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Abstract of the dissertation 

A Novel Approach to Cognitive Practice Effects within Aging Cohorts: Earlier Detection of 

Decline and Change in Diagnostic Status4 

by 

Mark Sanderson-Cimino 

Doctor of Philosophy in Clinical Psychology 

 

University of California San Diego, 2022 

San Diego State University, 2022 

 

Professor William Kremen, Chair 

 

Cognitive practice effects (PEs) are often ignored and likely delay detection of mild 

cognitive impairment (MCI). The replacement-participants method of PE adjustment subtracts 

the scores of demographically-matched, test naïve, replacement participants from returnees’ 

follow-up scores. The aims of this project were to determine whether this PE adjustment: 1) 

results in earlier MCI detection; 2) improves diagnostic stability, accuracy, and validity based on 

concordance with Alzheimer’s disease biomarkers; and 3) reduces costs of clinical trials.



 

xii 

 

The method was adapted for studies that did not recruit replacement participants by 

identifying “pseudo-replacements”, a subset of baseline participants that are demographically-

matched to returnees at follow-up. Alzheimer’s Disease Neuroimaging Initiative data were 

extracted. Study 1 (baseline cognitively unimpaired [CU], N=722) and study 2 (baseline MCI, 

N=329) calculated PEs at 1-year follow-up. Study 3 added data from a 2-year follow-up 

(N=809). Biomarkers include CSF tau and beta-amyloid. Cost estimates were based on recent 

grant budgets and effects of PE adjustment on required sample size in a large clinical trial. 

Primary analyses included McNemar χ 2 tests, logistic regressions, and generalized estimating 

equations. 

Study 1: PE-adjusted follow-up scores led to significantly greater incident MCI as 

compared to PE-unadjusted scores (124 vs. 104; +19%). Significantly more MCI participants 

were biomarker positive when PE-adjusted scores were utilized (173 vs. 152; +14%). Cost 

estimates showed that replacements could save a large Alzheimer’s disease clinical trial over 

$5,000,000. Study 2: PE adjustment significantly reduced reversion to CU as compared to PE-

unadjusted scores (57 vs. 80; -29%). Study 3: Significant PEs were found at both follow-ups for 

baseline MCI and CU samples. When adjusting for PEs, participants remained stable over time 

or declined, as expected in this older sample. Several PEs increased at the second follow-up 

(range: +9% to +133%). 

Adjusting for PEs with the replacement method leads to earlier and more accurate MCI 

diagnoses, reduces reversion rates, and is cost effective for large-scale studies. Unlike other 

methods, it also unmasks PEs even when scores worsen over time. The results indicate that PEs 

warrant greater attention and also suggest the potential value of developing PE norms.



 

1 

1. Introduction 

Assessments of cognitive abilities are used to differentiate those who are aging normally 

(i.e., cognitively unimpaired; CN) from those who are aging abnormally. Those who have slight 

cognitive deficits in the presence of minimal to no functional impairment may be diagnosed with 

mild cognitive impairment (MCI), which is often seen as a prodromal stage for several dementias 

(Albert et al., 2011; Manly et al., 2008). Those who’s cognitive decline has notably affected their 

functionality can be diagnosed with dementia or major neurocognitive disorder (Albert et al., 

2011; J. Eppig et al., 2020; Manly et al., 2008; Thomas et al., 2020). 

Repeated cognitive assessments are necessary for accurately determining when 

individuals are declining and when they transition from CU to MCI and to dementia. However, 

when individuals complete the same test at multiple timepoints their scores are likely affected by 

practice effects (PEs). PEs are typically defined as an improvement in performance due to 

retesting, as opposed to true change in cognition (Heilbronner et al., 2010).  Put simply, someone 

taking a test for the second time will typically have a higher score than if they were taking it for 

the first time. These effects can occur due to memory of specific stimuli (i.e., content PE) or 

through increased comfort/knowledge with test taking (i.e., context PE) (Gross, Anderson, & 

Chu, 2017; Heilbronner et al., 2010)  PEs are pervasive; they have been found across multiple 

cognitive domains and test-retest intervals as long as 7 years in older adults, including those with 

MCI and even mild Alzheimer’s disease (AD) (Elman et al., 2018; Goldberg, Harvey, Wesnes, 

Snyder, & Schneider, 2015; Gross et al., 2017; Gross et al., 2015).  

1.1 The Impact of PEs on Diagnosis of Cognitive Deficits 

PEs have a wide-ranging impact on any study or field involving cognitive testing because 

they mask true cognitive decline and compromise diagnostic accuracy, impairing the separation 
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of cases (i.e., MCI) and controls (i.e., CN) (Calamia, Markon, & Tranel, 2012; Elman et al., 

2018). PEs are a barrier to early diagnosis of cognitive impairments because they may obscure 

decline in two ways. First, PEs may be equal to or larger than age-related decline or early onset 

symptoms. If so, performance would remain stable or appear to improve, and an individual 

would seem to be unaffected by age-related changes (Figure A). In this situation, clinicians 

might not recognize the need to provide early care, and researchers might fail to identify 

associations between biomarkers and disease progression. The majority of research on PEs 

considers only this situation (Calamia et al., 2012; Goldberg et al., 2015). Second, even if scores 

decline, PEs may still be present, masking a much sharper decline (Figure B). Here individuals 

may appear more cognitively stable than they actually are. This misunderstanding may prevent 

researchers from accurately mapping cognitive change and disease progression. It also may lead 

clinicians to conclude that an individual is more capable of independent living than is safe. The 

second situation is likely in studies of older adults where normative data indicate that cognition 

is expected to decline over time (Finkel, Reynolds, McArdle, Gatz, & Pedersen, 2003; Salthouse, 

2010, 2019).  
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A B C 

 
 

 

Figure 1: Theoretical practice effects. The solid line represents true cognitive ability. The dashed line 

represents observed performance, which is inflated due to a practice effect (vertical arrow). 1A: 

Typically observed practice effect: an individual’s observed score increases from baseline to follow-up, 

demonstrating a typical practice effect. 1B: Practice effect in the context of cognitive decline. In this 

scenario, an individual’s ability is decreasing overtime. A practice effect still exists but is masked by 

cognitive decline. As a result, the individual’s performance appears to be stable but is actually better 

than it would have been without previous exposure to the test. 1C: Practice effects impair detection of 

MCI. In this situation, an individual has declined below an MCI cutoff. However, practice effects are 

inflating their score so that they now fall above the MCI cutoff and will be diagnosed as cognitively 

normal at follow-up. 

 

MCI classification methods, particularly in research, almost always rely on use of cut-off 

scores to define cognitive impairment (Jak et al., 2009; Winblad et al., 2004). The same cut-off is 

typically applied at baseline and follow-up visits. If an individual experiences a PE greater than 

their cognitive decline, then they may be pushed above the threshold for impairment despite 

having no change or even a slight decline in their actual cognitive ability (Figure C). Among 

those who are CU at baseline, this means they will be misdiagnosed as CU at follow-up when 

they should be labeled as MCI. As such, methods that address PEs at follow-up may change MCI 

classification, increasing diagnostic accuracy. Stated differently, adjusting for PEs may lead to 

earlier detection of MCI among those who were CU at their first assessment. Early detection of 

MCI is important as MCI is seen as a risk factor for AD, particularly when there is a memory 

impairment either alone (i.e., single-domain amnestic MCI) or in combination with deficits in 

other domains (i.e., multi-domain amnestic MCI) (Albert et al., 2011; J. Eppig et al., 2020; 

Manly et al., 2008; Thomas et al., 2020). Individuals diagnosed with MCI are significantly more 

MCI 

Cutoff 
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likely to progress to AD, and do so at a faster rate than those without MCI (Mitchell & Shiri‐

Feshki, 2009; Pandya, Clem, Silva, & Woon, 2016). Individuals with MCI who are on the AD 

trajectory often have AD biomarker levels in between those diagnosed as CU and those with AD 

(Emily C Edmonds et al., 2015; Olsson et al., 2016).  Therefore, if PE-adjustment truly improves 

diagnostic accuracy (i.e., better separates cases from controls) then PE-adjusted MCI diagnoses 

should be associated with greater likelihood of conversion to dementia and more AD-like 

biomarker profiles than diagnoses based on PE-unadjusted scores.  

Although PEs are thought to be reduced in those who are MCI at baseline, they may still 

play a significant role in reversion rates. MCI reversion occur when an individual who is 

diagnosed with MCI at baseline is diagnosed as CU at follow-up. As PEs increase scores at 

follow-up, they may be a substantial contributor to reversion rates, but, to my knowledge, they 

have been only studied peripherally (Malek-Ahmadi, 2016; Thomas et al., 2020).  

Those critical of MCI typically cite reversion rates as a key concern. Although 10-12% of 

individuals with MCI are expected to convert to AD per year, 20-50% of individuals revert from 

MCI to CU status within 2-5 years (Pandya et al., 2016).  Over a similar time frame, an estimated 

37-67% of individuals retain their MCI diagnosis (Pandya et al., 2016). These findings have led 

some to conclude that individuals with MCI are more likely to revert to CU or maintain their 

MCI status than to convert to dementia each year (Canevelli et al., 2016). Several review articles 

considering reversion rates in MCI have highlighted the wide range in reversion rates and have 

suggested that this variability is likely due to multiple factors, including the heterogeneity of 

MCI criteria and reversible causes such as depression (Canevelli et al., 2016; Malek-Ahmadi, 

2016; Pandya et al., 2016). Malek-Ahmadi and Pandya et al. also suggested that reducing 

reversion rates should be an essential goal of future MCI methodology studies (Malek-Ahmadi, 
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2016; Pandya et al., 2016). Canevelli et al. and Pandya et al. argued that MCI may be an unstable 

condition where reversion to normal is expected, and that its use as a prodromal stage of 

underlying neurodegenerative diseases is questionable (Canevelli et al., 2016; Pandya et al., 

2016). Malek-Ahmadi suggested that the utility of MCI diagnosis would benefit from further 

refinement of statistical methods, the use of sensitive cognitive tests, and greater utilization of 

biomarkers (Malek-Ahmadi, 2016). I believe that one way of addressing the majority of these 

author’s concerns is improving and implementing methods of PE adjustment.  

1.2 Practice Effect Adjustment and Clinical Trials 

Nearly all AD clinical trials have focused on treating individuals with dementia in an 

effort to mitigate or reverse the disease. Unfortunately, the failure rate for these trials is greater 

than 99% (Anand, Patience, Sharma, & Khurana, 2017; J. L. Cummings, Morstorf, & Zhong, 

2014). As a result, there has been a shift toward identifying and targeting individuals at the 

earliest stages of the disease including at-risk CU and MCI (Alexander, Emerson, & Kesselheim, 

2021; Anand et al., 2017; Canevelli et al., 2016; R. Sperling, Mormino, & Johnson, 2014; R. A. 

Sperling et al., 2014). As noted by Canevelli et al., at least 274 randomized controlled trials were 

recruiting MCI subjects in 2016 (Canevelli et al., 2016). As such, accurate diagnoses of earlier 

disease stages are necessary to further the treatment of AD (Edmonds et al., 2018a; J. Eppig et 

al., 2020; Veitch et al., 2019).  

The impact of PEs on early detection of decline and stability of MCI diagnosis has a 

significant impact on AD clinical trials. A review of PEs in MCI and AD samples noted 

considerable evidence of PEs (i.e., increased scores) in clinical trials (Goldberg et al., 2015). 

However, despite recognition that accounting for PEs may potentially improve clinical trials and 

diagnostic accuracy, there are minimal empirical data on PEs in clinical trials (Calamia et al., 
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2012; Duff et al., 2011; Goldberg et al., 2015; Jutten et al., 2020). Moreover, PEs are largely 

ignored in longitudinal studies, clinical trials, and clinical practice, particularly with respect to 

diagnosis (Calamia et al., 2012; Goldberg et al., 2015; Heilbronner et al., 2010; Machulda et al., 

2017; Mathews et al., 2014). Reviews of MCI reversion rates also consistently note that the 

instability of MCI diagnoses impairs our ability to treat AD by diluting samples and reducing 

study power (Canevelli et al., 2016; Malek-Ahmadi, 2016; Pandya et al., 2016).  

1.3 Replacement Method of Practice Effect Adjustment 

The majority of PE adjustment methods only consider PEs when there is an increase in 

scores at follow-up. As shown previously (Figures A-C), this assumption does not consider the 

expected age-related decline in older adult populations. Although review papers have noted that 

PEs can exist even when there is longitudinal decline in observed performance, as expected 

within a sample at risk for AD (Salthouse, 2010), few have empirically demonstrated that claim 

(Goldberg et al., 2015). In such situations, Calamia et al. suggested that the most suitable 

approach is to utilize replacement participants as it is able to gauge PEs even when performance 

declines (Calamia et al., 2012; Elman et al., 2018; Rönnlund & Nilsson, 2006). The replacement-

participants approach involves recruiting participants for testing at follow-up who are 

demographically matched to returnees. The only difference between groups is that replacements 

are taking the tests for the first time whereas returnees are retaking the tests. Comparing scores at 

follow-up between returnees and replacement participants (with additional adjustment for 

attrition effects) allows for detection of PEs when observed scores remain stable (Figure B) and 

even when they decline (Figure C). In both scenarios, scores would have been lower without 

prior exposure. Thus, the goal is to create follow-up scores over retest intervals that are free of 

PEs and comparable to general normative data. Using a replacement-participants method, in 
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what to my knowledge is the only study using PE adjustment to modify diagnosis, Elman et al 

showed that MCI incidence doubled (4.6% v s 9.0%) when scores were adjusted for PEs in a 6-

year follow-up study (Elman et al., 2018). The increased incidence means earlier detection of 

MCI, an important strength of this method. 

Despite the utility of the participant replacement method, there are several concerns 

limiting its use. First, this method lowers all scores in the sample. Therefore, when comparing 

PE-unadjusted MCI rates to those after PE-adjustment, it is impossible for there to be decline in 

MCI diagnoses at follow-up. It is crucial to determine if the PE-adjusted increased MCI 

incidence truly represents more accurate diagnosis rather than methodological artifact. Second, 

although the Elman et al study found an increased rate of MCI after adjustment, there were no 

follow-up data to confirm that these participants were on a dementia trajectory (Elman et al., 

2018). Third, this study did not provide biomarker data to support diagnoses. Fourth, this method 

requires the recruitment of specifically matched participants at each time point. For many 

ongoing or completed studies, this may not be feasible. Fifth, to our knowledge, the replacement-

participant approach has only been utilized across two timepoints (Elman et al., 2018; Ronnlund, 

Nyberg, Backman, & Nilsson, 2005). As normal and abnormal aging is inherently a longitudinal 

process, the viability of a PE-method that is only useable across 2 timepoints is somewhat 

restricted.  

2. Proposed Project 

The proposed project represents 3 separate papers that will be combined into a single 

dissertation that adapts and validates a method of PE adjustment based on the replacement 

participants method. The first and second papers have been published in peer-reviewed journals. 

These papers describe the method developed for this dissertation: the pseudo-replacement 
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method of PE-adjustment. They also use follow-up data and biomarkers to validate how PE 

adjustment impacts MCI prevalence, reversion, and stability. The third paper will be submitted 

for peer review with the approval of this dissertation committee. The third paper expands the 

pseudo-replacement method for use across 3 timepoints to delineate PEs from true cognitive 

decline by integrating generalized estimating equation (GEE) models. Links to the first and 

second paper are provided below. A draft of the third paper has been provided below. An 

integrative discussion follows to comment on conclusions, limitations, related projects, and 

future directions.   
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Abstract 

INTRODUCTION:  Practice effects (PEs) on cognitive tests obscure decline, thereby 

delaying detection of mild cognitive impairment (MCI). Importantly, PEs may be present even 

when there are performance declines, if scores would have been even lower without prior test 

exposure. We assessed how accounting for PEs using a replacement-participants method impacts 

incident MCI diagnosis.   

METHODS:  Of 889 baseline cognitively normal (CN) Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) participants, 722 returned 1 year later (mean age=74.9±6.8 at 

baseline). The scores of test-naïve demographically-matched “replacement” participants who 

took tests for the first time were compared with returnee scores at follow-up. PEs—calculated as 

the difference between returnee follow-up scores and replacement participants scores—were 

subtracted from follow-up scores of returnees. PE-adjusted cognitive scores were then used to 

determine if individuals were below the impairment threshold for MCI. CSF amyloid-beta, 

phosphorylated-tau, and total tau were used for criterion validation. In addition, based on 

screening and recruitment numbers from a clinical trial of amyloid-positive individuals, we 

estimated the effect of earlier detection of MCI by accounting for cognitive PEs on a 

hypothetical clinical trial in which the key outcome was progression to MCI.    

RESULTS:  In the ADNI sample, PE-adjusted scores increased MCI incidence by 19% 

(p<.001), increased proportions of amyloid-positive MCI cases (+12%), and reduced proportions 

of amyloid-positive CNs (-5%) (p’s<.04). Additional calculations showed that the earlier 

detection and increased MCI incidence would also substantially reduce necessary sample size 

and study duration for a clinical trial of progression to MCI. Cost savings were estimated at 

approximately $5.41 million.   
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DISCUSSION:  Detecting MCI as early as possible is of obvious importance. 

Accounting for cognitive PEs with the replacement-participants method leads to earlier detection 

of MCI, improved diagnostic accuracy, and can lead to multi-million-dollar cost reductions for 

clinical trials.  

 

Keywords: Early diagnosis; Mild cognitive impairment; Practice effects; Alzheimer’s 

disease; Clinical trials; Longitudinal aging 
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1. INTRODUCTION 

Alzheimer’s Disease (AD) is a leading cause of death in adults over age 65 and an 

estimated 1 in 85 people living with the disease by 2050 ("2018 Alzheimer's disease facts and 

figures," 2018; Brookmeyer, Johnson, Ziegler-Graham, & Arrighi, 2007). Give the protracted 

AD prodromal period, emphasis is now on clinical trials that begin with cognitively normal (CN) 

individuals who may progress to mild cognitive impairment (MCI) (J. Cummings, Lee, Ritter, 

Sabbagh, & Zhong, 2019; Gauthier et al., 2016; Rafii & Aisen, 2019; R. A. Sperling et al., 

2014). Delayed detection of MCI is essentially misdiagnosis, i.e., labeling someone as CN when 

they, in fact, have MCI. Such misdiagnosis impedes identification of meaningful drug effects and 

may lead to misinterpretation of findings in clinical trials (Bondi et al., 2014; Edmonds et al., 

2018b). Clinically, any effects to slow disease progression require early detection. Detection of 

MCI as early as possible is thus critical.  

Repeat cognitive assessments are necessary for accurately determining transitions from 

CN to MCI or MCI to dementia. However, repeat assessments are subject to practice effects 

(PEs) that can inflate follow-up scores via memory of specific stimuli (i.e., content PE) or 

through increased comfort with test taking (i.e., context PE) (Gross et al., 2017; Heilbronner et 

al., 2010). Put simply, someone taking a test for the second time will typically have a higher 

score than if they were taking it for the first time. PEs have a wide-ranging impact on any study 

or field involving cognitive testing because they mask true cognitive decline and compromise 

diagnostic accuracy, impairing the separation of cases (i.e., MCI) and controls (i.e., CN) 

(Calamia et al., 2012; Elman et al., 2018). Moreover, PEs are pervasive; they have been found 

across multiple cognitive domains and test-retest intervals as long as 7 years in older adults, 

including those with MCI and mild AD (Elman et al., 2018; Goldberg et al., 2015; Gross et al., 
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2017; Gross et al., 2015) . 

A major limitation of most PE methods is that they only consider PEs when scores are 

higher at follow-up than at baseline (Calamia et al., 2012; Duff et al., 2011; Goldberg et al., 

2015). However, PEs can exist when there is no overall change and when there is decline, as they 

may still cause underestimation of decline (Figure 1) (Calamia et al., 2012; Goldberg et al., 

2015). In such situations, failure to account for PEs may delay MCI diagnosis because PEs 

would inflate scores above diagnostic impairment thresholds (Calamia et al., 2012; Elman et al., 

2018; Rönnlund & Nilsson, 2006; Ronnlund et al., 2005). This is particularly relevant for older 

adults for whom decline over time may be the norm.  

