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The material can be covered in the last part of a first year graduate industrial organization 
course as well as an introduction to auctions course, in two or three lectures, using the 
lecture notes attached. 
 

 
 
 
 
 
 

__________________________- 
 
† These sets of lectures are based on lecture notes for the course ARE 202, which is a 
first year graduate course in the PhD program in the Agricultural and Resource 
Economics Department at U. C. Berkeley. These notes have greatly benefited from 
material covered in several industrial organization courses offered at the Economics 
graduate program at Berkeley and from comments from Jeffrey Perloff, James Dearden, 
and Jen Brown.  
 
 

 



 
1. INTRODUCTION 
 
An auction is a public sale of property or merchandise defined by explicit rules 
determining resource allocation and prices on the basis of bids from participants.  
 
Four main types of auctions are considered theoretically and in practice. In the “First-
price sealed-bid auction” (FPSB) a bidder does not observe the opponents’ bids, and the 
object is won by the bidder submitting the highest bid. The winner pays her bid value and 
receives the object, and the losers pay nothing and receive nothing. The second type is 
the “Second-price sealed-bid auction” (SPSB), also called the Vickrey auction.  The 
SPSB auction is like the FPSB auction, with one exception:  the winner pays the second 
highest bid in the auction. The third auction type is the “English” or “Ascending-price 
drop-out auction”. It works much like the game of chicken; bidders are active in the 
auction until they decide to drop out.  In this auction, the price increases incrementally 
from 0, and bidders withdraw from the auction when price exceeds their willingness to 
pay. The auction ends when only one active bidder remains.  This winner pays a price 
equal to the current price when second-to-last person exits.  Finally, the fourth type is the 
“Dutch” or “Descending price auction”, which is similar to the game of chicken in 
reverse. The price starts high and decreases until the first bidder agrees to pay the current 
price.  In each of these auctions, the winner’s surplus is her value minus the price she 
pays. Each loser’s surplus is zero.   
 
Most auction studies focus on the FPSB and English auctions, although recent studies 
have examined online auctions such as eBay. Typically, eBay auctions are modeled as 
SPSB auctions.  Other recent work has studied multi-unit auctions and sequential 
auctions (see, for example, Cramton, Shoham and Steinberg (2005)). 
 
The text is structured as follows: First, we analyze participation strategies and auction 
house revenue under several auction formats. Second, we discuss the main issues in 
auction design. We then discuss the main positive and normative goals of empirical work 
in auctions, and also study reduced form and structural approaches that have been 
developed and applied to empirical work. The last part of these notes presents a formal 
outline of the main issues in structural estimation of auctions in applied work. Here, we 
provide a primer on structural auction estimation—for two surveys, see Laffont et al. 
(1991) and Hendricks and Paarsch (1995).  We also introduce the issue of the strategic 
behavior of buyers and collusion in bidding.  We conclude with a paper identifying 
collusion in procurement auctions by Porter and Zona (1993).  
 
Some of the many topics we are not covering formally here are multi-unit issues (see 
Hansen (1985) for an empirical paper on the topic), the introduction of entry, risk 
aversion1, budget constraints (see  Klemperer’s (1998) Wallet Game), asymmetries 

                                                 
1 In Vickrey and English auctions with risk aversion, it is still a dominant strategy to bid one’s valuation. 
However, in Dutch and FPSB auctions, bidders may be more aggressive to increase the probability of 
winning, as in Holt (1979). 

 



(Hendricks and Porter (1988), Wilson (1994) and Porter (1995)), affiliation and common 
values (Milgrom and Weber (1982), and Laffont (1996)), and auction design. A (far from 
complete) list of cited and suggested references is provided in the end of the text. 
 
2. PARTICIPATION STRATEGIES AND REVENUE EQUIVALENCE 
 
The Vickrey (Second-Price) Auction is a very popular format, perhaps due to the simple 
bidding strategy. Bidding one’s true valuation is a (weakly) dominant strategy—the 
amount a bidder pays is independent of her bid and values are also independent among 
bidders. The winner’s surplus is equal to her valuation minus the second-highest bid 
submitted, and decreases as the number of bidders increases.  
 
In the first-price auction formats, potential bidders face trade-offs—if a bidder bids her 
valuation then she has no surplus, and lowering the bid from her valuation increases the 
surplus but reduces the chances of winning. The optimal bidding strategy is more 
complicated than in the second-price auction and will consist of bid shading. The degree 
of bid shading depends upon several factors including the number of bidders and 
information availability. 
 
To motivate auction design, one may ask: Given the optimal bidding strategies of the 
potential bidders, which type of auction will the seller prefer?  For a risk-neutral seller, 
the answer depends on the expected revenue of each type of auction. Under some 
assumptions (i.e., if item goes to the person with highest valuation and bidders with 
lowest possible valuation expect zero surplus), the seller may be indifferent between the 
four types of auctions because they yield the same expected revenue.  
 
