and semi-computation-reliable workers as
described in Section 2 and modeled in Sections 3.3
and 3.4. As demonstrated, worker availability at
time R can be estimated based on the number
of times the worker was available at past times
R-TX.

To determine whether a worker will complete
a given task by the deadline, we estimate the
probability of the worker providing the required
amount of computational power between task
distribution and the deadline. Suppose a worker
receives a task at time R with deadline D. For a
worker with task computation time C, we want
to estimate the probability of the worker being
in the available state for more than C seconds
in the time interval [R, D]. If C > D — R then
the probability is 0. Otherwise, we estimate the
probability based on the time to compute the task
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if it were started at past times R — T X using
T =1 day and 7 =1 week. If more than half
of the tasks computed at the previous time peri-
ods would have missed the deadline, Priuccess =
0 and the worker is not assigned a task. Other-
wise, the probability is estimated based on mean
worker task computation time C relative to this
workers computation time C; using the equation
Pris“““s = min(0.99,2C/C;). The justification for
this is that for faster workers, small unpredictable
periods of unavailability will have less effect and
the task will more likely finish before the dead-
line. This type of speed based scheduling is also
investigated in [15].

Algorithm 3 shows the master task distribution
algorithm for semi-reliable heterogeneous work-
ers. This algorithm is similar to Algorithm 2, ex-
cept we create replicas of some tasks that have a
low probability of finishing before the deadline.
To decide which tasks to replicate, we keep an
estimate of the probability Prf“’ of missing the
deadline for each task 7. This estimate starts at
1 for all tasks, then is updated (line 9) based on
the estimated probability of success (line 6) as the
tasks are assigned to workers. Also, because the
workers are heterogeneous, L is computed using
the mean task completion time C.

Algorithm 3 Semi-Reliable
Workers

1: Calculate A from K, N; estimate P; T <« %

2: SendBatch < 1, SendTask < 1

3: Vi € [1, SendTask], Prf"” =1

4: while Send Batch < M do

5: Get connection from W;

6:  Calculate probability PrS“ces of worker finish-

ing task before deadline
7:if CurrentTime() > SsendBarch, and PrSuccess =

Heterogeneous

then '
8 Send task 7; with highest Prf@! to W;
9: PriFail < PriFail(l _ PrSuCCESS)
10:  endif

11:  Rj < CurrentTime() + T; Send Rjto W
12:  if All tasks finished then

13: Send Batch < SendBatch +1

14: Vi € SendTask, Prf“’l =1

15: Pciive = num workers in last 27 seconds; T <
-7 L active

16:  end if

17: end while
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Each of the algorithms described here distrib-
utes N tasks from each of M batches. At the end
of each batch, the number of active workers is
calculated, which takes O(P) (or less, depending
on the method). For Algorithms 1 and 2, dis-
tribution of a task takes constant time O(1), so
these algorithms have time complexity O(M(N +
P)). For Algorithm 3, the task with the highest
probability of failure is sent to the worker. Us-
ing a tree structure, maintaining a list of tasks
sorted by probability of failure has time com-
plexity O(logN). Therefore Algorithm 3 has time
complexity O(M(NlogN + P)).

However, it is worth pointing out that for the
numbers of tasks and workers typically involved in
VC systems (N < 10° per day, P < 107 [1]), each
task distribution requires very little CPU time. In
fact, the limiting factor is generally bandwidth to
the master rather than CPU time.

5 Experiments

We conducted a series of simulation experiments
to test the algorithms in Sections 4.2 and 4.3 and
compare them to alternate algorithms. Simula-
tions were implemented using a custom event-
driven simulator program that emulates a VC
master-worker environment based on trace files
using double precision for all times. To improve
simulation time, workers are skipped forward to
a week before the simulation start. Master oper-
ation depends on the algorithm being executed.
Workers execute tasks until completion—they do
not abort a task if the deadline has past. The trace
files for all simulations in this section consisted of
37,472 randomly selected workers from the trace
data set in Section 3.1.

5.1 Semi-Communication-Reliable Workers

To confirm that Algorithm 2 provides sufficient
task requests from workers, we performed ex-
periments using the trace data described above.
The parameters for the experiments are shown in
Table 2. These parameters represent a range of
possible low latency applications, from small to
large batches with short to long tasks. Simulations
with impossible parameter combinations (e.g. C >
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Table 2 Simulation parameters
Parameter name Parameter value
Number of batches (M) 256
Tasks per batch (N) 1024, 2048, 4096
Target success probability (K)  0.99
A derived from K, N 1100, 2155, 4247
Batch deadline (D) 1h,4h
Simulation start (Sg) Sep 1, 2007; Nov 1, 2007;
Jan 1, 2008

Batch submission (S;) Sit1=S8i+ D
Task computation time 30 min, 1 h,

(Cor C) 2h

D) were not performed. Dates for simulation start
(So) were chosen to get a good range of active
workers.

