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Abstract

Lactoferrin (LF) is one of the most abundant bioactive glycoproteins in human milk. Glycans

attached through N-glycosidic bonds may contribute to Lactoferrin functional activities. In

contrast, LF is present in trace amounts in bovine milk. Efforts to increase LF concentration

in bovine milk led to alternative approaches using transgenic cows to express human lacto-

ferrin (hLF). This study investigated and compared N-glycans in recombinant human lacto-

ferrin (rhLF), bovine lactoferrin (bLF) and human lactoferrin by Nano-LC-Chip-Q-TOF Mass

Spectrometry. The results revealed a high diversity of N-glycan structures, including fucosy-

lated and sialylated complex glycans that may contribute additional bioactivities. rhLF, bLF

and hLF had 23, 27 and 18 N-glycans respectively with 8 N-glycan in common overall. rhLF

shared 16 N-glycan with bLF and 9 N-glycan with hLF while bLF shared 10 N-glycan with

hLF. Based on the relative abundances of N-glycan types, rhLF and hLF appeared to con-

tain mostly neutral complex/hybrid N-glycans (81% and 52% of the total respectively)

whereas bLF was characterized by high mannose glycans (65%). Interestingly, the majority

of hLF N-glycans were fucosylated (88%), whereas bLF and rhLF had only 9% and 20%

fucosylation, respectively. Overall, this study suggests that rhLF N-glycans share more simi-

larities to bLF than hLF.

Introduction

Milk is a source of lipids, minerals, carbohydrates and proteins for growth and development of

the newborn. Besides all the nutrients necessary for the development of the newborn, human

milk also provides protection against infection and inflammation and contributes to immune

system and healthy microbial colonization [1]. There is extensive research on major com-

pounds in milk, such as fats, proteins, carbohydrates and minerals, to understand their
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contribution to the biological roles of milks [2, 3]. Besides these compounds, milk also con-

tains oligosaccharides that can be found free or attached to fats or proteins forming conjugated

glycans. These glycans have interesting biological functions. They are involved in cell-to-cell

and cell-to-microbe interactions, proper protein folding, stabilization, structural support and

protective mechanisms, including the establishment of a protective intestinal flora in infants

[4]. Free human milk oligosaccharides (HMOs), as well as the conjugated glycans, selectively

stimulate the growth of a key infant gut microbe, Bifidobacterium longum subsp. infantis (B.

infantis) that has various health benefits, including prevention of pathogen binding, positive

modulation of intestinal epithelial cell responses and immune modulation [5–10].

Protein glycosylation, a post-translational modification of proteins with the attachment of

sugar moieties, plays important roles in the structural conformation and bioactivity of pro-

teins, including adhesion, targeting, folding and stability [11]. Glycans can be attached to the

protein through O-glycosidic or N-glycosidic bonds. N-linked glycans (N-glycans) are linked

via N-acetylglucosamines (HexNAc) to an asparagine residue of proteins in the particular

amino acid sequence Asn-X-Ser/Thr (where X can be any amino acid except proline) [12]. The

N-glycan core is composed of two HexNAc and three mannose residues and is synthesized in

the endoplasmic reticulum [12, 13]. Its elongation by other monosaccharides via the actions of

glycosyltransferases and glycosidases determines the complexity and diversity of N-glycan

structures [14]. N-glycans are classified by three main classes: high mannose, complex, or

hybrid, depending on the modification of the core by various monosaccharides [12].

Lactoferrin (LF) is one of the most abundant glycoproteins in human milk [15]. It is an 80

kDa iron-binding glycoprotein that exhibits an array of biological activities, including antioxi-

dant, antibacterial and antiviral activities, iron- (and other metal) binding and immunomodu-

lation [16–18]. However, LF is present in very small amounts in bovine milk. The desire to

develop infant milk formulas closer in composition to that of breast milk and the numerous

possible applications of LF supplementation explain the growing interest in developing large-

scale production methods of LF. Bovine LF (bLF) is used as a food and pharmaceutical supple-

ment [19]. However, bLF doesn’t mimic all the biological roles of human LF (hLF) and its low

concentration in bovine milk hinders the use of bovine milk as a LF source [20]. Several alter-

native approaches have emerged, including hLF production in transgenic organisms, for

example, in rice and the milk of dairy cattle and goats [21, 22]. Because of its large capacity for

milk production, the transgenic cow appears to be a cost-effective source for production of

recombinant hLF (rhLF) on a large scale. rhLF appears to have similar physicochemical and

biological properties as hLF, which has been corroborated by several in vivo studies [23].