Despite their importance, PEs are largely ignored in longitudinal studies, clinical trials, 

and clinical practice, particularly with respect to diagnosis (Calamia et al., 2012; Goldberg et al., 

2015; Heilbronner et al., 2010; Machulda et al., 2017; Mathews et al., 2014). A review of PEs in 

MCI and AD samples noted considerable evidence of PEs (i.e., increased scores) in clinical 

trials.(Goldberg et al., 2015) However, despite recognition that accounting for PEs may 

potentially improve clinical trials and diagnostic accuracy, there are minimal empirical data on 

PEs in clinical trials (Calamia et al., 2012; Duff et al., 2011; Goldberg et al., 2015; Jutten et al., 

2020). 

One method of PE adjustment, the replacement-participant method, is able to gauge PEs 

even when performance declines (Elman et al., 2018; Rönnlund & Nilsson, 2006). This method 

relies on the recruitment of an additional set of test-naïve participants (i.e., “replacements”) that 

is similar to returnees in terms of age and other demographic factors. A comparison of 

replacement’s performance and that of the returnees calculates a PE because score differences 

are due to the fact that returnees have taken the tests twice, but replacements have taken the tests 
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only once. PE-adjusted scores can then be derived by subtracting PEs from the returnee’s follow-

up scores (Elman et al., 2018; Rönnlund & Nilsson, 2006). Using a replacement-participants 

method, in what to our knowledge is the only study using PE adjustment to modify diagnosis, we 

showed that MCI incidence doubled (4.6% v s 9.0%) when scores were adjusted for PEs in a 6-

year follow-up study (Elman et al., 2018). The increased incidence means earlier detection of 

MCI, suggesting an important strength of this method. However, as this method lowers all 

scores, it is crucial to determine if the increased incidence truly represents more accurate 

diagnosis rather than methodological artifact. We propose improved correspondence between 

AD biomarkers and MCI diagnoses as a way of validating the PE-adjusted diagnoses. Other 

strengths of the method are that returnees and replacements are always well-matched for 

demographics, and PEs are always calculated based on the specific time interval and for a 

specific test. A shortcoming of this method is that each test’s PE is the same for all subjects 

because they are group mean effects. 

Here, we employed a novel approach by identifying the equivalent of replacement 

participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In individuals who 

were CN at baseline, we hypothesized that: 1) we would observe PEs at the 12-month follow-up; 

and 2) accounting for PEs would increase the number of MCI diagnoses at follow-up. Regarding 

criterion validity, we hypothesized that: 3) PE-adjusted diagnoses would result in more AD 

biomarker-positive MCI cases and fewer biomarker-positive CN individuals than PE-unadjusted 

diagnoses. Finally, we completed power/sample size calculations, hypothesizing that: 4) 

accounting for PEs would substantially reduce the number of participants needed for clinical 

trials. We then applied these estimates to a hypothetical drug trial with progression to MCI as a 

key outcome using recruitment data from a major clinical trial. Earlier and more accurate 
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detection should thus have a substantial impact on clinical trials by reducing study duration, 

attrition, participant and staff burden, and overall cost.  

2. MATERIALS AND METHODS  

2.1. Participants 

Data were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether biological markers, and 

clinical assessment, and neuropsychological measures can be combined to measure the 

progression of MCI and early AD. For up-to-date information, see www.adni-info.org. 

Participants from the ADNI-1, ADNI-GO, and ADNI-2 cohorts were included. Informed consent 

was obtained from all participants.  

We identified 889 individuals who were CN at baseline; 722 of them returned for a 12-

month-follow-up. Mean educational level of returnees was 16 years (SD=2.7), 47% were female, 

and mean baseline age was 74.9 years (SD=6.8). All participants completed neuropsychological 

testing at baseline and 12-month follow-up. After accounting for PEs, we re-diagnosed returnees 

at their 12-month follow-up as CN or MCI. 

2.2. Procedures  

Six cognitive tests were examined at both baseline and follow-up (mean=12.21 months; 

SD=0.97): memory (Wechsler Memory Scaled-Revised, Logical Memory Story A delayed 

recall; Rey Auditory Verbal Learning Test [AVLT] delayed recall); language (Boston Naming 

Test; Animal Fluency); attention-executive function (Trails A; Trails B). The American National 

Adult Reading Test provided an estimate of premorbid IQ. Participants completed the same 

http://www.adni-info.org/
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version of tests at baseline and 12-month visits. 

PE-adjusted and PE-unadjusted scores were converted to z-scores based on external 

norms that accounted for age, sex, and education for all tests except the AVLT (Shirk et al., 

2011). Having found no external norms for the AVLT that were appropriate for this sample and 

accounted for age, sex, and education, the AVLT was z-scored based on ADNI participants who 

were CN at baseline (n=889). AVLT demographic corrections were based on a regression model 

that followed the same approach as the other normative adjustments (Shirk et al., 2011). 

We focused primarily on MCI diagnosed according to the Jak-Bondi approach, requiring 

scores on 2 tests within the same cognitive domain to be >1 SD below normative means (Bondi 

et al., 2014; Edmonds et al., 2018b; Jak et al., 2009). To test whether the results were specific to 

a particular diagnostic approach, we repeated analyses using Petersen MCI criteria (Jak et al., 

2009). 

Biomarkers included cerebrospinal fluid amyloid-beta (Aβ), phosphorylated tau (p-tau), 

and total tau (t-tau) collected at baseline. The ADNI biomarker core (University of Pennsylvania) 

used the fully automated Elecsys immunoassay (Roche Diagnostics). Sample collection and 

processing have been described previously (Shaw et al., 2009). Cutoffs for biomarker positivity 

were: Aβ+: Aβ<977 pg/mL; p-tau+: p-tau>21.8 pg/mL; t-tau+: t-tau>270 pg/mL 

(http://adni.loni.usc.edu/methods) (Elman, Panizzon, Gustavson, Franz, Sanderson-Cimino, 

Lyons, & Kremen, 2020; Hansson et al., 2018). There were 521 returnees with Aβ, 518 with p-

tau, and 519 with t-tau data. 

2.3. Practice effect calculation and statistical analysis 

Practice effects were calculated using a modified version of a replacement-participants 

http://adni.loni.usc.edu/methods
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method.(Elman et al., 2018) Reviews and meta-analysis have noted that almost all studies of PEs 

considered only observed performance increases (Figure 1A), and recommended replacement-

participants methods in situations where decline is expected (Calamia et al., 2012; Goldberg et 

al., 2015; Rönnlund & Nilsson, 2006). In some situations  PEs will not necessarily manifest as 

improvements for middle-aged and older adults, particularly for individuals on an AD trajectory 

(Salthouse, 2010). The replacement-participants approach involves recruiting participants for 

testing at follow-up who are demographically matched to returnees. The only difference between 

groups is that replacements are taking the tests for the first time whereas returnees are retaking 

the tests. Comparing scores at follow-up between returnees and replacement participants (with 

additional adjustment for attrition effects) allows for detection of PEs when observed scores 

remain stable (Figure 1B) and even when they decline (Figure 1C). In both scenarios, scores 

would have been lower without prior exposure. Thus, the goal is to create follow-up scores over 

retest intervals that are free of PEs and comparable to general normative data. By design, this 

method is equally applicable for any sample and any tests because returnees and replacements 

are always matched on demographic characteristics, test, and retest interval.  

Because ADNI did not have replacements, we used individuals who at baseline were 

demographically matched to returnees at follow-up. We refer to them as pseudo-replacements. 

Bootstrapping (5,000 resamples, with replacement) was used to calculate PE values for each 

cognitive test. Figure 2 demonstrates how participants were matched at each iteration of the 

bootstrap. Propensity scores (R package: MatchIt) calculated via one-to-one matching were used 

to identity pseudo-replacements that were similar to returnees, and an additional constraint 

confirmed that the returnees and pseudo-replacements were matched at a group level (p’s >.8) 

(D. E. Ho, Imai, King, & Stuart, 2011). Practice effects were calculated by comparing the mean 
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scores of these subsamples at each bootstrapping iteration using equations displayed in Figure 2. 

The difference score represents the sum of the practice effect and the attrition effect. With actual 

replacements, the attrition effect accounts for the fact that returnees are often higher-performing 

or healthier than those who drop out. However, since the pseudo-replacements are similar to 

returnees, their removal from the baseline sample lowers the mean baseline score among those 

not chosen to be returnees at that iteration, resulting in an artificially high attrition effect. To 

ensure a more accurate attrition effects, we calculated the true attrition and retention rates for 

each test (approximately 16% and 84%, respectively). We then multiplied the mean score of 

returnees at baseline by the retention rate and the mean score of the remaining baseline 

participants (i.e., those not chosen as returnees or pseudo-replacements) by the attrition rate. The 

sum of these values provides a weighted mean for each iteration, which we refer to as the 

proportional baseline. Finally, the PE for each test equals the difference score minus the attrition 

effect (Elman et al., 2018; Ronnlund et al., 2005). The PE for each test was then subtracted from 

each individual’s observed (unadjusted) follow-up test score to provide PE-adjusted raw scores.  

In summary, this method identifies a comparison sample (pseudo-replacements) who are 

matched for age and other demographic characteristics to the returnees. The only difference is 

that returnees have taken the test before and pseudo-replacements have not. Because this analysis 

uses completed data, creating pseudo-replacements allowed for application of a replacement 

method of PE-adjustment to an already completed study without requiring new participant 

recruitment. 

Adjusted raw scores at follow-up were converted to z-scores, which were used to 

determine PE-adjusted diagnoses. In other words, determination of whether an individual was 

below the impairment threshold was now based on the PE-adjusted scores. McNemar χ2 tests 
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were used to compare differences in the proportion of individuals classified as having MCI 

before versus after adjusting for PEs, and to determine if PE-adjusted diagnoses changed the 

proportions of biomarker-positive MCI and CN participants. Cohen’s d was calculated for each 

PE by comparing unadjusted and adjusted scores. 

 To determine the impact of PE adjustment in a clinical trial, we calculated sample size 

requirements for a hypothetical clinical trial aimed at reducing progression to MCI at 1-year 

follow-up in amyloid-positive CN individuals using MCI incidence rates from the present study. 

We performed logistic regressions with drug/placebo as the predictor and diagnosis at follow-up 

as the outcome. Sample size estimates were determined across a range of drug effects (10%-40% 

reduction in MCI diagnoses) with =.05 and power=.80. We then used this information to 

estimate the effects on required sample size and cost for a variant of the Anti-Amyloid Treatment 

in Asymptomatic Alzheimer’s Disease (A4) Study given =.05, and power=.80. The A4 Study 

recruited amyloid-positive CN individuals to investigate whether anti-amyloid therapy can delay 

cognitive decline (R. A. Sperling et al., 2014). Progression to disease is a common and 

meaningful outcome for clinical trials. For our hypothetical variation of the A4 Study, the 

outcome of interest was progression to MCI at 1 year rather than just comparing cognitive 

decline. These analyses were completed within the powerMediation package in R v3.6.1(Qiu & 

Qiu, 2020; Team, 2019). 

3. RESULTS  

 PE magnitudes varied within and between cognitive domains (Table 1). PE-adjusted 

scores resulted in 124 (17%) converters to MCI; unadjusted scores resulted in 104 (14%) 

converters (Table 2A). Thus, there were 19% (p<.001) more individuals diagnosed with MCI 
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after one year when using PE-adjusted scores (Table 2A). Table 2B shows that adjusting for PEs 

significantly increased the number of biomarker-positive participants who progressed to MCI 

(+13% to +15%) and decreased the number of biomarker-positive participants who remained CN 

(-5%). In particular, there was a 12% increase in amyloid-positive MCI cases and a 5% decrease 

in amyloid-positive CNs. Supplemental tables 1-2 shows results for diagnoses based on Petersen 

criteria.  The pattern is the same as for the Jak-Bondi criteria, and all significant differences 

remained significant regardless of diagnostic approach. 

 Next, we showed that the number of participants necessary to determine a significant 

drug effect was substantially reduced by accounting for PEs across all effect sizes (Figure 3). On 

average, adjusting for PEs reduced the number of participants required by 15.9% (321 

participants) across effect sizes (range=68-1377 participants). The inset within Figure 3 focuses 

on differences for hypothetical PE-adjusted and unadjusted samples of approximately 1,000.  

We then applied our findings to recruitment data from the A4 Study (Figure 4A) (R. A. 

Sperling et al., 2020). Obtaining the CN, amyloid-positive A4 sample of 1323 required the 

recruitment of 5.11 times as many people for initial screening (n=6763) and 3.39 times as many 

people to undergo amyloid PET imaging (4486) (R. A. Sperling et al., 2020). Our calculations 

showed that this sample size of 1323 would be powered to detect a 24.7% drug effect on incident 

MCI outcomes, but accounting for PEs would yield the same power with only 1116. As shown in 

Figure 4A, the number of initial screens and amyloid PET scans would, in turn, be substantially 

reduced to 5704 and 3784, respectively. Figure 4B shows the range of sample size reductions for 

differing drug effect sizes for initial screening (reduced ns range from 347 to 7039) and amyloid 

PET imaging (reduced ns range from 230 to 4670). As estimated drug effect sizes become 

smaller, the reductions in necessary sample size become substantially larger, which should lead 



 
 

22 

to substantial cost reductions.  

4.  DISCUSSION 

Delayed detection of MCI is extremely costly from a public health perspective. In 2018, 

the Alzheimer’s Association projected an estimated U.S. national savings of $231 billion by 

2050 if those on the AD trajectory were diagnosed during the MCI, rather than the dementia, 

stage ("2018 Alzheimer's disease facts and figures," 2018). In clinical practice, the MCI stage 

represents a critical time for preparation and intervention for individuals who will progress to 

AD-related dementia. If PEs delay detection of MCI, clinicians may also be providing 

inadequate care to those most at risk.  

Results of the present study confirm our hypothesis that adjusting for PEs using the 

replacement-participants method does lead to earlier detection of MCI. Accounting for cognitive 

PEs resulted in a 26% increase in 12-month MCI incidence. The increase in biomarker-positive 

MCI (+20% amyloid-positive) and reduction in biomarker-positive CN participants (-6% 

amyloid-positive) supports diagnostic validity. Failure to account for PEs led to a substantial 

number of false negatives as 18% of biomarker-positive MCI cases were labeled as CN at 

follow-up. Accounting for PEs improved accuracy, reducing false positives by 5%. Individuals 

diagnosed with MCI based on PE-adjusted scores—who would otherwise have been considered 

CN—would be expected to progress to AD dementia sooner than true CN participants. 

Progression at later follow-ups was consistent with this hypothesis, but sample sizes were too 

small for statistical comparisons (see supplemental Table 3). Taken together, these results 

demonstrate that this approach reduces the observed discrepancy between biologically- and 

clinically-based diagnoses (C. R. Jack et al., 2019). As such, not adjusting for PEs weakens our 

ability to accurately determine the effect of novel treatments and to compare case-control 
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biomarker differences, a goal of current research guidelines (Jack Jr et al., 2018). Importantly, 

the replacement-participant method is not dependent on diagnostic approach. All significant 

differences for Jak-Bondi criteria remained for Petersen criteria.  

To quantify how clinical trials would be improved by PE adjustment, we estimated 

sample sizes necessary to power a simulated clinical drug trial. Our PE adjustment increased the 

base rate of MCI at 12-month follow-up and, other things being equal, detecting differences or 

making predictions is less accurate for low base rate events (Mehta et al., 2009). Progression to 

disease is the most common outcome of interest in clinical trials, and smaller samples would be 

needed for clinical trials with a PE-adjusted diagnostic endpoint. Across effect sizes, there was 

an average reduction of 16% in necessary sample size when using PE-adjusted diagnoses; 

sample size reductions were greater with smaller treatment effect sizes (Figures 3, 4a). Based on 

screening/recruitment numbers in the A4 Study (R. A. Sperling et al., 2020). Figure 4A showed 

that determining progression to MCI using PE-adjusted scores would mean 1060 fewer initial 

screenings and 703 fewer amyloid PET scans. At $5000 per scan, cost savings for that alone 

would be $3.52 million. Initial screening—which included cognitive testing, clinical 

assessments, and APOE genotyping—for 1060 individuals would result in considerable 

additional cost savings, estimated at $2.50 million. Cost saving would be partially offset by 

needing to add replacement participants. In prior work, 150-200 replacement participants was 

sufficient (Elman et al., 2018). With replacements for 3 follow-up cognitive assessment sessions 

with 200 participants each, we estimated additional costs of $615,000. Estimated overall savings 

would be $5.41 million. Moreover, PE-adjusted diagnoses result in earlier detection, which mean 

shorter follow-up periods. Reduced study duration would lead to still further cost reductions and 

benefits including lower participant and staff burden, fewer invasive procedures, and likely 
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reduced attrition.  

The present study may raise the question of how the replacement-participants method 

compares with other approaches to PEs, but that is likely to be the wrong question because 

different approaches may be for different purposes. A 2012 meta-analysis and 2015 review 

described several approaches to estimating PEs (Calamia et al., 2012; Goldberg et al., 2015). 

Almost all non-replacement approaches—including more commonly employed regression-based 

approaches—are only informative about relative differences, including predicting future change.  

One interesting paradigm is to retest participants after a short interval using a regression-based 

approach, and then have much a longer follow-up. Individuals with smaller PEs at 1 week are 

more likely to have worse baseline biomarker profiles, experience steeper 1-year decline, and 

progress to MCI/AD compared to other participants (Duff, 2014; Duff, Foster, & Hoffman, 

2014; Duff et al., 2011; Jutten et al., 2020). Thus, this approach may be useful for participant 

selection in clinical trials. Other studies have found that additional baseline tests improve 

prediction of progression to MCI (Bondi et al., 2014; Emily C Edmonds et al., 2015; Edmonds et 

al., 2016; Elman, Vuoksimaa, Franz, & Kremen, 2020; Gustavson et al., 2020; Jutten et al., 

2020; Vuoksimaa, McEvoy, Holland, Franz, & Kremen, 2020). Whether complete 1-week 

retesting of the entire sample improves prediction over the less burdensome and less costly 

inclusion of additional measures at baseline testing remains to be determined. Also, regression-

based methods require a large, normative change sample, and would require new, large 

normative samples for each study if the specific tests, retest intervals, or sample demographics 

are different. Change is assessed relative to the normative sample, but PEs are still unknown in 

the normative sample. Importantly, regression-based approaches cannot be used for absolute 

diagnostic cutoff thresholds because, unlike the replacement-participant method, they do not 
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produce stand-alone follow-up scores adjusted for PEs. Thus, they cannot have any effect on 

when a person crosses an impairment threshold and cannot lead to earlier detection of conversion 

to MCI. Nor can they calculate PEs in the presence of a mean-level decline over time, which is 

expected in older adults. The replacement-participants method requires a small number of 

additional participants relative to an entire study sample, and it generates adjusted scores at 

follow-up that are not obscured by age-related decline.  The other methods can compare 

trajectories of people already diagnosed as MCI or CN, but only the replacement method—which 

generates absolute PE-adjusted scores—can alter when MCI is detected. Although the 

replacement-participants method reduces all scores, it does not change individual differences in 

any way. Thus, it also allows for comparison of trajectories. More thorough discussions of PE 

methods can be found in a systematic review by Calamia11, the position paper on PEs by the 

American Academy of Clinical Neuropsychology10, and a study that directly compares three 

regression-based PE approaches42. 

We acknowledge some limitations of the study. ADNI is not a population-based study 

and is not representative of the general population in terms of sociodemographic factors. 

However, replacement methods have been shown to be effective in other studies, including 

population-based samples (Elman et al., 2018; Ronnlund et al., 2005). The method currently only 

examines PEs across 2 time points. As PEs persist over time, their magnitude may differ with 

additional assessments. Future studies should explore PEs in cases with multiple follow-up visits. 

As noted, including matched replacements for third and fourth visits would still be cost-effective. 

Some participants who do not qualify after initial screening or those who do not agree to 

biomarker assessment might still qualify to serve as replacement participants. Importantly, the 

PE magnitudes in the present study should not be directly used in other studies. PEs are often 
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sample specific and need to be calculated with appropriate replacement participants for each 

study (Calamia et al., 2012; Duff & Hammers, 2020). Ultimately, the field may benefit from the 

development of PE norms for standard neuropsychological tests at some clinically meaningful 

intervals (e.g., 6 and 12 months).  This could reduce the need for replacement participants. 

Similarly, sample size estimations for our hypothetical clinical trial may not be the same for 

other studies, but do provide more empirical evidence supporting the use of PE-adjustment. 