Figure 7 shows two sample results from the
experiments. The figures show the active worker
count at the start of each batch, and the number
of task requests received during each batch. The
light histogram represents the number of task re-
quests that arrived before the batch computation
deadline, while the dark histogram represents the
number of task requests that arrived before the
batch distribution deadline. The horizontal line is
the minimum number of task requests needed to
successfully complete the batch. Daily and weekly
worker unavailability cycles can be clearly seen in
the active worker count for both graphs.

These results show that Algorithm 2 main-
tains a steady stream of worker task requests for
batches with varying characteristics. Even though
the number of active workers changes significantly
over time, the required number of task requests
arrive before or occasionally slightly after the
distribution deadline. It is worth noting that task
requests are spread evenly before and after the
distribution deadline. This is important for sys-
tems where the submission time of a future batch
is unknown, and a constant stream of task requests
is required to ensure batch satisfaction.

For comparison, we also implemented a simpler
algorithm that adjusts the reconnection rate using
a feedback loop based on the fraction of successful
task requests in the previous batch. We refer to
this algorithm as the “shifting” algorithm. If a
batch fails to receive enough task requests before
the distribution deadline, this algorithm decreases
the reconnection rate proportional to the number
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Fig. 7 Two sample results from semi-communication reliable worker experiments

missed. If a batch receives over 10% more than based algorithm described in Section 4.2. This

the needed task requests, it increases the recon- shows the percent of batches in the experiments

nection rate by a proportionate amount. which received a given fraction of task requests

Figure 8 shows a comparison of the shifting before the distribution deadline. In over 70% of

reconnection rate algorithm with the the Poisson batches, both algorithms distributed all of the
1024 Tasks 2048 Tasks 4096 Tasks

Percent of Batches

0 0.5 10 O 0.5 1.0 O 0.5 1.0
Fraction of Task Requests Before Distribution Deadline

Fig. 8 Fraction of tasks in a batch that were distributed before the distribution deadline, comparing two algorithms. From
left to right, the graphs represent batches with 1024, 2048 and 4096 tasks
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tasks before the deadline. However, the shifting
algorithm resulted in many more batches with
very few task requests. This is because the shifting
algorithm can only react to changes in the active
worker count after they have affected a batch,
as opposed to the Poisson method which adapts
to the worker count as well as the expected fluc-
tuation. We found that with long reconnection
periods, the shifting algorithm increases the re-
connection rate for multiple successive batches,
then suddenly encounters a lack of workers as
the previous adjustments take effect. This helps
explain the batches with very few task requests for
the shifting algorithm in Fig. 8.

From these results, we feel confident that Al-
gorithm 2 and the model described in Section 3.3
are useful and valid for ensuring sufficient task
requests to meet low-latency batch deadlines in
VC systems. Although the algorithm failed to pro-
vide complete reliability in terms of task requests,
we demonstrated that it can adapt to changes
in worker availability better than a simpler algo-
rithm.

5.2 Semi-Reliable Workers

Finally we test the efficacy of Algorithm 3 in
completing batch tasks before the deadline. The
parameters for these experiments are the same
as Section 5.1, shown in Table 2. In all these
experiments, an average of two copies of each task
is distributed to workers (more or less depending
on the algorithm). For comparison, we also tested
two alternate methods of computing the probabil-
ity of success Pr3“ccess in Algorithm 3.

In these experiments we tested three ways
of computing PrS“cces, The first involves simple
replication where each task is replicated twice and
sent to an arbitrary worker, regardless of worker
speed or past history. The second involves calcu-
lating PrS“ccess solely based on worker speed, using
the equation described in Section 4.3. The final
technique, described in Section 4.3 uses predic-
tions based on past worker history in combination
with worker speed to estimate PrS4ccess,

The results of the experiments for Algorithm 3
are shown in Fig. 9. This figure shows the percent
of batches where a given fraction of task requests

satisfied the deadline. The graphs going left to
right represent different ratios of task computa-
tion time to deadline time. The leftmost graphs
represent all experiments with the tighter deadline
of task computation time C being half of deadline
time D. The rightmost graphs represent experi-
ments with a looser deadline of C = D/8. From
top to bottom, the graphs show the results of per-
forming Algorithm 3 using the simple method of
task replication and distribution, task assignment
based on worker speed, and task assignment based
on worker speed with past history.

