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Next-generation large-scale binary protein
interaction network for Drosophila
melanogaster

Hong-Wen Tang 1,2,3,16, Kerstin Spirohn 1,4,16, Yanhui Hu1, Tong Hao 1,4,
István A. Kovács 4,5,6, Yue Gao1, Richard Binari1,7, Donghui Yang-Zhou1,
Kenneth H. Wan 8, Joel S. Bader 9,10, Dawit Balcha1,4, Wenting Bian1,4,
Benjamin W. Booth8, Atina G. Coté4,11,12, Steffi de Rouck13, Alice Desbuleux1,4,
Kah Yong Goh2, Dae-Kyum Kim14, Jennifer J. Knapp 11,12, Wen Xing Lee2,
Irma Lemmens13, Cathleen Li1, Mian Li1, Roujia Li4,11,12, Hyobin Julianne Lim14,
Yifang Liu1, Katja Luck 1,4, Dylan Markey1,4, Carl Pollis 1,4,
Sudharshan Rangarajan1,4, Jonathan Rodiger 1, Sadie Schlabach1,4, Yun Shen1,4,
Dayag Sheykhkarimli 4,11,12, Bridget TeeKing1,4, Frederick P. Roth 4,11,12,15,
Jan Tavernier13, Michael A. Calderwood 1,4, David E. Hill 1,4,
Susan E. Celniker8 , Marc Vidal1,4 , Norbert Perrimon 1,7 &
Stephanie E. Mohr 1

Generating reference maps of interactome networks illuminates genetic stu-
dies by providing a protein-centric approach to finding new components of
existing pathways, complexes, and processes. We apply state-of-the-art
methods to identify binary protein-protein interactions (PPIs) for Drosophila
melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Dro-
sophila proteins result in the ‘FlyBi’ dataset of 8723 PPIs among 2939 proteins.
Testing subsets of data from FlyBi and previous PPI studies using an ortho-
gonal assay allows for normalization of data quality; subsequent integration of
FlyBi and previous data results in an expanded binary Drosophila reference
interaction network, DroRI, comprising 17,232 interactions among 6511 pro-
teins. We use FlyBi data to generate an autophagy network, then validate
in vivo using autophagy-related assays. The deformed wings (dwg) gene
encodes a protein that is both a regulator and a target of autophagy. Alto-
gether, these resources provide a foundation for building new hypotheses
regarding protein networks and function.

Protein-protein interactions (PPIs) are central to cell biological pro-
cesses, such as formation of multiprotein complexes and enzymes,
receptor-ligand and kinase-substrate interactions, intracellular signal
transduction, and regulation of transcription and translation. A num-
ber of complementarymethods can be used to identify PPIs, including
mass spectrometry-based methods for identification of protein

complexes and two-component methods such as yeast two-hybrid
(Y2H) analysis for identification of binary interactions1. Results from
systematically screened and validated binary interactions contribute
to the development of specific hypotheses regarding the functional
in vivo relevance of individual PPIs. Moreover, when applied at large
scale and integrated with other datasets, networks of binary
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interactions elucidate new components of known pathways. Particu-
larly relevant to this study, methods for identification of binary inter-
actions have improved over the years and caveats to the approach are
now well understood2. Innovations in experimental approach and
analysis, as well as production of proteome-scale open reading frame
(ORF) clone collections,made it possible to increase both the scale and
the quality of binary interaction screens. Indeed, simply increasing the
number of ORFs tested in Y2H assays contributes to new discoveries
and brings protein-centric studies closer to the scale that can be
accomplished with nucleic acid-based studies such as transcriptomics
analyses. In recognition of the value of binary protein information to
research study, binary interaction methods have been applied at an
increasingly large scale for the discovery of PPI networks for several
proteomes, including the human and yeast proteomes3,4.

Drosophila melanogaster is an exemplary research system with a
rich history of impactful contributions to our understanding of con-
served biological processes and enduring relevance in biological and
biomedical research5–7. The Drosophila research community has made
significant investments in technology and resource development in
addition to research studies, leading to a wealth of available genetic
methods, fly stock reagents, large-scale datasets, and databases that
can be used as research tools and mined for new hypothesis devel-
opment, disease modeling, and experimental studies8. These include
genome-wide genetic and RNAi screens9–11; extensive genomics
studies12,13; large-scale transcriptomics studies formanyDrosophila cell
lines, developmental stages, and tissues14–16; large-scale studies of
transcriptional regulation17; and single-cell RNAseq analysis18,19.

Protein-based resources and datasets provide an important
complement to other ‘omics’ resources but are hindered in scale by
technological challenges. Nevertheless, several efforts have gener-
ated physical and data resources relevant toDrosophila proteins. The
first attempt at generating a binary protein interactome map for
Drosophila at proteome-scale was released two decades ago20, fol-
lowed by a few attempts at smaller scale21–23. In addition, the large-
scale Drosophila Protein Interaction Map (DPiM) project, which used
affinity purification followed by mass spectrometry (AP-MS), identi-
fied associations for ~5000 fly bait proteins24, a project thatwasmade
possible by the systematic ORFeome cloning project of the Berkeley
Drosophila Genome Project (BDGP)25. In addition, focused studies to
detect specific Drosophila PPI networks have been reported, e.g.,
related to InR/PI3K/Akt signaling26, Hippo signaling27, Golgi phos-
phoprotein 3 (GOLPH3)28, andGAGA factor29. Moreover, databases of
known and predicted Drosophila PPIs have been established and
updated, such as the Drosophila Interaction Database (DroID)30–32

and databases with multi-species coverage, including the Molecular
Interaction Search Tool (MIST)33, BioGRID34, and IntAct35. Never-
theless, discovery of high-confidence binary interactions using ORF
collections and up-to-date methods has remained limited in
Drosophila.

To address this unmet need, we applied to Drosophila the overall
strategy for large-scale, high-confidence detection of binary protein
interactions and data integration that was recently reported for the
human proteome3. Our approach involved two distinct configurations
of the Y2H assay for a total of four all-by-all Y2H screens of
10,000× 10,000 Drosophila proteins and resulted in a new Drosophila
binary interaction dataset, the “FlyBi” dataset, of 8723 binary interac-
tions among2939proteins. Subsequent reanalysis of previous datasets
and integrationof FlyBidata and literature-basedbinary interactionsof
comparable quality resulted in an expanded, high-confidence Droso-
phila reference interaction (DroRI) network of 17,232 binary interac-
tions among 6511 proteins. We tested the utility of the data to predict
function by generating a putative autophagy interaction network that
we validated in vivo using autophagy-related assays. The ORF clone
collection and data resources generated in this project, available from
multiple public sources, provide a foundation for additional

proteomics studies and for the generation of new hypotheses
regarding protein functions in Drosophila.

Results
Binary protein-protein interaction network for Drosophila
Performing Y2H screens with multiple, state-of-the-art versions of
the assay can lead to increased high-quality coverage of binary
interactions, as demonstrated by analyses that use existing
knowledge as a benchmark for quality analysis (e.g., see ref. 3).
We have demonstrated that both specificity and sensitivity of
maps can be increased by improving any one of the four para-
meters of the ‘empirical framework’: i) completeness of the
search space to be explored; ii) assay sensitivity; iii) sampling
sensitivity; and iv) precision36–39. Since the Drosophila proteome
contains ~13,900 confirmed or predicted protein-coding genes,
the complete search space to be eventually explored is at least a
13,900 × 13,900 matrix of 1.9 × 108 combinations. The first sys-
tematic attempt was performed by screening ~10,000 baits
against two cDNA libraries and a pool of ~10,000 ORF clones20.
Limitations of the study include that only a single assay version
was used; a limited number of replicate screens were performed;
and gene annotations were of poorer quality than they are now. In
that study, a subset of 4780 PPIs were reported as reaching
acceptable quality levels20.