What about competition? Does a seller prefer more bidders? More bidders lead to higher 
prices and less surplus for winners. Figure 1 plots data generated through simulations to 
illustrate this relationship. The y-axis presents expected price, with bidders’ valuations 
drawn uniformly from [20,40] and the x-axis indicates numbers of bidders (Source: 
author’s calculations). 
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We will define another dimension upon which auction theory has developed, namely, the 
dimension of uncertainty. We will define private and common value auctions. Informally, 
if you see the signals of the other bidders (or their bids) and it causes you to revise your 
own valuation of the object, then it is a common value auction. Otherwise, it is a private 
value auction.  
 
In a private value auction, the object is for personal use. Moreover, the object will not be 
resold and no bidder is speculating about future value. If there are inherent differences 
among bidders, then any single bidder can have a valuation that differs from the others’ 
valuations, and each bidder’s value will be private. In contrast, in common value 
auctions, the item has a single, true value which is unknown at time of bidding. An 
example of common value auctions are offshore oil leases; the value of oil is the same for 
every participant, no bidder knows her value with certainty, and each bidder has some 
information about the value due to exploratory drilling.  
 
Let r be the reserve price, n is the number of potential bidders, and m be the actual 
number of bidders.  Consider an example in which bidder i’s utility function is 

( , )i iU U vσ= , where v is the value of the good that bidder i may or may not observe, and 

iσ is the private signal of bidder i. Let F be the cumulative distribution function of 

1( ,..., , )N vσ σ . Finally, let Yi  be the max{ : }j j iσ ≠  and W be the winning bid. We make 
the following assumptions: (i) Each bidder wants only one object; (ii) U is non-negative, 
continuous and increasing; (iii) the signals are one-dimensional, i Rσ ∈ ; (iv) F is 
exchangeable across bidders, because no bidder has better information; (v) 1( ,..., , )N vσ σ  
are positively correlated, and (vi) F, n, U are common knowledge.  
 
Independent Private Values (IPV)  

i iU σ=  for each i=1, …, N and σi are all independently and identically distributed (iid), 
so that:   
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Bidder i’s signal is her pa ff.  She receives no signal about the other bidders’ values.   yo
 
Pure Common Value (CV)  
Ui= v, and the cdf is now  F 1( ,..., , )N vσ σ . We can ∑=

j
jv σ  and there is uncertainty 

s cause you ur valuatabout v. Signals of other bidder to revise yo ion, iσ . 
 
Bidding Equilibria in a Nutshell:  Private Values 
 
In a Dutch auction (FPSB), your bid should be

ould shade your bid—and your bid should be increasing in 
 lower than your signal—that is, you 

N. Let your signal sh
be iσ σ= . Suppose the valuations have support [ ]0,σ  and are uniformly distributed. If 
we ignore risk aversion, then  

E[next highest bid]= ( 1)N
N

σ−  

and the equilibrium bid is equal to  
( 1)Nw

N
σ σ= < . −

 
In an English auction with second-price open bidding, each bidder should be willing to 

ay as much as her valuation.  Similarly, in a Vickrey auction (SPSB), the bid should be p
bidder valuation and the winner pays the second highest price. In this sense, there is no 
strategic behavior in either of these auctions. 
 
Bidding Equilibria in a nutshell in Common Value Auctions: 

o account for the winner’s curse, each biddeT r should reduce her bid.  Specifically, each 
bidder should bid less than E[ ]| iv σ σ= .   
 
Given this strategy, we can e ederive som mpirical, testable implications to distinguish 

V and CV. In reduced form setting, the comparative-statics on the number of bidders, 

auctions do not. When bids are announced 

IP
N, vary by auction type. In FPSB auctions, the bid is monotone in N with IPV and non-
monotone for CV. In SPSB auctions, the bid is independent of N with IPV and decreasing 
in N with CV. 
 
With common values, different auction formats are not equivalent. Oral auctions provide 

formation to bidders, while sealed-bid in
orally, bidders learn about the value of the item from others’ bids and may revise their 
own estimates of object value as other participants drop out. The inability to revise, as in 
sealed bid auctions, for example, leads to the so-called “Winner’s Curse”. To avoid the 
winner’s curse, a bidder should always bid as if she has received the highest signal. If she 
does not having the truly highest signal but bids as though she does, she simply will not 

 



win. On the other hand, if she indeed has the highest signal, she’ll use the object’s true 
value as the basis for bidding (please look at numerical example in lecture notes). A 
bidder is more likely to bid high and acquire the item when he overestimates the item’s 
value. From Jensen’s inequality (convexity of max function) we have 
[ ] [ ]max { }| max { | }i i i iE v E v vσ σ≥ = . Intuitively, the person who has the highest 

expectation is overly-optimistic.