First we notice that longer deadlines relative to
task size result in more tasks and batches being
satisfied. This makes sense because Prf® is set to
0 when a task completes, meaning the remaining
task requests in the batch will more likely be
assigned tasks that would fail anyway. In contrast,
with tighter deadlines the tasks are allocated to
workers in a less efficient manner in order to meet
the deadline.

There is a significant jump in batch satisfaction
from using worker speed to estimate Pr3ccs, This
effect has been noted before in desktop grids [15].
The same study found no connection between
worker speed and availability. This means that for
any availability pattern a faster worker will have
a greater chance of meeting a deadline simply
because the task is more likely to finish before the
worker goes into a long unavailable interval.

The bottom three graphs in Fig. 9 show the
effectiveness of the techniques proposed in this
paper. For looser deadlines of C = D/4 and C =
D/8, our techniques result in over 90% of batches
being satisfied. For the tighter deadline of C =
D/2, the number of satisfied batches significantly
drops but is still higher than the alternate tech-
niques. With tighter deadlines, worker unavail-
ability from unpredictable causes such as user
activity becomes more of an issue.

Based on these results, we feel Algorithm 3
provides a good way of performing low latency
batches in a VC environment. Compared to sim-
pler methods of managing communication unreli-
ability such as the shifting reconnection algorithm,
the Poisson method described in this paper pro-
vides a more accurate method of controlling work-
ers. For managing computational unreliability,
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Fig. 9 Task and batch satisfaction rates from the experiments

probabilistic assignment based on worker speed
and past history proves more effective than arbi-
trary task assignment or using worker speed only.

6 Related Work

Related studies examined task distribution in grid
and VC environments [5-7], though some of these
assume a task push model and are not valid
for pull-style VC environments. Others describe
methods to maximize total system throughput
rather than meet specific task deadlines. There are
also several works [8, 9, 13, 15-17, 21] analyzing
the characteristics of VC and desktop grid envi-
ronments which are applicable to high throughput
computing but don’t target low latency style VC.
To the best of our knowledge, this paper is the first
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to investigate methods for computing low latency
batches in a pull-style VC environment.

There is work similar to our study in regards
to completing batches of tasks with deadlines
[22], though this focused on desktop grid envi-
ronments rather than volunteer computing. This
study viewed the system as a buffer with batches
of tasks periodically entering and expiring from
the buffer. The authors analyzed the appropriate
buffer size to ensure maximum task completion
rates in a desktop grid environment, where tasks
can be assigned to arbitrary workers. Future work
in low latency batch computing could use this type
of buffer, especially for computations performing
multiple simultaneous batches.

One technique for handling unreliable workers
is the use of checkpointing or “heartbeats” to the
master server [23, 24]. In this technique, workers
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periodically report and/or save their progress to
the master server. This allows for duplication of
tasks which are unlikely to meet the deadline.
However, we believe that this would not be useful
in low latency because of the short task compu-
tation time. For short running tasks, intelligent
scheduling will provide better results than check-
pointing.

Other research related to VC scheduling in-
cludes using evolutionary algorithms to develop
scheduling algorithms [25] and using P2P to per-
form load balancing in VC systems [26]. A pos-
sible future field of research is to use genetic
algorithms in predicting worker availability for
low latency batch computing, though other meth-
ods [13, 17] appear to already be very successful
and more applicable to low latency computing.

7 Conclusion and Future Work

In this paper we proposed methods for performing
low latency batches of tasks with deadlines in VC
environments. To do so, we first proposed analysis
based models for handling communication and
computation unreliability in VC workers. These
models were used to develop task distribution
algorithms aimed at low latency batch VC, which
were then validated using execution trace data
from an actual VC environment.

Although the experiments in Section 5 showed
the effectiveness of these algorithms, further work
can be done to improve the algorithms, especially
in regards to estimating task success on a given
worker. Other techniques [13, 17] show promise in
this regard, though implementations should avoid
computationally intensive techniques when com-
puting with deadlines.

To make practical use of these results we
plan to study methods for integrating low-latency
batch computing in existing VC systems such
as BOINC. BOINC already supports client re-
connection times and recording past availability
states, so implementing low latency in BOINC
is primarily a matter of allowing users to specify
batch characteristics and quickly processes com-
pleted batches.
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