To improve our knowledge of theDrosophilabinary interactome
network, we chose to perform four large-scale Y2H screens with a set
of ~10,000 Drosophila melanogaster proteins of known sequence
(see https://www.fruitfly.org/DGC/index.html and ref. 40): two
screens in each of two different configurations differing in the posi-
tion of the Gal4 activation domain (AD) fusion, i.e., N- or C-terminus,
and in the overall level of exogenous expression, i.e., using either
centromeric or two-micron based expression vectors3. These four
“all-by-all” screens represented 400 million combinations of protein
pairs (Fig. 1a, Supplementary Fig. 1). First pass pairs (FiPPs) identified
in the primary Y2H screens were systematically retested in pairwise
tests, followed by sequence confirmation. Altogether, we identified
1726 interaction pairs in assay version 1, screen 1; 1029 in assay ver-
sion 1, screen 2; 3908 in assay version 3, screen 1; and 3509 in assay
version 3, screen 2. In addition, to test of the quality of the experi-
mentally identified putative binary protein pairs (see next section,
“MAmmalian Protein-Protein …”), we established (i) a small, high-
confidence positive reference set (PRS) based on the literature and
filtered to include only pairs for which both ORFs are present in the
FlyBi ORF collection (Supplementary Data 1), (ii) a random reference
set (RRS) of the same size and with the same filter applied (Supple-
mentary Data 1), (iii) a larger list of literature-curated binary pairs for
which multiple lines of evidence support the interaction (at the time
of the analysis, i.e., Lit-BM-16, Supplementary Data 2, or the most
recent available, i.e., Lit-BM-20, Supplementary Data 3), and (iv) a list
of literature-curated binary pairs for which only one line of evidence
supports the interaction (Lit-BS, Supplementary Data 4), similar to
what was done for the human reference interaction (HuRI)
network3,41.

The list of sequence-confirmed putative binary interactors
resulting from experimental Y2H testing was supplemented by appli-
cation of a computational approach to predict additional interactions
based on the interactions identified in screens 1 and 2 (assay version 1).
Different from other approaches previously applied to Drosophila
(e.g., see ref. 42), our method, known as the L3 approach, is based on
connectedness of proteins within a network (seeMethods and ref. 43).
Following application of the L3 approach to data from the screens 1
and 2, we experimentally tested the top 1000 computationally pre-
dicted pairs. Excluding 254 undetermined pairs (seeMethods), 71%, 80
and 90% of the top 1000, 500 and 100 predictions were scored as
positives, comparing to 13% for Lit-BM-16 pairs. Of the 533 positive
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predictions, 332 interactions were sequence-confirmed and added to
the FlyBi dataset.

Combining all pairs validated bypairwise testing results in a total
FlyBi dataset of 8723 unique interaction pairs for 2939 genes. The
FlyBi dataset is available as Supplementary Data 5 and the FlyBi
project webpage (https://flybi.hms.harvard.edu/). In addition, these
pairs have been integrated with other datasets at IntAct (https://
www.ebi.ac.uk/intact/)44 and in MIST (https://fgrtools.hms.harvard.
edu/MIST/)33.

MAmmalian Protein-Protein Interaction Trap (MAPPIT) analysis
Verifying putative binary interactions with orthogonal assays provides
a method for quality analysis that can be used to define cut-off values
prior to integration of data fromdifferent sources. Thus, our next goal
was to analyze the quality of the FlyBi pairs and of Lit-BM pairs
(available at the time of the experiments; Lit-BM-16; see Supplemen-
taryData 2), as well as binary pairs from the literaturewith only a single
piece of evidence (Lit-BS), pairs identified in the previous large-scale
Drosophila Y2H study (CuraGen pairs)20, binary pairs identified in
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additional Y2H studies made available at DroID31,32, and interactions
identified in the DPiM project24. We experimentally tested randomly
selected subsets of pairs from the FlyBi and other datasets using the
MAmmalian Protein-Protein Interaction Trap (MAPPIT) assay45. With
theMAPPIT assay, binary interactions between twoproteins expressed
inmammalian cells activate signaling by anotherwise inactive cytokine
receptor. The lists of pairs tested in the MAPPIT assay and the test
results are provided in Supplementary Data 6 (see also Methods and
Supplementary Figs. 2, 3).

The results of this analysis made it possible for us to apply a cut-
off value for CuraGen pairs that produced a list of pairs of equivalent
high quality as compared with FlyBi pairs from assay version 1 (N-N
terminal configuration) as judged by performance in this orthogonal
MAPPIT assay. The Giot et al. study reports that 4,780 interactions
among 4,679 proteins met the cut-off value of 0.5 for high-confidence
as defined in that study20. We found that CuraGen pairs with a con-
fidence score of 0.7 or higher as defined in ref. 20 have a similar
recovery rate in the MAPPIT as compared with FlyBi pairs (Supple-
mentar Figs. 2, 3). Thus, a total of 2,232 protein pairs from the CuraGen
dataset met the quality cut-off criteria for integration into our final
reference map as described below. We note that in the N-C terminal
configuration literature pairs and pairs from the FlyBi assay ‘version 3’
screens validate at a lower level than literature pairs and ‘version 1’
screen pairs using the N-N terminal configuration (Supplementary
Fig. 3). Literature pairs also did not validate at the same rate when
tested using the C-terminal version of MAPPIT. This is also consistent
with what we observed for testing of ‘version 3’ pairs from a human
ORF screen3.We attribute this to the fact that theMAPPIT assayhasnot
been optimized for screens performed using C-terminally-fused ORFs
(N-C MAPPIT validation of N-C Y2H pairs performs better than N-N
MAPPIT testing of N-C Y2H pairs but does not perform as well as N-N
MAPPIT testing of N-N Y2H pairs). N-C MAPPIT validation of N-C Y2H
pairs performing better than N-N MAPPIT testing of N-C Y2H pairs but
not as well as N-N MAPPIT testing of N-N Y2H pairs also supports this
conclusion. As expected due to significant differences in the assay
formats, assay types, and other relevant factors, the positive rates with
MAPPIT were lower for DPiM46 and for the group of previous smaller-
scale Y2H studies available from DroID31,32 (Supplementary Fig. 3).
These other studies contributed to defining the Lit-BM, e.g., as the
source of additional evidence for some pairs, and notably, the Lit-BM
performs significantly better than the Lit-BS (Supplementary Fig. 3).
This provides one indicator among many that these other datasets
have clear value as part of an effort to fully document PPIs in
Drosophila.

Comparison of FlyBi interactions with existing knowledge
We next compared FlyBi pairs with interaction data from a variety of
data repositories that are integrated in MIST33 (Fig. 2). We generated
1000 randomized versions of the FlyBi network by node shuffling.
Interacting pairs in the FlyBi dataset show significant overlap with
physical interaction data obtained fromprevious studies inDrosophila
and physical interactions mapped from orthologous genes

(‘interologs’) (Fig. 2a). We also observed some overlap between FlyBi
binary interaction pairs and genetic interaction (GI) data for Droso-
phila and between orthologs of fly genes in the budding yeast Sac-
charomyces cerevisiae (Fig. 2a). To further analyze FlyBi interactions,
we determined the count of literature citations for eachgene in the Lit-
BM-20 or FlyBi dataset. As expected, interactors in Lit-BM-20 are
biased towards well-studied genes (i.e., genes with larger numbers of
literature citations). By contrast, we did not observe this bias for genes
in the FlyBi dataset (Fig. 2b), consistent with the large-scale, all-by-all
approach we took to generate the data. We next compared gene
ontology (GO) annotations for the two proteins in each pair in three
categories—biological process, molecular function, and cellular com-
ponent—as well as phenotype annotations from FlyBase. For both Lit-
BM-20 and FlyBi pairs, we observe significant enrichment for genes
with the same GO and/or phenotype annotations as their interacting
partners (Fig. 2c). We also compared binary interactions with protein
complex-based interaction data, and with components of protein
complexes as annotated in literature47, and observed enrichment in
both the Lit-BM-20 and FlyBi sets (Fig. 2c). In addition, interacting
proteins identified in our study aremore likely to be found in the same
organelle and in the same cell type, as well as reported in the same
publications, compared to the random controls (Fig. 2d–f).