Despite the various biological functions of lactoferrin, little is understood about its mecha-

nism of action and the glycosylation pattern’s contribution to biological functions. In this pres-

ent study, we compared N-glycan structures released from rhLF, bLF and hLF. Given the

significant degree of homology between bLF and hLF (with 78% of shared sequence identity),

the presence of similar glycan patterns was expected in the three proteins. Knowledge of

detailed lactoferrin glycan patterns will be essential to understand the functionality of the

protein.

Materials and methods

Milk and lactoferrin

Transgenic cows’ milk containing rhLF at 1.2 g/L was provided by Pharming Group NV’s herd

in Wisconsin. Milk was collected from a transgenic Holstein in her second parity and stored at

–20˚C. The bovine milk retentate obtained by concentration of whey on a 10 kDa membrane,

was provided by the University of California, Davis Milk Processing Laboratory. All the

Transgenic lactoferrin glycans
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samples were stored at –20˚C before use. hLF was purified from donor human milk by affinity

chromatography as described by Barboza et al. [24].

Lactoferrin purification

Prior to the purification of LF from transgenic milk, whey proteins were isolated from the

other milk components using centrifugation and acidic precipitation. Milk was centrifuged at

4,000 × g for 30 min at 4˚C to eliminate fat and part of the casein micelles. The aqueous phase

between the upper fat layer and the casein pellet was collected. The pH of the collected fraction

was decreased to pH 4.6 by addition of hydrochloric acid to precipitate the remaining casein

micelles. The sample was centrifuged at 4,000 × g for 30 min at 4˚C and the supernatant was

collected. The centrifugation step was repeated and the supernatant was combined with the

previous supernatant.

LF was purified from transgenic milk and bovine milk retentate by affinity chromatography

as described by Le Parc et al. [25], with minor modifications. Affinity chromatography was

performed by manually packing heparin Sepharose beads (GE Healthcare Life Sciences, Pitts-

burgh, PA, USA) into a 12-mL polypropylene column as a chromatographic support. The col-

umn was equilibrated with the running buffer (100 mM Tris pH 8, 0.05% Tween 20 and 0.05

M NaCl). Sample loading, washing and elution steps were performed manually. After loading

the whey protein sample onto the column, the flow through was collected and reloaded on the

column to increase LF-binding efficiency. This step was repeated two times. The sample was

incubated with the heparin Sepharose beads for 3 h. The column was washed with running

buffer to remove non-specifically bound proteins. The bound protein was eluted with a step-

wise gradient using sodium chloride (NaCl) concentrations ranging from 0.1 to 1 M NaCl.

Fractions were collected for each salt concentration and analyzed on 12% sodium dodecyl sul-

fate-polyacrylamide gel electrophoresis (SDS-PAGE) [26]. Fractions with higher LF concentra-

tion (without many other protein bands) were dialyzed (Spectra/Por1 1 dialysis tubing,

MWCO 6000–8000) against 20 mM sodium phosphate, pH 7.5 for 48 h.

A second step of purification using cation-exchange chromatography was performed to

increase the purity of samples. LF was purified using a 1-mL pre-packed ion-exchange column

(Bio-Scale Mini Macro-Prep High Q Cartridges, Bio-Rad, Hercules, CA, USA). All chro-

matographic steps were performed using an EP-1 model Bio-Rad Econo Pump and model

2110 Bio-Rad fraction collector at a 0.5 mL/min flow rate. The column was equilibrated with

running buffer (20 mM sodium phosphate, pH 7.5) and samples were loaded onto the column.

The flowthrough was collected and the column was washed with the running buffer. The

bound protein was eluted with a step-wise gradient using NaCl concentrations ranging from

0.1 M to 0.7 M. The purity of LF fractions was evaluated by SDS-PAGE. Fractions with higher

LF concentration were dialyzed with molecular porous membrane tubing (Spectra/Por 1

MWCO: 12,000–14,000) against water for 48 h. Protein concentrations in each sample were

determined by the Bradford assay [27] using bovine serum albumin as the standard.

