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Abstract

The interplay between cognition and gaming, notably through
educational games enhancing cognitive skills, has garnered
significant attention in recent years. This research introduces
the CogSimulator, a novel algorithm for simulating user
cognition in small-group settings with minimal data, as the
educational game Wordle exemplifies. The CogSimulator
employs Wasserstein-1 distance and coordinates search
optimization for hyperparameter tuning, enabling precise
few-shot predictions in new game scenarios. Comparative
experiments with the Wordle dataset illustrate that our model
surpasses most conventional machine learning models in
mean Wasserstein-1 distance, mean squared error, and mean
accuracy, showcasing its efficacy in cognitive enhancement
through tailored game design.

Keywords: Artificial Intelligence, Education, Group Be-
haviour, Skill acquisition and learning, Computational Mod-
eling.

Introduction
In recent years, the application of artificial intelligence has
expanded across various fields such as music (Bian et al.,
2023), gaming (Yin et al., 2023), and healthcare (Shaheen,
2021), demonstrating its broad impact and potential. Con-
currently, the relationship between cognition and games
has become a hot topic, particularly in research focused
on using games to assess cognitive abilities and explore
whether games can enhance cognitive skills (Boot, 2015).
At the same time, the relationship between cognitive level
and education is also the focus of attention, where cognitive
ability is considered a crucial predictor of education and
socioeconomic achievement, especially regarding strategies
and methods in student learning, individual differences,
etc (Yen et al., 2004; Van Hove et al., 2019).

In terms of using games to help measure cognitive ability,
games can test different aspects of cognitive function,
including aspects such as memory and attention, which
can assist in diagnosing disease (Wiley et al., 2021). At
the same time, games are thought to be more effective in
assessing cognitive abilities, even in improving fairness and
user experience (Leutner et al., 2023). Therefore, games are
closely linked to cognitive ability, and in the framework of
the importance of cognitive ability in education, the better
use of games to contribute to the development of cognitive

1† Corresponding author. Email: aobo.wang@nus.edu.sg

ability is a significant agenda. However, given the hetero-
geneous attributes of participants, a fixed game algorithm
may not enhance the cognitive abilities of all individuals
consistently (Manzano-León et al., 2021). Conventional
approaches, encompassing behavior trees (Hecker, 2011) and
data-driven methodologies (Kim & Ruipérez-Valiente, 2020),
attempt to tailor game modes to diverse cognitive profiles
of users yet necessitate substantial data acquisition. Tech-
nologies related to artificial intelligence, including Transfer
Learning and Convolutional Neural Networks (CNN), are also
challenged by over-fitting issues, consequently diminishing
the precision in predicting user cognitive patterns (Zhao,
2017).

This work developed the CogSimulator model, which
intends to capture and simulate the user’s cognitive level
based on a small amount of data. Further, using less data
to simulate user groups, the game can implement a more
targeted educational game for specific users. This paper
uses the game “Wordle”, a word game, to demonstrate how
to evaluate and improve cognitive ability with a limited
number of users, making the game a more acceptable form
for teenagers in learning (Amory, 2010). It is important to
highlight that due to the CogSimulator’s efficient use of data,
encompassing common word frequency metrics pervasive
across numerous word-based games, it is well-suited for
application to newly developed games or those aimed at niche
user groups. By simulating individual player behaviors, the
model offers game designers a valuable tool for tailoring
game difficulty to match specific cognitive profiles.

Related Work
Cognition includes the mental processes of acquiring knowl-
edge and understanding through thought, experience, and the
senses and plays a fundamental role in human development
and interaction with the environment (Sommerville, 2020).
This area, crucial for critical thinking, problem-solving skills,
and the effective processing and interpretation of information,
has attracted increasing attention in contemporary research,
particularly at the intersection of cognition and play (Majuri
et al., 2018; Sailer & Homner, 2020). Human research on
educational games dates back to 1981 when Malone investi-
gated in his seminal paper how to use the captivating effects
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of computer games to make learning fun and interesting
(Malone, 1981). In the mid-1980s, research examined the
link between video game play and cognitive performance, and
this correlation was gradually confirmed (Dale et al., 2020).
However, even using AI-based game-based educational
technologies, such as AI applications for learning new skills
or knowledge, may only improve learners’ cognition if they
motivate long-term use (Laine & Lindberg, 2020). Therefore,
the challenge is producing a game design that suits the needs
and preferences of the players to ensure the gamers’ cognitive
enhancement.