 

 
 

. AUCTION DESIGN 

 a seller to consider some, or all, of the following questions: How 
any objects are to be auctioned? Is there a reserve price?  Is the reserve price known to 

s lead to the other decisions about auction bidding rules: Who is allowed 
 bid? How are bids presented? By how much must bids be beaten? Is bidding 

at the bidder 
ith the highest valuation receives the object. The efficient auction also requires that if 

 valuation may be higher than seller’s value, but bid-
ading may result in lower bid. Hence, no transaction may occur despite bidder 

om behaving 
trategically to affect price. For example, if the seller in a second price auction places his 

3
 
Auction design requires
m
bidders?  How are bids collected?  Who is the “winner”?  How much does the winner 
have to pay?  
 
These question
to
anonymous or favored? In addition, a seller must determine the amount of information to 
be provided to bidders: Are current bids revealed? Are winners identified?  
 
Ideally, the seller aims to design an efficient auction—efficiency implies th
w
the highest valuation is greater than seller’s value (i.e. if there are gains from trade), then 
the sale is consummated. Neither first-price nor second-price auction guarantees that both 
efficiency conditions are satisfied. 
 
In a first-price auction, the highest
sh
valuations in excess of the seller’s value. In a second-price auction, the highest valuation 
may be higher than the seller’s value, but the second-highest value, which determines the 
price, may not be higher. One potential solution is a reserve price. A reserve price is a 
“phantom bid” by the seller and, while it does not resolve inefficiencies of first-price 
auction due to bid-shading, it does resolve the inefficiency in second-price auction. The 
reserve price guarantees that a sale will occur at or above the seller’s value. 
 
Another goal in auction design is to prevent sellers and/or bidders fr
s
“phantom bid” after knowing all the bids, he will set his reserve slightly below the 
highest bid. This move by a seller effectively turns a second-price auction into a first-
price auction. Bidders also may submit bids strategically to prevent competition and 
lower winning bid.  That is, bidders may try to collude. Collusion in auctions, sometimes 
called also bid-rigging, must be organized. Bidders must be identifiable, there must be an 
established process to award the item auctioned to one of the rig members and, finally, 
the surplus needs to be split among the rig members. Successful collusion is, by 
definition, hard to detect. However, experiences with identified bid-rigging cases suggest 

 



that members use simple rules to rotate bids and award the items. Sealed bids auctions 
and anonymity guarantees for bidders may discourage collusion.  
 
 
4. GOALS AND APPROACHES OF EMPIRICAL WORK 

re to understand how agents bid, 
hether bidders’ valuations are correlated and, if so, how. Moreover economists may ask 

. INDEPENDENT PRIVATE VALUE AUCTIONS, SINGLE OBJECT (IPV) 

e symmetry 

 
The positive goals of applied work in auction literature a
w
whether the observed bids are consistent with a model of bidder behavior such as 
Bayesian Nash Equilibrium (BNE) and whether bidders are colluding, as for example in 
Porter and Zona (1993). The main normative goals of applied auction work are to identify 
optimal reserve price and, more generally, to identify revenue maximizing efficient 
auction formats. Reduced form and structural approaches to auction applied work have 
aimed to address these goals. In reduced form studies, the authors typically test 
theoretical predictions from auction behavior models and make inferences about behavior 
and the bidding environment. Alternatively, in structural work, a certain theory is 
assumed and estimation of the data generating process is the goal. 
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Let there be N potential bidders with private value for bidder i given by бi. Th
and independence assumption implies that ( ) , ,  where i iid F on F⎣ ⎦∼   is smooth 

with pdf ( )f

σ σ σ σ⎡ ⎤

σ . Assume the bidder is risk ne er net utility 
is б

utral. When she wins the item, h
i-p and, if she does not win, she does not pay and her net utility is 0. There is no 

reservation price, no minimum bids, and no entry fees. In this context, we can look for 
symmetric, monotone Bayesian–Nash–Equilibria (BNE). 
 
A strategy (a bid), ( )β σ , is strictly monotone and increasing, with an inverse, η(b), 

tion associated with
b is gi

Pr{ ( ) } ( ( ))N
j

monotone

b j i F b
iid

σ η η−< ∀ ≠ =
 

(Note that the first equality is due to monotonicity) 
 

defined as the valua  the bid. The probability that bidder i wins given 
that she submits bid ven by 

Pr{ , } Pr{ ( ), }j jb b j i b j iβ σ> ≠ = > ∀ ≠ =

1

If ( )ib β σ= then { } ( )1Pr N
i iFσ σ σ−= = . That is, the bidder with the highest value 

eives the object. If a bidder wins, she pays  
en by 

rec p(b1,b2, …bN). The expected payoffs are 
giv

1( , ) { [ ( , ( ) ) | ( ) } ( ( ))N
i i j jb E p b j i b j i F bσ σ β σ σ η η−Π = − ≠ < ∀ ≠ ⋅ . 