N-glycan isolation

Purified bLF and rhLF in water were dried and reconstituted in 100 mM ammonium bicar-

bonate (NH4HCO3) (pH 8), 5 mM dithiothreitol (DTT). hLF was resuspended in 100 mM

NH4HCO3 (pH 8), 5 mM DTT. Proteins were denatured by heating with four cycles alternat-

ing between boiling water (100˚C) for 15 s and room temperature water for 2 min [28]. Two

microliters of 500,000 units/mL peptidyl-N-glycosidase F (PNGase F; New England BioLabs,

Ipswich, MA, USA) were added to the sample. The mixture was incubated overnight at 37˚C

under agitation. After enzymatic digestion, proteins were precipitated by the addition of 95%

Transgenic lactoferrin glycans
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cold ethanol solution (4:1 ratio) to each sample and incubation at –20˚C for 1 h. Samples were

centrifuged at 4,000 × g for 30 min at 4˚C. Pellets containing the precipitated proteins were

discarded. Supernatants were collected and dried overnight by vacuum centrifugation. Sam-

ples were reconstituted in 600 μL of water.

Samples were loaded onto a porous graphitized carbon solid phase extraction (PGC SPE

plate; Glygen, Columbia, MD, USA) that was conditioned using 3 x 100 μL of 80% ACN con-

taining 0.1% TFA in water, followed by 3 x 100 μL of water. After sample loading, wells were

washed using 6 x 200 μL of water and N-glycans were eluted using 3 x 200 μL of 40% ACN con-

taining 0.1% TFA in water. The enriched N-glycans fraction was dried overnight under vac-

uum. Samples were rehydrated in 50 μL of water, mixed using a vortex mixer, and sonicated

prior to mass spectrometry (MS) analysis. These samples were produced in triplicate.

Analytical characterization of N-glycans

An Agilent 6520 accurate-mass Q-TOF LC/MS with a microfluidic nano-electrospray chip

(Agilent Technologies, Santa Clara, CA, USA) was used to analyze N-glycan structures as

described previously [29]. Briefly, two microliters of sample were loaded with solvent A (3%

ACN, 0.1% formic acid in water (v/v)) at a capillary pump flow rate of 4 μL/min. N-glycan sep-

aration was performed on a 65-min gradient delivered by the nanopump at a flow rate of

0.3 μL/min. The 65-min gradient followed this program: 0% B (90% ACN, 0.1% formic acid in

water (v/v) (0.0–2.5 min), 0 to 16% B (2.5–20.0 min), 16 to 44% B (20.0–30.0 min), 44 to 100%

B (30.0–35.0 min) and 100% B (35.0–45.0 min). The mass range of 450–3000 m/z were used

for N-glycans in the positive-ionization mode with an acquisition rate of 2.01 spectra/s. Mass

calibration was performed with an internal calibrant ion of 922.010 m/z from the tuning mix

(ESI-TOF Tuning Mix G1969−85000, Agilent Technologies). For tandem MS analysis of N-

glycans, nitrogen gas was used to fragment the N-glycans structures within the mass range of

100–3000 m/z spectra. Acquisition was confirmed by MassHunter Workstation Data Acquisi-

tion software (Agilent Technologies).

N-glycan identification was performed with MassHunter Qualitative Analysis software

(version B.04.00 SP2, Agilent Technologies) and the compounds were extracted using the

Molecular Feature Extractor algorithm (chromatograms in a range of 400–3,000 m/z with a

�1000 ion count cut-off, allowing charge states of +1–3, a retention time from 5–40 min). The

extracted compounds were compared to bovine and human milk N-glycan libraries using a

mass error tolerance of 20 ppm. N-glycans from the library included Hex, HexNAc, Fuc,

NeuAc and NeuGc. The relative abundance of N-glycans was identified by MassHunter Pro-

finder software (Agilent Technologies) using the Batch Targeted Feature Extraction algorithm

(charge states of +1–3, mass error tolerance of 20 ppm and retention time tolerance of 1 min).

The relative amount of each N-glycan was obtained by comparison with the total N-glycan

area in each sample and the relative amount was expressed as a percentage of the total after the

assignment of N-glycans was confirmed by tandem MS.

Statistical analysis

To evaluate the significant differences (p� 0.05) between different glycan structures released

by each enzyme and type of whey protein one-way ANOVA (analysis of variance) was applied.