Surprisingly, we found no practice effect on the AVLT. This may have occurred because, 

despite receiving the same version at the 12-month visit, some participants also completed an 

alternate version of the AVLT at a 6-month visit. The reduced 12-month practice effect for 

AVLT is consistent with the well-known phenomenon of retroactive interference, i.e., the 

different 6-month version interfering with the PE from exposure to the baseline/follow-up 

version. Prior studies, including our own, have consistently found PEs on the AVLT or similar 

episodic memory measures (Calamia et al., 2012; Elman et al., 2018; Ronnlund et al., 2005). 

Thus, the present estimate of the impact of PEs may be a conservative one. It is also noteworthy 

that despite the lack of an apparent AVLT practice effect in the current study, we still found an 

increase in amnestic MCI cases after adjusting for PEs. This highlights the importance of 

including more than one test in each cognitive domain as specified in the Jak-Bondi approach 

(Bondi et al., 2014; Edmonds et al., 2018b; Elman et al., 2018; Gustavson et al., 2020). Finally, 

we note that use of alternate forms is considered suboptimal as even well-matched forms are not 

equivalent and add an additional source of test-retest variance (Gross et al., 2012). 

In summary, adjusting for PEs results in earlier and more accurate detection of MCI. 

Reluctance to include additional replacement-participant testing is understandable as it increases 

cost and participant burden. In the end, however, it would substantially reduce the necessary 
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sample size, follow-up time, participant and staff burden, and cost for clinical trials or other 

longitudinal studies. Although the magnitude of PEs may not be generalized from one sample to 

another, the replacement-participant method is appropriate for all ages, tests, and retest intervals 

because replacements are always matched on these features. The method is also not dependent 

on any specific approach to the diagnosis of MCI. Additionally, we have shown that the 

replacement-participant method can be adapted for ongoing or already completed studies that did 

not recruit matched-replacement participants in advance. Given the public health importance of 

the earliest possible identification of AD pathology, we strongly recommend that accounting for 

PEs be a planned component of clinical trials, routine clinical work, and longitudinal studies of 

aging and aging-related cognitive disorders. 
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Figures and tables  

 

Table 1: Means, standard deviations, attrition effects, and practice effects for each cognitive test. 

 Memory 

Attention/Executive 

Function 

 

Language 

Raw mean score  

(SD) RAVLT 

Logical 

Memory Trails A Trails B 

Boston 

Naming 

Category 

Fluency 

Proportional  

Baseline 

7.18 

(3.81) 

10.64 

(4.24) 

31.89 

(10.79) 

77.47 

(39.86) 

29.04 

(2.42) 

19.67  

(5.23) 

Returnees  

Baseline 

7.18  

(3.79) 

10.54 

(4.23) 

31.97  

(10.82) 

76.89 

(38.41) 

29.05  

(2.36) 

19.71  

(5.26) 

Returnees 

Follow-Up 

6.97  

(4.38) 

11.66 

(4.63) 

31.52 

(12.52) 

75.24 

(43.14) 

29.43 

(2.27) 

19.84  

(5.22) 

Replacements 

Follow-Up 

6.97  

(3.79) 

10.60 

(4.34) 

32.47 

(10.83) 

79.38 

(41.69) 

28.99 

(2.45) 

19.46 

(5.19) 

Attrition  

Effect 0 -.09 -.02 -.59 .01 .03 

 

Practice 

Effect NA 1.15 -.93 -3.56 .43 .35 

 

Cohen’s  

d NA .24 -.07 -.08 .19 .07 

Groups are based on the average performance across all 5000 bootstrapped iterations. Means are based 

on transformed data that was reverted back to raw units. “Proportional baseline” refers to a weighted 

mean that combines the returnee baseline group and a group that included all subjects not selected to be 

Returnees or Replacements in that bootstrapped iteration. “Returnee Baseline” refers to baseline test 

scores for the portion of participants who returned for the 12-month follow-up visit (n=722). “Returnee 

Follow-Up” refers to 12-month scores for the portion of participants who returned for the 12-month 

follow-up (n=722). “Replacement Follow-up” refers to the pseudo-replacement scores. The scores for 

memory tasks indicate the number of words remembered at the delayed recall trials. Scores on the 

attention/executive functioning tests indicate time to completion of task. On these tasks, higher scores 

indicate worse performance. Scores on the Boston Naming Task indicate number of correct items 

identified; scores on Category Fluency indicate number of items correctly stated. Practice effects and 

attrition effects are in raw units. As such, the negative practice effects and attrition effects for the Trails 

tasks demonstrate that practice decreased time (increased performance). Cohen’s d is given for the 

difference between PE-adjusted and unadjusted scores of returnees at follow-up. RAVLT= Rey 

Auditory Verbal Learning Test. 
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2A. Progression from cognitively normal to MCI 

  # of cases, 

based on 

PE-unadjusted 

cognitive scores  

# of cases,  

based on 

PE-adjusted 

cognitive scores 

 

 

Difference in 

# of cases (%) 

 

 

 

χ2; p 

MCI diagnosis 104 124 +20 (+19%) 18.1; <.001 

Memory domain impaired 74 87 +13 (+18%) 11.1; <.001 

Attention/Executive 

domain impaired 

21 25 +4 (+19%) 2.3; .13 

Language domain impaired 11 14 +3 (+27%) 1.3; .25 

Impaired on 1 test within 

all domains 

11 13 +2 (+18%) .17; .68 

 

Follow-up diagnoses were made with practice effect-unadjusted (PE-unadjusted) or practice effect-

adjusted (PE-adjusted) scores. The difference in the number of cases is calculated by subtracting the 

number of cases, based on PE-unadjusted scores, from the number of cases based on PE-adjusted scores. 

The percent difference (%) in number of cases is the differences in number of cases divided by the 

number of cases based on PE-unadjusted cognitive scores (e.g., 19%=20/104). χ2 is McNemar χ2. 

Individuals could be impaired in more than one domain. Consequently, the sum of impaired individuals 

within each domain is greater than the total number of MCI cases. The MCI diagnosis row counts an 

individual only once, even if they are impaired in more than one domain.   
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2B. Concordance of MCI diagnosis and biomarker-positivity 

 

 

 

 

Converters to MCI 

# of returnees 

who are 

biomarker-positive 

and MCI 

(PE-unadjusted) 

# of returnees 

who are 

biomarker-positive 

and MCI 

(PE-adjusted) 

 

 

 

Difference in 

# of cases (%) 

 

 

 

 

p 

Aβ+ 51 58 +7 (+14%) .02 

p-tau+ 54 62 +8 (+15%) .01 

t-tau+ 47 53 +6 (+13%) .04 

 

 

 

Stable CN 

# of returnees who 

are biomarker-

positive and CN 

(PE-unadjusted) 

# of returnees who 

are biomarker-

positive and CN 

(PE-adjusted) 

 

 

Difference in 

# of cases (%) 

 

 

 

p 

Aβ+ 152 145 -7 (-5%) .02 

p-tau+ 170 162 -8 (-5%) .01 

t-tau+ 118 112 -6 (-5%) .04 

Follow-up diagnoses were made with practice effect-unadjusted (PE-unadjusted) or practice effect-

adjusted (PE-adjusted) scores. The difference in the number of cases is calculated by subtracting the 

number of cases, based on PE-unadjusted scores, from the number of cases based on PE-adjusted scores. 

The percent difference (%) in number of cases is the differences in number of cases divided by the 

number of cases based on PE-unadjusted cognitive scores (e.g., 19%=20/104). χ2 is McNemar χ2. 

Individuals could be impaired in more than one domain. Consequently, the sum of impaired individuals 

within each domain is greater than the total number of MCI cases. The MCI diagnosis row counts an 

individual only once, even if they are impaired in more than one domain.   
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A B C 

 
 

 

Figure 2: Practice effects with and without true decline. The solid line represents true cognitive 

ability. The dashed line represents observed performance, which is inflated due to a practice effect 

(vertical arrow). 1A: Typically observed practice effect: an individual’s observed score increases from 

baseline to follow-up, demonstrating a typical practice effect. 1B: Practice effect in the context of 

cognitive decline. In this scenario, an individual’s ability is decreasing overtime. A practice effect still 

exists but is masked by cognitive decline. As a result, the individual’s performance appears to be stable 

but is actually better than it would have been without previous exposure to the test. 1C: Practice effects 

impair detection of MCI. In this situation, an individual has declined below an MCI cutoff. However, 

practice effects are inflating their score so that they now fall above the MCI cutoff and will be 

diagnosed as cognitively normal at follow-up. 

 

  

MCI 

Cutoff 
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Figure 3: Sample matching and practice effect calculations. Practice effect calculations are based on 

bootstrapped analyses. Participants with valid baseline data were identified (n=889). [1] Participants 

who also had 12-month follow-up data comprised the returnees (n=722). [2] A subsample (n=25% total 

sample) of returnees was selected; this was approximately 220 participants. [3] Baseline data for these 

participants were labeled as ReturneesT1. Follow-up data for these participants were labeled 

ReturneesT2. [4] The 220 ReturneesT1 participants were removed from the pool of baseline data, 

leaving approximately 670 remaining baseline participants. [5] Using propensity score matching with 

an additional age restriction (<0.1 years), the potential pseudo-replacements were matched to the 

ResturnesT2 participants using one-to-one matching. The pseudo-replacements were drawn from the 670 

remain baseline participant pool. Matching parameters were age, birth sex, education, and premorbid 

IQ. Additionally, comparisons of age, birth sex, education, and premorbid IQ were to confirm groups 

were similar (p’s >.80). [6] Once matching was complete, the sample was labeled Pseudo-

ReplacmentsT1, and this sample ranged in size from 200-240 participants. Thus, the Pseudo-

ReplacmenstsT1 sample and the ReturneesT2 sample were demographically matched and only differed in 

that the ReturneesT2 had taken the test before while Pseudo-ReplacmeentsT1 had taken the tests only 

once. After the—on average—220 Pseudo-ReplacmentsT1 were removed from the pool of baseline 

data, there were 450 remaining unchosen baseline participants, or 50% of the total sample. The 

previous steps were completed at each of the 5000 iterations. 

Practice effects were calculated by comparing the mean scores of these subsamples using the equations 

provided below the flowchart. The difference between the mean of ReturneesT2 scores and the mean of 

the matched Pseudo-ReplacementsT1 scores equates to the sum of practice effect and attrition effect. 

The attrition effect accounts for the fact that individuals who return for follow-up may be a higher 

performing or healthier than the full baseline sample. [7-9] To retain the proportion of returnees to 

attritors we had in the original sample, we then created a weighted mean of the baseline data cognitive 

score by multiplying the mean test score of the remaining baseline subject pool by the attrition rate 

(approximately 16%) and the ReturneesT1  pool by the retention rate (84%); this is referred to as the 

Proportional Baseline in the text. The practice effect for each test equals the difference score minus 

the attrition effect. 
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Figure 4: Effect of practice effect-adjusted vs unadjusted scores on a hypothetical clinical 

trial of biomarker-positive participants. Comparison of estimated sample sizes (Y-axis) 

necessary for detecting a significant drug effect (X-axis) in a sample that is biomarker-negative 

and cognitively normal at baseline. The drug effect is operationalized as percent reduction in 

mild cognitive impairment (MCI) diagnoses at a 1-year follow-up between the treatment group 

and the placebo group. For example, a drug effect of 30% means that 30% more participants 

remained cognitively normal when treated with the drug than when given the placebo.     

The red line represents a trial that uses MCI incidence rates based on practice effect (PE)-

adjusted diagnoses and the blue line represents a trial that uses incidence rates based on 

unadjusted diagnoses. MCI incidence rates were based on the subsample of participants from 

the present study who were biomarker-negative and cognitively normal at baseline. The model 

examined was a logistic regression with diagnosis at follow-up (MCI vs cognitively normal) as 

the outcome variable. The predictor was a two-level categorical variable representing placebo 

or drug. Alpha was set at .05, power was .80, and the hypothetical sample was evenly split into 

treatment and placebo groups.  

Across all effect sizes (10%-40% reduction in treatment vs placebo conversation rates) the PE-

adjusted trial required fewer participants than the PE-unadjusted trial. The inset shows results 

for hypothetical samples with ~1000 participants. If this study used PE-unadjusted outcome 

measures (blue line), it would require an effect size of 28.2% to reach a significant result with 

~1000 participants. Using PE-adjusted diagnoses, only 844 participants would be required for 

the same study with the same drug effect, a reduction of 156 participants. A PE-adjusted study 

with ~1000 participants (red line in the inset) would be able to detect a smaller drug effect of 

26.1%. With this 2.1% reduction in effect size, a PE-unadjusted study would require an 

additional 186 participants at this drug effect level (1186 vs 1000). 
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Figure 5: Comparison of recruitment designs for detection of a drug effect based on A4 

Study recruitment. Using sample size estimates from Figure 3, we present how planning to adjust 

for practice effects would alter a clinical drug trial, using A4 Study recruitment as an example. The A4 

Study had a total sample of 1323 participants after recruitment as shown in the top row of gray boxes 

(based on Figure 1 in Sperling et al., 2020).30 A: Based on sample size estimates from Figure 3, a 

sample of 1323 would enable a study to detect a significant drug effect of 24.7% at an alpha of .05 and 

.80 power. The top row of the flow chart presents the recruitment for the A4 study. This study reported 

an initial screening (6763 participants) followed by amyloid PET (4486 participants) imaging to 

achieve their sample of 1323 amyloid-positive (AB+), cognitively normal (CN) participants. Achieving 

the final sample size thus required an n for the initial screening that was 5.11 times as large as the final 

sample size, and an n for amyloid PET imaging that was 3.39 times as large as the final sample. Our 

power analyses suggest that the same effect size is achieved with only 1116 participants if a trial 

adjusted follow-up scores for practice effects. That, along with the reductions in initial screening and 

PET scans, is shown in the middle row of the flow chart. The bottom row shows the sample size 

reductions for initial screening, PET screening, and the initial biomarker-positive and cognitively 

normal sample. B: The figure presents the reduction in recruitment sample size (Y-axis) across effect 

sizes ranging from 10% to 40% (X-axis). The orange line represents how many fewer participants 

would be necessary at initial screening if a study had planned to adjust for practice effects at follow-up.  
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Chapter 1, in full, is a reprint of the material as it appears in Alzheimer's & Dementia: 

Translational Research & Clinical Interventions. 1. Mark Sanderson-Cimino, Jeremy A. Elman, 

Xin M. Tu, Alden L. Gross, Matthew S. Panizzon, Daniel E. Gustavson, Mark W. Bondi, Emily 

C. Edmonds, Graham M.L. Eglit, Joel S. Eppig, Carol E. Franz, Amy J. Jak, Michael J. Lyons, 

Kelsey R. Thomas, McKenna E. Williams, William S. Kremen. Cognitive Practice Effects Delay 

Diagnosis; Implications for Clinical Trials. Alzheimer’s & Dementia: Translational Research & 

Clinical Interventions, 2021. The dissertation author was the primary investigator and author of 

this paper. 
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Abstract 

Objective:  Cognitive practice effects (PEs) can delay detection of progression from 

cognitively unimpaired to mild cognitive impairment (MCI). They also reduce diagnostic 

accuracy as suggested by biomarker positivity data. Even among those who decline, PEs can 

mask steeper declines by inflating cognitive scores. Within MCI samples, PEs may increase 

reversion rates and thus impede detection of further impairment. Within an MCI sample at 

baseline, we evaluated how PEs impact prevalence, reversion rates, and dementia progression 

after 1 year. 

Methods:  We examined 329 baseline Alzheimer’s Disease Neuroimaging Initiative MCI 

participants (mean age=73.1; SD=7.4). We identified test-naïve participants who were 

demographically matched to returnees at their 1-year follow-up. Since the only major difference 

between groups was that one completed testing once and the other twice, comparison of scores in 

each group yielded PEs. PEs were subtracted from each test to yield PE-adjusted scores. 

Biomarkers included cerebrospinal fluid phosphorylated tau and amyloid beta. Cox proportional 

models predicted time until first dementia diagnosis using PE-unadjusted and PE-adjusted 

diagnoses. 

Results:  Accounting for PEs increased MCI prevalence at follow-up by 9.2% (272 vs 

249 MCI), and reduced reversion to normal by 28.8% (57 vs 80 reverters). PEs also increased 

stability of single-domain MCI by 12.0% (164 vs 147). Compared to PE-unadjusted diagnoses, 

use of PE-adjusted follow-up diagnoses led to a 2-fold increase in hazard ratios for incident 

dementia. We classified individuals as false reverters if they reverted to cognitively unimpaired 

status based on PE-unadjusted scores, but remained classified as MCI cases after accounting for 
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PEs. When amyloid and tau positivity were examined together, 72.2% of these false reverters 

were positive for at least one biomarker. 

Interpretation:  Even when PEs are small, they can meaningfully change whether some 

individuals with MCI retain the diagnosis at a 1-year follow-up. Accounting for PEs resulted in 

increased MCI prevalence and altered stability/reversion rates. This improved diagnostic 

accuracy also increased the dementia-predicting ability of MCI diagnoses.
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INTRODUCTION 

Mild cognitive impairment stability and reversion 

Mild cognitive impairment (MCI) is characterized by cognitive deficits in the presence of 

minimal to no impairment in functional activities (Albert et al., 2011; Manly et al., 2008). MCI is 

seen as a risk factor for Alzheimer’s Disease dementia (AD), particularly when there is a 

memory impairment either alone (i.e., single-domain amnestic MCI) or in combination with 

deficits in other domains (i.e., multi-domain amnestic MCI) (Albert et al., 2011; J. Eppig et al., 

2020; Manly et al., 2008; Thomas et al., 2020). Individuals diagnosed with MCI are significantly 

more likely to progress to AD, and do so at a faster rate than those without MCI (Mitchell & 

Shiri‐Feshki, 2009; Pandya et al., 2016). Individuals with MCI who are on the AD trajectory 

often have AD biomarker levels in between those diagnosed as cognitively normal (CN) and 

those with AD (Emily C Edmonds et al., 2015; Olsson et al., 2016).   

Nearly all AD clinical trials have focused on treating individuals with dementia in an 

effort to mitigate or reverse the disease. Unfortunately, the failure rate for these trials is greater 

than 99% (Anand et al., 2017; J. L. Cummings et al., 2014). As a result, there has been a shift 

toward identifying and targeting individuals at the earliest stages of the disease including at-risk 

CN and MCI (Alexander et al., 2021; Anand et al., 2017; Canevelli et al., 2016; R. Sperling et 

al., 2014; R. A. Sperling et al., 2014). As noted by Canevelli et al, at least 274 randomized 

controlled trials were recruiting MCI subjects in 2016 (Canevelli et al., 2016). As such, accurate 

diagnoses of earlier disease stages are necessary to further the treatment of AD (Edmonds et al., 

2018a; J. Eppig et al., 2020; Veitch et al., 2019).  
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There is concern regarding stability of MCI diagnosis that limits its use in clinical and 

research settings. Although 10-12% of those with MCI are expected to convert to AD per year, 

20-50% of individuals revert from MCI to CN status within 2-5 years (Pandya et al., 2016).  

Over a similar time frame, an estimated 37-67% of individuals retain their MCI diagnosis 

(Pandya et al., 2016). One criticism of the MCI diagnosis has centered on the fact that 

individuals are more likely to revert to CN or maintain their MCI status than to convert to 

dementia each year (Canevelli et al., 2016). On the other hand, long term follow-ups may be 

necessary to more accurately determine the true proportion of those with MCI who progress to 

dementia. 

Much of the MCI reversion rate literature was published prior to 2016 and was 

summarized by three articles (Canevelli et al., 2016; Malek-Ahmadi, 2016; Pandya et al., 2016). 

These authors highlighted the wide range in reversion rates and suggested that this variability is 

likely due to multiple factors, including the heterogeneity of MCI criteria and reversible causes 

such as depression (Canevelli et al., 2016; Malek-Ahmadi, 2016; Pandya et al., 2016). Malek-

Ahmadi and Pandya et al. also suggested that reducing reversion rates should be an essential goal 

of future MCI methodology studies(Malek-Ahmadi, 2016; Pandya et al., 2016). Canevelli et al 

and Pandya et al argued that MCI may be an unstable condition where reversion to normal is 

expected, and that its use as a prodromal stage of underlying neurodegenerative diseases is 

questionable (Canevelli et al., 2016; Pandya et al., 2016). Malek-Ahmadi suggested that the 

utility of MCI diagnosis would benefit from further refinement of statistical methods, the use of 

sensitive cognitive tests, and greater utilization of biomarkers (Malek-Ahmadi, 2016). All three 

reviews concluded that reversion impairs our ability to treat AD by diluting samples and 

reducing study power (Canevelli et al., 2016; Malek-Ahmadi, 2016; Pandya et al., 2016). 
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Practice effects and MCI 

Practice effects (PEs) on cognitive tests used to diagnose MCI are a likely contributor to 

MCI reversion rates. They mask cognitive decline by increasing scores at follow-up testing 

relative to how an individual would have performed if they were naïve to the test. PEs are due to 

familiarity with specific test items (i.e., content effect), and/or increased comfort and familiarity 

with the general assessment process (i.e., context effect) (Calamia et al., 2012; Gross et al., 

2017). PEs in participants without dementia have been found across retest intervals as long as 7 

years, and across multiple cognitive domains (Elman et al., 2018; Gross et al., 2015; Ronnlund et 

al., 2005; Wang et al., 2020). PEs after 3-6 months have even been observed in those with mild 

AD who performed very poorly on memory measures (Goldberg et al., 2015; Gross et al., 2017). 