Many academic studies have shown that positive motiva-
tion is crucial in enhancing human engagement, which in
turn helps promote cognitive improvement (Teixeira et al.,
2012; Ryan & Deci, 2000; Dweck, 2006). In this context,
it can be broken down participation motivation into two
categories: intrinsic participation motivation (stemming
from the game’s intrinsic design elements) and extrinsic
participation motivation (stemming from the game’s reward
and punishment system) (Laine & Lindberg, 2020). Although
the persistence of intrinsically motivated engagement is
remarkable, intrinsic motivation depends on various factors,
including player type, specific educational needs, and
personal interests (Manzano-León et al., 2021). Therefore, if
the game mode cannot change with different individuals, the
degree of cognitive enhancement may vary widely between
individuals. This variability poses a significant challenge to
developing fixed game mechanics that can universally meet
the diverse needs of all players (Manzano-León et al., 2021).

Traditional approaches to creating adaptive and responsive
gaming environments, designed to cater to players’ individual
needs, have primarily relied on rule-based systems such as
finite state machines and behavior trees (Park et al., 2023).
These systems provide an easy way to build simple agents
that provide different feedback based on user actions (Hecker,
2011). However, while this approach effectively creates
a baseline interactive experience, it cannot dynamically
adapt to individual players’ subtle and changing preferences
or capabilities. An alternative solution lies in data-driven
approaches (Kim & Ruipérez-Valiente, 2020). This approach
entails collecting extensive gameplay data, such as average
completion times, to assess game difficulty and subsequently
recommend games of varying difficulty levels to different
players. However, this approach relies on substantial data
accumulation for accurate predictions, making it challenging
to apply effectively in scenarios requiring rapid adaptation
to new tasks. As for artificial intelligence technology,
most of the gamification research that appeared in the past
decade from 2010 to 2020 failed to provide a structured
overview of game elements such as NPCs working with
artificial intelligence (Funk et al., 2020). Until 2023,
Generative Agents realized the simulation of human behavior
based on large language models (LLMs), even in zero-shot

scenarios (Park et al., 2023). However, the need for extensive
resources poses a significant obstacle, especially for small
educational games in their embryonic stages (Jozefowicz et
al., 2016). For these emerging games, the high threshold of
data and computing requirements makes it challenging to
fully exploit the potential of AI-driven interactive elements.
In contrast, models such as CNN may cause overfitting
problems due to insufficient data volume. Therefore, while
advances in artificial intelligence technology offer promising
avenues for enhancing the realism and engagement of game
environments, their applicability still needs to be improved in
resource-constrained settings.

This work will elucidate and test the model using Wordle
as an illustrative case. Wordle is a word-guessing game that
epitomizes its players’ diverse needs and individual charac-
teristics, reflecting the unique responses and strategies each
person brings to the game. The goal of Wordle is to guess
a five-letter word within six attempts. After each guess, the
color gives feedbacks as: Green (the correct letter in the right
spot), Yellow (The correct letter but in the wrong position) or
Grey (the letter outside the word) (Match, 2022). Unaided
players guess words mainly through word recall, largely
limited by their vocabulary. Consequently, the CogSimu-
lator was developed to emulate user cognition utilizing a
limited dataset of game records, thereby facilitating the de-
sign of game difficulties optimized for cognitive enhancement.

CogSimulator Model
Model Overview
We analyze that traditional machine learning models often
face severe overfitting due to insufficient sample sizes,
limiting their effectiveness. In contrast, our model excels in
explaining word difficulty and result distribution, offering a
more robust solution as detailed in Table 1. Attributes such as
word frequency, prevalent across various word-based games,
provide a solid foundation for applying our model to different
gaming scenarios. To address these challenges, we have
developed a novel sampling simulator that better reflects the
gameplay dynamics of the broader population, as illustrated
in Figure 1.