Means of different groups were compared by Tukey’s multiple comparison test (Same letters

means there is no significant difference between the groups). To visualize differences in the

glycan structures released from each LF type, PCA (Principal Component Analysis) was

employed. In addition, a heat map was created to specifically visualize the difference of glycan

structures.

Transgenic lactoferrin glycans
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Results

Lactoferrin purification

Lipids were removed from milk by centrifugation and the caseins were eliminated by

decreasing the pH 4.6 (isoelectric point of caseins). After heparin-Sepharose chromatogra-

phy, eluted fractions were analyzed by SDS-PAGE (Fig 1A and 1B). SDS-PAGE of transgenic

milk fractions showed a band around 80 kDa in the 0.5 M and 1 M NaCl fractions that corre-

sponded to the molecular weight of LF. Previous analysis by MS confirmed the presence of

LF in this band [30]. Caseins were present between 15 kDa and 37 kDa in skim milk. Acid

precipitation was not sufficient to remove all caseins. Similar results were obtained for bLF

(data not shown). To further improve the purity of the LF-enriched fraction, cation-

exchange chromatography was performed to remove contaminants, including caseins. Some

contaminants were eluted during the washing step with the running buffer, and LF was

eluted by a stepwise elution using NaCl concentrations ranging from 0.1 M to 0.7 M. The

majority of rhLF was present in the 0.5 M eluted fraction with low contamination (Fig 1C).

This fraction had the level of purity necessary to perform analytical MS. Similar results were

obtained for bLF (data not shown).

Comparison of N-glycan composition

The detailed compositions of N-glycans for bLF, rhLF and hLF are shown in S1, S2 and S3

Tables. PNGase F digestion resulted in 27, 23 and 18 different glycan compositions for bLF,

rhLF and hLF, respectively (Table 1). Similar high mannose N-glycans were released from

each LF, whereas the neutral non-fucosylated and fucosylated complex/hybrid N-glycan

structures were different. rhLF contained the highest number of neutral non-fucosylated and

fucosylated complex/hybrid glycans, with 7 compositions for both classes. rhLF contained 6

mono and 1 bi-fucosylated glycans, whereas bLF contained only 4 mono-fucosylated glycans

and hLF had 3 mono-, 1 bi- and 1 tri-fucosylated N-glycans. rhLF and hLF showed similar

NeuAc content, 5 and 6, respectively, and bLF had the highest sialylated glycan content, with

10 different compositions. It was also demonstrated that 2 NeuGc glycans were detected

from bLF, whereas rhLF and hLF did not contain any NeuGc. Fig 2 compares N-glycan com-

positions of bLF, rhLF and hLF. Among the oligosaccharides identified, 8 N-glycan composi-

tions were common among the three LFs. rhLF had more N-glycans in common with bLF

than with hLF. bLF and rhLF had 16 glycans in common, whereas bLF and hLF shared 10

glycans. Among the 9 glycans in common between rhLF and hLF, only 1 uniquely belonged

to these 2 LF samples. There were 9, 6 and 7 different glycan compositions unique for bLF,

rhLF and hLF, respectively.

Relative abundance of released glycans

Relative abundances of released N-glycans of LF were compared. Fig 3 shows the relative

quantitative distribution of high mannose, neutral complex/hybrid and sialylated complex/

hybrid glycans, and Fig 4 shows fucosylated and non-fucosylated glycans. The results

revealed that the relative abundance of each glycan type varied significantly for each LF. bLF

was characterized by a high content of high mannose glycans (65%). The neutral complex/

hybrid N-glycans represented only 4% of bLF N-glycans, and this class was significantly

higher in hLF and rhLF, at 52% and 81%, respectively. rhLF sialylation (11%) was signifi-

cantly lower than that for hLF and bLF (48% and 31%, respectively). The majority of glycans

released from hLF were fucosylated (88%), whereas bLF and rhLF were 9% and 20% fucosy-

lated, respectively (Fig 4).

