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Surface topography profoundly influences cell adhesion, differ-
entiation, and stem cell fate control. Numerous studies using a
variety of materials demonstrate that nanoscale topographies
change the intracellular organization of actin cytoskeleton and
therefore a broad range of cellular dynamics in live cells. However,
the underlying molecular mechanism is not well understood,
leaving why actin cytoskeleton responds to topographical features
unexplained and therefore preventing researchers from predicting
optimal topographic features for desired cell behavior. Here we
demonstrate that topography-induced membrane curvature plays
a crucial role in modulating intracellular actin organization. By
inducing precisely controlled membrane curvatures using engi-
neered vertical nanostructures as topographies, we find that actin
fibers form at the sites of nanostructures in a curvature-dependent
manner with an upper limit for the diameter of curvature at
∼400 nm. Nanotopography-induced actin fibers are branched actin
nucleated by the Arp2/3 complex and are mediated by a curvature-
sensing protein FBP17. Our study reveals that the formation
of nanotopography-induced actin fibers drastically reduces the
amount of stress fibers and mature focal adhesions to result in
the reorganization of actin cytoskeleton in the entire cell. These
findings establish the membrane curvature as a key linkage be-
tween surface topography and topography-induced cell signaling
and behavior.

surface topography | membrane curvature | nano–bio interface |
actin polymerization | F-BAR proteins

Extensive experimental studies have shown that surface topog-
raphy on the scale of tens of nanometers to a few micrometers

markedly influences stem cell differentiation, cell adhesion, mi-
gration, and host–implant integration (1–4). For example, nano-
topography has been demonstrated to enhance the differentiation
of human mesenchymal stem cells (5, 6), steering neural stem cells
toward neuronal lineage (7, 8), and modulating macrophage ac-
tivities (9). Actin cytoskeleton, an essential component involved in
many cellular behaviors, has been reported to be significantly af-
fected by surface topography. Dense and nanoscale pillar struc-
tured topographies were shown to reduce the total amount of long
actin stress fibers in cells (10–12). Sparse nanostructures were
shown to induce local accumulation of actin fibers in a variety of
cell types (13–16).
Despite numerous efforts, the underlying molecular mechanisms

of why nanotopography induces actin reorganization remain
unclear. Several hypotheses have been proposed, which include
the nanofabrication process changing the surface chemistry
(17), nanotopography increasing the surface area (18–20), or
the 2D organization of topographic features leads to disconti-
nuities and clustering of adhesion ligands (21, 22). However,
more studies over the years contest these hypotheses by showing
that the size and the local shape of topographic features signifi-
cantly affect cellular responses (3, 23, 24). Up to date, the precise
sets of topographic cues that elicit actin reorganization are yet to
be determined.

Electron microscopy and fluorescence studies show that nano-
structures protruding from the substrate surface induce membrane
wrapping in 3D and thus generate local curvatures on the
plasma membrane (25–27). Our recent study shows that these
nanotopography-induced membrane curvatures can be recognized
by intracellular curvature-sensing proteins to significantly enhance
clathrin-dependent endocytosis (28). In the same study, we found
that filamentous actin (F-actin) accumulated strongly at the nano-
topography locations, a phenomenon also observed in previous
studies (15). However, it is unclear whether F-actin accumulation is
induced by local membrane curvatures either through clathrin-
dependent endocytosis or through other molecular mechanisms.
In this work, we aim to elucidate the molecular mechanisms of

topography-induced actin reorganization in cells. Using precisely
engineered topographic nanostructures, we demonstrate that
nanoscale topographies induce local accumulations of actin fil-
aments in a curvature-dependent manner. We further show that
topography-induced membrane curvatures are recognized by
intracellular curvature-sensing protein FBP17, which induces the
formation of branched F-actin through N-WASP, Cortactin, and
Arp2/3. The curvature-mediated actin polymerization results in
whole-cell reorganization of actin fibers and significantly reduces
the amount of stress fibers and mature focal adhesions.