Comparing the Lit-BM-20 and FlyBi sets to random networks
reveals that FlyBi interaction pairs are of a quality that is comparable
to the high-confidence published binary interactions that make up
the Lit-BM-20 and are less biased. As such, these sets can appro-
priately be combined to generate a high-qualityDrosophila reference
interaction (DroRI) network. We built a new, high-confidence DroRI
network by integrating the FlyBi data, CuraGen data that meet the
cut-off for data quality equivalent to the FlyBi data, and all other high-
confidence binary interactions (i.e., literature-based interactions).
The DroRI network is comprised of 17,232 interactions among the
protein products of 6511 genes and can be queried and accessed at a
dedicated page at MIST. To facilitate integrated data mining and
hypothesis generation, we integrated tissue-specific bulk RNA-seq
data generated by the modENCODE consortium48 into MIST. This
makes it possible for users of MIST to project any of the tissue-
specific transcriptomics datasets onto the DroRI network, and reveal
the subset of network interactions predicted to occur in a given tis-
sue (Supplementary Fig. 4).

We also compared the FlyBi network with interaction data from
the mass spectrometry-based DPiM study, and with binary interaction
maps from other species. We found that 72 pairs in FlyBi overlap with
DPiM data, which represents 2% and 0.9% of interactions detected by
Y2H and AP-MS methods, respectively, within the space of protein
pairs tested in each study. We note that another study that used both
AP-MS and Y2H, only 6 interactions (representing 1.3% of interactions
detected by Y2H and 0.16% of interactions detected AP-MS) were
detected by both methods49. We also note that the observed overlap
between FlyBi and DPiM datasets is greater than expected if the assays
were completely independent (Supplementary Table 1, Fisher’s exact
test, P < 2.2e-16, OR = 45.1). We further note that a total of 2661 pairs in

Fig. 1 | Large-scale, all-by-all binary interaction screens of 10,000 Drosophila
proteins. a Schematic of the systematic screening pipeline. Left, the search space
covered and the Y2H assay versions used. Center, assay versions used in the Y2H
screen. Right, MAPPIT validation assay. b Fraction of pairs positive in the MAPPIT
validation assay for the following sets: random reference set (RRS; n = 216; red),
literature-curated binary pairs with multiple evidence (at the time of the assay; Lit-
BM-16; n = 123; blue), FlyBi pairs (n = 193; purple), and CuraGen pairs at high (H;
n = 193) and low (L; n = 187) cutoff values as defined by Giot, Bader et al. 2003
(purple). Error bars shown as fraction of positives ± standard error of the propor-
tion. c Total number of binary interactions in literature and systematic interactome
maps over the past 20 years. Blue line, gradual increase in the total number of
binary interactions accumulated in the literature (Lit-BM), displayed based on date

of publication. Purple line, total number of interactions from systematic inter-
actome mapping efforts based on the date of public release of systematic binary
datasets. d Network-based spatial enrichment analysis (SAFE) results for the FlyBi
dataset. Clusters of genes enriched for gene ontology (GO) terms are highlighted.
The different colors highlight different enriched groups. Source data are provided
in Supplementary Files 1–6. We note that panel a of this figure comprises modified
versions of Fig. 1a, b in Luck, K., Kim, DK., Lambourne, L. et al. “A referencemap of
the human binary protein interactome.” Nature 580, 402–408 (2020) https://doi.
org/10.1038/s41586-020-2188-x and Fig. 2b in Braun, P., Tasan, M., Dreze, M. et al.
“An experimentally derived confidence score for binary protein-protein interac-
tions.” Nat Methods 6, 91–97 (2009) https://doi.org/10.1038/nmeth.1281.
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the DroRI overlap with the complete set of interactions detected by
mass spectrometry as annotated in MIST.

With regards to other species, we find that comparison of the
DroRI and HuRI networks reveals 714 of a total of 9332 interactions for
which both orthologs are present in both datasets are identified as
binary interactors in both networks. The total set of DroRI binary
interactions for which orthologs are detected as binary interactors in
any of the species included in MIST (human, rat, mouse, zebrafish, X.

laevis, X. tropicalis, C. elegans, S. cerevisiae, and S. pombe) is 1355. The
low level of overlap likely also reflects differences in what is dis-
coverable using different types of assays, whether or not the correct
isoform is being tested, other sources of false negative discovery, and
meaningful biological differences.

Ultimately, the value to theDrosophila research community of the
DroRI network, and the new FlyBi dataset in particular, will be revealed
by exploring its use, such as for the development of new hypotheses
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regarding protein function. We describe the results of one such
exploration below.

Generation of an autophagy network using FlyBi data
To experimentally test the predictive value of interactions represented
in the DroRI network and in particular, to test the predictive value of
the new FlyBi binary interaction pairs with regards to shared gene
function, we chose to focus on autophagy. Autophagy has been
extensively studied inmultiple species50; has been characterized using
protein-centric approaches in human cells51; is a conserved process
with human health relevance52; and is easily studied in vivo in Droso-
phila using multiple well-established assays53,54. To identify new reg-
ulators of autophagy, we used FlyBi data to define a list of candidate
autophagy-related proteins and a control set. To build a putative
autophagy-related list, we first assembled a list of 19 known autophagy
regulators (List 1 in Supplementary Data 7). Next, we mined the FlyBi
data for interactors with these autophagy regulators and identified 48
candidate interactors (List 2 in Supplementary Data 7). One of the 19
known regulators we included is Atg8a. There are five interactors with
Atg8a in the FlyBi dataset. We note that two of these five were also
identified in a recent Y2H screen for interactors with Atg8a55; i.e.,
Diabetes and obesity regulated (DOR), a known autophagy regulator,
and CG12576, an uncharacterized protein. In addition, the DOR-Atg8a
interaction was identified in the CuraGen Y2H study20 and a physical
interaction between the two was further confirmed by CoIP and
characterized in another study56. To expand the candidate list, we
again mined the FlyBi data, and identified 103 additional potential
interactors of List 2 proteins (List 3 in Supplementary Data 7). By
combining Lists 1, 2, and3,wegenerated aputative PPI network related
to autophagy that includes four core autophagy-related genes and 166
candidates (170 gene ‘autophagy set’) (Supplementary Data 8). As a
control set, we chose at random 106 genes from the FlyBi dataset
(‘random set’) (Supplementary Data 8).