Transgenic lactoferrin glycans
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Comparison of N-glycan diversity of bLF, hLF and rhLF

Application of bovine and human N-glycan libraries as a mass filter in Find by Molecular Fea-

ture with Mass Hunter Qualitative Analysis software identified 27, 23 and 18 N-glycan compo-

sitions for bLF, rhLF and hLF, respectively. From these compositions, 71, 49 and 66

Fig 1. Recombinant human lactoferrin purification. (A) Skim milk protein profile analyzed by 12%

SDS-PAGE. (B) Elution of rhLF purification by heparin Sepharose. (C) Elution of rhLF purification by ion-

exchange chromatography.

doi:10.1371/journal.pone.0171477.g001

Transgenic lactoferrin glycans
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compounds resulted from the separation of structural and/or linkage isomers or anomers for

bLF, rhLF and hLF, respectively. Relative abundance of each N-glycan and comparison for

each LF is shown in Fig 5. According to the heatmap, some N-glycans were unique for one lac-

toferrin sample and some others were mutual with various abundances. For example, com-

pounds 4_5_1_0_0 and 3_6_2_0_0 are found in each lactoferrin but highly present in rhLF.

4_5_0_1_0 and 3_6_0_1_0 were present equally in rhLF and bLF but they were not detected in

hLF. On the other hand, 5_4_0_0_0, 4_5_0_0_1 and 4_4_1_0_0 were unique N-glycans for

rhLF, bLF and hLF, respectively.

Moreover, the heatmap suggested that rhLF and bLF had more similarities than hLF based

on the N-glycan diversity and their abundances. Although hLF shared 10 mutual N-glycans

with bLF and 9 N-glycans with rhLF, bLF and rhLF shared a total of 16 N-glycans that were

present in high abundance in these samples. In addition to the heatmap, a PCA plot (Fig 6)

also shows that the variance between rhLF and bLF was less than between rhLF and hLF and

hLF and bLF.

Table 1. N-glycan compositions of bLF, rhLF and hLF.

bLF rhLF hLF

N-glycan compositions 27 23 18

High mannose 5 4 5

Neutral-non-fucosylated complex/hybrid 6 7 2

Neutral fucosylated complex/hybrid 4 7 5

Mono 4 6 3

Bi 0 1 1

Tri 0 0 1

NeuAc 10 5 6

NeuGc 2 0 0

doi:10.1371/journal.pone.0171477.t001

Fig 2. Comparison of bLF, rhLF and hLF N-glycan compositions.

doi:10.1371/journal.pone.0171477.g002

Transgenic lactoferrin glycans
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A tandem spectrum of a neutral N-glycan and extracted compound chromatograms of N-

glycans from recombinant human lactoferrins are shown in Figs 7 and 8, respectively.

Discussion

Glycosylation of rhLF expressed in plants has been widely studied [31, 32], however, there is

little information available for glycosylation patterns of rhLF expressed in the milk of trans-

genic cows. The objective of this study was to characterize the N-glycosylation pattern of rhLF,

expressed in transgenic cows, using nanoLC-Chip-Q-TOF that allowed excellent separation

performance and high mass accuracy.

Fig 3. High mannose, sialylated and neutral complex/hybrid N-glycans released from hLF, rhLF and bLF by

PNGase F. Tukey’s test was used to indicate significant differences (p<0.05) between groups. Same letters indicate no

significant difference.

doi:10.1371/journal.pone.0171477.g003

Fig 4. Fucosylated and non-fucosylated N-glycans released from hLF, rhLF and bLF by PNGase F.

Tukey’s test was used to indicate significant differences (p<0.05) between groups. Same letters indicate no

significant difference.

doi:10.1371/journal.pone.0171477.g004

Transgenic lactoferrin glycans
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Fig 5. Heatmap of compound abundances associated with lactoferrin from different sources. Compound

relative abundances were standardized (Z score, shown in legend) prior to unsupervised hierarchical clustering of

samples (rows). Compound identity is noted below each column.

doi:10.1371/journal.pone.0171477.g005

Fig 6. PCA plot of composition of released N-glycans of human lactoferrin (hLF), recombinant human

lactoferrin (rhLfa) and bovine lactoferrin (bLf). Of the variance, 62.45% was explained by the first principal

component and 36.97% was explained by the second principal component.