Results and Discussion
Nanotopography Induced F-Actin Accumulation Is Curvature Dependent.
Arrays of SiO2 nanopillars with well-defined geometry (diameter
of 100 to 1,000 nm, height of 1 to 2 μm, and interpillar distance of
2 to 5 μm) are fabricated using top-down e-beam lithography
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(EBL) and reactive ion etching on SiO2 substrates (Fig. 1A).
Here, the surface chemistry is identical across both the nano-
structures and flat areas as they are made of the same material
and processed through the same chemical procedure. When
U2OS cells are cultured on nanopillar substrates, their plasma
membranes wrap around nanopillars as shown by both scanning
electron microscopy (SEM) (Fig. 1B) and focused ion beam
(FIB)/SEM in our previous study (25). Therefore, vertical
nanopillars induce local membrane curvatures with a curvature
value determined by the nanopillar diameter (29). The largest
contribution to membrane curvature is from tight wrapping
around the sidewall, which has a 10 times larger area than the
top. Confocal fluorescence imaging of U2OS cells transfected
with Lifeact-RFP (an F-actin marker) shows that F-actin dis-
tributes along the sidewall and the top of nanopillars (SI Ap-
pendix, Fig. S1A). F-actin visualized by phalloidin staining shows
significant accumulation at nanopillars of 3 different diameters
(arrowheads in Fig. 1C) compared to the surrounding flat area.
To study the effect of different membrane curvatures on F-

actin accumulation within the same cell, we engineered a gra-
dient array with nanopillar diameters ranging from 100 nm to
1,000 nm (Fig. 1D and SI Appendix, Fig. S1C). For a single U2OS

cell covering a range of nanopillar diameters, F-actin accumu-
lation is often stronger on small nanopillars than on larger ones
in the same cell (Fig. 1E). We note that a vertical nanopillar
presents an increased membrane area in a projected 2D fluores-
cence image, and thus the enhanced F-actin signal at nanopillar
locations could be due to the increased actin cortex associated
with the projected plasma membrane area. To quantify the dif-
ferences on nanopillars of different diameters, we separately av-
eraged the fluorescence signals of F-actin and GFP-CAAX, a
plasma membrane marker, over hundreds of nanopillars for each
diameter (Fig. 1F and SI Appendix, Fig. S1D–F). Both F-actin and
GFP-CAAX appear as rings on large-diameter nanopillars and
dots on small-diameter ones due to the diffraction limit of the
light. Above 400 nm, the normalized F-actin signal by the GFP-
CAAX signal stays relatively constant as the nanopillar diameter
increases further (Fig. 1G), suggesting that the F-actin rings
around large nanopillars are likely due to the increased membrane
area at nanopillar locations. In contrast, as the nanopillar di-
ameter decreases from 400 nm to 100 nm, the normalized F-actin
signal increases significantly. This trend is preserved when using
the supported lipid bilayer as the reference for surface area (SI
Appendix, Fig. S1 G and H). The increased F-actin accumulation
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Fig. 1. Vertical nanostructure-induced actin polymerization is curvature dependent. (A) An SEM image of a vertical SiO2 nanopillar array with 2-μmheight, 3-μm
center-to-center distance, and 400-nm diameter. (B) An SEM image shows the deformation of the plasma membrane by nanopillars. (C) Phalloidin staining
shows F-actin accumulation around vertical nanopillars with 200-, 450-, and 700-nm diameters. The height and center-to-center distance of the nanopillars are
2 μm and 4 μm, respectively. (D) An SEM image of a U2OS cell cultured on a gradient nanopillar array covering a range of nanopillar diameters. (E) On a
gradient nanopillar array, phalloidin staining shows stronger F-actin accumulation on small-diameter nanopillars than large ones (1 versus 2) in the same cell.
(F) The average images of brightfield, F-actin, and GFP-CAAX on nanopillars with 33 different diameters, from the largest to the smallest. n = 235 to 452 (see
SI Appendix, Table S1 for detailed statistics). (G) F-actin signal normalized by the GFP-CAAX signal increased when the nanopillar diameter decreases below
400 nm. (H, Left) An SEM image of a nanobar with 200-nm width, 2-μm length, and 1-μm height. (H, Right) A schematic illustrates 2 different vertical
membrane curvatures: high curvatures at the ends and flat curvature along the sidewalls of a nanobar. (I) An SEM image of a U2OS cell cultured on nanobar
arrays outlines the top cell membrane deformed by nanobars. (J) A U2OS cell cotransfected with Life-RFP and GFP-CAAX shows that Lifeact-RFP accumulates
on the nanobar ends while GFP-CAAX distributes relatively evenly along the length of the same nanobar (arrowheads). (K) Quantified nanobar end-to-side
ratios for Lifeact-RFP and GFP-CAAX, n = 438 nanopillars for both proteins. Welch’s t test (2 tailed, unpaired, assuming unequal SD). Error bars represent SEM.
(G and K). (Scale bars, 2 μm [A], 5 μm [B and D], 10 μm [C, E, I, and J], and 1 μm [H].)
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at small-diameter nanopillars indicates that actin polymerization is
correlated with high membrane curvature. Detailed statistics are
listed in SI Appendix, Table S1. We note that the SD is always
large despite measuring many nanopillars and cells. This is be-
cause F-actin accumulations are highly dynamic (discussed later)
and only appear on a subset of nanopillars at any given time. We
use SD of the mean to indicate the confidence of averaged values.
To further verify the curvature dependence of F-actin accu-