Although PEs may be small in cognitively impaired samples, we have previously shown that 

utilizing that information to change MCI classification increases diagnosis accuracy and leads to 

earlier detection of decline (Goldberg et al., 2015; Jutten et al., 2020; Sanderson-Cimino et al., 

2021).  

MCI classification methods, particularly in research, almost always rely on use of cut-off 

scores to define cognitive impairment (Jak et al., 2009; Winblad et al., 2004). The same cut-off is 

typically applied at baseline and follow-up visits. If an individual with MCI at baseline 

experiences a PE greater than their cognitive decline, then they may be pushed above the 

threshold for impairment despite having no change or even a slight decline in their actual 

cognitive ability. Even if there were no change in cognitive capacity, this individual would likely 

be misclassified as CN at follow-up, appearing to revert when in fact they still have MCI. The 

impact of PEs on MCI reversion rates has not been explicitly studied, but it is often suggested 

when reversion rates are discussed (Malek-Ahmadi, 2016; Thomas et al., 2020).  
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Present study 

In the present analyses, we utilized a sample of Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) participants who were diagnosed as MCI at baseline. We sought to 1) calculate 

1-year follow-up cognitive classifications using PE-unadjusted and PE-adjusted scores, 2) 

compare reversion rates and diagnostic stability between PE-unadjusted and PE-adjusted 

classifications, and 3) provide criterion validity for the PE-adjusted classifications through 

baseline biomarker data and time until first dementia diagnosis. We hypothesized that the PE-

adjusted scores would reveal false reverters, i.e., participants at follow-up who were classified as 

CN via PE-unadjusted scores but MCI via PE-adjusted scores. By retaining these participants in 

the MCI pool, we expected the PE-adjusted classifications to result in improved diagnostic 

stability and decreased reversion rates. Also, we expected the biomarker profile and the time 

until first dementia diagnosis of the false reverters to be more similar to the stable MCI 

participants than to true reverters (i.e., individuals classified as CN at follow-up based on both 

PE-adjusted and PE-unadjusted scores). Finally, in a post-hoc analysis, we modeled the impact 

of PE adjustment on studies concerned with progression to dementia, a common outcome in 

clinical drug trials and research studies.  

 

MATERIALS AND METHODS 

PARTICIPANTS 

Data used in the preparation of this article were obtained from ADNI (adni.loni.usc.edu). 

The ADNI, led by Principal Investigator Michael W. Weiner, MD, was launched in 2003 as a 

public-private partnership. The primary goal of ADNI has been to test whether serial magnetic 
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resonance imaging, positron emission tomography, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and early 

AD. For up-to-date information, see www.adni-info.org. Participants from the ADNI-1, ADNI-

GO, and ADNI-2 cohorts were included.  

MCI was diagnosed using the Jak-Bondi approach (Bondi et al., 2014; Edmonds et al., 

2018b; Jak et al., 2009). Participants were classified as single domain MCI (amnestic, 

dysexecutive, or language-impaired) if their scores on 2 tests within the same cognitive domain 

were both greater than 1 SD below normative means. They were diagnosed as multi-domain 

MCI if they met the criteria for single domain MCI in more than one cognitive domain (e.g., 

impaired on both memory tasks and language tasks). The Jak-Bondi approach to MCI 

classification is favorable when compared with Petersen criteria with regard to the likelihood of 

progression to dementia, reversion rates, and proportion of biomarker-positive cases (Bondi et 

al., 2014; Edmonds et al., 2018b).  

We identified 344 individuals who were classified as MCI at baseline. Of those 344, 329 

returned for a 12-month follow-up visit and also completed all cognitive measures at both 

assessments. Mean educational level of returnees was 16.4 years (SD=2.9), 61.4% (n=202) were 

female, and mean baseline age was 73.1 years (SD=7.4).  

PROCEDURES  

Six cognitive tests were examined across the approximately 12-month test-retest interval. 

Episodic memory tasks included the Wechsler Memory Scaled-Revised, Logical Memory Story 

A delayed recall, and the Rey Auditory Verbal Learning Test (AVLT) delayed recall. Language 

tasks included the Boston Naming Test and Animal Fluency. Attention-executive function tasks 

http://www.adni-info.org/
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were Trails A and Trails B. The American National Adult Reading Test provided an estimate of 

premorbid IQ. Only participants who had complete test data and completed the same version of 

tests at the baseline and 12-month visits were included. 

Z-scores were calculated for the PE-adjusted and -unadjusted scores based on 

independent external norms that accounted for age, sex, and education for all tests except the 

AVLT(Shirk et al., 2011). The AVLT was z-scored based on the ADNI participants who were 

CN at baseline (n=889) because we were unable to find appropriate external norms for this 

sample that also accounted for age, sex, and education. AVLT demographic corrections were 

based on a regression model that followed the same approach as the other normative 

adjustments. Beta values were multiplied by an individual’s corresponding age, sex, and 

education. The products were then removed from the AVLT raw scores. These adjusted AVLT 

scores were then z-scored.  

Baseline biomarkers included cerebrospinal fluid amyloid-beta (Aβ), phosphorylated tau 

(p-tau), and total tau (t-tau). The ADNI biomarker core (University of Pennsylvania) used the 

fully automated Elecsys immunoassay (Roche Diagnostics). Sample collection and processing 

have been described previously.(Shaw et al., 2009) Cutoffs for biomarker positivity were: Aβ+: 

Aβ<977 pg/mL; p-tau+: p-tau>21.8 pg/mL; t-tau+: t-tau>270 pg/mL 

(http://adni.loni.usc.edu/methods) (Elman, Panizzon, Gustavson, Franz, Sanderson-Cimino, 

Lyons, & Kremen, 2020; Hansson et al., 2018). There were 226 returnees with biomarker data. 

Dementia was diagnosed according to ADNI criteria: 1. Memory complaint by subject or 

study partner that is verified by a study partner; 2. Mini-Mental State Examination score between 

20-26 (inclusive); 3. Clinical Dementia Rating score of either .5 or 1; 4. An impaired delayed 

memory score on the Logical memory test: ≤ to 8 for 16 or more years of education; ≤ to 4 for 8-

http://adni.loni.usc.edu/methods
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15 years of education; or ≤ to 2 for 0-7 more years of education;  5. National Institute of 

Neurological and Communicative Disorders and Stroke–Alzheimer’s Disease and Related 

Disorders Association criteria for probable AD (Petersen et al., 2010). No participants met these 

criteria at baseline or at the 12-month follow-up.  

REPLACEMENT-PARTICIPANTS APPROACH TO PRACTICE EFFECTS 

Although review papers have noted that PEs can exist even when there is longitudinal 

decline in observed performance, as expected within a sample at risk for AD (Salthouse, 2010), 

few have empirically demonstrated that claim (Goldberg et al., 2015). In such situations, 

Calamia et al. suggested that the most suitable approach is to utilize replacement participants 

(Calamia et al., 2012; Rönnlund & Nilsson, 2006). To our knowledge, the replacement-

participant approach has only been utilized in two samples (Elman et al., 2018; Ronnlund et al., 

2005). In this method new participants are recruited for testing at follow-up who are 

demographically matched to returnees. The only difference between the groups is that 

replacements are taking the tests for the first time whereas returnees are retaking the tests. As age 

is one of the matching factors, any age-related decline should be equal across the groups. 

Therefore, comparing scores at follow-up between returnees and replacement participants (with 

additional adjustment for attrition effects) allows for detection of PEs when observed scores 

remain stable and—unlike other methods—even when they decline. In both scenarios, scores 

would have been lower without repeated exposure to the tests (Elman et al., 2018; Ronnlund et 

al., 2005).   

The goal of the replacement method is to obtain follow-up scores at retest that are free of 

PEs and comparable to normative data (which assume no presence of PEs). Some researchers 

have used PEs in other ways, such in short-term retest paradigms (Duff, 2014; Duff et al., 2014; 
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Duff & Hammers, 2020; Duff et al., 2011). The goal of this approach is to predict future decline 

and the likelihood of progressing to MCI or dementia (Jutten et al., 2020). Rather than predict 

decline, the goals of the replacement method are: 1) to detect decline at a given point in time that 

has been masked due to PEs, and 2) to revise the diagnosis of CN or MCI based on cognitive 

scores that have been appropriately adjusted to reflect the estimated magnitude of masked 

decline. Furthermore, only the replacement method has been empirically shown to calculate PEs 

when there is observable decline over time (Calamia et al., 2012; Elman et al., 2018). This 

attribute of the method makes it uniquely appropriate for samples that are impaired at baseline 

and/or are expected to decline over time (Calamia et al., 2012).  Also, unique to this method is 

the fact that it allows for a change in how early MCI may be diagnosed. 

PRACTICE EFFECT CALCULATION 

Because replacement participants were not part of the original ADNI study design, we 

created what we refer to as the pseudo-replacement method of PE adjustment. We have fully 

described this method previously in an examination of individuals who were cognitively normal 

at baseline (Sanderson-Cimino et al., 2021). Briefly, a bootstrap approach (5,000 resamples, with 

replacement) was used to calculate PE values for each cognitive test. At every bootstrap 

iteration, a subsample of returnees was randomly selected (25% of sample) from the total 

number of individuals who had a baseline and 12-month follow-up visit. .  We then removed 

these selected returnees from the overall baseline pool, leaving a subset of potential “pseudo-

replacement participants” that included returnees not chosen at that iteration and those who did 

not return for a follow-up (approximately 75% of the sample). From this potential replacement 

pool, a set of pseudo-replacements was matched to selected returnees on age at returnee follow-

up, sex, years of education, and premorbid IQ using one-to-one matching and propensity scores 
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(R package: MatchIt) (D. Ho, Imai, King, Stuart, & Whitworth, 2018). Additional t-tests and chi-

squared tests ensured that returnees and pseudo-replacements were matched at a group level (ps> 

.8). Thus, this sample of pseudo-replacement participants was demographically identical to the 

returnee subsample. In a traditional replacement participants method of PE-adjustment returnees 

and non-returnees are combined into a “baseline” subsample that excludes replacements. In this 

method, we used a “proportional baseline” subsample that included the baseline scores for the 

returnees chosen at that iteration as well as all other subjects not chosen to be pseudo-

replacements (approximately 75% of sample). However, the removal of the pseudo-replacements 

from the sample led to an artificially high portion of lower-performing baseline participants since 

the pseudo-replacements perform at a similar level to returnees at baseline. To correct for this 

issue, we calculated the retention and attrition rates for that visit in the overall sample. Because 

the PE for each test was calculated individually, we used test-specific retention and attrition 

rates, which resulted in a slight variation in rates; the average retention rate was 66% (65-70%) 

and the average attrition rate was 34% (30-35%). We then used these rates in the creation of the 

proportional baseline mean (see below). Of note, due to the bootstrapping and matching 

procedure, the number of participants in each group (i.e., returnees, replacements) varied but was 

always greater than 80 participants.  

The equations below were used to calculate the PE:  

Difference score = ReturneesT2 – Pseudo-ReplacementsT1 

Attrition effect = ReturneesT1 – Proportional BaselineT1 

Practice effect = Difference score – Attrition Effect 

Where ReturneesT2 represents the mean score of the returnee sample at their second 
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assessment, Pseudo-replacementsT1 represents the mean score of the pseudo-replacement sample 

(by definition, at their first assessment), and ReturneesT1 represents the mean score of returnees 

at their first assessment. The Proportional BaselineT1 was a weighted mean calculated by 

multiplying the returnee baseline scores by the test-specific retention rate (65-75%) and the 

remaining portion of the subsample by the test-specific attrition rate (30-35%%).  The difference 

score represents the sum of the PE and the attrition effect. The attrition effect accounts for the 

fact that individuals who return for follow-up are typically higher-performing or healthier than 

those who drop out. Subtracting the attrition effect from the difference score prevents over-

estimation of the PE (Elman et al., 2018; Ronnlund et al., 2005). Use of a proportional baseline 

that retains the test-specific retention and attrition rates prevents overestimation of the attrition 

effect as removing the pseudo-replacements from this sample artificially lowers the baseline 

mean score. The PE for each test was calculated by subtracting the attrition effect from the 

difference score.  

STATISTICAL ANALYSIS 

After calculation, the PE for each test was then subtracted from each individual’s 

observed (unadjusted) follow-up test score to provide PE-adjusted raw scores. Cohen’s d was 

calculated for each PE by comparing PE-unadjusted and PE-adjusted scores. Adjusted raw scores 

at follow-up were converted to z-scores, which were used to determine PE-adjusted diagnoses. 

Stated differently, a score was labeled as impaired if the follow-up PE-adjusted score was greater 

than 1 SD below the average demographic-corrected mean. To evaluate the impact PE-

adjustment had on cognitive classification, McNemar χ2 tests were used to compare differences 

in the proportion of individuals classified as having MCI before and after adjusting for PEs. To 

assess criterion validity of the PE-adjusted diagnoses, McNemar χ2 tests were used to compare 
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the number of biomarker-negative reverters and biomarker-positive stable MCI participants 

when using PE-adjusted versus PE-unadjusted scores.  

Time until first dementia diagnosis in months from baseline was also used to validate PE-

adjusted diagnoses. Cognitive data used to diagnose dementia by ADNI were not adjusted for 

PEs. Wilcoxon rank sum tests were used to compare groups due to the non-normal distribution of 

months until first dementia diagnosis. It was expected that those who reverted to CN status at 

follow-up would progress to dementia more slowly than those who remained classified as having 

MCI. As such, if PE adjustment improved diagnostic accuracy by correctly relabeling some false 

reverter (based on PE-unadjusted scores) as MCI, then a comparison between MCI and CN 

groups should show a larger and more statistically significant difference when using PE-adjusted 

scores than when using PE-unadjusted scores. PE-adjustment should also alter a comparison 

between those who truly revert and the false reverters, with false reverters progressing faster than 

true reverters. The following four time-until-dementia comparisons were tested: PE-adjusted 

MCI versus PE-adjusted CN; PE-unadjusted MCI versus PE-unadjusted CN; False reverters 

versus PE-unadjusted MCI; and False reverters versus PE-adjusted CN. 

We also expected that the false reverters (based on PE-unadjusted scores) would have a 

biomarker profile more similar to the stable MCI participants than the true reverters. Thus, we 

calculated rates of biomarker positivity for diagnostic groups (Stable MCI and reverters) first 

using PE-unadjusted scores and then with PE-adjusted scores.  

 In post-hoc analyses, Cox proportional hazard models compared progression to dementia 

between those who were diagnosed as MCI at follow-up and those who reverted to CN. All 

models used classification (Stable MCI vs reverters) as the independent variable of interest and 

months from baseline until first dementia diagnosis as the dependent variable. Covariates were 
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age and education. Models were completed first with PE-unadjusted scores and then with PE-

adjusted scores.  

Time-to-dementia analyses included a full model and three timeframe-restricted models: 

16-150 months (full sample data), 16-24 months, 16-36 months, and 16-48 months. The models 

with restricted timeframes attempted to demonstrate how predictive the classification was for 

studies with shorter follow-up periods. Because, in these hypothetical studies, we could not know 

if a participant progressed to dementia past the specified timeframe, each model was right-

censored with time to event defined as time to first dementia diagnosis or time to last follow-up 

within the restricted time period. As this project utilized existing data, the maximum follow-up 

period was set to 150 months because that was the longest available timeframe within ADNI. 

RESULTS  

 PEs were non-zero for 5 of the 6 measures (Table 1) and ranged in magnitude (Cohen’s 

d=.06 to .26). PE-adjustment resulted in 23 more participants (+9%) classified as MCI at 1-year 

follow-up than when using PE-unadjusted scores (272 vs 249). Of the 23, 16 (+9%) were 

classified as single-domain MCI and 7 participants classified as multi-domain MCI (+9%). 

Regarding specific cognitive domains, PE-adjustment resulted in 24 more participants (+11%) 

classified with memory impairment (233 vs 209), 6 more participants (+9%) classified with 

attention-executive impairments (73 vs 67), and 5 more participants (+7%) classified with 

language impairments (72 vs 67). Full results are presented in Table 2.  

 The overall 1-year stability of MCI (lack of reversion to CN) was raised by 7% when 

adjusting for PEs (PE-adjusted stability rate=82.7%; PE-unadjusted stability rate=75.6%). 

Across groups (single-domain MCI, multi-domain MCI) and within each cognitive domain 
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(memory, attention-executive, language), PE adjustment increased the number of participants 

who retained their baseline diagnosis of MCI (Range: +2 [+3%] to +22 [+11%]). In particular, 

there were significantly more participants who remained in the impaired range at follow-up on 

memory when using PE-adjusted data versus PE-unadjusted data (+11%; 201 vs 223). A similar 

significant result was also found when considering stability of single-domain MCI (+12%; 147 

vs 164). Table 3 provides full stability results.  

The overall reversion rate (i.e., being classified as CN at follow-up) was 24.3% (n=80) 

using PE-unadjusted scores and 17.3% (n=57) using PE-adjusted scores. This indicates that 

adjusting for PEs resulted in a 28.8% reduction in the overall reversion rate. Table 4 describes 

how PE adjustment affects reversion rates across diagnostic subgroups and cognitive domains. 

Among those with single-domain MCI at baseline, adjusting for PEs reduced reversion rates by 

27.4% (53 vs 73 reverters). Regarding specific cognitive domains, adjustment reduced the 

reversion rate among those with baseline memory impairments by 33.3% (44 vs 66). Adjustment 

also decreased reversion rates among the remaining cognitive domains (attention-executive and 

language) as well as among those who were multi-domain MCI at baseline (reversion to CN rate 

reduction range: 6.5% to 13.3%), but this equated to only a small change in the number of 

participants (ns<5). 

 We also compared how PE-adjusted and PE-unadjusted classification affected rate of 

progression to dementia. Of the 329 returnees, 159 progressed to dementia (48% of sample). As 

shown in Table 5, those who were diagnosed as MCI at follow-up and progressed to dementia 

during the study were first diagnosed in  approximately the same time frame, regardless of PE 

consideration (median=25.0 months). Those who reverted to CN and later progressed to 

dementia did somewhat more slowly than the stable MCI groups (PE-unadjusted median=37.3 
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months; PE-adjusted median=60.3 months). In PE-unadjusted groups, based on Mann-Whitney 

U tests, there was no significant difference in time until first dementia diagnosis between stable 

MCI and reverter participants (W=1703; p=.177). However, in the same comparison based on 

PE-adjusted scores, those in the stable MCI group progressed significantly faster than those who 

reverted to CN (W=1240; p=.017). 

Ten of the false reverters (6.2%) progressed to dementia. These participants progressed to 

dementia in a similar time frame as the those diagnosed with MCI via PE-unadjusted scores 

(median=30.03 months). The false reverters progressed to dementia more quickly than those who 

were classified as CN based on PE-adjusted scores at follow-up. There was not a significantly 

different rate of progression to dementia between false reverters and PE-adjusted CNs, or 

between false reverters and PE-unadjusted MCI based on Mann-Whitney U tests (ps>.17).   

When false reverters were removed by adjusting for PEs, the median time until first 

dementia diagnosis was increased (+23 months). To further investigate this finding, we 

performed post-hoc Cox proportional hazard models to compare progression to dementia from 

12-month follow-up between those who were diagnosed as MCI at follow-up and those who 

reverted to CN. Across all models, the hazard ratio associated with increased risk of dementia 

progression among stable MCI participants was nearly twice as large when adjusted for PEs 

compared to PE-unadjusted diagnoses (average hazard ratio: PE-adjusted=8.9, PE-

unadjusted=4.2; average percent increase=110%). Figure 1 displays hazard ratios and survival 

curves for all models. Supplemental figure 1 provides additional Kaplan-Meier curves and risk 

tables for progression to dementia by diagnosis group. 