doi:10.1371/journal.pone.0171477.g006
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After N-glycan release, a comparison study among hLF, bLF and rhLF N-glycans was per-

formed. The analytical platform of nano-LC-Chip-Q-TOF MS enabled comprehensive profil-

ing of N-glycans of hLF, bLF and rhLF and revealed heterogeneity of N-glycans with sialylated

and fucosylated structures on rhLF. Although a few studies have reported the production of

rhLF in transgenic cows, they focused on the monosaccharide composition of rhLF, and only

few data are available on the N-glycosylation pattern of rhLF [33–35]. One of the first studies

that compared the N-glycosylation pattern of rhLF expressed in transgenic cattle and hLF by

MS was performed by Yu et al. [34]. They demonstrated that N-glycans from rhLF are mostly

high mannose, hybrid and complex-type structures with less NeuAc and fucose, contrary to

hLF that contains highly sialylated and fucosylated complex structures. Van Berkel et al. [36]

showed that hLF contains complex-type glycans, and that rhLF produced in transgenic cows

has more oligomannose and hybrid type glycans [33]. Similar to the study performed by Yu

et al. [34], they show less sialylated and fucosylated glycans in rhLF than in hLF. Our results

also showed that rhLF has fewer numbers of sialylated N-glycans than bLF and hLF. However,

we demonstrated significantly higher fucosylation on rhLF (6 mono- and 1 bi-) than on bLF.

Our results showed that the N-glycome of rhLF is more similar to bLF than to hLF. Accord-

ing to previous studies [37], it is now widely known that fucosylation and sialylation make a

difference between the bovine and human milk N-glycome. The bovine milk N-glycome con-

tains more mannose and sialylated glycans than does the human milk N-glycome. Based on

this information, because rhLF glycans were synthesized in bovine cells, we suggest that the

differences in glycosylation patterns between hLF and rhLF may be the result of glycosyltran-

ferases/glycosidases in bovine mammary epithelial cells. rhLF also contains unique N-glycans

Fig 7. Deconvoluted tandem spectrum of the neutral N-glycan 5Hex2HexNAc from recombinant human lactoferrin. This glycan corresponds to

1235.44 m/z. Green circles and blue squares represent mannose and HexNAc residues, respectively.

doi:10.1371/journal.pone.0171477.g007
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that are not identified on hLF or bLF. These glycans may have unique health-improving

functions.

Although there is no evidence that different glycosylation patterns change LF activity, hLF

and bLF might exhibit different functions, considering the multifunctional roles of glycans.

Only a few papers report a role of glycosylation in protein function by modifying the structural

conformation of the protein and consequently its biological activity [38, 39], or by interfering

with pathogen adhesion to intestinal epithelial cells [40]. These possible actions strengthen the

idea that glycosylation can be involved in protecting the host against microbial and viral

attacks. Functional activities of rhLF were previously tested, and some anti-bacterial activities

and iron binding of rhLF were similar to those of hLF [33, 41].

Conclusion

Interest in LF is related to its wide range of biological properties that make it a major compo-

nent for infant development. However, the mechanisms involved have not been well eluci-

dated, especially the role that is played by glycan patterns on biological functions of LF. The

results of our study could enable future investigations of the effects of glycosylation on LF

properties.

The methodology employed in this study allowed isolation of a protein from a complex

mixture, followed by the identification of N-glycans with high resolution and an isomer-level

separation. N-glycan compositions released from commercial enzyme PNGase F were identi-

fied and compared among three LFs (bLF, hLF and rhLF). The results revealed a high diversity

of N-glycan structures, including fucosylated and sialylated complex glycans, that may have

bioactive potential. This study also increased the knowledge on rhLF and showed that it is a

good substitute of bLF in bovine-based food. Transgenic cow’s milk that contain 1.2 g/L of

Fig 8. Extracted compound chromatograms (ECCs) of N-glycans from recombinant human lactoferrin.

doi:10.1371/journal.pone.0171477.g008
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rhLF could also be a good substrate for another novel enzyme called Endo-β-N-acetylglucosa-

minidase (EndoBI-1) of proteins [42–45]. Releasing higher amounts of lactoferrin’s glycans

together with the un-glycosylated protein bone in its native (non-denatured) state will help

understand the real contributions of N-glycans to lactoferrin’s functional activities.

LF supplementation has already many applications in food and non-food products around

the world and its market continues to grow. The synthesis of rhLF via transgenic cows appears

as a suitable production method that provides a large amount of rhLF with high homology

with hLF. Numerous studies will be necessary to highlight the efficacy and safety of rhLF as a

food additive or supplement.
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