mulation, we engineered nanobars (2,000-nm length, 200-nm
width, 1,000-nm height, and 5,000-nm spacing) that induce 2
different vertical membrane curvatures—high curvature at the
bar ends and low curvature along the sidewalls (Fig. 1H). When
cultured on nanobar arrays, U2OS cells wrap around the side-
walls of nanobars (Fig. 1I), which is shown in a FIB/SEM in-
vestigation of the interface (SI Appendix, Fig. S1B). To visualize
F-actin and the plasma membrane simultaneously, U2OS cells
were cotransfected with a F-actin marker Lifeact-RFP and a
membrane marker GFP-CAAX. Lifeact-RFP accumulates strongly
at nanobar ends, whereas GFP-CAAX distributed relatively evenly
along the entire length of the same nanobar in the same cell (ar-
rowheads in Fig. 1J). Similar to what is observed on nanopillars,
there is usually a large variation in F-actin responses to individual
nanobars even in the same cell. By calculating the averaged intensity
ratio between the nanobar end and sidewalls from 438 nanobars, we
show that Lifeact-RFP gives a strong preference to the nanobar
end, while GFP-CAAX shows little preference (Fig. 1K). It con-
firms that F-actin accumulation on nanostructures is strongly cor-
related with the value of the membrane curvature. In the following
studies, we used nanopillars of 200-nm diameter and nanobars of
200-nm width, both of which induce strong curvature-dependent F-
actin polymerization.

Membrane Curvature Induces the Formation of Branched F-Actin
Nucleated by the Arp2/3 Complex. Actin polymerization is mainly
initiated by 2 types of actin nucleators: the Arp2/3 complex and
formins (Fig. 2A). The Arp2/3 complex induces the formation of
branched F-actin while formins promote the growth of linear F-
actin (30). When U2OS cells were transfected with Arp3-GFP, a
subunit of the Arp2/3 complex, we observed distinct local accu-
mulation of Arp3-GFP at the ends of nanobars with very little
signal along the sidewalls (Fig. 2B). A similar distribution of
endogenous Arp2/3 complex with a strong bias toward the ends
of nanobars is also observed by anti-Arp2/3 immunostaining in
untransfected cells (SI Appendix, Fig. S2A). In sharp contrast to
Arp3, mDia1-Emerald and mDia2-Emerald, 2 members of the
formin family proteins, show no preferential accumulation at the
ends of nanobars (Fig. 2C and the corresponding full images in
SI Appendix, Fig. S2B).
Moreover, Arp2/3 nucleation promoting factors, N-WASP and

Cortactin (31) also exhibit curvature-dependent accumulation at
the end of the nanobars (Fig. 2D and the corresponding full
images in SI Appendix, Fig. S2C), which show much higher end-
to-side ratio than the membrane control (mCherry-CAAX) does
(Fig. 2E). We note that the visibly higher end-to-side ratio of
Arp3-GFP, N-WASP-GFP, and GFP-Cortactin in comparison to
mCherry-CAAX were always confirmed in the same batch of
cotransfection experiments, but the quantified values for the
same protein vary from experiment to experiment due to large
variations in protein expression levels. Cotransfection of Arp3-
GFP, N-WASP-GFP, or GFP-Cortactin with Lifeact-RFP shows
that all 3 proteins strongly colocalize with F-actin on nanopillars
(Fig. 2 F–H). The spatial preference of Arp2/3, N-WASP, and
Cortactin on the ends of nanobars and their colocalization with
F-actin suggests that Arp2/3-nucleated branched actin, rather