 

 



 

.1. ENGLISH (CRY-OUT), VICKREY (SPSB) 

s
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 ( )β σ σ=Claim: The dominant strategy equilibrium i , (i.e., to bid one’s valuation) . 
roof: (see Vickrey, by contradiction) 

rice until only one bidder is willing to raise the 
et i

P
 
Here, the auction strategy is to raise p

anding highest bid. There is no regr f ( )β σ σ=st . The winning bidder is the person 

y order statistic permutation:

with the highest valuation. 
 
Let us rank the people b (1) (2) (3) ( )... Nσ σ σ σ> > > > . A 
erson expects to pay ] (2) (1)[ | iE σ σ σ=p  in the event that she wins. The seller’s expected 

revenues are (2) (2) (1)[ ] [ [ | ]]iE E Eσ σ σ σ= = . So, in the SPSB iven 
is 

, the expected payment g

21) ( ) ( )[ |
NF s f sE s dsσ σ
−−

= = . (2)
(2) (1) 1 1

( ( )) (]
( ) ( )

i i

i N N
i i

f s Nds s
F F

σ σ

σ σ

σ
σ

σ σ− −=∫ ∫
 
5.2. DUTCH (PRICE GOES DOWN AND YELL STOP), FIRST PRICE SB 
 

( )bClaim: The dominant strategy equilibrium is no longer to bid β σ σ= = . 
ndirect proof: McAfee and McMillan (1987): and that b→σb σ<  as N→∞. 

bi . Here, the expected payoff is given by 

(i
 
The FPSB format suggest that p(b1,b2, …, bN)=

1( , ) ( ) ( ( ))N
i ib b F bσ σ η −Π = − i  bid . Under what circumstances is it optimal to

( )i ib β σ σ= = ? 

Solving the First Order Condition (FOC)  ( , )i b 0
b

π σ∂
=

∂
, you get the optimal bid given 

the signal, ( )β σ . Let us define  *( ) ( , ( ))π σ π σ β σ= .  

t to the signal yields  
 
Taking the derivative with respec

*( ) (.) (.) (.)π

0

σ π π β
σ σ β σ

=

= +
∂ ∂ ∂ ∂
∂ ∂

 by the envelope theorem. So, given that  
∂ ∂

, 

* 1( ) ( , ( )) ( ( )) ( ( ( )))NFπ σ π σ β σ σ β σ η β σ −= = −  
which is equivalent to  

* 1( ) ( ( )) ( )NFπ σ σ β σ σ −= − , 
we can show that  

*
1( ) (.) ( )NFπ σ π σ

σ σ∂ ∂
−∂ ∂

= = . 

 



Integrating the above equation gives  
* 1( ) ( )F s ds

σ

π σ = ∫  . N
σ

−

Finally, solving for optimal bid yields  
1

1

( )
( )

F s ds
σ

( )

N

NF

σ

β σ σ σ= − <
∫

 . 
σ

−

−

We already knew to expect a mark-down strategy (bid shading) in FPSB. Now, we have 
shown this to be an optima trategy to maximize expected payoff. The bidder, by bid-l s
shading (a mark-down strategy), is trading off the probability of not winning the good 
with the possibility of positive surplus with a win.  
 
We can also show, by integrating the optimal bid function by parts, that  

( ) [ | ]E (2) (1)β σ σ σ σ= = . 
That is,   

2

(2) (1)1

( 1) ( ) ( )
[ | ]

( )

N

N

s N F s f s ds
E

F

σ

( ) σβ σ σ= =
∫

σ σ
σ

−

−

−

=  ). 

(see also proof Revenue Equivalence SPSB and FPSB) 
 

—bids go to the valuations as N 
creases. 

   

 
he bid function is increasing in N and concave in NT

in
 
 

     ( )β σ
σ

 

        
      

    1    SPSB, English 
    FPSB, Dutch 

          0 

.3. MONEY LEFT ON THE TABLE 

 
 
 
 
            N  
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( )( ) ( )(1β σ β σ− )2 is a measure of ex-post regret on part of winner for FPSB, sometimes 

presented as  

( )( ) ( )( )
( )( )

1 2

1

.
β σ β σ

β σ

−
 

In oil auctions, the money left on the table is nearly 50 percent! As N increases the 
amount of regret approaches zero. 
 