There were 226 participants with baseline biomarker data. As shown in Table 6a, 

regardless of PE adjustment, approximately 70% of those who were diagnosed as MCI at follow-
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up were Aβ positive and 70% were P-tau positive at baseline. Similarly, regardless of PE 

adjustment, about 60% of reverters were Aβ positive and 45% were P-tau positive. There were 

18 false reverters with biomarker data. The false reverter group had an Aβ positivity of 55% and 

a P-tau positivity of 40%. Table 6b displays the biomarker positivity rates for each classification 

group based on amyloid and P-tau positivity (i.e., A-/T-, A+/T-, A-/T+, and A+/T+). Regarding 

the false reverters, 72% (13/18) were positive for at least one biomarker.  

DISCUSSION  

 The validity and utility of MCI criteria are weakened by high reversion rates, which have 

been a longstanding problem for MCI as a construct (Pandya et al., 2016). As a result, some 

practitioners are hesitant to use MCI as an early indicator of AD, despite the field’s goal of 

identifying and treating those on the AD trajectory as early as possible (Alexander et al., 2021; 

Canevelli et al., 2016; Pandya et al., 2016; R. A. Sperling et al., 2014). Among individuals in the 

ADNI sample who were diagnosed with MCI at baseline, adjusting for PEs led to a significant 

reduction in reversion to CN over 1 year (28.8% reduction in reversion rate). This meant that 

classifications were more stable across time, particularly for those with baseline amnestic MCI.  

Pathologically, AD is characterized by a progressive change in amyloid beta and tau 

protein levels in the brain (Anand et al., 2017). Although there is conflicting evidence regarding 

the temporal staging of AD biomarkers and cognitive symptoms (Braak, Thal, Ghebremedhin, & 

Del Tredici, 2011; Emily C. Edmonds et al., 2015; Elman, Panizzon, Gustavson, Franz, 

Sanderson-Cimino, Lyons, Kremen, et al., 2020; C. R. Jack, Jr. et al., 2013; Veitch et al., 2019), 

it is likely that in most cases abnormal levels of amyloid beta are first reached, followed by 

abnormal levels of tau, which in turn affect cognition (Dubois et al., 2016; Jack Jr et al., 2018; 

Jack Jr et al., 2017).  In our analyses, approximately half of the false reverters were amyloid 



 
 

61 

positive while around a third were tau positive. Nearly three-quarters of the false reverters were 

positive for at least one of the two biomarkers. A comparison across all three groups – true 

reverters, false reverters, and stable MCI – suggests that the false reverters may be an 

intermediate/mixed biomarker group. Some of the false reverters who were biomarker negative 

(A-/T-) may have MCI that is unrelated to AD. However, it is also possible that even some of the 

false reverters who were biomarker negative may still be on the AD trajectory. We previously 

showed, for example, that after controlling for tau, cognitive function in A- individuals in the 

ADNI sample predicted progression to A+ status (Elman, Panizzon, Gustavson, Franz, 

Sanderson-Cimino, Lyons, & Kremen, 2020). Overall, the PE-adjustment reduced the number of 

reverters, resulting in more stable MCI diagnoses and may be identifying more people who are 

beginning to show clinically significant levels of AD biomarkers.   

 Use of a robust normal sample partially addresses PEs as the cut-off for MCI diagnosis 

varies at each timepoint based on the distribution of scores among participants who remain CN 

across all visits (Emily C Edmonds et al., 2015; J. S. Eppig et al., 2017; Thomas, Edmonds, 

Delano-Wood, & Bondi, 2017; Thomas et al., 2019). In a similar ADNI subsample, use of robust 

norms found a one-year reversion rate of 15.8% (Thomas et al., 2019), which is similar to the 

rate found in the present study (17.3%).  Whether the rates would be similar in different studies 

remains an open question.  Using robust normals instead of normative data means that gauging 

impairment is based on what is a “super-normal” group that is, essentially, by definition, non-

representative. This non-representativeness will be compounded further if the sample itself is not 

representative. For example, the robust normal group in ADNI is the highest functioning 

subgroup of what is already a very highly educated sample. In this approach there is no 

accounting for how PEs may be affecting classification into the robust normal group itself. It is 
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possible that some individuals in that group might actually be classified as having MCI at some 

follow-up if their scores were adjusted for PEs at each time point based on a replacement 

participants approach. Moreover, PE estimation can be overestimated if attrition effects are not 

considered (Elman et al., 2018; Ronnlund et al., 2005). PEs based on a robust normal group may 

be inflated as compared to PEs within the overall sample because, by definition, this group does 

not have attrition (J. S. Eppig et al., 2017; Thomas et al., 2017). Finally, comparison of results 

from the present study with that of our prior study (Sanderson-Cimino et al., 2021) shows that it 

is important to differentiate the cognitive status of individuals at baseline because the magnitude 

of PEs differs for individuals who are CN at baseline versus those who have MCI at baseline.  

Proponents of MCI as a diagnostic entity note that individuals with the diagnosis are 

more likely to progress to AD, and do so at a faster rate than CN individuals (Mitchell & Shiri‐

Feshki, 2009; Pandya et al., 2016). Those critical of MCI’s validity note that, while MCI is 

associated with AD, individuals with MCI are more likely to revert to CN over time than to 

progress to AD (Canevelli et al., 2016). Here we found that the false reverters progressed to 

dementia at approximately the same rate as individuals who were classified as MCI at both time 

points. In contrast, those who were classified as CN (i.e., true reverters) at follow-up progressed 

to dementia more slowly than the false reverters. These results are consistent with the notion that 

misclassification of these false reverters, caused by the failure to account for PEs, is weakening 

the predictive ability of MCI. This point is echoed by the time-to-dementia diagnosis of the 

reverter group. Removing the false reverters from the reverter group increased the time until first 

dementia diagnosis among those classified as CN by almost 2 years (37.28 versus 60.28 months).  

Although adjusting for PEs slightly altered the median time until first dementia diagnosis, 

statistical comparisons between groups were nonsignificant. To further investigate these 
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findings, we completed Cox proportional hazard models. Using PE-unadjusted data, we found 

that the stable MCI group converted to dementia significantly faster than the (false) reverter 

group, as expected. When models were completed with PE-adjusted data, we found that the 

hazard ratios sharply increased, suggesting that the PE-adjusted classifications improved 

differentiation between the (true) reverters and the stable MCI participants. Not accounting for 

PEs may thus obscure true effects or push significance above threshold, influencing subsequent 

interpretation.  

Interestingly, hazard ratios were less different between PE-adjusted and PE-unadjusted 

models when analyses were completed over the full 150-month timeframe (HRs: 6.0. versus 3.7) 

compared to shorter time frames (24-month HRs: 8.9 versus 3.6; and 36-month HRs: 11.6 vs 

4.8). These results are consistent with the idea that PE adjustment leads to earlier detection of at-

risk participants, which would be particularly important for studies with shorter follow-up 

periods. Importantly, clinical drug trials for AD typically involve shorter follow-up periods, so 

increasing the number of individuals expected to progress to dementia during the trial period will 

increase sensitivity to treatment effects.  Therefore, failure to account for PEs may have a large 

impact on the design of treatment studies and interpretation of their results. Earlier detection of 

at-risk individuals is also of obvious importance for clinical care.  

STRENGTHS AND LIMITATIONS  

 All participants completed the logical memory test at a screening assessment, baseline, 

and 12-month visit; all other tests were completed only twice. Therefore, it is possible that the 

PE for logical memory is misestimated. However, as the effect size of the logical memory PE is 

similar to that of the other memory task (AVLT), it seems likely that our estimate is still valid.  
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 Our time until dementia analyses did not account for death.  Of the 329 participants 

included in these analyses, 33 passed away before study completion (10.0%). The modal time 

until death was 48-months past baseline visit (n=8; 24% of deaths). Importantly, all participants 

who passed away were diagnosed as stable MCI (impaired at baseline and follow-up) by both the 

PE-adjusted and PE-unadjusted datasets. As such, although mortality may have impacted results, 

this effect was equal within the PE-adjusted and PE-unadjusted analyses. 

The ADNI sample was not designed to be a population-representative study. It represents 

a population of older adults likely to volunteer for clinical trials, and consists primarily of white, 

highly educated individuals who may be at a higher genetic risk for dementia than typical 

Americans. Results of the present study may not be applicable to other studies with different 

sample characteristics or retest intervals. Additionally, age and education have been shown to 

impact PEs (Calamia et al., 2012; Gross et al., 2017). We strongly believe that the exact PE 

values found in this study should not be applied to other samples, particularly if they involve CN 

individuals with different demographics (i.e., age and education). However, a strength of the 

replacement-participants method of estimating PEs is that it is always tailored to the sample, 

including age and education, as well as the retest interval being studied. For example, in addition 

to the 1-year interval in the present study, the replacement-participants method has been used 

successfully in studies with intervals as long as 5-6 years (Elman et al., 2018; Ronnlund et al., 

2005). Participant demographics and cognitive tests are always matched. Retest intervals may 

vary across studies, but PEs are calculated for the specific interval(s) used within a given study. 

Therefore, we explicitly recommend against using these PE estimates in other studies. Rather we 

encourage others to utilize the method within their study to more accurately generate PEs given 

their specific demographics, measures, and test-retest interval. The cost of including replacement 
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participants might seem prohibitive, but it is actually a relatively small component in a large-

scale study (Elman et al., 2018; Sanderson-Cimino et al., 2021).  Elsewhere, we have shown that 

it could save millions of dollars in a large clinical trial because MCI is detected earlier, resulting 

in reductions in study duration and necessary sample size (Sanderson-Cimino et al., 2021) .  As 

shown in the present study, the method can be adapted to large studies that did not include 

replacements in their original design. However, building it into the original study design is 

clearly preferable. 

CONCLUSIONS 

Here we have shown that a replacement  method of PE adjustment significantly altered 

how we understand follow-up status in individuals who have already been diagnosed with MCI 

at the baseline assessment. Our results indicate that the replacement-participants method of 

adjustment for PEs results in fewer MCI cases reverting to CN, and improved predictability of 

progression to dementia. In sum, the results provide further support for the importance of 

accounting for PEs on cognitive tests in order to reduce misdiagnosis and increase earlier 

detection of progression to MCI or dementia. 
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Contribution to the Field: Studies of aging and Alzheimer’s disease (AD) rely on serial 

cognitive testing to determine change in cognitive abilities. AD clinical trials also rely on 

repeated testing to determine drug effects. However, scores on these tests can increase over time 

due to practice effects (PEs), which can increase scores at follow-up compared to if the 

participant was taking the test for the first time. PEs are especially impactful on studies that 

differentiate between unimpaired participants and those with mild cognitive impairment (MCI) 

because PEs can lead to misdiagnoses. Here we demonstrated that adjusting for PEs resulted in 

more stable MCI diagnoses, and may be identifying people who are beginning to show clinically 

significant levels of AD biomarkers.  We also demonstrated that adjusting for PEs improves the 

relationship between MCI and conversion to dementia. Identifying those at risk for cognitive 

decline as early as possible may maximize opportunities for intervention to slow disease 
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progression. The results of this study demonstrate the importance of accounting for PEs on 

cognitive tests in order to reduce misdiagnosis and increase earlier detection of progression to 

MCI or dementia.   
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Tables and Figures 

PE-unadjusted PE-adjusted 

              

Figure 6: Full Cox proportional models for time until first dementia diagnosis by PE-unadjusted 

and PE-adjusted 12-month diagnoses. Cox proportional hazard models compared progression to 

dementia between those who were classified with mild cognitive impairment at follow-up (Stable MCI) 

and those who reverted to cognitively normal (Reverters). Models used classifications (Stable MCI vs 

Reverter) as the independent variable of interest; months from baseline until first dementia diagnosis as 

the dependent variable; and all available data (16 – months form baseline). Covariates were age and 

education, fixed at the average level within the sample (age: 73.1 years; education: 16.4 years). The left 

graph bases diagnoses on the PE-unadjusted 12-month data; the right graph uses diagnoses based on 

the PE-adjusted 12-month data. Each model presents a hazard ration (HR; [CI]) that indicates how 

much more likely the Stable MCI group was to convert to dementia compared to the Reverters. Wald 

tests and likelihood-ratio tests (LRT) are also included with associated p-values to denote the 

significance of the HR. The Y-axis of each model provides the survival probability and the X-axis of 

each model provides the time frame until dementia conversion. 

 

  

HR=3.7 [2.3, 6.1] 

Wald=29.2; p<.01 

LRT=39.5; p<.01 

 

HR=6.0 [2.9, 12.1] 

Wald=26.2; p<.01 

LRT=43.8; p<.01 
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16-24 months 16-36 months 16-48 months 

   

 

   

Figure 7: Cox proportional models for time until first dementia diagnosis by PE-unadjusted and 

PE-adjusted 12-month diagnoses. Cox proportional hazard models compared progression to dementia 

between those who were classified with mild cognitive impairment at follow-up (Stable MCI) and 

those who reverted to cognitively normal (Reverters). All models used classifications (Stable MCI vs 

Reverter) as the independent variable of interest and months from baseline until first dementia 

diagnosis as the dependent variable. Covariates were age and education, fixed at the average level 

within the sample (age: 73.1 years; education: 16.4 years). Models in the top row display results 

completed with PE-unadjusted scores; models in the bottom row display results completed with the PE-

adjusted scores. Each row designates the time frame for each model measured in months from baseline. 

Time frames were restricted to demonstrate how predictive the classification was for studies with 

various follow-up periods. As these hypothetical studies would not know if a participant converted to 

dementia past their follow-up period, those who converted after the endpoint of that specific model 

were censored (i.e., recoded as non-converters). Each model presents a hazard ration (HR; [CI]) that 

indicates how much more likely the Stable MCI group was to convert to dementia compared to the 

Reverters. Wald tests and likelihood-ratio tests (LRT) are also included with associated p-values to 

denote the significance of the HR.  The Y-axis of each of the 6 models provides the survival probability 

and the X-axis of each model provides the time frame until dementia conversion. 

 

  

HR=3.6 [1.7, 7.9] 

Wald=10.5; p=.01 

LRT=14.9; p<.01 

 

HR=4.8 [2.2, 10.3] 

Wald=16.9; p<.01 

LRT=25.7; p<.01 

HR=4.7 [2.5,8.7] 

Wald=24.1; p<.01 

LRT=36.3; p<.01 

HR=8.9 [2.2, 36.4] 

Wald=9.4; p=.02 

LRT=20.2; p<.01 

 

HR=11.6 [2.9, 47.1] 

Wald=12.9; p<.01 

LRT=29.5; p<.01 

 

HR=8.9 [3.3, 24.0] 

Wald=19.0; p<.01 

LRT=39.0; p<.01 
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Table 3a: Descriptive statistics among participants at baseline and 1-year-follow-up  

 Memory 

Attention/Executive 

Function 

 

Language 

Raw mean 

score  

(SD) RAVLT 

Logical 

Memory Trails A Trails B 

 

Boston 

Naming 

Category 

Fluency 

Full Sample 

Baseline 

1.55 

(2.61) 

5.81 

(3.57) 

39.27 

(20.85) 

106.14 

(66.90) 

27.82  

(3.76) 

15.88 

(4.76) 

Full Sample  

Follow-up 

2.17 

(3.09) 

6.39 

(4.55) 

39.39 

(20.67) 

106.44 

(74.67) 

28.15  

(4.10) 

15.29  

(5.51) 

       

The “Full Sample” rows refer to the means (standard deviations) of all participants at baseline and at 

follow-up. Presents values in raw units.  
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Table 3b: Descriptive statistics and calculated practice effects for tests among participants 

classified as mild cognitive impairment at baseline 

 Memory 

Attention/Executive 

Function 

 

Language 

Raw mean 

score  

(SD) RAVLT 

Logical 

Memory Trails A Trails B 

 

Boston 

Naming 

Category 

Fluency 

Proportional 

Baseline 

1.59  

(2.61) 

1.92 

(3.68) 

40.28  

(22.75) 

109.76 

(75.03) 

27.66 

(4.16) 

15.51  

(4.82) 

Returnees 

Baseline 

1.58  

(2.61) 

2.00 

(3.56) 

39.88  

(21.73) 

107.45  

(68.16) 

27.77 

(3.94) 

15.70 

(4.81) 

Returnees 

Follow-Up 

2.45 

(3.07) 

2.84 

(4.51) 

39.30  

(22.19) 

107.73  

(76.53) 

28.11 

(4.51) 

15.02 

(5.46) 

Replacements 

Follow-Up 

1.67 

(2.57) 

1.86 

(3.72) 

41.35  

(22.63) 

114.40  

(74.90) 

27.37  

(4.51) 

15.11 

(4.81) 

Attrition  

Effect 

-.01 

[-.13, .16] 

 

.09 

[-.10, .43]  

-.40 

[-1.57, .89] 

-2.31 

[-6.64, 2.27] 

.11 

[-.14,.33] 

.43 

[.15, .72] 

 

Practice 

Effect 

.80 

[-.33, 3.08] 

.89  

[-.41, 3.33] 

-1.64 

[-5.65, 2.41] 

-4.36 

[-19.16, 9.57] 

.63 

[-.21,1.53] 

NA 

 

 

Cohen’s  

d .26 .20 -.07 -.06 .14 NA 

Groups are based on the average performance across all 5000 bootstrapped iterations. Means are based 

on transformed data that was reverted back to raw units. “Proportional baseline” refers to a weighted 

mean that combines the returnee baseline group and a group that included all subjects not selected to be 

Returnees or Replacements in that bootstrapped iteration. “Returnee Baseline” refers to baseline test 

scores for the subset of participants who returned for the 12-month follow-up visit (ns>80) and were 

selected at that iteration. “Returnee Follow-Up” refers to 12-month scores for the same subset of 

returnees who were selected for that iteration. “Replacement Follow-up” refers to the pseudo-

replacement scores (ns>80). The scores for memory tasks indicate the number of words remembered at 

the delayed recall trials. Scores on the attention/executive functioning tests indicate time to completion 

of task. On these tasks, higher scores indicate worse performance. Scores on the Boston Naming Task 

indicate number of correct items identified; scores on Category Fluency indicate number of items 

correctly stated. Practice effects and attrition effects are in raw units with the 2.5 and 97.5 percentiles in 

brackets. As such, the negative practice effects and attrition effects for the Trails tasks demonstrates that 

practice decreased time (increased performance). Cohen’s d is given for the difference between PE-

adjusted and unadjusted scores of returnees at follow-up. RAVLT= Rey Auditory Verbal Learning Test.  
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Table 4: Classification prevalence at baseline and follow-up. 

 Any 

MCI 

M 

MCI 

S 

MCI 

Memory 

Impairment 

Attention/EF 

Impairment 

Language 

Impairment 

 

CN 

Baseline 329 75 254 267 77 70 0 

Unadjusted 249 79 170 209 67 67 80 

Adjusted 272 86 186 233 73 72 57 

Difference +23 +7 +16 +24 +6 +5 -23 

% 

Difference 

9.23% 8.86% 9.41% 11.48% 9.00% 7.46% 28.75% 

 

χ2; 

p-value 

21.0; 

p<.001 

5.1; 

p=.02 

7.5; 

p=.006 

22.0; 

P<.001 

3.2;  

p=.07 

3.2; 

p=.07 

21.0; 

p<.001 

Presents the number of participants who met criteria for mild cognitive impairment (MCI). The 

“unadjusted” and “adjusted” rows refer to diagnoses at the follow-up visit. The “Any MCI” column 

presents the count of participants who meet criteria for MCI in any domain, combining those who are 

impaired in only one domain (single-domain MCI: S MCI) and those who are impaired in 2 or 3 

domains (multiple-domain MCI: M MCI). The impairment columns present the count of participants 

who were impaired in each domain, regardless of whether they are impaired in another domain. 

Individuals who do not meet criteria for impairment (i.e., classified as Cognitively Normal; CN) are 

displayed in the “CN” column 

 The Difference row displays how many more participants meet criteria for that classification or 

impairment when adjusting for practice effects (i.e., Adjusted count – Unadjusted count). The percent 

listed in this row displays the percent increase/decrease when accounting for practice effects: 

difference/Unadjusted count.  McNemar χ2 tests were used to evaluate the impact of practice-effect 

adjustment on classification or impairment count; p-values are presented.  
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Table 5: Impact of practice effects on classification stability and progression 

 Stable  

M MCI 

Stable  

S MCI 

Progression 

to M MCI 

Stable Impairment 

 Memory  Attention/EF Language  

Unadjusted 45 147 34 201 46 42 

Adjusted 49 164 37 223 48 44 

Difference +4  +17 +3 +22 +2 +2 

% Difference 8.89% 11.56% 8.82% 10.94% 4.35% 4.76% 

χ2; 

 p-value 

2.25; 

p=.13 

11.13; 

p<.001 

1.3; 

p=.25 

20.0; 

p<.001 

.5; 

p=.48 

.5; 

p=.48 

Displays the number of individuals classified as impaired at follow-up via practice effect-unadjusted 

scores and -adjusted scores. The “Stable M MCI” column provides the count of participants who met 

criteria for multiple domain mild cognitive impairment (M MCI) at baseline and at follow-up. The 

“Stable S MCI” provides the same information about individuals with single domain MCI (S MCI). 