To test for autophagy-related functions, we performed loss-of-
function experiments using RNAi (Fig. 3a) combined with over-
expression of Atg1, which encodes a protein kinase essential for
autophagy (Fig. 3a). Overexpression of Atg1 in the Drosophila eye
induces a high level of autophagy, leading to a rough eye phenotype
(Fig. 3a, compare b’ and A”)57,58. To test the roles of the ‘autophagy set’
genes, we determined if RNAi knockdown of these candidates mod-
ified the Atg1-induced rough eye phenotype. A total of 477 RNAi lines
targeting 166 geneswere tested in aGMR-Gal4 >UAS-Atg1 background.
We found that 234 lines, corresponding to 137 genes, modified the
severity of the GMR-Gal4 >UAS-Atg1 phenotype (Supplementary
Data 8). To address whether the data from FlyBi used to generate the
autophagy network helped enrich for potential autophagy compo-
nents, we randomly selected 106 genes from FlyBi as a control list of
comparable size (‘random set’) and tested these genes in the GMR-

Gal4 >UAS-Atg1 assay. Altogether, 26of the lines tested (24%)modified
the severity of GMR-Gal4 >UAS-Atg1 phenotype (Supplementary
Data 8). We tested multiple lines per gene in the autophagy set and
only a single line per gene in the control set. Thus, to appropriately
compare the percentage of modifiers between the autophagy set and
the control set, we randomly selected one RNAi stock per gene from
the autophagy set five times, generating five independent data sub-
sets (see Methods) (Supplementary Data 8). RNAi lines tested in the
autophagy sub-set modified the GMR-Gal4 >UAS-Atg1 phenotype in
50%, 52%, 47%, 51%, and 55% of cases (average = 51%), compared to 24%
in the random set (Fig. 3b). Altogether, these results indicate that the
targeted candidate gene screen approach is more efficient at identi-
fying new potential modifiers of autophagy-related functions. This is
consistent with a previous report that showed that protein network
information can be used to limit false discovery in Drosophila RNAi
screens59.

We next tested putative autophagy regulators identified in the
GMR-Atg1 screen using a different assay performed at a different life-
cycle stage and in a different tissue (Fig. 3c). This assay interrogated
autophagy-related processes in the larval fat body, a nutrient storage
organ analogous to the human liver in which autophagy is quickly
induced by starvation60. Under fed conditions, the autophagosomal
marker mCherry-ATG8a shows is detected in a diffuse distribution
throughout the cells (Fig. 3c). Upon starvation, mCherry-ATG8a
redistributes to form punctate structures (autophagosomes) in the
cytoplasm (Fig. 3c). Of the 234 RNAi lines identified in the GMR-
Gal4 >UAS-Atg1 eye screen, 60 (26%) increased fat body Atg8a puncta
under fed conditions, while 41 lines (18%) inhibited fat body Atg8a
puncta formation upon starvation (Supplementary Data 8). As an
example of a negative autophagy regulator, depletion of dwg in GFP-
labeled flip-out clones induced Atg8a punctate formation under
nutrient rich conditions (Fig. 3c, toppanels). In addition, as an example
of a positive regulator of autophagy, depletion of MED15 suppressed
starvation-induced Atg8a puncta formation (Fig. 3c, bottom panels).
Altogether, our candidate gene approach allowed us to quickly and
efficiently identify new genes that are likely to be regulators of
autophagy.

In total, 101 RNAi lines corresponding to 66 genes from the
‘autophagy set’ list were able to modify Atg1-induced eye defects and
alter Atg8 puncta. Of the 66 genes, we chose 39 genes for which there
are at least two RNAi lines available and results with both lines had
consistent effects in both the fat body and the eye phenotype screens.
We tested whether components of the autophagy network can physi-
cally interact in Drosophila cells by co-immunoprecipitation (Co-IP).
We expressed Flag- and GFP-tagged proteins together in Drosophila
S2R + cells, pulled down GFP-tagged proteins, and determined whe-
ther they were associated with Flag-tagged proteins (Supplementary
Fig. 5, Supplementary Fig. 6, Supplementary Table 2). Of the 39 genes,

Fig. 2 | Bioinformatics analysis of the FlyBi Y2H dataset. a Comparison of FlyBi
with protein-protein and genetic interactions (PPIs and GIs) fromMIST. Fraction of
FlyBi pairs overlapping with published Drosophila PPIs or interologs (putative PPIs
based on orthologous genes in other organisms) analyzed by comparison to 1000
random networks generated by node shuffling. FlyBi dataset is enriched for pub-
lishedPPIs.OverlapwithDrosophilaGIs andgenepairswith similar GIs in yeastwere
also analyzed.b Adjacencymatrix for binary interactions in literature withmultiple
lines of evidence (Lit-BM; light blue) and FlyBi interactions (purple). Proteins bin-
ned andordered along axesbasedonnumber of corresponding publications. Color
intensity of each square reflects total number of interactions between proteins in
corresponding bins. c–f Biological significance analyses. Purple, FlyBi; light blue,
Lit-BM. c Enrichment of binary interactome maps for functional relationships and
co-complex memberships. BP Biological process, CC Cellular component, MF
Molecular function; Phenotype, shared phenotypes as annotated by FlyBase; MIST
complex all, all annotated indirect interactions in MIST (might or might not be
supported by direct evidence); MIST complex only indirect, all interactions

annotated as supported only by indirect evidence inMIST; COMPLEATDB, complex
annotations (literature-based complexes only). Dashed white line, reference for
comparisonof bar heights. For a, c, means ± standarderrors of themeans (SEM) are
shown. For d–f, single bar on right shows results for FlyBi (purple) or Lit-BM (blue);
multiple bars on left show results for 1000 randomized networks. dCo-localization
analysis. Shown, fraction of interacting partners sharing the same organelle anno-
tation, compared with results for 1000 randomized networks. Organelle annota-
tions as predicted by PSORT and DeepLoc. e Co-citation analysis. Shown are
numbers of interacting partners cited in the same publication(s), compared with
results for 1000 randomized networks. Only publications associated with < 100
genes considered. f Co-expression analysis. Shown is average number of co-
expressed cell types defined by cluster analysis of a single-cell RNAseq dataset for
Drosophila midgut, compared to results with 1000 randomized networks. Statis-
tical information is provided in Supplemental Notes. Source data are provided in
Supplementary files 1–6.
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one of the GFP-tagged proteins, CG10209, was expressed at very low
levels. To overcome this issue, we designed a smaller Flag-tagged form
of CG10209 and enriched it using Flag-beads (Supplementary Fig. 7).
Of 29 pairs we tested, an interaction was detected using co-IP for 16
(55%), providing support for the high quality of the FlyBi dataset. The
observation that 55% of pairs were positive by co-IP is similar to what
has been reported by others using co-IP as follow-up to Y2H studies in
other species, e.g., successful co-IP of 5 of 12 (42%) in one recent
report61 and 45 of 79 (57%) in another62.

Dwg binds insulators near ATG genes to suppress autophagy
One of our candidates, deformed wings (dwg; also known as Zw5),
encodes a Drosophila insulator protein responsible for enhancer
blocking and support of distant interactions, contributing to the
organization of chromosome architecture63. Our genetic test showed
that dwg is a putative negative regulator of autophagy. Consistent with
this, whole larval lysate of dwg mutants showed a higher level of
autophagy, indicated by increased lipidated Atg8a (Atg8a-II) com-
pared to lysate from control (Fig. 4a).
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We hypothesized that as an insulator, the Dwg protein might
regulate autophagy through binding to insulator elements on chro-
matin and blocking enhancer functions. We therefore performed
chromatin-immunoprecipitation followed by next-generation
sequencing (ChIP-seq) to identify Dwg downstream targets. Gene
group enrichment analysis revealed that the chromatin regions of
autophagy-related genes and genes related to mitochondria, major
signaling pathways, and ribosomes are targeted by Dwg (Fig. 4b).
Interestingly, the Dwg-binding regions verified by ChIP-qPCR are
located at or near insulator elements in four core ATG genes, Atg1,
Atg3, Atg13, and Atg17 (Fig. 4c, d)64. Dwg can suppress enhancer
functions, thus leading to inhibition of transcription65. Consistent with
this, we also observed that dwg mutants showed higher mRNA
expression ofATG genes (Supplementary Fig. 7). Taken together, these
results suggest that Dwgbinds to the insulator elements present in the
ATG genes, presumably suppressing their transcription.