6. STRUCTURAL ESTIMATION 101 
 
One of the main objectives in structural estimation in auctions is to estimate the data 
generation process. Specifically, the primary goal of the procedure is to recover F. Why 
do we care about F? The researcher is able to ask the following questions:   
 
 Given distribution F, is r optimal?  
 
 Are all of the observed bids determined by the same data generating process? For 
example, can we find evidence that a group of bidders submitting strategic bids (bid 
rigging) while another group did not?  See Porter and Zona (1993) in the end of these 
lectures.  
 

Once the researcher has estimated the costs of collusion, how much higher are the 
bids relative to their no-collusion counterparts?  

 
Given a distribution F that has been estimated under a certain auction format, 

what would happen to the seller’s expected revenues under an alternative format?  
 
As in the previous section, let us consider an IPV scenario and maintain the assumptions 
of risk neutrality, symmetry, privacy, and BNE/dominant strategy behavior. Let there be 
N bidders with valuations ( ) , ,  where  isi iid F on Fσ σ σ σ⎡ ⎤⎣ ⎦∼  smooth with pdf ( )f σ . 

Let there be a minimum bid (r )σ> . We will derive the likelihood function for SPSB—
we will begin with the easiest format—then derive the likelihood functions for English 
auctions where we observe only the winning bid, English auction where we observe all 
bids, and FPSB. In addition, we will briefly mention some extensions allowing for risk 
aversion, multiple and sequential auctions, and asymmetric information. Three 
approaches shall be discussed and described here: (i) Simulated Non-Linear Least 
Squares (NLLS), (ii) Maximum Likelihood Estimation (MLE), and (iii) non-parametric 
estimation. 
 
 
 
6.1. SPSB (“THE EASIEST”)  
 

 



The dominant strategy is to bid  i ib σ=  if i rσ ≥ , otherwise a bidder should not bid at all. 
The winning bid is given by (2: )max[ , ]

tt Nw rtσ= . 
 
Suppose we have data on nt people who submitted bids, among Nt potential bidders 

 . 1{ } , , , , 1,... ,  where #{ | }tn
it i t t t t it tb n N r t T n i b r= = = ≥

it

 

The likelihood function is given by  where the first part 

consists of people who did not submit bids, and the second part represents people who 
did submit bids. With risk aversion and/or asymmetry, it is still a dominant strategy to bid 
one’s valuation. If there is observable heterogeneity in auction t, 

{ ( ) ( )}
t

t t

n
N n

t
t i

L F r f b−= ⋅∏ ∏

: , ( | )t it tZ iid F Zσ σ∃ ∼ , 
this type of heterogeneity may be considered explicit. However, unobserved 
heterogeneity may cause substantial problems in the estimation. Moreover, if we do not 
observe the number of potential bidders, Nt , and observe instead only the number of 
actual bidders, nt, then we must account for the truncation. If Nt also depends on 
unobserved heterogeneity, then it is not identified when bidder and bid counts are low— 
either Nt is low or there it is difficult to consider the unobserved Z’s. 
(Note that for this first part of Structural estimation, we are estimating parameters for the 
model we have assumed. That is, we are not testing theory.) 
 
 
6.2. ENGLISH AUCTION WHERE OBSERVE ONLY WINNING BID 
 
The dominant strategy for an English auction with only one observed bid is the same as 
for SPSB auctions: Bidders should bid i ib σ=  if i rσ ≥ .  
 
Our data are for the sample where : {w1tn ≥ t, Nt (debatable), rt }. Assuming that F is 
smooth and the probability of a tie equals to zero, one can infer nt on the basis of the 
winning bid as follows: nt =0 if no winner; nt=1 if wt=rt ;nt>1 if wt>rt. The winning bid 
is given by (2: )max[ , ], 1

tt N tw r tnσ= ≥ . To derive  the likelihood function, note that 
Prob{nt=0}=F(rt)Nt; Prob{nt=1}=Nt F(rt)Nt-1 [1-F(rt)]; and Prob{nt>1}=h(wt) , where the 
winning bid is wt=б(2:nt) and h(wt) is the distribution of the 2nd order statistic given by  

2( ) ( 1) ( ) ( )[1 ( )]tN
t t t t t th w N N F w f w F w−= − − . 

  
 
Define Dt=1 if nt=1 and Dt=0 if nt>1. Then, accounting in the denominator for 
truncation, the likelihood is given by 

1Pr{ 1} ( )
1 Pr{ 0}

t tD D
t t

t t

n h wL
n

−⎧ ⎫= ⋅
= ⎨ ⎬− =⎩ ⎭
∏ . 

Rewriting yields: 
1Nt-1

t t t{N F(r ) [1-F(r )]} ( )
1 ( )

t t

t

D D
t

N
t t

h wL
F r

−⎧ ⎫⋅
= ⎨ ⎬−⎩ ⎭
∏ . 