The Cogsimulator operates through a process analogous
to Markov Chain Monte Carlo (MCMC) as described
by Geyer (Geyer, 2011), where parameters progressively
converge to a steady state distribution and achieve detailed
balance. The model incorporates hyperparameters that
capture players’ cognitive processes at each stage of their
guessing attempts, alongside the stochastic variations ob-
served in each trial. Unlike traditional optimization methods
that require derivatives of the cost function, our approach uses
Coordinate Search Optimization (Frandi & Papini, 2014),
which optimizes parameters coordinate-wise within the
hyperparameter space in each iteration, allowing the model
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Figure 1: An overview of the CogSimulator model. It starts by aggregating Wordle data from Twitter and using it to form a true
trial distribution for training. The simulator, via Markov Chain Monte Carlo, adjusts hyperparameters to match this distribution.
Parameter optimization is performed with a Coordinate Search Method Algorithm, and model accuracy is ensured using the
Wasserstein-1 metric to compare simulated outputs to actual trials. Functional PCA relates simulated and true word difficulties,
enabling precise predictions for new word trials based on players’ cognitive patterns.

to align with the actual trial distributions observed in data
eventually. To measure the deviation between our training
set and the outputs generated by the simulation, we employ
the Wasserstein-1 distance (Liao et al., 2022), whose convex
properties aid in steering the algorithm towards the global
optimum. This setup ensures our model accurately estimates
word difficulty and adeptly classifies the distribution of
players’ guessing attempts. Once optimized, the sampling
simulator effectively replicates samples that reflect the
average performance of the simulated player population.

Further refining our approach, we estimate the difficulty
of newly introduced words by comparing their Wasserstein
distance with that of the most straightforward word identified
in the training dataset. This comparison uses the generated
Wasserstein Metric to provide a relative measure of word
complexity. Consequently, when a new word is introduced
to the model, it predicts not only the difficulty of the word
but also the expected number of guesses by players. This
prediction is based on the collective cognitive profile of the
player group derived from the training data, thereby aiding in
selecting words that are optimally challenging yet engaging
for players.

Simulator

As the core component of CogSimulator, the simulator uses
a coordinate search method algorithm to tune hyperparam-
eters to match human performance in player simulators
automatically. The simulator takes a single word as input
and can generate a distribution of the number of times a
user guessed the word, containing the percentage of attempts
for each of the seven trial types. Other factors will be

incorporated into the neural network alongside word guessing
frequency distribution. This integration will occur through
a process of 5-fold cross-validation to ensure a better fit for
various real-world factors, thereby yielding the most accurate
predictions. To determine whether the player selected a
specific word in a step, given a qualified dictionary that
allows him to choose, algorithms 1 and 2 output the words
sampled in a round.

Algorithm 1: Choose A Word algorithm CW
Data: Dictionary D ∋ {𝐴𝑖}𝑁 with word frequency

{𝑝(𝐴𝑖)}𝑁
Given hyper-parameters: 𝐾,𝑇 ;
Initialise: Probability list of length 𝑁:
PL = [0,0, . . . ,0];

while 𝑖 ≤ 𝑁 do
update PL[𝑖] ←max(0, 𝑝(𝐴𝑖) ×𝑇) ;
Delete words from D according to Wordle clue

rule (colored clue);
update PL[𝑖] ← normalise(PL) ;
update Chosenword← randomly choose a word
from D with probability PL;

end
Return Chosenword

In simulating Wordle player choices, the CogSimulator
posits that players are more inclined to guess words they en-
counter more frequently. However, the human capacity to
recall words is finite, and the probability of recalling a spe-
cific word is not strictly proportional to its word frequency.
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Algorithm 2: Single word Trial Simulation Algorithm
Data: Any target word 𝐴∗, dictionary D ∋ {𝐴𝑖}𝑁

with word frequency {𝑝(𝐴𝑖)}𝑁
Given hyper-parameters: 𝐾,𝑇 ;
Initialise: Count of steps: cnt = 1;
Set:Chosenword = CW(D∗, {𝑝(𝐴𝑖)}𝑁 ,𝐾,𝑇);
while Chosenword ≠ 𝐴 do

update D∗←− Delete words from D according
to Wordle clue rule (colored clue);
update Chosenword = C(D, {𝑝(𝐴𝑖)}𝑁 ,𝐾,𝑇) ;