Individuals who progressed from S MCI at baseline to M MCI at follow-up are displayed in the 

“Progression” column. The “Stable Impairment” section describes the number of individuals who 

retained an impairment in a specific cognitive domain at follow-up, regardless of whether they met 

criteria for an impairment in another domain at either visit. The Difference row displays how many 

more participants meet criteria for that classification or impairment when adjusting for practice effects 

(i.e., Adjusted count – Unadjusted count). The percent listed in this row displays the percent increase in 

stability when accounting for practice effects: difference/Unadjusted count.  McNemar χ2 tests were 

used to evaluate the impact of practice-effect adjustment on classification or impairment stability; p-

values are presented. 
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Table 6: Practice effect-adjustment and reversion rates 

  Reverters 

M MCI  

Reverters  

S MCI 

Reversion in specific domain 

  Memory  Attention/EF Language  

Count      

Unadjusted 30 73 66 28 31 

Adjusted 26 53 44 26 29 

Difference -4 -20 -22 -2 -2 

χ2; p-value 2.25 

p=.13 

18.1 

p<.001 

20.0 

p<.001 

.5 

p=.48 

.5 

p=.48 

Reversion Rate      

Unadjusted 40.5% 28.7% 24.7% 36.3% 44.3% 

Adjusted 35.1% 20.9% 16.5% 33.8% 41.4% 

Difference -5.4% -7.8% -8.2% 2.6% 2.9% 

% change in reversion  Δ13.3% Δ27.4% Δ33.3% Δ7.1% Δ6.5% 

The “Count” section displays the number of participants who reverted from a classification or 

impairment based on practice effect-unadjusted and -adjusted data. Those who reverted from multi-

domain mild cognitive impairment (M MCI) at baseline to either single domain MCI (S MCI) or 

cognitively normal are displayed in the “Reverters M MCI” column. Those who were classified as S 

MCI at baseline and reverted to cognitively normal at follow-up are listed in the “Reverters S MCI” 

column. The “Reversion in Specific Domain” section refers to individuals who had a baseline 

impairment in a domain (memory, attention/executive functioning, or language) but not at follow-up; 

participants in these columns may be impaired in other domains at either baseline or follow-up. The 

Difference row displays how many fewer participants reverted when adjusting for practice effects (i.e., 

Adjusted count – Unadjusted count). McNemar χ2 tests were used to evaluate the impact of practice-

effect adjustment on classification or impairment reversion; p-values are presented. 

The “Reversion Rate’ section lists the reversion percent for each column by dividing the counts 

provided above by the baseline prevalence of each classification shown in table 1. For example, 74 

people were classified as M MCI at baseline and 30 reverted at follow-up when using unadjusted data. 

Therefore, the reversion rate for the unadjusted M MCI reverters was 30/74. The difference row 

subtracts the reversion rate using Unadjusted data from the rate using Adjusted data. The “% change in 

reversion” row shows the percent change in reversion rate by dividing the difference by the unadjusted 

reversion rate: e.g., Δ13.3 =5.4/40.5. 
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Table 7: Progression to dementia. 

 Full  

Sample 

N=159 

Stable MCI Reverters False 

reverters 

N=10 

Months until 

DX 

Unadjusted 

N=141 

Adjusted 

N=151 

Unadjusted 

N=18 

Adjusted 

N=8 

Mean 37.48 36.17 36.32 47.77 59.44 38.44 

Median 25.28 24.98 24.98 37.28 60.28 30.03 

SD 21.90 20.66 20.66 28.68 33.34 21.70 

       

Presents the time in months until first dementia diagnosis (DX) among those who converted to 

dementia. Of the 329 participants 159 have progressed to dementia (“Full Sample”). Participants were 

classified as “Stable MCI” if they retained their mild cognitive impairment (MCI) classification at 

follow-up; participants were classified as “Reverters” if they were classified as cognitively normal at 

follow-up. Classifications were made using practice effect-unadjusted (“Unadjusted) and practice 

effect-adjusted (“Adjusted”) data. Those who were classified as MCI by the practice effect-adjusted 

data but not the unadjusted data are referred to as “False reverters.” Values are bolded to emphasize 

that the False reverters appear to be similar to the Stable MCI group in time to first dementia diagnosis. 
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Table 8a: Amyloid, total tau, and phosphorylated tau across classification groups 

 Full 

Sample 

N=226 

Stable MCI Reverters False 

Reverters 

N=18 

 Unadjusted 

N=166 

Adjusted 

N=184 

Unadjusted 

N=60 

Adjusted 

N=42 

Amyloid       

Count 160 124 134 36 26 10 

% 70.8% 74.7% 72.8% 60.0% 61.9% 55.6% 

T-tau       

Count 123 101 106 22 17 5 

% 54.4% 60.8% 57.6% 36.7% 40.5% 27.8% 

P-tau       

Count 145 118 125 27 20 7 

% 64.2% 71.1% 67.9% 45.0% 47.6% 39.9% 

       

Presents the number of participants (Count) and percent of sample (%) for three cerebrospinal fluid 

biomarkers: amyloid beta (Abeta), Tau, and phosphorylated tau (Ptau). Of the 329 participants, 226 had 

full biomarker data, which is presented in the “Full Sample” column. Participants were classified as 

“Stable MCI” if they retained their mild cognitive impairment (MCI) classification at follow-up; 

participants were classified as “Reverters” if they were classified as cognitively normal at follow-up. 

Classifications were made using practice effect-unadjusted (“Unadjusted) and practice effect-adjusted 

(“Adjusted”) data. Those who were classified as MCI by the practice effect-adjusted data but not the 

unadjusted data are referred to as “False reverters.” The percent sample (%) was determined by 

dividing the number of biomarker-positive subjects in a cell by the total number of participants with 

that classification; e.g., 74% = 117/158.   
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Table 8b: Combined Amyloid and Tau positivity profiles 

 Full Stable MCI Reverters False  

 Sample Unadjusted Adjusted Unadjusted Adjusted Reverters 

n=18 

A-T-       

Count 39 22 27 17 12 5 

Percent 17.3% 13.3% 14.7% 28.3% 28.6% 27.8% 

A+T-       

Count 42 26 32 16 10 6 

Percent 18.5% 15.7% 17.4% 26.7% 23.8% 33.3% 

A-T+       

Count 27 20 23 7 4 3 

Percent 11.9% 12.0% 12.5% 11.7% 9.5% 16.7% 

A+T+       

Count 118 98 102 20 16 4 

Percent 52.2% 59.0% 55.4% 33.3% 38.1% 22.2% 

A+ and/or T+       

Count 187 144 157 43 30 13 

Percent 82.7% 86.7% 85.3% 71.7% 71.4% 72.2% 

Presents the number of participants (Count) and percent of sample (%) for combinations of 

cerebrospinal fluid biomarker positivity: biomarker-negative (A-/T-), amyloid-positive and tau-

negative (A+/T-), amyloid-negative and tau-positive (A-/T+), amyloid and tau positive (A+/T+), and 

positive for any biomarker (A+ and/or T+).  
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Objective: Practice effects (PE) on cognitive testing delay detection of impairment and 

impede our ability to assess change. When decline over time is expected, as with older adults or 

progressive diseases, failure to adequately address PEs may lead to inaccurate conclusions 

because PEs artificially boost scores while pathology- or age-related decline reduces scores. 

Unlike most methods, the participant-replacement method can separate pathology- or age-related 

decline from PEs; however, this method has only been used across two timepoints. More than 

two timepoints makes it possible to determine if PEs level out after the first follow-up, but it is 

analytically challenging because individuals may not be assessed at every timepoint.  

Method: We examined 1190 older adults who were cognitively unimpaired (n=809) or 

had mild cognitive impairment (MCI; n=381). Participants completed six neuropsychological 

measures at three timepoints (baseline, 12-month, 24-month).  We implemented the participant-

replacement method using generalized estimating equations in comparisons of matched returnees 

and replacements to calculate PEs. 

Results: Without accounting for PEs, cognitive function appeared to improve or stay the 

same. However, with the participant-replacement method, we observed significant PEs within 

both groups at all timepoints. PEs did not uniformly decrease across time; some—specifically on 

episodic memory measures—continued to increase beyond the first follow-up. 

Conclusions: The replacement method of PE adjustment revealed significant PEs across 

two follow-ups. As expected in these older adults, accounting for PEs revealed cognitive decline.  

This, in turn, means earlier detection of cognitive deficits, including progression to MCI, and 

more accurate characterization of longitudinal change.  
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Public Significance: PEs mask decline on cognitive tests. If they are not considered at 

each visit, then clinicians may delay treatment or diagnosis of impairment; researchers may 

inaccurately label longitudinal trends. Unlike other methods, the replacement method 

demonstrates that PEs may be present even when performance declines.  In contrast to a 

commonly held view, PEs also do not necessarily level off after the first follow-up. Specifically, 

PEs impacted multiple follow-up visits and failure to consider them led to inaccurate conclusions 

about change.  

 

Keywords: Practice effects, cognitive aging, longitudinal change. 
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Introduction 

 Some cognitive change over time is expected as adults age, particularly in those over the 

age of 65 (Finkel et al., 2003; Salthouse, 2010, 2019). Those with mild deficits in cognitive 

domains, beyond what would be expected for aging, may be diagnosed with mild cognitive 

impairment (MCI), which is seen as a prodromal stage of dementia (Albert et al., 2011; J. Eppig 

et al., 2020; Manly et al., 2008; Thomas et al., 2020). If an individual progresses to greater 

cognitive impairment accompanied by substantial declines in their daily functioning, they may 

meet criteria for major neurocognitive disorder (i.e., dementia) (Albert et al., 2011; J. Eppig et 

al., 2020; Manly et al., 2008; Thomas et al., 2020). As normal and abnormal aging are inherently 

longitudinal processes, repeated assessments are essential for diagnoses and mapping change 

over time.  

 Despite the need for and use of repeated testing, cognitive diagnoses are almost always 

made with respect to the most recent assessment, without considering how prior testing may 

have influenced results (Calamia et al., 2012; Goldberg et al., 2015; Heilbronner et al., 2010). 

Repeated assessments are subject to practice effects (PEs) that impair our ability to detect 

change. PEs can be defined as improvements in performance due to familiarity with testing 

rather than any actual alteration of true ability; put simply, someone taking a cognitive test for 

the second time often does better than if they were taking it the first time (Calamia et al., 2012; 

Heilbronner et al., 2010; Salthouse, 2019; Sanderson-Cimino et al., 2022). PEs are sometimes 

separated into content (i.e., knowledge of specific stimuli) and context (i.e., improved familiarity 

with testing, reduced anxiety) effects, although this delineation is somewhat heuristic (Gross et 

al., 2017; Heilbronner et al., 2010).  
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PEs are often ignored or minimally addressed in both research and clinical settings 

(Calamia et al., 2012; Goldberg et al., 2015; Heilbronner et al., 2010; Machulda et al., 2017; 

Mathews et al., 2014; Salthouse, 2019; Sanderson-Cimino et al., 2022). This is somewhat 

alarming as PEs are pervasive, occurring across all cognitive domains, and long-lasting, with 

studies noting PEs after up to 7 years post-baseline (Elman et al., 2018; Goldberg et al., 2015; 

Gross et al., 2017; Gross et al., 2015; Rönnlund, Nyberg, Bäckman, & Nilsson, 2005). Moreover, 

they have been found in individuals who at baseline are cognitively unimpaired (CU), diagnosed 

with MCI, and even in those with mild Alzheimer’s disease (AD) (Elman et al., 2018; Goldberg 

et al., 2015; Gross et al., 2017; Gross et al., 2015; Sanderson-Cimino et al., 2021; Sanderson-

Cimino et al., 2022). It has been suggested that addressing PEs might lead to earlier diagnosis of 

impairment (Goldberg et al., 2015; Sanderson-Cimino et al., 2021), but to our knowledge, only 

one method of estimating PEs has the possibility of earlier diagnosis essentially built into it—the 

participant-replacement method (Elman et al., 2018; Rönnlund et al., 2005). Using this method, 

it has been shown that adjusting for PEs leads to earlier detection of MCI, improves stability of 

MCI diagnoses, and strengthens our ability to predict conversion to dementia (Elman et al., 

2018; Sanderson-Cimino et al., 2021; Sanderson-Cimino et al., 2022). Failure to adjust for PEs 

also decreases statistical power and may have a substantial impact on the financial, staff, and 

patient burden of clinical drug trials (Elman et al., 2018; Sanderson-Cimino et al., 2021; 

Sanderson-Cimino et al., 2022).  

 Most studies only label increases in scores as PEs, meaning that PEs are only identified if 

an individual has a higher score at follow-up than at baseline (Calamia et al., 2012; Goldberg et 

al., 2015). This definition is problematic within populations expected to experience cognitive 

decline (e.g., older adults and, particularly, those on the Alzheimer’s disease [AD] trajectory) as 
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PEs improve scores over time while neurodegeneration worsens scores, particularly over longer 

retest intervals. Across short retest intervals (e.g., 1 week from baseline) PEs in AD and other 

neurodegenerative populations are easier to identify. In that case there is often a clear 

improvement in scores at retesting as it would be very unlikely for an individual to experience 

significant neurodegeneration over 1 week that would be greater than their PE (Duff, 2014; Duff 

et al., 2014; Duff et al., 2011). In contrast, longer retest intervals (e.g., 6 months or greater) 

might involve PEs that are equal to or less than the true change over time. For example, if an 

individual truly declines two points on a memory measure between annual assessments, but 

experiences a PE of three points, then they will appear to improve by 1 point as they age. True 

improvement is unlikely in those with a neurodegenerative disease, and improved test 

performance is often considered a PE. However, if that same individual instead experiences a PE 

of only 1 point, they will appear to decline by 1 point. The key point here is that there is still a 

PE despite the fact that performance declines, because the 1-point decline is masking a true 2-

point decline. This latter situation can occur, but is typically missed as most approaches to PEs 

do not allow for simultaneous modeling of PEs and age-related decline (Calamia et al., 2012; 

Sanderson-Cimino et al., 2021). Moreover, studies with multiple time points typically conclude 

that the magnitude of PEs levels out over time, particular after the first retesting (Calamia et al., 

2012; Goldberg et al., 2015). This idea is based on the observation that scores tend to increase 

less over multiple follow-up visits. While this observation may be partly due to diminishing PEs, 

it may also be that the effect of age-related decline over multiple follow-up years outpaces the 

PEs, leading to less of an observable increase in scores. To our knowledge, this hypothesis has 

been raised, but never formally tested.  
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In the present analyses we used a modified version of the -replacement method of PE 

adjustment (see Methods) (Elman et al., 2018; Rönnlund et al., 2005; Sanderson-Cimino et al., 

2021; Sanderson-Cimino et al., 2022) and generalized estimating equations (GEE) to examined 

PEs at more than two visits: baseline, 12-month follow-up, and 24-month follow-up. Participants 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were diagnosed as CU or MCI at 

baseline. Models were completed separately for these two subsamples across 6 

neuropsychological measures. Models were completed first without adjusting for PEs and second 

after adjusting for PEs. We hypothesized that: (1) PEs will be present at both the 12-month 

follow-up and the 24-month follow-up; (2) PEs will increase across time; (3) the PE-adjusted 

models will find both significant age-related decline and significant PEs; (4) PE-unadjusted 

models will provide inaccurate estimates of change as compared to the PE-adjusted models. 

Methods 

Participants: All participants were enrolled in the ADNI (adni.loni.usc.edu) which was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and early 

AD. For up-to-date information, see www.adni-info.org. Participants from the ADNI-1, ADNI-

GO, and ADNI-2 cohorts were included. 

There were 1190 participants with baseline data who did not meet ADNI’s criteria 

for dementia at study entry. A diagnosis of MCI (amnestic, dysexecutive, or language-

impaired) was made using the Jak-Bondi approach (Jak et al., 2009).  Participants were 

classified as single domain MCI if their scores on two tests within the same cognitive 

http://www.adni-info.org/
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domain were both greater than one SD below normative means. They were diagnosed as 

multi-domain MCI if they met the impairment criteria in more than one cognitive 

domain (Jak et al., 2009). All participants completed at least one neuropsychological 

measure at baseline. 

We investigated PEs across three visits: baseline, 12-month follow-up and 24-

month follow-up. There were 858 participants with cognitive data at all visits. There 

were 258 participants with data at baseline and the 12-month follow-up but no 24-month 

data. There were 74 participants with baseline and the 24-month follow-up but no 12-

month data.  

Measures: Participants completed up to six neuropsychological measures at each 

visit.  Episodic memory tasks included the Wechsler Memory Scale-Revised, Logical 

Memory Story A delayed recall (Chelune, Bornstein, & Prifitera, 1990), and the Rey 

Auditory Verbal Learning Task (AVLT) delayed recall (Schmidt, 1996). Language tasks 

included the Boston Naming Test (BNT) (Kaplan, Goodglass, & Weintraub, 2001) and 

Category (Animal) Fluency (Petersen et al., 2010). Attention-executive function tasks 

were Trails A and Trails B (Lezak, Howieson, Loring, & Fischer, 2004). The American 

National Adult Reading Test (ANART) provided an estimate of premorbid IQ (Taylor et 

al., 1996). Although ADNI included alternate forms at some visits, all participants in the 

present study completed the same version of the tests at each visit. Of note, scores on 

Trails A and B were reversed so that more positive scores indicate better performance on 

all tests.  

Statistical Analyses: We developed a pseudo-replacement method of PE 

adjustment to adapt the replacement method for use in studies that did not specifically 
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recruit replacement participants. This method relies on the identification of a subsample 

of baseline participants who are demographically matched to the returnees at follow-up 

and labeled as “pseudo-replacements.” Propensity scores are used to ensure that the 

pseudo-replacements and returnees are similar, with respect to age and other 

demographic characteristics. A comparison of the pseudo-replacement scores with the 

returnee scores yields a PE because the only significant difference between these groups 

is that the returnees have taken the test before and the replacements have not. As such, 

pseudo-replacements are functionally the same as replacement participants who are 

recruited for that purpose as part of a study’s original design. The replacement method 

has been used for PEs at a single retest visit (Elman et al., 2018; Rönnlund et al., 2005; 

Sanderson-Cimino et al., 2021; Sanderson-Cimino et al., 2022), but it has not been used 

for multiple retest visits. A complication here is that some returnees attend all follow-up 

visits while others only attend some. As PEs may change based on the number of test 

exposures (Calamia et al., 2012; Stricker et al., 2020), it is essential to also match on the 

number of prior visits. As such, it was necessary to identify multiple samples of pseudo-

replacement groups to match to the separate returnee groups.  

To estimate PEs at the 12-month follow up, we subsampled 30% of the returnees 

(n=257). The remaining 70% include dropouts and returnees who did not attend all visits. This 

group served as a pool for potential pseudo-replacements to calculate PEs at the 12-month 

follow-up. Propensity scores were used to select replacements that matched these returnees on 

age, sex, and ANART scores. We define this group of replacements as Group A; at their baseline 

they had similar demographics to the subsampled returnees at their 12-month follow-up. To 

estimate the PEs at 24-month follow up, we followed a similar strategy, and used the same 
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subsampled 30% of participants’ follow up data at the 2-year follow-up timepoint. Pseudo-

replacements were matched to these returnees on age, sex, and the ANART using propensity 

scores. We define this group of replacements as Group B; they had completed tests at the 12-

month follow and have similar demographics to the subsampled 30% participants at their 24-

month follow-up. Of note, participants were separated based on baseline cognitive status (MCI 

vs CU), meaning that replacements had the same baseline diagnosis as their matched returnees. 