 



 
The seller is not indifferent over the choice of rt. Suppose σ0 is the seller’s valuation in 
event the item is not sold. Then the expected revenue of the seller is given by  

0

[ ]

( ) Pr{ 1} ( )N

r

E w

R F r r n w h w dw
σ

σ= + = + ⋅∫���	��
 . 

The seller wants to maximize this with respect to r.  

0 0
(1 ( ))0 ... ( ) (1 ) 0 which is equivalent to choosing .

( )
R F rr f F r
r f

σ σ∂ −
= = ⇔ − + − = = +

∂ r

1t

 

 
Once we have estimated F and f, we can choose r. Note that optimal r is independent of 
N. The formula is similar to a take it or leave it offer of a firm facing just one buyer. 
Finally, note that IPV is critical here. 
 
 
 
 
6.3. ENGLISH AUCTION WHERE ALL BIDS ARE OBSERVED 
 
Although we may observe all bids in this third case, we still do not observe Nt. Bidder i 
may submit many bids or none. Let bit be the highest bid submitted by bidder i in period 
t. Let bit be equal to 0 if no bid was submitted at t. Suppose the number of potential 
bidders, Nt , is observed. If not observed, assume that Nt is constant and estimate it, 
assume Nt=N=max{nt}, or assume Nt ~ Poisson truncated below by nt. We observe the 
number of bidders nt =#{i| bit >0}. Let us order i bids in t as b1 t > b2 t > …> bn t. Note 
that if we used the likelihood function from above in section 6.2, we would ignore the 
non-winning bids and estimate a partial likelihood. By submitting a bid one gets a lower 
bound on its valuation, so the inferences on these ordered bidders are:  
 
Bidder 1: 1t bσ ≥ ,         (A) 
 
Bidders 2, …, nt : [ ]1,it it tb bσ ∈        (B)  
 
Bidders nt, … Nt  (those that did not bid):

1it tbσ ≤      (C) 
 
Before deriving the likelihood function, note that we cannot infer (B), above, if bidders 
submit bids in the way described next. Sometimes bidders submit high bids to inflate the 
price faced by other firm. In the case of the FCC spectrum auctions, firms did this by 
keeping standing high bids on more than one license in one same area. 
 
So the likelihood function is 

 



1 1
2( ) ( )

( )

[1 ( )] ( ( ) ( )) ( )
t

t t

n
N n

t t it
t tA C

B

L F b F b F b F −

=

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪= − −⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∏ ∏��	�
 ��	�

����	���


1tb  

 
Seller objectives may vary, from efficient allocation to maximum revenue (reading: 
Cramton, McMillan).  
 
 
 
6.4 – FPSB 
 
In FBSB auctions, the strategy is to bid b=β(б), where β is monotone and increasing with 
inverse η. Let b : max (б-b) F(η(b))N-1 . From the first-order condition with respect to b,  
we get:  
 

1: [ ( ) ]( 1)
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From (D), we obtain (see derivation pages 25-26 of lecture notes): 
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We know that Fσ ∼ , where F is unknown. Since ( )b β σ= , we can apply a change of 
variable technique to derive the following: 

( ) ( )( ) ( ){ } ( ){ }Pr Prb G F b b bσ η σ η β σ= = ≤ =∼ < . 

The support of ( ){0} ,b r β σ⎡= ∪ ⎣
⎤
⎦ depends on parameters, as described in Donald and 

Paarsch’s (1993) pseudo-Maximum Likelihood approach. Suppose we observe a cdf G, 
where g(b)=G’(b)=f(η(b)) η’(b), and wish to identify the distribution F.  
Then equation (D) becomes  

( )1 [ ( ) ]( 1)  
( )

g bb b N
G b

η= − −  

N
( )which implies that the valuation to be infered is equal to ( ) .

( 1) ( )bid

G bb b
N g b

η = +
−

 

 
Given G, we are left to ask: Under what conditions G implies a unique F?  
 
 

 



 
6.5 EXTRA NOTES: RISK AVERSION 
 
With risk aversion, it is still a dominant strategy to bid ( )b β σ=  in SPSB and English 
auctions. On the other hand, FPSB and Dutch auctions with risk aversion imply 
 N

1 1

0, _ _

( , ( )) ( ) ( ( )) (0) [1 ( ( )) ]N N

without loss gen

b U b F b U F bπ σ β σ σ η η− −

=

= = − + − . 

Bidders will bid more aggressively to increase the probability of winning (see Holt 
(1979)). Suppose that U(x)=xα , α∈  [0,1], and α=1 for risk neutrality. 