cnt = cnt+1 ;
end
Return cnt

Thus, we introduce two parameters to adjust for this. The first
parameter, 𝐾 , represents the cognitive limit, or the maximum
number of words a person can typically remember at one time.
The simulator only considers up to 𝐾 most frequent words as
viable options for player guesses. The second parameter, 𝑇 ,
represents a scaling factor for the frequency of the most com-
mon word, providing a baseline for comparison. To calculate
the selection probability for each word, we multiply its fre-
quency by 𝑇 and then normalize by dividing over the sum
of the scaled frequencies for all 𝐾 words considered. This
method ensures that while the likelihood of selecting highly
frequent words is amplified, less common words maintain a
non-zero probability of selection proportional to their relative
frequency. This nuanced approach balances the natural human
tendency to favor familiar words and the game’s challenge to
recall less frequent words.

On each trial, the simulator randomly samples words based
on their probability of selection (El-Hadidy et al., 2021). After
1000 samples, a trial distribution of words is generated. At
the same time, a coordinate search algorithm will be applied
to automatically adjust hyperparameters to improve the fitting
accuracy of the simulator. Finally, the simulator can generate
seven probability distributions of word guesses containing the
percentages for seven categories (1, 2, 3, 4, 5, 6, X). Finally,
the model can predict the difficulty of a word for a specific
cognitive user through distribution and Wasserstein Metric.

Wasserstein Metric

To test the difficulty of a word for a particular cognitive group,
we first obtain the distribution of word guessing times for
this cognitive group’s best record in past games. Then, by
comparing the distance between the distribution of new input
words and the distribution of the best record, the difficulty
of the word for this cognitive group is judged. For this pur-
pose, we propose using the Wasserstein-1 distance to evalu-
ate the discrepancy between two trial distributions. Let 𝑝, 𝑞
be two probability distributions on compact spaces. Denote
Π(𝑝, 𝑞) as the set of all distributions 𝜋(𝜔,𝜔′) onX×X′ such
that the marginals are 𝑝(𝑥) and 𝑞(𝑦) respectively. Then the

Wasserstein-1 distance between 𝑝 and 𝑞 is

𝑊1 (𝑝, 𝑞) = inf
𝜋∈Π (𝑝,𝑞)

∫
X×X
∥𝜔−𝜔′∥𝑑𝜋(𝜔,𝜔′)

= inf
𝜋∈Π (𝑝,𝑞)

E
(𝜔,𝜔′ )∼𝜋

[∥𝜔−𝜔′∥] .
(1)

when 1 applies to discrete sample spaces, let us assume X =

{𝜔𝑖}𝑚𝑖=1 and X′ =
{
𝜔′
𝑖

}𝑚′
𝑖=1. 𝑝 and 𝑞 are trial distributions of

words 𝐴 and 𝐴∗, respectively. The distance between 𝑝 and 𝑞
can be obtained by solving the following linear programming
problem

W(𝐴, 𝐴∗) = inf
{𝛾𝑖, 𝑗 },𝑖, 𝑗


𝑚∑︁
𝑖=1

𝑚′∑︁
𝑗=1
𝛾𝑖, 𝑗 |𝜔𝑖 −𝜔′𝑗 | :

𝑠∑︁
𝑖=1
𝛾𝑖, 𝑗 = 𝑞 𝑗 ,

𝑠′∑︁
𝑗=1
𝛾𝑖, 𝑗 = 𝑝𝑖 , 𝛾𝑖, 𝑗 ≥ 0

 .
(2)

In this special case where the support of any trial distribu-
tion is the same, i.e. 𝑚 = 𝑚′ with uniform weights, it can
be easily shown that Wasserstein-1 distance has a nice closed
and compact form 1

𝑚

∑𝑚
𝑖=1 |𝜔𝜂 (𝑖) −𝜔′𝜗 (𝑖) | where 𝜂 is a sorting

permutation of𝜔𝑖 and𝜗 is a sorting permutation𝜔′
𝑗
. The diffi-

culty of word 𝐴 is determined by calculating its Wasserstein-1
distance w.r.t trial distribution of the ‘easiest’ in the dataset,
which we assume is the word “train”. Therefore, we propose
the Wasserstein-1 difficulty measure of the form.