Arp3-GFP mDia1-Emerald mDia2-Emerald

GFP-Cortactin N-WASP-GFP mCherry-CAAX

Arp2/3

Formin

Branched F-actin

Unbranched F-actin

Actin

0.0 0.5 1.0 1.5

mCherry-CAAX
GFP-Cortactin

N-WASP-GFP

Arp3-GFP

Nanobar End to Side Ratio

****

Arp3-GFP

Brightfield

Arp3-GFPLifeact-RFP GFP-CortactinLifeact-RFP N-WASP-GFPLifeact-RFP

A

C

D

F G H

E

B

Fig. 2. Nanostructure-induced F-actin is branched F-actin nucleated by Arp2/3. (A) A schematic illustration of actin nucleators, Arp2/3 and formin, involved in
polymerizing branched and linear actin filaments, respectively. (B) Live-cell imaging shows that Arp3-GFP strongly accumulates at the ends of nanobars
(arrowheads). (C) Zoomed-in fluorescence images of Arp3-GFP, mDia1-Emerald, or mDia2-Emerald in U2OS cells show that only Arp3-GFP accumulates at the
ends of nanobars (see SI Appendix, Fig. S2B for the full images). (D) Zoomed-in fluorescence images of GFP-Cortactin, N-WASP-GFP, and mCherry-CAAX show
strong accumulation of GFP-Cortactin and N-WASP-GFP to the ends of nanobars (see SI Appendix, Fig. S2C for the full images). (E) Quantification of the
nanobar-end-to-side ratio for Arp3-GFP, N-WASP-GFP, GFP-Cortactin, and mCherry-CAAX, n = 789 to 2,746 nanobars (see SI Appendix, Table S2 for detailed
statistics). (F–H) Live-cell fluorescence images of cotransfected cells show that F-actin marker Lifeact colocalizes with Arp3 (F), Cortactin (G), and N-WASP (H).
Welch’s t test, P value indicated in E, ****P < 0.0001; error bars represent SEM. (Scale bars, 10 μm [B] and 2 μm [C and D].)
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than formin-nucleated linear actin, accumulates on nanostructures
in a curvature-dependent manner.

Nanostructure-Induced F-Actin Accumulation on Nanostructures Is
Highly Dynamic. In cells, F-actin usually undergoes rapid assembly
or disassembly in order to afford cell adhesion, migration, mor-
phogenesis, or force generation. Here, we show that nanostructure-
induced F-actin accumulation also exhibits fast dynamics. As
shown in Fig. 3A, the kymograph of Lifeact-RFP exhibits char-
acteristic “blinking events” on nanopillars, indicating that F-actin
on nanopillars is not stationary but constantly depolymerizes and
repolymerizes in a time-dependent manner. The dynamic on–off
behavior of F-actin accumulation is apparent on small nanopillars
(Movie S1). On the other hand, the F-actin rings around large
nanopillars are relatively stable, agreeing with the notion that the
F-actin rings around large nanopillars are of a different process and
likely due to the increased membrane area around large nano-
pillars. Quantitative analysis of Lifeact-RFP dynamics indicates
that F-actin assembles and disassembles with a frequency of ∼0.4/min
(Fig. 3C). Single cell measurements show that drug inhibition of
Arp2/3 using inhibitor CK666 significantly reduces the dynamic
fluctuations of F-actin on nanopillars (Fig. 3C). In contrast, a
formin FH2 inhibitor SMIFH2 did not perturb F-actin dynamics
on nanopillars (Fig. 3D).
Furthermore, Arp2/3, N-WASP, and Cortactin also exhibit

highly synchronized dynamic with F-actin on nanopillars (Fig. 3

E and F and Movies S2–S4). On the other hand, neither mDia1-
Emerald nor mDia2-Emerald shows observable accumulations
or dynamic fluctuations on nanopillars. The dynamic correlation
between F-actin and actin-related proteins on nanopillars was
further evaluated by using Pearson correlation coefficients (Fig.
3G). The correlation coefficients between Lifeact-RFP and
Arp3-GFP (0.68 ± 0.02, SEM), GFP-Cortactin (0.69 ± 0.02), and
N-WASP-GFP (0.54 ± 0.02) indicate high-level correlation. On
the other hand, mDia1-Emerald (0.04 ± 0.02) and mDia2-Emerald
(0.09 ± 0.01) show very little correlation. The temporal correlation
of F-actin with Arp3, N-WASP, and Cortactin further confirms
the involvement of these proteins in nanotopography-induced F-
actin assembly.