After creating the matched pseudo-replacement groups’ data, we used GEE to estimate 

the time effects and PEs. Let ‘t’ denote the timepoint at which participants take the test; ‘t=1’ 

represents the baseline, ‘t=2’ represents 12-month follow up and ‘t=3’ represents 24-month 

follow-up. ‘G’ denotes group, and let ‘G=R’ represent Returnees for the reference group; these 

have data at both follow-ups. 𝑌𝑖𝑡 denotes participant i’s cognitive scores at time t, and 𝑋𝑖𝑡 denotes 

a vector of covariates of participant i at time t. Therefore: 

𝐸[𝑌𝑖𝑡|𝑿𝑖𝑡] = 𝛽0 + 𝜷𝑥𝑿𝑖𝑡 + 𝛽1𝐼(𝑡 = 2) + 𝛽2𝐼(𝑡 = 3) 

+ 𝛽3𝐼(𝑡 = 2)𝐼(𝐺 = 𝐴) +  𝛽4𝐼(𝑡 = 3)𝐼(𝐺 = 𝐵) 

where 𝛽1 is the time effect at 12 months, 𝛽2 is the time effect at 24 months,  𝛽3 is the mean of 

PEs at the 12-month follow-up, and 𝛽4 is the mean of PEs at the 24-month follow-up. We used 

the Wald-test to determine the p-values for the corresponding parameters. Therefore, the PE-

unadjusted model ultimately included parameters for: age, sex, education, the 12-month follow-

up, and the 24-month follow-up. The PE-adjusted model included the same parameters as well as 

a PE at the 12-month visit and at the 24-month visit. Significance levels were set at p<.05. 

 

Results 
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 Sample characterization: Table 1 provides a description of the CU and MCI groups as 

well as raw scores for each cognitive test. Within the group that was CU at baseline (n=809), 735 

(91%) returned for a second visit and 691 (85%) returned for a third visit. Within the group that 

was MCI at baseline (n=381), 381 (100%) returned for a second visit and 241 (63%) returned for 

a third visit.  

PEs within the CU group:  At the 12-month follow-up visit, there were significant PEs 

across all measures. There were also significant PEs at the 24-month follow-up visit for five of 

the six measures. PE estimates did not uniformly change over time. PEs on the Trails tests 

reduced over time (Trails A: -11%; Trails B:  -26%), as did PEs on the AVLT (-5%). However, 

PEs increased over time on Logical Memory (+39%), BNT (+41%), and category fluency (+9%; 

nonsignificant 24-month PE). The PEs in raw score units are fully presented in Table 2. 

PEs within the MCI group:  At the 12-month follow-up visit, there were significant PEs 

across four of the six measures: Logical Memory, AVLT, Trails A, and Trails B. There were also 

significant PEs at the 24-month follow-up visit for two of the six measures: Logical Memory and 

Trails B. The Logical Memory PE was much larger at the 24-month follow-up as compared to 

the 12-month follow-up (+133%). The Trails B PE was reduced at the 24-month visit (-13%). 

The PEs in raw score units are fully presented in Table 3. 

Cognitive trajectories with and without PE-adjustment in the CU group: Within the 

CU group, the patten of change over time was significantly different in the PE-adjusted and PE-

unadjusted groups.  Figure 1 displays the trajectories for PE-adjusted and PE-unadjusted scores 

for all cognitive measure among participants who were CU at baseline. 
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Logical Memory: In the PE-unadjusted model, scores significantly improved as 

participants aged. They scored about 1.7 points higher at the 12-month follow-up and 1.1 points 

higher at the 24-month follow-up. In contrast, when PE-estimates were included in the model, 

scores significantly worsened across time (-.54 and -2.0, respectively). The PE-unadjusted and 

the PE-adjusted age effects had non-overlapping confidence intervals at the 12-month follow-up 

( [1.4, 2.1] vs [-.84, -.24] ) and the 24-month follow-up ( [.83, 1.4] vs [-2.3, -1.7] ). 

AVLT: The PE-unadjusted model indicated nonsignificant improved performance over 

time (+.71, +.32). In contrast, the PE-adjusted model indicated significantly worsening 

performance over time (-.30, -.61). The PE-unadjusted and the PE-adjusted age effects had non-

overlapping confidence intervals at the 24-month follow-up ( [-.73, 1.4] vs [-.90, -3.2] ) 

BNT: The PE-unadjusted model indicated nonsignificant improvement in scores over 

time (+44, +.08). The PE-adjusted model showed nonsignificant improvement at the 12-month 

follow up (+.02) but significantly worse scores at the 24-month follow-up (-.56).  

Category fluency: The PE-unadjusted model indicated nonsignificant improvement in 

scores at the 12-month follow-up (+.72) and significant improvement in scores at the 24-month 

follow-up (+.40). In the PE-adjusted model there was nonsignificant worsening in scores at the 

12-month follow-up (-.19) and significant worsening of scores at the 24-month visit (-.60). 

Trails A: The PE-unadjusted model indicated nonsignificant improvement in scores at the 

12-month follow-up (+2.72) and significant improvement in scores at the 24-month follow-up 

(+1.29). In contrast, when adjusting for PEs, there was nonsignificant worsening of scores at the 

12-month visit (-.99) and significant worsening of scores at the 24-month follow-up (-2.23). The 

PE-unadjusted and the PE-adjusted age effects had non-overlapping confidence intervals at the 
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12-month follow-up ( [-.11, 5.5] vs [-1.8, -.22] ) and the 24-month follow-up ( [.32, 2.3] vs [-3.1, 

-1.4] ). 

Trails B: The PE-unadjusted model indicated nonsignificant improvement in scores at the 

12-month follow-up (+11.6) and at the 24-month follow-up (+6.87). The PE-adjusted model 

indicated nonsignificant worsening in scores at the 12-month follow-up (-1.42) and a significant 

worsening of scores at the 24-month follow-up (-4.0). The PE-unadjusted and the PE-adjusted 

age effects had non-overlapping confidence intervals at the 12-month follow-up ( [-.07, 13.8] vs 

[-7.1, -.82] ). 

Cognitive trajectories with and without PE-adjustment in the MCI group: Within 

the MCI group, there were notable differences in change-over-time estimates between the PE-

adjusted model and the PE-unadjusted models. Figure 2 displays the PE-adjusted and PE-

unadjusted trajectories for all cognitive measure among these participants. 

Logical Memory: In the PE-unadjusted model, there was nonsignificant improvement in 

scores at the 12-month follow-up (+.79) and at the 24-month follow-up (+2.4). The PE-adjusted 

model showed nonsignificant worsening of scores at the 12-month follow-up (-.72) and at the 

24-month follow-up (-1.0). The PE-unadjusted and the PE-adjusted age effects had non-

overlapping confidence intervals at the 24-month follow-up (-.11, 4.9 vs -1.5, -.52). 

AVLT: In the PE-unadjusted model, there was nonsignificant change in scores at the 12-

month follow-up (+.07) and at the 24-month follow-up (-.09). The PE-adjusted model showed 

nonsignificant worsening of scores at the 12-month follow-up (-.52) and 24-month follow-up (-

.89). The PE-unadjusted and the PE-adjusted age effects had non-overlapping confidence 
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intervals at the 12-month follow-up ( [-.21, .35] vs [-.80, -.24] ) and the 24-month follow-up ( [-

.44, .26] vs [-.13, -.53] ). 

BNT: In the PE-unadjusted model, there was nonsignificant improvement in scores at the 

12-month follow-up (+1.3) and nonsignificant worsening of scores at the 24-month follow-up (-

.58). The PE-adjusted model showed nonsignificant improvement in scores at the 12-month 

follow-up (+.24) and at the 24-month follow-up (+.36). 

Category Fluency: In the PE-unadjusted model, there was nonsignificant improvement in 

scores at the 12-month follow-up (+.99) and nonsignificant worsening of scores at the 24-month 

follow-up (-2.0). The PE-adjusted model showed significant worsening of scores at the 12-month 

follow-up (-.72) and at the 24-month follow-up (-1.01). 

Trails A: In the PE-unadjusted model, there was nonsignificant improvement in scores at 

the 12-month follow-up (+5.96) and nonsignificant worsening of scores at the 24-month follow-

up (-.92). The PE-adjusted model showed nonsignificant worsening of scores at the 12-month 

follow-up (-.57) and a near-zero change at the 24-month follow-up (.00). 

Trails B: Within the PE-unadjusted model, there was nonsignificant improvement in 

scores at the 12-month follow-up (+26.30) and at the 24-month follow-up (+30.01). The PE-

adjusted model showed nonsignificant worsening of scores at the 12-month follow-up (-3.24) 

and a nonsignificant improvement in scores at the 24-month follow-up (+1.24).  

Discussion 

 Using the replacement participants method of PE adjustment, in combination with GEE, 

we found significant PEs across two follow-up visits at 12-month intervals in baseline CU and 

MCI groups. The magnitude of PEs at the 12-month follow-up within the group that was CU at 



 
 

100 

baseline were not consistently larger than those within the group that was MCI at baseline. This 

is somewhat inconsistent with the PE literature which typically finds that long-term PEs are 

larger in those who are CU at baseline (Galvin et al., 2005; Goldberg et al., 2015; 

Schrijnemaekers, de Jager, Hogervorst, & Budge, 2006). However, in the present study, the PEs 

within the MCI group had notably larger confidence intervals than those in the CU group.  The 

difference may reflect greater variability in the MCI groups or it could potentially be due to the 

smaller MCI group size (809 vs 381). Additionally, some of the MCI participants were at floor 

on memory measures as well as other tasks. It is possible that floor effects affected these results 

and were responsible for the high heterogeneity and nonsignificance of the PE estimates among 

the MCI participants.  

At the 24-month follow-up visit the CU group had significant PEs on five of the six 

measures while the MCI group had only two significant PEs.  However, as the magnitude of 

these PEs were similar between the MCI and the CU groups, it is possible that the smaller 

sample size of the MCI group reduced the power to detect significant results.  With a greater 

number of MCI participants it is likely that more PEs would remain significant. Of note, the PEs 

on the Logical Memory measure were significant for both groups at both timepoints. 

Performance below   impairment cutoffs on Logical Memory is one of the primary criteria for 

ADNI’s MCI diagnosis (Petersen et al., 2010). These results suggest that both the CU and MCI 

participants are experiencing significant PEs that are likely impacting incidence rates of MCI and 

stability of MCI diagnoses within ADNI (Sanderson-Cimino et al., 2021; Sanderson-Cimino et 

al., 2022; Thomas et al., 2019). Because accounting for PEs with this method lowers scores on 

all tests, it affects all MCI diagnoses that use cutoff scores (Elman et al., 2018; Sanderson-
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Cimino et al., 2021), whether one (Petersen et al., 2010) or more than one impaired measure (Jak 

et al., 2009) is required.  

A goal of this project was to investigate how adjusting for PEs impacts measurement of 

cognitive trajectories. We completed analyses twice, modeling change over time at 12-month 

intervals with and without considering PEs. When PEs were not included in the models, scores 

tended to increase or stay the same over time. If this trend accurately reflected cognition, it 

would mean that these older adults were improving their cognitive ability over two years. While 

possible, this interpretation is highly unlikely given that the norm for adults in this age range is 

for cognitive decline over time (Salthouse, 2010, 2019).  Moreover, the parent study, ADNI, 

recruited participants that were similar to those in AD clinical drug trials and who have a high 

risk for neurodegeneration (Petersen et al., 2010). In contrast, when including PEs in the models, 

there was worsening performance across visits that in many cases was significantly different 

from the models that did not adjust for PEs. In some instances the age-effect was non-significant 

in the PE-adjusted model. However, the confidence intervals were non-overlapping between PE-

unadjusted and PE-adjusted age-effect estimates. This suggests that there was a significance 

difference in change over time when PEs were included in the model, even if the PE-adjusted 

age-effect estimate was nonsignificant.  Therefore, adjusting for PEs led to results that more 

accurately represent the expected cognitive change.  

From a broader perspective, this means that failing to address PEs leads to inaccurate 

interpretation of cognitive performance. These results are consistent with prior research claiming 

that PE-adjustment can be viewed as a data correction tool to improve the accuracy of cognitive 

data and diagnoses (e.g., earlier diagnoses, more stable diagnoses) (Elman et al., 2018; 

Sanderson-Cimino et al., 2021; Sanderson-Cimino et al., 2022). However, it is important to note 
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that, in practice, other methods of accounting for PEs do not alter diagnosis; they simply describe 

PEs or cognitive trajectories. In contrast, with the participant-replacement method, cognitive 

scores are adjusted downward, which in turn, leads to earlier diagnosis of disorders such as MCI 

because more individuals drop below the impairment cutoff. Clinically, the importance of 

detecting a diagnosis that involves impaired functioning as early as possible is of obvious 

importance. In research, as diagnostic groups and cognitive scores are basic components of 

outcome measures of much aging research, these small PE-adjustments can have significant 

downstream effects on everything from the utility of biomarkers to study duration (Sanderson-

Cimino et al., 2021; Sanderson-Cimino et al., 2022). 

 PEs have been shown to weaken over time in some studies (Machulda et al., 2017; 

Stricker et al., 2020), leading many to conclude that consideration of PEs is less important at 

subsequent follow-up visits (Goldberg et al., 2015; Heilbronner et al., 2010; Vivot et al., 2016). 

However, research supporting this claim focuses on methods that almost always define PEs as 

increases in scores, which means they are difficult, if not impossible, to observe in the presence 

of overall (e.g., age-related) decline (Calamia et al., 2012; Elman et al., 2018; Goldberg et al., 

2015; Sanderson-Cimino et al., 2021). Salthouse et al 2019 noted that failure to consider how 

PEs and age-related decline interact over time is a significant barrier to cognitive research and 

one of the principal contributors to the discrepancy between cross-sectional and longitudinal 

research findings (Salthouse, 2019). He recommended a quasi-longitudinal approach that 

incorporates a cross sectional group of adults who are similar to returning participants, which is 

very similar to the replacement method of PE adjustment (Salthouse, 2019). Using the 

replacement method we showed that PEs do not uniformly decrease across visits. In fact, the 

magnitude of two of the PEs that remained significant across visits increased over time within 
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the CU group, and one increased within the MCI group. Additionally, most of the PEs within 

both groups remained fairly stable across time, although many of the PEs in the MCI group were 

nonsignificant at the 24-month follow-up. These results indicate that PEs may have a different 

trajectory than what is generally considered, and they are clearly not uniform across different 

cognitive tests. 

We believe that many PE definitions – which almost always restrict PEs to an observed 

increase in test scores – are less accurate in groups where pathology- or age-related decline is 

expected. For example, consistent with the widely held view of cognitive PEs, a study of older 

adults with multiple follow-ups over a more than four-year period found that PEs largely leveled 

out after the first follow-up assessment (Stricker et al., 2020). As is also common, they defined 

PEs as increases in scores and they controlled for age in their models. They concluded that PEs 

were worth considering at all visits, but that the most important was the 12-month follow-up. We 

generally agree with the conclusions of this well-done study. However, as with many studies, we 

think their approach likely underestimates PEs, which in turn may alter the interpretation of 

cognitive change (Salthouse, 2019). Defining PEs solely on the basis of improved scores limits 

their detection when performance declines, as is expected in aging and neurodegenerative 

diseases. PE models that include age as a covariate do not account for how aging may impact 

PEs. We have shown that when present with age-related decline, PEs may exist even when the 

actual scores decrease. The advantage of the replacement method is that accounting for age-

related declines is built into the calculation of PEs, which makes it possible to show PEs even 

when scores worsen over time. It is also worth noting that this is not restricted to very old adults. 

For example, Elman et al. (Elman et al., 2018) demonstrated the same phenomenon in a six-year 

follow-up of middle-aged adults in their mid-50s at baseline. 
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In the clinic, neuropsychologists do not have the potential benefit of replacement 

participants as may be the case in research.  As the field of clinical neuropsychology evaluates 

the current state of normative data (Byrd & Rivera-Mindt, 2022), and while there is a strong push 

for repeated assessments, particularly via computerized testing (Jutten et al., 2022), the results of 

the present study strongly suggest that the field would benefit from normative data for PEs over 

multiple retest visits. In particular, it may be beneficial to develop predicted PEs for specific tests 

in a diverse range of individuals retested at clinically-relevant intervals across multiple retest 

visits (e.g., every six or 12 months). 

Strengths and Limitations 

Participants for this project were drawn from ADNI, which consisted primarily of highly 

educated, healthy, white individuals who typically presented to memory clinics (Petersen et al., 

2010). The magnitude of PEs may be different in other samples or individuals with different 

backgrounds or demographics. If a sample differs in the characteristics of its participants -for 

example has an average age of 40 years versus this sample’s 73 years– PE estimates may differ 

considerably. Therefore, we note that  estimates of PEs from this study should not be applied to  

other samples.  Instead, we recommend that researchers utilize this method to create PEs specific 

to their sample. While the exact PEs should not be used by other studies, a major strength of the 

replacement method is that it always produces tailor-made PE estimates because returnees and 

replacements are always matched on their unique features including demographics, specific tests, 

and retest intervals.  

 The retention rates differed between the CU and the MCI groups (85% vs 63%). Attrition 

has been shown to impact PE estimates (Rönnlund et al., 2005; Sanderson-Cimino et al., 2021; 

Sanderson-Cimino et al., 2022) and our GEE models did not include attrition effects. As the MCI 
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group had a higher attrition rate, it is possible that the impact of the attrition rate on the PEs was 

larger in the MCI group than in the CU group.  Future studies should include attrition rates in 

their models.  

Summary 

 In sum, using the replacement-participants method we found that PEs on several 

measures did not level out after the first follow-up visit. This finding is in contrast to the 

predominant view of PEs in neuropsychology. Indeed, PEs for some—particularly episodic 

memory measures—actually increased at the second (24-month) follow-up. It is possible that 

PEs will stabilize and decline at subsequent visits, but that is unknown at this time. Future 

studies using this method should investigate measures across a longer time frame. Additionally, 

the ADNI MCI sample consists primarily of individuals with memory concerns or who have 

been diagnosed with amnestic MCI (Eppig et al., 2017; Sanderson-Cimino et al., 2021; 

Sanderson-Cimino et al., 2022; Thomas et al., 2019). Future studies with larger sample sizes may 

benefit from conducting sub-analyses delineated by MCI subtype. However, making maximal 

use of PEs is probably most relevant and most important in individuals who are CU in order to 

foster detection of progression to MCI at the earliest possible time. 
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Tables and figures 

Table 9: Sample demographics and raw cognitive scores  

 Baseline Age 

 

Baseline ANART Education 

CN 73.70 (6.79) 

73.07 (7.34) 

10.16 (7.94) 

13.42 (9.64) 

16.38 (2.64) 

15.98 (2.83) MCI 

 Baseline 

 n LM AVLT BNT CF TA TB 

CN  809 10.79 

(4.21) 

7.19 

(3.79) 

27.89 

(2.36) 

20.07 

(5.25) 

34.22 

(10.84) 

85.76  

(38.74) 

        

MCI  381 5.18 

(3.61) 

2.02 

(2.66) 

25.50 

(4.05) 

15.97 

(4.81) 

45.79 

(21.81) 

130.64  

(70.01) 

 12-month follow-up 

 n LM AVLT BNT CF TA TB 

CN 735 12.06 

(4.54) 

7.37 

(4.07) 

28.39 

(1.97) 

20.28  

(5.17) 

33.35  

(10.40) 

84.70  

(41.84) 

        

MCI 381 4.42 

(3.88) 

1.47 

(2.64) 

25.67 

(4.80) 

15.38 

(5.51) 

46.94 

(23.42) 

136.56  

(77.10) 

 24-month follow-up 

 n LM AVLT BNT CF TA TB 

CN 691 12.97 

(4.18) 

7.72 

(4.13) 

28.44 

(2.11) 

20.53 

(5.31) 

32.14 

(10.87) 

82.77  

(40.35) 

        

MCI 241 4.75  

(3.95) 

1.36  

(2.29) 

25.95  

(4.43) 

15.32  

(4.93) 

44.42  

(24.12) 

119.78  

(64.30) 

Presents the average (standard deviation) age, education, and scores on cognitive testing for the 

subsample of participants who were cognitively unimpaired (CU) at baseline and those diagnosed with 

mild cognitive impairment (MCI) at baseline. The American National Adult Reading Test (ANART) 

was given at baseline only and the provided scores are the total errors on the test. The remaining 

cognitive tests were completed at baseline, a 12-month follow-up, and a 24-month follow-up. Means 

(standard deviations) are presented for each cognitive measure. The number of participants within each 

group at each visit is presented leftmost column. LM-Logical Memory; AVLT-Rey Auditory Verbal 

Learning Task; BNT-Boston Naming Test; CF-Category Fluency; TA-Trails A; TB-Trails B. 
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Table 10: Estimates for generalized estimating equation models within the subsample diagnosed 

as cognitively unimpaired at baseline 

 12 month follow-up 24 month follow-up 

 Unadjusted 

Age-Effect 

Practice 

 Effect 

Adjusted 

Age-Effect 

Unadjusted 

Age-Effect 

Practice 

Effect 

Adjusted 

Age-Effect 

LM +1.74* 

[1.4,2.1] 

+2.28* 

[1.5,3.1] 

-.54*  

[-.84,-.24] 

+1.13* 

[.83,1.4] 

+3.18* 

[2.2,4.2] 

-2.0* 

[-2.3,-1.7] 

AVLT +.74 

[-.11,1.6] 

+.98* 

[.38,1.6] 

-.30* 

[-.57,-.02] 

+.32 

[-.73,1.4] 

+.93* 

[.02,1.8] 

-.61* 

[-.90,-3.2] 

BNT +.44 

[-.12,1.0] 

+.46* 

[.09,.84] 

+.02  

[-.13,.16] 

+.08 

[-.46,.63] 

+.65* 

[.14,1.2] 

-.56* 

[-.73,-.39] 

CF +.72 

[-.44,1.9] 

+.96* 

[.07,1.9] 

-.19 

[-.54,.16] 

+.40* 

[.05,.75] 

+1.05 

[-.25,2.4] 

-.60* 

[-.97,-.23] 

Trails A +2.72 

[-.11,5.5] 

+3.81* 

[1.8,5.8] 

-.99* 

[-1.8, -.22] 

+1.29* 

[.32,2.3] 

+3.40* 

[.74, 6.1] 

-2.23* 

[-3.1,-1.4.] 