W∗ (𝐴) :=W(𝑝“train”, 𝑝𝐴). (3)

Coordinate Search Optimization
To obtain parameters to simulate the cognition of the target
population, we used Coordinate Search Optimization. The
algorithm is as follows:

Algorithm 3: Coordinate Search algorithm.
Data: Ground truth trial distribution 𝑓𝐴𝑖

,data set word
𝐴𝑖

355, dictionary D ∋ {𝐴𝑖}𝑁 with word
frequency {𝑝(𝐴𝑖)}𝑁

Initialise: Hyper-parameters: 𝐾0,𝑇0;
while 𝑗 ≤ maximum iteration (or not converge) do

update 𝐾 𝑗 ←− argmin𝐾∗ 𝑓 (𝐾∗,𝑇𝑗−1) ;
update 𝑇𝑗 ←− argmin𝑇∗ 𝑓 (𝐾 𝑗 ,𝑇∗) ;

end
Return cnt

By limiting the set of search directions to the axes of the
input space, the coordinate search/descent technique is an al-
ternative zero-order local approach that addresses the scaling
issue seen in traditional local search. The theory is intuitive
(Gürbüzbalaban et al., 2020): random search was created to
simultaneously minimize the mean W-1 discrepancy about all
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of its parameters, which takes the form.

𝑓 (𝑇,𝐾) = ( 1
355
)

355∑︁
𝑖=1
W( 𝑓𝐴𝑖

, 𝑓 ∗𝐴𝑖
), (4)

where 𝑓𝐴1 and 𝑓 ∗
𝐴1

are trial distribution of target word 𝐴𝑖
from ground truth and simulated result, respectively. Note
that the distribution 𝑓 ∗

𝐴𝑖
is a realization from our Wordle

simulator given hyper-parameter 𝐾 and 𝑇 . A coordinate-wise
algorithm reduces this function to one coordinate or weight
at a time or, more generally, to a subset of coordinates or
weights at a time while holding the other coordinates or
weights constant. Despite this limitation, these algorithms
are much more versatile than random search (in fact, they
may be used to solve even medium-sized machine learning
issues efficiently in practice) (Deshpande et al., 2018), even
though they require additional steps to establish approximate
minima and restrict the number of descent directions that can
be discovered. These algorithms also act as predicates for
a whole line of higher-order coordinate descent techniques,
just like they did with the random search strategy.

Experiment
Dataset
The model employed in this study utilized Wordle results
sourced from Wordle Stats over the full year from January 7,
2022, to December 31, 2022. This one year was chosen to
capture longitudinal data, reflecting genuine player interac-
tions throughout different seasons and stages of player devel-
opment, thereby minimizing pre-selection bias and providing
a comprehensive basis for understanding group behavior in
word-guessing activities. The results include the distribution
of the number of trials it took players to succeed, a criti-
cal measure of the game’s difficulty, and player engagement.
These details can be found at https://shorturl.at/adeO6.
Additionally, to construct a robust model, we integrated a dic-
tionary database comprising five-word English terms from the
Google Books Ngram Corpus from 1970 to 2019. This cor-
pus provided the foundational data for calculating each word’s
usage frequency, a key determinant of user selection within
our predictive framework. We define word frequency as the
relative occurrence of a word in the corpus, which is a direct
measure of its commonality and presumed familiarity to play-
ers, reflecting the likely cognitive effort required for players
to guess the word correctly (Solovyev et al., 2019).

Model Evaluation
Wasserstein Metric This algorithm uses Wasserstein-1 dis-
tance to evaluate the difference between two trial distributions.
Here, the attempt distribution refers to the attempts the user
requires to complete the task in the Wordle game. This model
aims to determine the difficulty of the word A relative to the
word A∗ in the Wordle game. This is done by calculating
the Wasserstein-1 distance of word A relative to the overall

attempt distribution. Figure 2 shows the difficulty distribution
of 355 ground truth words. It shows that the proposed met-
ric is sufficiently consistent, representative of the difficulty
realized by records, and mediates between other quantifiers.
Clearly, ‘easier’ target words exhibit a trial distribution shifted
towards the left on the x-axis, and ‘harder’ target words ( yel-
low colored) have a right-shifted trail distribution.