. The BNE of this game is equivalent to the BNE of the 

game with 

1( , ) ( ) ( ( ))Nb b F bαπ σ σ η −= −
1

( , ) ( ) ( ( ))
N

b b F b απ σ σ η
−

= −  (also risk neutral) where the number of opponents 
increased by 1/α. So, if N increases, the bid increases and βα()>β1(). 
 
 
6.6. K-OBJECT AUCTION 
 
Consider an auction of K objects. Let K<N and assume that each buyer wants only one 
item. The bidders’ valuations for a single item are IPV, and the marginal valuations for 
additional items are zero. 
 
Theorem: Suppose the auction rules and the BNE are such that the k highest types win 
and the lowest possible type (σ ) has zero expected pay-off, then expected payoff of 
bidder i with type iσ  is 

1 1
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Auction types considered are: a discriminatory auction where the k highest bidders win 
and pay their own bid; the Vickrey auction where the k highest bidders win and pay the 
k+1 highest bid; and the uniform price auction where the k highest bidders win and pay 
the kth highest bid.  
 
Hansen (1985) provides a reduced form test of revenue equivalence using U.S. Forest 
Service Timber Auctions (English and FPSB where conducted at same time). In this 
paper the natural log of revenue over time is regressed on forest characteristics and an 
auction format dummy, Dt. The OLS coefficient on Dt (=1 if FPSB) is estimated at 0.1 
and achieves statistical significance. Since Dt is not exogenously determined, this paper 
uses a two-step Heckman method. First, a probit of Dt on Zt and wt is performed. In a 
second step, the coefficient on Dt is estimated and found to be not significantly different 
from zero. (See also Haile (2000, AER) and Athey and Levin (JPE, 2001) who argue that 
a positive coefficient on Dt can be rationalized by risk aversion.) 
 

 



 
6.7. SEQUENTIAL AUCTIONS 
 
Suppose there are N bidders and 2 items. The objects will be allocated in a sequential 
FPSB auction. We will make two key assumptions: (i) the only information revealed after 
first item sold is the winning bid (not the other bids) and (ii) each bidder wants only one 
item. 
 
With IPV, BNE yields the following strategies, for both items:  
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Then the winning bids are  
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, which implies as a result that 

This result is also true for SPSB. 
 
Empirical Evidence: Ashenfelter (1989) examines identical, sequential wine auctions and 
finds a “declining price anomaly”. In an affiliated common value context, Milgrom and 
Weber (1982) show that prices are super martingale (prices increase since there is more 
information about the object). One conclusion is that revenue equivalence fails when 
bidders want multiple items. 
 
 
6.8 ASYMMETRIC AUCTIONS 
 
We now examine Common Value auctions where there exist asymmetries of information 
of bidders and of bidders’ valuations. Consider, for example, auctions for off-shore 
drilling rights with adjacent and non-adjacent tracts being sold in auction to multiple 
bidders, some of whom are neighbors to the different tracts. The question is: how can we 
use observable data to distinguish the “asymmetry of information” from the “asymmetry 
of valuation”? 
 
Consider the set-up of the FPSB auction with risk neutrality, where the common value is 
v and one item is being sold. There are two types of bidders: (a) a neighbor that observes 
a public signal Z and private signal X, and (b) a non-neighbor (NN) who only observes a 
public signal Z. Let there be a minimum bid R, E[v]>R, and let the joint distribution of 
(v,X,Z,R) be common knowledge.  
 

 



The claim is that the strategy of a NN is to randomize—that is, he will follow a mixed 
strategy. To understand this strategy choice, we may ask: Why would a NN bid? If he did 
not bid, then the neighbors would bid. Why randomize? Note that a NN’s payoff is 
E[Payoff for all bids]=0 or <0. If a bidder is a neighbor, then his payoff is (E[V/X]- 
b)Prob{their bid>NN bid}=h, where the neighbor has the realization of h, NN forms the 
E[.]. 
 
For theoretical treatments of asymmetric auctions, see Wilson (1967) and Milgrom and 
Weber (1983). For empirical papers, see Hendricks and Porter (1988), Hendricks, Porter 
and Wilson (1994) and Porter (1995). 
 
 
6.9. THREE APPROACHES TO ESTIMATION AND IDENTIFICATION ISSUES 
 
Three different estimation techniques are discussed below. The first estimation approach 
is Simulated Non Linear Least Squares (NLLS) with winning bids, Nt and rt, t=1, …T. 
The second approach is a “brute force” Maximum Likelihood Estimation (MLE) that 
needs the same information as NLLS above. Finally, we describe a non parametric 
techniques that requires data on all bids. For a good survey of “Empirical Work 
concerning auctions”, see Hendricks and Paarsch (1995).  