Trails B +11.6 

[-1.8,25.0] 

+12.94* 

[5.5,20.4] 

-1.42 

[-4.4,1.6] 

+6.87 

[-.07,13.8] 

+9.59* 

[-.15,19.3] 

-4.0* 

[-7.1,-.82] 

Presents beta coefficients [confidence intervals] for age-effects and practice effects (PEs) in 12 

generalized estimating equation (GEE) models. A positive number indicates an improvement in scores 

as compared to baseline as Trials A and Trails B have been reverse scored for ease of interpretation. 

The “Unadjusted Age-Effect” columns present results from the PE-unadjusted GEE models and 

demonstrate how scores at the 12-month and 24-month follow-up visits differ from baseline. The 

remaining columns present results from the PE-adjusted GEE models. The “Practice Effect” column 

provides the PE estimate, and the “Adjusted Age-Effect” presents the change over time in scores after 

correcting for PEs. Estimates significant at p<.05 have indicated with an “*”.Gray highlighting 

designates non-overlapping CI between the associated unadjusted age-effect and the adjusted age-

effect.  LM-Logical Memory; AVLT-Rey Auditory Verbal Learning Task; BNT-Boston Naming Task; 

CF-Category Fluency. 
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Table 11: Practice effect and time estimates for generalized estimating equations within a 

subsample diagnosed with mild cognitive impairment at baseline 

 12 month follow-up 24 month follow-up 

 Unadjusted 

Age-Effect 

Practice 

 Effect 

Adjusted 

Age-Effect 

Unadjusted 

Age-Effect 

Practice 

Effect 

Adjusted 

Age-Effect 

LM +.79 

[-1.9,3.5] 

+1.50* 

[.84,2.2] 

-.72 

[-1.1,-.35] 

+2.4 

[-.11,4.9] 

+3.50* 

[1.9,5.1] 

-1.0* 

[-1.5,-.52] 

AVLT +.07 

[-.21,.35] 

+.62* 

[.15,1.1] 

-.52 

[-.80,-.24] 

-.09 

[-.44,.26] 

+.80 

[-.16,1.8] 

-.89 

[-1.3,-.53] 

BNT +1.3 

[-.30,2.8] 

+1.01 

[.26,1.78] 

+.24 

[-.14,.62] 

-.58 

[-2.5,1.3] 

-.92 

[-2.7,.86] 

+.36 

[-.09,.81] 

CF +.99* 

[-9.6,2.9] 

+1.50 

[.62,2.4] 

-.54* 

[-1.0,-.03] 

-2.0 

[-4.4,.49] 

-.80 

[-3.0,1.4] 

-1.01* 

[-1.6,-.38] 

Trails A +5.96 

[-1.6, 13.5] 

+6.68* 

[2.2,11.1] 

-.57 

[-2.8,1.7] 

-.92 

[-4.0,2.2] 

-.90 

[-15.6,13.8] 

.00 

[-2.9,2.9] 

Trails B +26.30 

[-5.2, 57.8] 

+35.34* 

[21.7,49.0] 

-3.24 

[-10.0,3.6] 

+30.01 

[-1.2,61.2] 

+30.66* 

[2.2,59.1] 

+1.24 

[-6.9,9.3] 

Presents beta coefficients [confidence intervals] for age-effects and practice effects (PEs) in 12 

generalized estimating equation (GEE) models. A positive number indicates an improvement in scores 

as compared to baseline as Trials A and Trails B have been reverse scored for ease of interpretation. 

The “Unadjusted Age-Effect” columns present results from the PE-unadjusted GEE models and 

demonstrate how scores at the 12-month and 24-month follow-up visits differ from baseline. The 

remaining columns present results from the PE-adjusted GEE models. The “Practice Effect” column 

provides the PE estimate, and the “Adjusted Age-Effect” presents the change over time in scores after 

correcting for PEs. Estimates significant at p<.05 have indicated with an “*”.Gray highlighting 

designates non-overlapping CI between the associated unadjusted age-effect and the adjusted age-

effect.   LM-Logical Memory; AVLT-Rey Auditory Verbal Learning Task; BNT-Boston Naming 

Task; CF-Category Fluency. 
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Graph 1: Expected cognitive scores among participants who were unimpaired at baseline. The Y-

axis of each graph presents standardized scores for all 6 cognitive measures. The X-axis indicates the 

baseline (0), 12-month follow-up (1) and 24-month follow-up (2). The dark line provides estimates 

from the practice effect-unadjusted generalized estimating equation model; the red line presents 

estimates from the practice effect-adjusted model. Lines with negative slopes indicate that participants’ 

scores are worsening as they age. All participants in these models were diagnosed as cognitively 

unimpaired at baseline. Trails A and Trials B were reverse scored to ease interpretation. 
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Graph 2: Expected cognitive scores among participants diagnosed with mild cognitive 

impairment at baseline. The Y-axis of each graph presents standardized scores for all 6 cognitive 

measures. The X-axis indicates the baseline (0), 12-month follow-up (1) and 24-month follow-up (2). 

The dark line provides estimates from the practice effect-unadjusted generalized estimating equation 

model; the red line presents estimates from the practice effect-adjusted model. Lines with negative 

slopes indicate that participants’ scores are worsening as they age. All participants in these models 

were diagnosed with mild cognitive impairment at baseline. Trails A and Trials B were reverse scored 

to ease interpretation. 
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7. Integrated discussion 

 PEs interfere with our ability to detect changes in cognitive functioning. The overall goal 

of this dissertation was to investigate how PE-adjustment through the participant replacement 

method improves accuracy of longitudinal cognitive assessment. Paper 1 applied an adapted 

form of the replacement method for use in studies that did not specifically recruit matched 

replacement participants. The primary aims of this paper were to: use the method to calculate 

PEs in older adults who were CU at baseline; compare MCI incidence rates based on PE-

adjusted and PE-unadjusted scores; and to validate the PE-adjusted MCI diagnoses. A secondary 

aim of this paper was to demonstrate how PE-adjustment could lead to increased efficiency as 

well as monetary savings in a hypothetical AD drug trial. Paper 2 expanded upon the results in 

paper 1 by applying the method in individuals with MCI at baseline. The goals of the project 

were to: quantify PEs in a sample of impaired individuals; assess how PEs impact MCI reversion 

rates and stability; and to determine if PE-adjustment alters the association between diagnostic 

group and later dementia. Paper 3 combined GEE models and the pseudo-replacement approach 

to simultaneously calculate decline over time and PEs across 3 visits (baseline, 1 year, 2 years). 

The goals of this project were to: determine if PEs are significant across multiple time points; 

assess if PEs decline across visits when simultaneously modeled with change over time; and to 

determine if PE adjustment significantly alters estimates of decline over time.  

The first project found non-zero PEs using the pseudo-replacement method across a 1-

year retest interval on 5 of 6 cognitive measures. Although these PEs were small in magnitude 

(Cohen’s d range: .08 to .24), accounting for PEs when making follow-up diagnoses led to a 

significant increase in the incidence of MCI (+19%; 104 vs 124). Unlike prior studies, I was then 

able to validate these results through biomarker analyses. I  demonstrated that there was an 
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increased proportion of amyloid-positive MCI cases (+14%; 51 vs 58) when using PE-adjusted 

vs PE-unadjusted follow-up scores. Moreover, after adjusting for PEs, there was a decrease in 

amyloid-positive CU subjects (-5%; 152 vs 145). These biomarker analyses provided necessary 

criterion validity for diagnoses created with PE-adjusted data.  

Using recruitment data from the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s 

Disease (A4) Study I demonstrated that adjusting for PEs can result in substantial financial 

savings -in the range of several millions of dollars- for an AD clinical drug trial even with the 

additional cost required for replacement participants. More than just a budgetary issue, these 

results showed that studies and clinical trials that incorporate the replacement method of PE 

adjustment can increased their statistical power, partly because they result in earlier detection of 

MCI. This substantially reduced the number of individuals that are needed for initial screening, 

amyloid PET, and enrollment in the study. Earlier detection of MCI incidence also means that 

study duration can be reduced, which would meaningfully reduce staff and subject burden, and 

might also reduce dropout rates. In summary, the first project contributed to the literature by 

validating PE-adjusted MCI diagnoses via biomarker positivity and showing that the replacement 

method leads to earlier detection of progression to MCI. It also provided quantitative estimates 

of the beneficial effects that this would have on studies with progression to MCI as an outcome. 

In addition, it also demonstrated the viability of a pseudo-replacement method of PE-adjustment. 

The second paper expanded the analyses to a subsample of ADNI participants that were 

already diagnosed with MCI at baseline. Similar to the first paper, I found non-zero PEs for 5 of 

6 measures (Cohen’s d range: .06-.26). Adjusting for PEs led to a significant increase in the 

proportion of participants diagnosed as MCI at follow-up as compared to diagnoses based on PE-

unadjusted scores (+9%; 249 vs 272). As all participants were diagnosed with MCI at baseline, 
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retention of MCI at follow-up meant a reduction in reversion rates (-29%; 57 vs 80 reverters). 

This implies that adjusting for PEs improved the stability of the MCI diagnoses, addressing a 

primary concern of those critical of MCI as a diagnostic entity (Canevelli et al., 2016; Pandya et 

al., 2016).  Skeptics of MCI also comment on how reversion rates impact progression to 

dementia analyses (Canevelli et al., 2016; Pandya et al., 2016). I found that false reverters (those 

diagnosed as CU by PE-unadjusted scores but MCI by PE-adjusted scores) progressed to 

dementia at approximately the same rate as individuals who were classified as MCI at both time 

points (i.e., stable MCI). In contrast, those who were classified as CU based on PE-adjusted 

diagnoses at follow-up (i.e., true reverters) progressed to dementia more slowly than the false 

reverters. These results are consistent with the notion that misclassification of these false 

reverters, caused by the failure to account for PEs, is weakening the predictive ability of MCI. 

Similar to the first paper, I also conducted post-hoc analyses to highlight the importance of 

adjusting for PEs. I compared hazard models to investigate how PE adjustment improves the 

association of MCI with later progression to dementia. Our models indicate that use of PE-

adjusted scores at the 12-month follow-up visit resulted in an approximate 2-fold increase in 

hazard ratios. The greatest change in hazard ratios was seen in models covering a shorter time 

frame (i.e., 12-24 months from baseline) as compared to the full model (i.e., 12-150 months from 

baseline). This finding is significant because most clinical trials have study intervals much less 

than 150 months (e.g., the A4 study). In summary this project found PEs among individuals who 

were diagnosed with MCI at baseline. Accounting for these PEs at the 12-month follow-up visit 

significantly reduced reversion rates, increased MCI stability, and doubled the association with 

subsequent progression to dementia.  
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 The third project expanded the pseudo-replacement method of PE-adjustment for use 

across multiple time points. Using GEE I found significant PEs at a 12-month and 24-month 

follow up visits in two subsamples (CU or MCI at baseline). Specifically, within a sample that 

was CU at baseline, there were significant PEs effects for all measures at the first retest (12-

month visit) and significant PEs on 5 of 6 measures at the second retest (24-month visit). Within 

the sample that was MCI at baseline, PEs were significant for 4 of 6 measures at the first retest 

and 2 of 6 measures at the second retest. Importantly, using this method I found that with re-

testing at 1-year intervals the PEs at the second follow-up were in some cases larger than the PEs 

at the first follow-up. For example, the PE on Logical Memory was about 1 point higher at the 

second follow-up within the CU sample (2.3 vs 3.2), and around 2 points higher in the MCI 

sample (1.5 vs 3.5). These results are in contrast to a well-documented argument that PEs decline 

over time, particularly after the first retesting (Goldberg et al., 2015; Heilbronner et al., 2010; 

Vivot et al., 2016). However, there are a small number of studies suggesting that this trend is not 

consistent (Calamia et al., 2012; Wilson, Watson, Baddeley, Hazel, & Evans, 2000) . The 

findings in the present study indicate that simultaneously modeling PEs and age- or pathology-

related decline does help to clarify the cognitive trajectories, including trajectories of PEs.  

The combination of the replacement method and GEE models allowed for simultaneous 

consideration of PEs and age/pathological change over time. As part of the third paper, I 

compared sets of analyses that included and excluded PEs to investigate how consideration of 

PEs impacts longitudinal studies. Among the CU baseline sample, the PE-unadjusted analyses 

demonstrated stable or significantly improved scores across both follow-ups. In contrast, the PE-

adjusted models found stable or significantly decreased scores across visits, with a greater 

decline at the second retest. Therefore, I found that scores tended to stay the same or increase 
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when PEs were ignored. If this trend accurately reflects cognitive ability, that would mean that 

this sample of older adults is improving their cognitive ability over 2 years. While possible, this 

interpretation is highly unlikely given that the parent study, ADNI, recruited participants that 

were  similar those in AD clinical drug trials and had a higher-than-average risk for 

neurodegeneration (Petersen et al., 2010). It would also mean that similar levels of performance 

would be observed on other tests in the same cognitive domains.  However, as Goldberg et al. 

note, such transfer of training is not generally observed (Goldberg et al., 2015).  In contrast, 

when including PEs, there was a negative change in scores across visits that in many cases had 

non-overlapping confidence intervals with analyses that did not adjust for PEs. There was 

considerably more heterogeneity in estimates within the MCI baseline sample, partly due to floor 

effects. As a result, many of the change-over-time variables were nonsignificant in the GEE 

models. However, the overall pattern was similar to that of the CU sample; when adjusting for 

PEs, there was generally a decline in scores across time while PE-unadjusted models typically 

found stable or improved scores across time.  

Taken together, these findings highlight the importance of considering PEs, and using the 

replacement method, when completing longitudinal studies, particularity with populations that 

are expected to decline over time (Salthouse, 2010, 2019).  The primary finding of this research 

is that this particular method of accounting for PEs leads to earlier diagnosis, even if there is a 

group-level decline in cognitive ability. I also found that the method applies to samples that are 

CU or MCI at baseline, and that accounting for PEs can improve the stability and predictive 

utility of MCI diagnoses. Although some prior work has investigated this method (Ronnlund et 

al., 2005; Sanderson-Cimino et al., 2022), this work was the first to validate the early PE-

adjusted diagnoses, which was accomplished via biomarkers and progression to dementia data.  
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Early and valid diagnoses are paramount to our advancement of research and clinical 

treatment of atypical aging (Albert et al., 2011; J. Eppig et al., 2020; Manly et al., 2008; Mitchell 

& Shiri‐Feshki, 2009; Pandya et al., 2016; Thomas et al., 2020). Importantly, to my knowledge, 

no other method of estimating PEs can alter how early a diagnosis can be made. With respect to 

research, ignoring PEs hampers our ability to separate cases from controls or to accurately track 

cognitive change. This type of PE-adjustment becomes a data correction tool to improve the 

accuracy of cognitive diagnoses and data. As diagnostic groups and cognitive scores are basic 

components or outcome measures of most aging research, these small PE-adjustments can have 

significant downstream effects on everything from biomarkers to study duration (Sanderson-

Cimino et al., 2021; Sanderson-Cimino et al., 2022).  

I believe that this work strongly supports the idea that it is ideal for aging studies to 

include replacement participants in their original design.  However, I also demonstrated that the 

method can be adapted to large studies that did not specifically recruit replacement participants 

or that had multiple follow-up visits. Although this project utilized a method that is not viable for 

clinical care of individuals, it does suggest that clinicians should strongly consider PEs when 

making diagnoses. As the field considers the current state of normative data (Byrd & Rivera-

Mindt, 2022) and there is a strong push for repeated assessments, particularly via computerized 

this dissertation testing (Jutten et al., 2022; Stricker et al., 2020), this study strongly suggests that 

PEs need to be considered. Moreover, I found that PEs may not decrease across time as is 

typically claimed in both research and clinical practice (Goldberg et al., 2015; Heilbronner et al., 

2010; Vivot et al., 2016). This claim is likely based on the idea that PEs only exist if there is an 

increase in scores over time. As I have demonstrated through this series of studies, this 

assumption is less applicable in studies where samples are expected to decline over time. Indeed, 
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I provided evidence that PEs for episodic memory may actually increase after the first follow-up 

assessment. Therefore, it is likely to be beneficial for clinical practice to develop norms for PEs 

form a diverse range of individuals retested at clinically-relevant intervals (e.g., at  6- and 12-

month follow-ups). Although this may be seen as a time-consuming endeavor, the findings in 

these 3 projects suggest that the scientific and financial benefits likely outweigh the costs.  

8. Strengths and limitations 

This study was completed within ADNI, a sample that is primarily of white and highly 

educated. They are also simultaneously healthier (e.g., cardiovascular health) and at greater risk 

for dementia that the typical American. Thus, the results of these studies may not translate to 

other studies. Additionally, PEs are known to vary based on many factors including age, 

education, and retest interval(Calamia et al., 2012). They also differ across assessment measures, 

even for those within the same cognitive domain(Elman et al., 2018). It is not recommended that 

the PE estimates provided by this research be used by other studies. However, this is not a 

limitation of the method per se because the PE adjustment methods that I have applied are 

designed to be utilized by any study with sufficient sample size. It is possible to match 

replacements on nearly any factor, including biomarkers and health factors. As such, while the 

exact PEs should not be used by other studies, the method is still viable because it always 

produces tailor-made PE estimates based on that sample’s unique features. That is, the method 

requires that returnees and replacements are always matched on demographics, specific tests, and 

retest intervals. I am, for example, implementing the method in ongoing research in other 

samples with very different designs and demographics.  I applied the method to an 

epidemiological, population-based cohort study focused on characterizing cardiovascular risk 

factors among individuals who self-identified as Hispanic or Latino in the United States 
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(HCHS/SOL). Participants in that study were matched at baseline on cardiovascular health and 

PEs were found after a 7-year retest interval. The method has also been utilized within a separate 

older adult sample that completed the Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS) annually for 5 years.  

9. Conclusion 

In summary, these papers comment on the importance of cognitive PEs, particularly 

within studies of cognitive aging. This is the first series of studies to demonstrate that the 

replacement method of PE-adjustment can lead to earlier diagnoses of MCI and can improve the 

stability of MCI diagnoses. These results validated the replacement method of PE adjustment by 

showing greater biomarker positivity and increased progression to dementia analyses in MCI 

cases. Integration of the GEE into this method revealed that PEs can actually increase after the 

first retesting. Also, the models using GEE confirmed that inclusion of PEs can uncover sharper 

age- or pathology-related decline, even if the sample appears to have worsening cognitive 

performances over time. These biomarker analyses, in combination with a hypothetical clinical 

drug trial, illustrated how PEs have significant downstream effects within any study utilizing 

cognitive data. The findings showed that implementing the replacement method could save 

millions of dollars and substantially reduce study duration as well as staff and participant burden 

in a clinical trial. Moving forward, this research should be replicated in a more diverse sample 

and include additional follow-up visits. Regarding clinical contributions, this work suggests that 

the field would benefit from the development of PE-adjusted normative data for clinically useful 

retest intervals.   
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