Dwg is subjected to autophagy-lysosomal degradation
Autophagy is considered a highly selective pathway that targets spe-
cific substrates for degradation and selectivity is thought to relymainly
on the interaction between LC3/ATG8 family proteins and cargo/
adaptor proteins66. Interestingly, our co-IP results suggest that Dwg
physically interacts with Atg8a (Supplementary Fig. 8) and FlyBi data
further suggest that the interaction is direct. These results suggest that
Dwg is a substrate for autophagy. To test this hypothesis, we expressed
Dwg in S2R + cells and treated cells with an autophagy inducer
(Rapamycin) or a lysosomal inhibitor (Bafilomycin A1; BafA1). Immu-
noblots revealed that Dwg protein levels were reduced following
Rapamycin treatment, whereas the Rapamycin-induced reduction of
Dwg protein can be reversed by cotreatment with Bafilomycin A1
(Fig. 4e), indicating that Dwg is degraded by autophagy.

The mammalian ortholog of Atg8a, LC3, interacts with LIR (LC3-
interacting region) motifs, W/F/Y-x-x-L/I/V, on substrates for autop-
hagic degradation66. There are four potential LIR motifs predicted in
Dwg (Supplementary Fig. 8)67. To characterize which LIR motifs are
responsible for interactions with Atg8a, we generated four Dwg
deletion mutants, Dwg-F1-F4. Each one of them contains an individual
LIR motif (Supplementary Fig. 8). Our co-IP results showed that
Atg8a interacts with Dwg-F1 and Dwg-F4 (Supplementary Fig. 8), sug-
gesting that it is the first and fourth LIR motifs that bind to Atg8a.
Consistent with this result, Dwg with mutant LIR motifs (DwgY129A-I132A,
Dwg F401A-L404A, and DwgY129A-I132A-F401A-L404A (4A)) had dramatically reduced
interactions with Atg8a, demonstrating that these two LIR motifs are
Atg8a binding sites (Fig. 4f).

Atg8a delivers Dwg to autophagosomes for degradation
To elucidate the physiological role of the Dwg-Atg8 interaction, we
expressed wild-type Dwg or Dwg with mutations in the two LIR motifs
(Dwg4A) and examined their localization and effects in S2R + cells and
larval fatbody. As expected,Dwg is localized in thenucleus (Fig. 4g and
Supplementary Fig. 9). Inhibition of autophagosome degradation by
Baf-A1 resulted in an increase of detectable Dwg in the cytoplasm and

co-localization of Dwg with Atg8a punctae in S2R + cells (Supplemen-
tary Fig. 9). Similarly, in the fat body, starvation induces translocation
of Dwg to the cytoplasm, where it colocalizes with autophagosomes
(Fig. 4g). These results further support that Dwg is a substrate of
autophagy. Expression of Dwg with LIRmotif mutations was restricted
to the nucleus and strongly inhibited autophagy in both S2R + cells and
fat bodies, suggesting that Atg8a is able to interact with and deliver
Dwg to autophagosome for degradation (Fig. 4g and Supplementary
Fig. 9). Altogether, our results suggest that disruption of the Dwg-
Atg8a interaction not only stabilizes Dwg protein, but also allows Dwg
to bind to insulator elements which suppress transcription of Atg
genes, leading to autophagy inhibition (Supplementary Fig. 10).

Discussion
In this work, we applied state-of-the-art experimental approaches to
binary interaction mapping, together with experimental and
bioinformatics-based quality analyses, to generate a next-generation
reference binary interactome for Drosophila. The outcomes of our
large-scale efforts include (i) a collection of ~10,000 Drosophila ORFs
in a Gateway-system entry vector; (ii) a new high-confidence Y2H
dataset, the FlyBi dataset, which is comprised of 8723 binary interac-
tions among2939proteins; and (iii) an integratedDrosophila reference
interactome, DroRI, which is comprised of 17,232 interactions among
6511 proteins. Features that distinguish the FlyBi project from past
efforts include the quality and coverage of theORFcollection onwhich
we based our Y2H screens;25 use of improved versions of the Y2H
system;3 computational prediction of new interactors using a different
approach than had previously been applied in Drosophila;43 use of an
orthogonal experimental approach to define cut-off values for con-
fidence for FlyBi Y2H data, computational predictions, and previously
reported data;45 and integration and comparison of FlyBi data with
existing PPI and other datasets to generate theDroRI resource that can
be navigated using MIST33.

Several indicators point to the value and high quality of FlyBi
interaction pairs. For example, proteins in FlyBi pairs are less biased
towards well-understood proteins as judged by the number of pub-
lications per gene as compared to existing pairs (Fig. 2b), such that
theyprovide an important supplement to existing interaction datasets.
Moreover, FlyBi pairs also performed as expected for a dataset enri-
ched in biologically meaningful associations (Fig. 2c–f). Nevertheless,
the pairs defined in this work have little overlap with interactors as
defined using mass spectrometry-based approaches (e.g., the DPiM
dataset) or with binary interactors observed in other species, obser-
vations that likely reflect both experimental and biological differences.
Ultimately, the value of identification of large-scale binary datasets for
biological and biomedical research lies in the ability to use individual
identified putative PPIs and/or integrated networks to build new
hypotheses that lead to efficient detection of new functional findings
with in vivo relevance. To test this, we explored potential new inter-
actors of proteins previously identified as relevant to autophagy in
Drosophila. We chose to focus on autophagy because this process is
well-studied in multiple species and has human health relevance, and

Fig. 3 | Identification of an autophagy regulatory network using the FlyBi
dataset. a Genetic cross and example phenotypes for RNAi knockdown in the
presence of Atg1 over-expression. Two sets were compared: an experimental set
defined based on predicted interaction in the FlyBi dataset with known autophagy
components or their interactions (Supplementary Data 8) and a randomly selected
set. a’-a””. Representative adult Drosophila eye phenotypes from control and
experimental assays for modification of the Atg1 overexpression phenotype. a’,
Gal4-only control. a”, Ectopic expression of Atg1 using the eye-specific GMR-GAL4
driver results in a rough eye and reduced eye size. The effect is reduced in the
presence of SalaRNAi (a”’) and more severe in the presence of dwgRNAi (a””).
b Percentage of RNAi lines that behaved as putative geneticmodifiers of Atg1 over-
expression. c Distribution of mCherry-ATG8a in the larval fat body (fed or starved

conditions). Clonal expression of dwgRNAi (GFP-labeled cells, top panels) induced
formation of mCherry-ATG8a puncta under fed conditions whereas clonal
expression of MED15RNAi (GFP-labeled cells, bottom panels) abrogated starvation-
induced Atg8a puncta. Experiments were repeated three times independently with
similar results. Scale bar: 20μm. d Putative autophagy regulator network based on
knockdown, FlyBi data, and co-immunoprecipitation (co-IP) data (see Supple-
mentary Figs. 5, 6). Green boxes, putative suppressors of autophagy; red ovals,
putative inducers of autophagy; thin grey edges, direct interactions as reported in
the FlyBi dataset; thicker blue edges, interactions reported in FlyBi and confirmed
by co-IP. Of the genes in the network, 6 (30% of total) computed relatively unstu-
died genes (CGs) were added to the network by our studies. Source data are pro-
vided in Supplementary Data 8 and as a Source Data file.
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because well-established in vivo Drosophila assays related to autop-
hagy were available.

Our approach was to start with known proteins of the autophagy
pathway, identify potential PPIs based on the FlyBi data, and test these
candidates for autophagy-related phenotypes in Drosophila using two
different in vivo assays. We performed a focused RNAi screen for

putative geneticmodifiers of themild phenotype associatedwith over-
expression in the eye of Autophagy-related 1 (Atg1)57,58. Using the
positive hits from the Atg1 modifier screen we determined the dis-
tribution of fluorescent protein-tagged Atg8a in the Drosophila fat
body under fed and starved conditions68. Following this approach, we
identified a high-confidence sub-network of putative autophagy
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regulators (Fig. 3) and found that Dwg both regulates and is regulated
by autophagy, providing evidence of reciprocal regulation between
autophagy and chromatin regulators. Moreover, as expected for high-
quality data, these findings show that using the interaction network
constructed with FlyBi data allowed us to enrich for genes relevant to
the process of autophagy. The ability to use binary interaction data to
reduce the full set of Drosophila genes to a subset of high-confidence
candidates prior to in vivo phenotypic analyses, which can be both
time- and resource-intensive, will unquestionably accelerate future
studies.