Curvature Sensing Protein, FBP17, Mediates the Branched F-Actin
Formation at Nanotopography-Induced Membrane Curvatures. Nei-
ther Arp2/3 complex nor its nucleation promoting factors are
known to recognize membrane curvatures. Their connecting
factor is the key to understand the underlying molecular mech-
anism of the topography-triggered F-actin formation. Here, we
hypothesize that curvature-sensitive BAR proteins (32) can serve
the role of bridging actin polymerization with membrane cur-
vature. In mammalian cells, the Toca F-BAR family, including
FBP17, Toca-1, and CIP4, are known to contain an N-terminal
F-BAR domain that senses membrane curvature, and a C-
terminal SH3 domain that interacts with N-WASP and cdc42
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Fig. 3. Curvature-dependent F-actin accumulation on nanostructures is highly dynamic. (A, Left) A time-lapse image of a cell transfected with Lifeact-RFP
(Movie S1). (A, Right) A kymograph plot shows that Lifeact-RFP signals on nanopillars repeatedly appear and disappear. (B) Representative trajectories of F-
actin dynamics before and after CK666 treatment. (C) Kinetic analysis shows that F-actin dynamics on nanopillars are significantly reduced by Arp2/3 inhibitor
CK666. (D) A formin inhibitor SMIFH2 does not alter F-actin dynamics on nanopillars. (E and F) Time-lapse images of Lifeact-RFP with Arp3-GFP, Lifeact-RFP
with GFP-Cortactin, and Lifeact-RFP with N-WASP-GFP on individual nanopillars with 15-s time interval show correlated dynamic fluctuations. (G) The
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(33) to modulate actin cytoskeleton (34, 35) (Fig. 4A). A previous
in vitro study indicates that they are able to induce curvature-
dependent F-actin assembly on vesicle membranes (36). There-
fore, we hypothesized that these proteins recognize the topography-
induced membrane curvatures to induce F-actin accumulation
on nanostructures.
Three Toca family proteins GFP-FBP17, Toca1-GFP, or CIP4-

GFP were all shown to accumulate at the ends of nanobars similar
to Arp2/3 complex, Cortactin, and N-WASP (Fig. 4B and SI
Appendix, Fig. S3 A and B). The accumulation is often more
pronounced under the nucleus due to the lower fluorescence
background inside the nucleus, and high protein expression in-
duces tubule formation (37). For the following studies, we focus
on widely expressed FBP17 that also shows the strongest re-
sponse among the 3 members. We further confirmed the cur-
vature response of FBP17 using wedged nanobars which are
narrow (high curvature) at one end and wide (low curvature) at
the other end (Fig. 4C). GFP-FBP17 has a much higher fluo-
rescence intensity at the narrow end than the wide end on the
same nanobar (Fig. 4 D and E).
Taking advantage of the gradient geometry generation by EBL

fabrication, we quantitatively probed the range of curvature values
that can induce FBP17 accumulation using gradient nanobar arrays

with the bar width varying from 100 nm to 1,000 nm (Fig. 4F).
The width of each nanobar determines the curvature value at its
ends. To corroborate the transient transfection studies used in
Fig. 4 B and D, we used anti-FBP17 immunostaining to probe the
spatial distribution of endogenous FBP17. The averaged nano-
bar images of different widths show that endogenous FBP17
accumulates strongly to the 2 ends of nanobars with a width
smaller than 400 nm, but do not show an obvious response to a
width of 500 nm or above (Fig. 4G). The curvature threshold for
FBP17 accumulation is similar to that for F-actin. The trend is
more clearly shown in the quantitative analysis in Fig. 4H.
The role of FBP17 is validated by constructing a truncated FBP