 
Simulated NLLS (Laffont et al., 1995) 
 
This method consists of fitting a moment condition and exploiting revenue equivalence. 
In English auctions, ( ){ }2:max ,

tt t Nw r σ= and a bid is given by  

( ) ( ){ } ( )2: 1:max , | .
t tt N NE rβ σ σ σ σ⎡ ⎤= =⎣ ⎦  

 
Revenue equivalence implies that, given a winning bid, the following expression holds:  

( )( ) ( ){ } ( ) ( ){ }1: 2: 1: 2:max , | max ,
t t tt tN N NE r E rβ σ σ σ σ σ⎡ ⎤ ⎡= = =⎣ ⎦ ⎣ tN

⎤
⎦  

Therefore, the moment condition used in the NLLS method is simply 

[ ] ( ){ }2:max ,
tt t NE w E r σ⎡ ⎤= ⎣ ⎦ . 

 
In the data, we observe {Nt,wt,rt} t=1, … T. The simulation consists of positing a cdf F 
(log-normal). We then perform random draws from this distribution and compute 
E[max{rt,б(2:Nt)}]. Then, we minimize the weighted average difference of wt-E[.] to get 
parameters of F. The main problems with this method are (i) the presumption that rt is 
exogenous (when, in fact, rt may be chosen to maximize the sellers expected profits, for 
example), (ii) we do not observe Nt, (iii) there exist possible alternative hypotheses for F, 
and (iv) there are over-identifying assumptions. 
 
This method allows for larger families of distribution functions but still requires specific 
distributional assumptions. This drawback is overcome in the third non-parametric 
approach to estimation described below. 

 



 
 
 
MLE  (as in Paarsch, 1992) and Piecewise Pseudo-ML  (as in Donald and Paarsch, 
1993) 
 
Individual bids are given by bt~F(ηt(b)), conditional on Nt and rt . The winning bid is 
given by 
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and where it is tricky to find a control for the expression (*). 
 
This approach requires that the joint distribution belong to particular families of 
distributions that admit closed-form solutions to the bid functions that can be solved 
using numerical methods and, therefore, is more restrictive than the previous method 
discussed above. 
 
 
Non-parametric Estimation (as in Elyakime et al., 1994) 
 
This estimation technique requires data on all submitted bids. Consider a sample of bids, 
{bid}, for t=1,…, T, i=1, … Nt,  rt, and Zt (where Z are observed covariates). We get the 
following inverse bid function from the First Order Conditions, where the valuation to be 
inferred is given by 

N
( )( )

( 1) (
t

t
bid t

G bb b
N g b

η = +
− )

,  

where G and g depend on t because they depend on Nt and rt. 
 

Consider a sub-sample where Nt is constant and all bidders bid—that is, tr σ≤  —which 
assures that g and G are constant. The approach consists of a two-stage non-parametric 
estimation. First, non-parametrically estimate g and G.  Then, create a data-set where 

l n
N N

l
l

( )( )
( 1) (

it t
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G bb b
N g b

σ η= = +
− )

.  

In a second step, non-parametrically estimate the bid function β by bid=β( l itσ ). We can 
then verify the identification condition—that is, we can check whether the right hand side 

of l n
N N

l
l

( )( )
( 1) (

it t
bidestimated

G bb b
N g b

σ η= = +
− )

 is monotone increasing (lim η(β)→r as b→r).  

 

 



Note the limitations to this approach: If rt is optimally set, then it cannot be treated as 
exogenous. Furthermore, if there is strategic bidding or collusion, some bids are “not 
real”.  
 
 
 
7. BID RIGGING – AN EMPIRICAL STUDY 
 
Early empirical work on collusion in auctions looks at patterns of identical bidding, 
unlikely outcome of un-cooperative bidding and simple patterns of bid rotation. For 
example, players in the GE/Westinghouse conspiracy set their bids according to the 
phases of the moon.  
 
Porter and Zona (1993) analyze and identify bid rigging in procurement auctions in Long 
Island highway construction and repair. There is a suspicion of “complementary bidding” 
and bid rigging by firms participating in meetings, to create the appearance of 
competition and to manipulate the expectation of the seller. In the procurement auctions, 
the firm with the lowest bid is awarded the contract. Porter and Zona’s results show that, 
for participants in meetings, the higher bids look “phony” and were not determined by the 
same process.  
 
There are other empirical papers on bid rigging, as well. For example, Porter and Zona 
(1999) examine Ohio school milk markets, while Pesendorfer (1997) studies collusion in 
first price auctions. The central research question is whether these data exhibit evidence 
inconsistent with competitive bidding. Bid rigging may be easier in FPSB auctions, 
where competition is over price only, when quality is pre-specified, the number of firms 
is stable, and there are trade associations. 
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