Methods
Generation of a large-scale ORF clone resource
The entry clone collectionwas generated from 11,687 BDGP cDNAgold
clones40 (see https://www.fruitfly.org/EST/gold_collection.shtml)
using attB-tailed PCR. See below for detailed descriptions of primer
design and PCR amplification. The PCR products were quality con-
trolled by detection and sizing on agarose gels as follows. PCR pro-
ducts were loaded into 1% (w/v) agarose gels (3 g Agarose, 300mL
1xTAE) and run in 1xTAE buffer with New England Biolabs 1 kb ladder.
Gels were imaged using a BioRad GelDoc XR system. Band sizes were
calculated using BioRad Quantity One software (version 4.6.9). High-
quality PCR products were cloned into the pDONR223 expression and
cloning vector using BP Clonase. See below for a detailed description
of the cloning protocol. Clones were stored as glycerol stocks prior to
their use to generate yeast expression clones.

PrimerDesign. PCR primerswere designed using Primer3 release 0.969

and the sequence of the open reading frames. The parameters applied
were as follows: PRIMER_OPT_SIZE, 17; PRIMER_MIN_SIZE, 15; PRI-
MER_MAX_SIZE, 20; PRIMER_OPT_TM, 60; PRIMER_MIN_TM, 40; PRI-
MER_MAX_TM,95; PRIMER_OPT_GC_PERCENT, 50; PRIMER_MIN_GC, 0;
PRIMER_MAX_GC, 100; PRIMER_EXPLAIN_FLAG, 1; PRIMER_MAX_PO-
LY_X, 18; PRIMER_SELF_ANY, 30; PRIMER_SELF_END, 30. For dicistronic
cDNAs, the CDS to which primers were designed was chosenmanually
with preference given to the longer CDS. Primer sequences are pro-
vided in Supplementary Data 9.

PCR amplification of ORFs. Templates were inoculated from the
Berkeley Drosophila Genome Project (BDGP) Gold Collection into
1.2mL 2x YTmedium with appropriate antibiotic (Chloramphenicol at
100 µg/ml final conc., or Carbenicillin at a final concentration of
100 µg/ml). Cultures were grown overnight (16–18 h) at 37 °C at
300 rpm.The overnight culturewasdiluted 1:10with sterilewater. PCR
primers were purchased desalted and resuspended in Tris-EDTA (TE)
buffer at 20 µM concentration from Invitrogen. Pairs of primers were
combined and diluted with Milli-Q water to a concentration of 1.25 µM

(each primer). PCR reactions were performed using 5 µL Phusion HF
Buffer (5X concentration), 0.5 µL dNTP (10mM each, New England
Biolabs), 5 µL primer pairmix (1.25 µMeachprimer), 3 µL template (1:10
cell dilution), 0.25 µL Phusion DNA Polymerase (New England Biolabs),
and 11.25 µL sterile Milli-Q water, for a total reaction volume of 25 µL.
Touchdown PCR70 was performed with the following cycling para-
meters: 98 °C for 1min; 5 cycles of (98 °C for 10 s; 56–46 °C, decrease
by 2 °C each cycle; 72 °C for 7.5min); 15 cycles of (98 °C for 10 s; 72 °C
for 7.5min); 72 °C for 10min; 4 °C hold.

BPClonase reactions. BP Clonase reactions were performed in a total
volumeof 5 µL, consisting of 1 µL 5XBP Reaction Buffer, 1 µl pDONR223
vector (75 ng/µL, uncut), 1 µL BP Clonase, and 2 µL of attB-tailed PCR
product. BP reactions were incubated at 25 °C for 18 h. Immediately
following incubation, 2 µL of the BP reaction was transformed into
10 µL of chemically competent E. coli DH5-alpha cells (prepared in-
house). Themixturewas incubated for 30minonwet ice, heat shocked
for 40 s at 42 °C, and incubated for 2min on wet ice. Finally, 90 µl of
SOC medium was added and the transformations were incubated for
1 h, 225 RPM, 37 °C in an orbital shaking incubator. The entire trans-
formation reaction was inoculated into 1mL LB/spectinomycin
(100 µg/mL) and incubated 16–18 h at 37 °C, 300 rpm. Reactions and
transformationswereperformed in96-well format in standard thermal
cycler plates. Glycerol frozen stocks (15% glycerol) were made by
mixing 50 µL glycerol (30%) with 50 µL overnight culture.

Amplification of ORFs for transfer to expression vectors and
sequence analysis
We used PCR to amplify the ORFs from the large-scale ORF collection
to generate a product that was used for cloning into the yeast
expression vectors (see below) and useful for sequence analysis. PCR
was performed using individually indexed 96-well M13 forward pri-
mers (Life Technologies) and a non-indexed M13 reverse primer (5’-
GTAACATCAGAGATTTTGAGACAC-3’). The same amount of each
amplicon from each plate waspooled as a single sample. Samples from
each entry plate were sequenced using the Illumina platform.
Sequencing readswere deconvoluted to the individualwell level based
on a combination of the 96-well index and the Illumina sample index,
and by alignment to ORF sequences. A clone was deemed ‘sequence
confirmed’ if a majority of the reads from the well (>10 reads) aligned
to the expected ORF sequence. Only entry clones that were sequence
confirmed were re-arrayed and used for further processing.

Preparation of Y2H expression clones from the large-scale ORF
clone resource
Using the M13 PCR product from the entry ORFs, we performed a LR
reaction into pDEST-DB, pDEST-AD-CYH2 (assay version 1) and pDEST-

Fig. 4 | Dwg is both a negative regulator and a substrate of autophagy. a Flies
homozygous mutant for a loss-of-function allele of dwg exhibit increased autop-
hagy. Control (dwg8/+) andmutant (dwg8/dwg8) larva subjected to immunoblotting
with indicated antibodies.Measurements aremean ± SEMof triplicateexperiments.
Significance determined by two-tailed t-test. *p =0.031. b Gene group enrichment
analysis of ChIPseq data. Bar length, fold change in enrichment. Colors, strength of
significance (p-value of -log10 for each term). c, d Dwg binds insulator regions of
Atg genes. c Example browser images forAtg1, Atg3, Atg13, and Atg17 fromChIP-seq
in S2R + cells expressing Flag-Dwg. Aggregate data from two independent experi-
ments shown. Blue triangles, insulator binding regions.dDwgoccupancy at or near
insulator regionsofAtggenes revealedbyChIP-qPCR.One-WayANOVAfollowedby
Tukey’s multiple comparison test to identify significant differences; shown are
means ± SEM of three independent experiments; ***P <0.0001, *P =0.039.
e Autophagic activity regulates Dwg levels. S2R + cells transfected with Flag-dwg or
-dwg4A(Y129A-I132A-F401A-L404)) were treated with Rapamycin (autophagy inducer) or Bafi-
lomycin A1 (Baf-A1; lysosomal inhibitor). Dwg and GAPDH levels analyzed by
immunoblotting (IB) with indicated antibodies and quantified. One-Way ANOVA