Figure 2: Distribution of word difficulties in the Wordle game.
The x-axis represents the number of attempts, and the y-axis
represents the frequency of each attempt number.

Coordinate Search Optimization To assess the efficacy of
the Coordinate Search Optimization algorithm, it is essential
to consider the broader statistical profile rather than just a
single winning result. This algorithm’s utility lies in its
ability to iteratively explore and optimize a multi-dimensional
space by adjusting one coordinate at a time. It is particularly
suited for problems with a complex objective function or lack
an analytical gradient. The evaluation of this optimization
technique is predicated on its capacity to train generators that
output a discrete target trial distribution accurately. We plan
to invoke the same number of generative realizations for a
robust evaluation as in fixed-length accurate data batches.
This approach ensures a fair comparison between the model’s
output and the empirical ground truth. Consistency with the
ground truth is then assessed by visualizing the distribution of
densities using the same projection of functional PCA (Shang,
2014), as depicted in Figure 3 (a). Further, we solidify
our statistical analysis by constructing an empirical 95%
confidence interval for the optimization outcomes, with the
results presented in Figure 3 (b) indicating that the sampling
algorithm is robust, as evidenced by the slight variance
observed. The predictions and summaries derived from this
approach are systematically tabulated for further scrutiny.

Simulator The model is benchmarked with several other
machine learning algorithms that comprehensively estimate
trial distributions. Note that we are using the attributes to
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Figure 3: We obtain 200 simulated trial distributions of the
word eerie. Displayed at the top, the visualization method
projects these results into a 2-dimensional functional space.
At the bottom, the predicted mean is highlighted with a green
line, and a 95% empirical confidence interval is constructed
around it.

feed as the input; in regression-type benchmarks, the machine
learning algorithms output a 7 dimensional vector filled with
floating number loadings, whereas in classification tasks,
benchmarks output a category. We train these machine
learning algorithms under the canonical parameter settings.
Representative methods, namely, linear regression, decision
tree regression, random forest regression, and Multiple layer
perceptron regressor, are selected for the experiments, and
the actual performance of the algorithms is compared by
studying the training and validating performance among
these algorithms. For the sake of fairness, hyperparameters
and settings for each method are set by default.

The simulator has proven a successful method for
predicting the difficulty and distribution of words in the
simulator game. The model achieves an accuracy of 87%,

outperforming other machine learning algorithms we have
tried. The results demonstrate that the simulator is effective in
predicting the distribution of future reports and the difficulty
and distribution of specific words in Wordle.

Table 1: For distribution learner, We report mean squared loss
for all models. Mean accuracy is obtained from 5-fold cross-
validation; note that our model outperforms all benchmarks.

Model MSE Mean Acc
CogSimulator 0.512 87%

Linear Regression 1.206 19%
MLP Regression 1.724 62%
Regression Tree 0.758 60%

RandomForest Regression 0.620 68.45%

Overall, the simulator significantly improves the prediction
of word difficulty and distribution in Wordle. Its superior
performance compared to other machine learning algorithms
highlights the effectiveness of the Convolutional Networks
under the Wasserstein training approach. This work proposes
a robust model for predicting the difficulty of educational
games tailored to specific cognitive groups, ultimately
enhancing overall game playability and engagement. The
results of different models are shown in the table 1.

Conclusion and Future Work
This study introduces the CogSimulator, designed to simulate
cognitive distributions in contexts with limited sample sizes,
exemplified by its application to Wordle. The model com-
petes against machine learning metrics such as Wasserstein-1
distance, mean squared error, and mean accuracy. Leveraging
the universal relevance of word frequency attributes, the
CogSimulator shows promising generalization across word-
based games, suggesting significant potential impacts on
cognitive game development for niche user groups. Despite
its strengths, the model tends to represent an “average” player,
which may not reflect the diversity in player strategies and
cognitive processes, particularly where data distributions are
multimodal.

Future work will enhance this model by integrating clus-
tering algorithms to detect and model unique player profiles,
thereby better capturing the diversity of players. Plans also in-
clude integrating player feedback as a dynamic reward mech-
anism and developing an advanced parameter optimization
method for dynamic loss functions to suit simulation tasks
better and extend applicability to a broader range of educa-
tional games.
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