mutant (FBP17ΔSH3), which contains the curvature-sensing F-
BAR domain but not the C-terminal SH3 domain for inducing
actin polymerization (Fig. 5A). Spatial distribution of both GFP-
FBP17 and mCherry-FBP17ΔSH3 show preferential accumulation
on the ends of nanobars (Fig. 5B), indicating that FBP17ΔSH3
maintains the ability to recognize nanostructure-induced plasma
membrane curvature (Fig. 5C).
Interestingly, overexpression of mCherry-FBP17ΔSH3 abolishes

the nanostructure-induced F-actin accumulation on nanopillars and
nanobar ends. As shown in Fig. 5D, U2OS cells cotransfected with
GFP-FBP17 and Lifeact-RFP show clear accumulation of both
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GFP-FBP17 and Lifeact-RFP at the ends of nanobars. On the
other hand, in cells transfected with mCherry-FBP17ΔSH3, the
preferential accumulation of Lifeact-GFP at the same locations
are largely eliminated (Fig. 5E). Quantitative analysis shows
that the nanobar end-to-side ratio of Lifeact in mCherry-
FBP17ΔSH3 transfected cells is significantly lower than that
of GFP-FBP17 transfected cells (Fig. 5F). The decrease of F-
actin intensity on nanopillars positively correlates with the ex-
pression level of FBP17ΔSH3 (SI Appendix, Fig. S3 C and D).
Similarly, the reduction of Arp2/3 at nanobar ends was also
observed in cells overexpressing mCherry-FBP17ΔSH3 (Fig. 5
G and H and the corresponding full images in SI Appendix, Fig.
S4). These results indicate that the accumulation of FBP17ΔSH3
on membrane curvatures interferes with nanostructure-induced
activation of Arp2/3 complex and prevents F-actin polymerization.

Nanostructure-Induced F-Actin Polymerization Reduces the Formation
of Actin Stress Fibers and Mature Focal Adhesions. Actin polymeri-
zation is involved in many cellular processes. Our previous study
shows that nanostructure-induced membrane curvature en-
hances clathrin-mediated endocytosis (28), so we examine
whether F-actin assembly at nanostructures is related to the
endocytosis process. Inhibiting clathrin-mediated endocytosis by
Pitstop 2 does not significantly affect F-actin accumulation or its
dynamic fluctuations on nanopillars (SI Appendix, Fig. S5 A–C)
Similarly, the spatially biased accumulation toward the ends of
nanobars persists after Pitstop 2 treatment (SI Appendix, Fig. S5

D and F). When the nanostructure-induced F-actin accumula-
tion is blocked by overexpression of mCherry-FBP17ΔSH3, the
preference of the clathrin-adaptor protein AP2-GFP toward
the ends of nanobars is reduced but does not fully disappear
(SI Appendix, Fig. S5 E and G). This result suggests that
nanostructure-induced F-actin is not exclusively involved in the
endocytosis process.
In addition to endocytosis, we also probed how nanostructure-

induced formation of branched F-actin affects the formation of
linear F-actin stress fibers and their associated focal adhesion
complexes, which are essential for mechanotransduction, cell
adhesion, contraction, and migration. For this purpose, we ex-
amined the cellular distribution of F-actin and 3 core protein
components of mature focal adhesions, vinculin, paxillin, and
Myosin II. The results show that, unlike F-actin that preferentially
accumulates at the ends of nanobars, vinculin, paxillin, and My-
osin IIb show very little signal either at the ends or along the
sidewalls of nanobars (Fig. 6 A and B). Occasionally, vinculin and
paxillin show weak fluorescence signal on nanobars, but there is no
preference to the ends. Therefore, nanostructure-induced F-actin
fibers do not appear to participate in mature focal adhesions.
When stained by phalloidin and anti-paxillin, cells cultured on