followed by Tukey’s multiple comparison test to identify significant differences;
shown are means ± SEM of three independent experiments; **P <0.01; p =0.0026
(dwg-wt control v.s. Rapamycin). p =0.0089 (dwg-wt Rapamycin v.s. Baf-A1).
f Mapping Dwg-Atg8a interaction sites. Schematic of domain structures and LIR
(LC3-interacting region) motifs of Dwg. S2R + cells transfected with GFP-Atg8a,
Flag-tagged dwg, or Flag-tagged dwg with mutations in LIR motif (dwgY129A-I132A,
dwgF401A-L404A, or dwg4A(Y129A-I132A-F401A-L404)) for 48h followed by immunoprecipitation
with anti-GFP nanobody. Immunoprecipitated proteins and total cell lysates ana-
lyzed by immunoblotting with indicated antibodies. g Disruption of Dwg-Atg8a
interaction inhibits autophagy. Clonally expressedHA-taggedDwg is nuclear under
fed conditions (green); upon starvation, it is detected in cytoplasm and co-localizes
with autophagosomes labeled bymCherry-Atg8a (magenta). A version of Dwg with
mutations in Atg8a-binding sites (dwg4A) remains nuclear and inhibits autophagy.
Fat body cells stained with DAPI (blue). Experiments repeated three times inde-
pendently with similar results. Scale bar: 20μm. Source data are provided as a
Source Data file.
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AD-AR68 (assay version 3) using Gateway Technology (Invitrogen).
Attributes of these plasmids are summarized in Supplementary
Table 3. The DNA was isolated using a liquid handling robot (Qiagen
96-well Miniprep). DB ORF fusions were transformed into yeast strain
Y8930 (MATα), trp1-901 leu2-3,112 ura3-52 his3-200 ade2-101 gal4Δ
gal80Δ cyh2r GAL2::ADE2 GAL1::HIS3@LYS2 GAL7::LacZ@met2, and AD
ORF fusions into yeast strain Y8800 (MATa), trp1-901 leu2-3,112 ura3-52
his3-200 ade2-101 gal4Δ gal80Δ cyh2r GAL2::ADE2 GAL1::HIS3@LYS2
GAL7::LacZ@met2.

Y2H auto-activator identification and removal
Prior to the screen, haploid DB ORFs were spotted on SC-Leu-His
media to test for auto-activation of the GAL1::HIS3 reporter gene in the
absence of an AD-ORF plasmid. DBORFs that grew on SC-Leu-His were
removed from the collection.

Y2H Screening
Large-scale Y2H screens were performed using two assay formats3. For
the first two screens (assay version 1), pools of 1000 ORFs as preys in
pDEST-AD-CYH2 were screened against single pDEST-DB ORF baits.
Both AD and DB are fused to the N-terminus of the ORF and expressed
from yeast centromeric plasmids (Fig. 1a, center panel, “v1”). For
screens 3 and 4 (assay version 3), we used preys in pDEST-AD-AR68, in
which the AD is fused to the C-terminus of the ORF and plasmid copy
number reflects use of a 2-micron origin instead of the yeast cen-
tromeric chromosome. We used assay version 1 prey constructs and
tested these against same baits (Fig. 1a, center panel, “v3”). A detailed
workflow is provided in Supplementary Fig. 1b and Supplementary
Methods, and follows what was reported for3. Briefly, following
inoculation of DB and AD ORFs in selective media and overnight cul-
ture, 10 ul of each DB was mated against 5 ul of a pool of 1000 AD’s
(kilopool). After anovernight incubation at 30 °C in liquid richmedium
(YEPD), 10 ul of the culture was transferred into synthetic complete
media (SC) without leucine or tryptophan (SC-Leu-Trp) to select for
diploids. The following day, the culture was spotted on SC-Leu-Trp-His
+3AT solidmedia to select for diploids inwhich theGAL1::HIS3 reporter
gene was activated. In parallel, diploid yeast cells were transferred
onto SC-Leu-His+3AT solid media supplemented with 1mg/l cyclo-
heximide (CHX) for assay version 1 or 10mg/l CHX for assay version 3.
After 72 h incubation at 30 °C and one additional day at room tem-
perature, we picked colonies that grew well on 3AT plates and did not
grow on CHX plates.

Yeast colony sequencing
To identify both bait and prey proteins for thousands of positive
colonies, we used a method called SWIM-seq (Shared-Well Interaction
Mapping by sequencing) as described3. Briefly, DB and AD-ORFs were
simultaneously amplified from 3μl yeast lysate, using well-specific
primers. After PCR amplification, barcoded PCR products from an
entire 96 well plate were pooled together and purified and sequenced
with Illumina Solexa technology allowing for identification of inter-
acting first pass pairs of proteins (FiPPs). To identify likely true AD/DB
pairs, we developed a “SWIM score”3 S that takes into account the AD
and DB reads in each well, total reads returned from the sequencing
run, and other factors. This is shown in Formula 1:

S =
2

a+M
x + d +N

y
ð1Þ

where x and y are read counts of anAD-ORF andDB-ORF in a givenwell
respectively, a and d are total read counts of all aligned AD-ORF and
DB-ORF in that well, and M and N are pseudo-counts for AD and DB
respectively, which were constant for each sequencing batch but
varied for different batches. We selected FiPPs for pairwise testing
using a cutoff that balances the risk of testing toomany false positives

FiPPs versus not testing toomany true positive FiPPs. The cutoff varied
for different screens and sequencing runs to adjust for slight variations
in the screening and sequencing protocol. Primers used for SWIM-seq
are shown in Supplementary Table 4.

Pairwise test of FiPPs
Each FiPP was subjected to a pairwise retest3. Briefly, Ads andDBs were
picked from the yeast ORF expression collection, mated in individual
quadruplicates, anddiploid yeast were spotted on selectionmedia: SC-
Leu-Trp-His+3AT and SC-Leu-His+3AT +CHX. Positive pairs were
picked into SC-Leu-Trp and a SWIM-PCRwas performed on the diploid
yeast lysates to confirm the identity of ORFs. We used the SWIM score
as described in ref. 3 to generate a list of binary interactors identified in
the screens. If a DB acted as a de novo auto-activator, it was retested in
a final pairwise experiment, where in parallel to mating the protein
pairs, eachDBwas alsomated against an “AD-null”plasmidwithout any
ORF in the cloning site. Genes corresponding tomated yeast that grew
on selective media when mated against AD-null yeast were removed
from the final FlyBi dataset. A protein pair was scored as positive only
when significantly more growth was observed on the test plate com-
pared to the CHX plate. In the case of too strong growth on CHX plate,
a pair was scored as auto-activator (classified as undetermined). If
there was no growth on test and CHX plate, the pair was scored as
negative. A pair was scored undetermined (NA) if the well was
unscorable (contaminated, not spotted, etc.).

Computation-based prediction of positive pairs and quality
analysis
Computational prediction of positive pairs, based on the assay version
1 results (i.e., screens 1 and 2)was performed asdescribed in43.Weused
network-based link prediction to rank candidate interacting pairs
basedon the normalized number of length three networkpaths linking
them (L3). As the input, we used a list of 2195 PPIs from screens 1 and 2
and obtained the top 10,000 predictions. To quality-analyze these
predictions and screen 2 data, we experimentally tested the top 1000
predictions from the L3 computational analysis, a set of 135 positive
interactions from screen 2 (positive benchmarks), 263 proteins from
the RRS (negative benchmarks), and binary interaction pairs from the
following sources or lists: Lit-BM-16 (see main text) and DPiM46. Alto-
gether, we pairwise tested 3399 non-redundant pairs in two orienta-
tions, allowing us to classify each pair as either positive, negative, or
undetermined, following the experimental protocol described above
and in Supplementary Methods.