flat areas show a network of long and straight stress fibers whose
ends colocalize with large paxillin patches of similarly oriented
and elongated focal adhesions (Fig. 6C). On the other hand, cells
cultured on nanopillar areas show very different F-actin patterns
with clear accumulation around nanopillars, illustrating the regularly
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spaced arrays but much fewer stress fibers. Paxillin staining also
shows a highly diffusive signal in cell and the paxillin patches are
much smaller in size. Statistical analysis shows that the ratio of
stress fiber area to cell area is reduced by 45% on nanopillars (Fig.
6E) and the number of large focal adhesion (>0.5 μm2) per cell
decreased by 90% (Fig. 6F). When treated with blebbistatin, a
specific Myosin II inhibitor that is known to cause disassembly of
actin stress fibers (38), the long F-actin stress fibers and the large
paxillin patches on the flat surface have mostly disappeared (Fig. 6D).
Interestingly, blebbistatin treatment did not block nanostructure-
induced F-actin formation on nanopillars (Fig. 6D). Further-
more, quantitative analysis shows that the total intensity of F-actin
on nanopillars per cell has almost doubled after blebbistatin treat-
ment (Fig. 6G). Quantitative analysis shows that nanostructure-
induced F-actin formation and stress fiber F-actin negatively
correlated with each other to induce whole-cell F-actin reorgani-
zation on nanopillars (SI Appendix, Fig. S6). This anticorrelation
could be due to their competition for the same pool of actin

monomer or due to other nanostructure-induced changes of
mechanotransduction (39). These results also agree with the
previous report that impairment of stress fibers prohibits the
stabilization of nascent focal adhesions and therefore the for-
mation of mature focal adhesions (40).

Conclusions
In this work, we show that local membrane curvature induced by
surface topography serves as a biochemical signal to induce actin
reorganization inside cells (Fig. 7). Curvature-sensing proteins,
FBP17 in particular, are able to recognize topography-induced
curvature of a limited range (diameter of the curvature <400 nm)
to activate downstream signaling components including N-WASP,
Cortactin, and the Arp2/3 complex to nucleate the formation of
branched F-actin. This topography-induced F-actin actively im-
pacts multiple cellular processes, such as endocytosis, stress fiber
organization, and focal adhesion maturation. While this work
does not preclude other potential mechanisms, it supports the
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hypothesis that topography-induced membrane curvature is a
key mechanism underlying how cells recognize and respond to
surface topography. The knowledge gained here will assist the
effort to design material surface topography to achieve desired
cell behavior.

Materials and Methods
Nanostructure Fabrication. The SiO2 nanostructures in this work were fabri-
cated on quartz coverslips by electron-beam lithography and reactive ion
etching (28, 41). The patterns of nanostructures were written by electron-
beam lithography (Raith 150) and developed in xylene. Metal masks were
formed by sputtering with 100 nm of Cr and liftoff in acetone. The quartz
nanostructures were generated by anisotropic reactive ion etching with
CHF3 and O2 mixture (AMT 8100 etcher, Applied Materials).

Cell Culture, Transfection, and Live Cell Imaging. U2OS cells were used in this
study. Before cell plating, nanostructure substrates were sterilized by O2

plasma and coated in 0.1% gelatin. U2OS cells were cultured for at least 18 h
before fixation or imaging. Electroporation was used for plasmid trans-
fection. Live-cell imaging was carried out using an epifluorescence micro-
scope (Leica DMI 6000B). During the imaging, cells were maintained at 37 °C
with 5% CO2 in an onstage incubator (INUBSF-ZILCS, Tokai Hit).

Immunostaining and Imaging. Cells were fixed in 4% paraformaldehyde,
washed by PBS, permeabilized in 0.1% Triton X-100, blocked in 1% BSA, and

followed by staining with 2 μg/mL secondary antibodies. The prepared
samples were imaged by epifluorescence microscope (Leica DMI 6000B) or
confocal microscopy (Olympus FV1000)

Quantitative Analysis. For the quantitative analysis, the images were pro-
cessed by a rolling ball algorithm with a radius of 12 pixels. The circle masks
were created to cover the pillar area. The pixel intensities within the masks
were integrated and the intensity with the same nanopillar diameter was
averaged. The ratios of F-actin were calculated by dividing the mean in-
tensities of F-actin with GFP-CAAX.

Statistics. Sample sizes were validated using power analysis similar to previous
work (28). Welch’s t tests (unpaired, 2 tailed, not assuming equal SD) and the
Kolmogorov–Smirnov test (unpaired, not assuming Gaussian distribution)
were used to evaluate the significance. All tests were performed using Prism
(GraphPad Software). Data are presented as mean ± SEM or mean ± SD as
stated in the figure captions.
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