MAPPIT validation
MAPPIT analysis was performed as previously reported71. Entry clones
for bait and prey proteins were first cloned into MAPPIT vectors via
Gateway LR reaction. Miniprep DNA was used to transfect
HEK293T cells by standard calcium precipitation in quadruplicate. For
each testedpair, twowellswere left untreated and twowere stimulated
with the cytokine erythropoietin (Epo), which can induce JAK-STAT
pathway signaling in cells in which there is a bait-prey interaction,
resulting in activation of a STAT-responsive firefly luciferase reporter71.
MAPPIT validation assays were only deemed valid if both bait and prey
were successfully cloned into expression vectors and bait expression
was detected. Fold-induction values (i.e., the signal from stimulated
cells / signal fromunstimulated cells)were calculated for eachpair and
two negative controls (i.e., no bait with prey and bait with no prey).
Each tested pair was assigned a quantitative score comprising the fold-
induction value of the pair divided by the maximum fold-induction
value of the two negative controls. The validation was done in several
batches, and the same ~150 pairs of Lit-BM-16 (positive controls) and
~200 RRS pairs (random controls) were included in each batch. Alto-
gether, we validated 844 screen pairs, as well as 193 CuraGen high
confidence pairs, 187 CuraGen low confidence pairs20, 216 pairs
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reported in DPiM46, 291 pairs in the “Finley Yeast Two-Hybrid Data” list
that can be downloaded from the DroID online resource31, and 187 Lit-
BS pairs.

Pairs were scored positive or negative based on thresholds set at
the 99th percentile of the RRS scores (equivalent to a 1% false discovery
rate). Each experimental batch was scored separately and used the
quantile function in the Python library. Pairs without valid quantitative
scores were dropped, and recovery rates were calculated as the
number of positive pairs over the sum of the positive and negative
pairs. The error bars on the recovery rates were standard errors of the
portions.

Bioinformatic analyses
SAFE analysis. For SAFE analysis, we used the SAFE software72 v1.5 to
determine and visualize significant functional modules in various
networks. The network layoutswere generatedwithCytoscape73 v3.4.0
using the edge-weighted spring embedded layout. SAFE analysis was
run using the default options with the exception that “layoutAlgo-
rithm” was set to “none” (using the layout as generated by Cytoscape)
and the “neighborhoodRadius” was set to “2.”

Comparison of FlyBi and DPiM. To establish the screening space for
DPiM, baits were extracted from a list provided by the authors24 and
prey proteins were defined as all expressed genes (FPKM>0) in
S2R + cells based on previous RNA-seq measurements74. To reflect the
changes in gene annotations since the release of datasets, FBgn IDs
were updated and validated using <http://flybase.org/convert/id>75.
Genes corresponding to multiple updated and validated IDs were
excluded. For the Fisher exact test, protein pairs present in the DPiM
set but absent in the bait and/or prey lists (e.g., due to sensitivity of
RNAseq) were added to the total search space for DPiM (~0.01%
increase in search space size). Both FlyBi and DPiM screening spaces
were filtered to include only annotated protein-coding genes, which
were further filtered to unique pairs in an orientation-independent
manner (i.e., Bait A –PreyB andBait B– PreyAwere counted as a single
protein pair).

Gene set enrichment. Gene set enrichment analysis of genes covered
by the FlyBi network was done using an in-house program written
based on a hypergeometric distribution test. Gene sets were built
based on the Gene List Annotation forDrosophila (GLAD) database76. A
negative control of 1000 random networks was generated by shuffling
FlyBi gene nodes 1000 times (node degree not necessarily preserved).

Identification of Lit-BM-20. Lit-BM-20 was built by selecting Droso-
phila physical interactions from MIST for which either the interaction
was identified using one detection method for direct physical inter-
action as reported in multiple publications or the interaction was
identified using multiple methods for detection of direct interactions
(or both). The list of the detectionmethods for direct interaction were
annotated based on the same criteria used for building the HuRI
network3,41. Annotations of detection methods for interactions inclu-
ded inMISTwere based on the European Bioinformatics Institute (EBI)
molecular interaction (MI) controlled vocabulary system ([https://
www.ebi.ac.uk/ols/ontologies/mi]), for example, MI:0800 for two
hybrid.

Comparisons to interologs. The FlyBi dataset was comparedwith PPIs
and genetic interactions detected in Drosophila and interologs as
assembled by MIST. In addition, the FlyBi dataset was compared with
Drosophila orthologous gene pairs mapped using DIOPT77 from yeast
gene pairs with similar genetic interactors78.

Adjacency matrix. An adjacency matrix for binary interactions was
built using FlyBi interactions and Lit-BM-20 interactions to visualize

how frequently interacting proteins are reported in literature. The
interacting proteins were binned and ordered along both axes based
on the number of corresponding publications. The color intensity of
each square reflects the total number of interactions between proteins
in the corresponding bins.

GeneOntology (GO) analysis. Analysis of the biological relevance for
interacting proteins was done by evaluating commonality in the GO
annotation, phenotype annotation, and complex memberships of the
interacting proteins from FlyBi and Lit-BM-20 data as compared with
protein pairs from the random networks. To do this, gene2go and
gene2phenotype annotations were obtained from FlyBase79, and GO
terms with more than 30 associated genes were removed prior to
enrichment analysis.

Protein complex-based analysis. Complex-based interaction data for
Drosophila were obtained from MIST33. Protein complex annotations
were obtained from COMPLEAT47. COMPLEAT includes annotated
complexes from the literature and complexes predicted based on the
connectivity of protein-protein network; however, only literature-
based complexes were used for enrichment analysis.

Co-localization analysis. Co-localization analysis was done based on
organelle prediction by PSORT80,81 and DeepLoc82. Co-citation analysis
was done based on associated literature for each interacting protein.
Genome-scale studies were removed and only publications with fewer
than 100 associated genes were considered. Co-expression analysis
was done by mining a single-cell RNA-seq dataset for the Drosophila
midgut83 to identify cell types in which each interacting protein is
expressed. The results were visualized by plotting the fraction of
interacting pairs that share the sameorganelle annotation, the number
of interacting pairs cited in the same publication(s), or the average
number of co-expressed cell types of the interacting pairs, in each case
as compared to results with the 1,000 randomized networks.

Drosophila strains
Flies were raised at 25 °C following standard procedures unless
otherwise noted. The following Drosophila strains were used: GMR-
GAL4 (II) driver line (Perrimon lab collection), hs-flp; r4-mCherry-Atg8a
Act>CD2 >GAL4 UAS-GFP-nls (mCherry-Atg8a; gift from Thomas
Neufeld; described in68), w1118 (Bloomington Drosophila Stock Center
ID BDSC3605), y1 w*; P{w[+mC]=UAS-Atg1.S}6B (UAS-Atg1; BDSC51655),
dwg8/FM7a/Dp(1:3:Y)w+ (dwg8; BDSC4094), y1 v1; P{y[+t7.7] v[+t1.8]
=TRiP.JF01355}attP2 (UAS-Luc-RNAi; BDSC31603). The following strains
were newly generated for this study:w1118; p{w +UAS-dwg-HA} andw1118;
p{w +UAS-dwg-4A-HA}. The background genotypes of RNAi fly stocks
used for the RNAi screen are as follows: y1 v1; P{y[+t7.7] v[+t1.8] TRiP-
shRNA}attP2 or attP40 (Transgenic RNAi Project [TRiP] lines); P{KK-
RNAi}VIE-260B/CyO or /TM3 (Vienna Drosophila Research Center
[VDRC] ‘KK’ lines);w1118;P{GD-RNAi}/CyOor /TM3 (VDRC ‘GD’ lines); and
UAS-RNAi/CyO or /TM3 (National Institute of Genetics Japan [NIG-
Japan] lines). Specific RNAi Drosophila stocks used for the genetic
screen are listed in Supplementary Data 8.

Antibodies
Antibodies were used for immunofluorescence (IF) or immunoblotting
(WB) at the following dilutions. Rabbit polyclonal anti-GFP (A-6455,
Molecular Probes), dilution factor 1:5000 (WB); rabbit monoclonal
anti-Atg8 (ab109364,Abcam), dilution factor 1:2000 (WB) or 1:100 (IF);
mouse monoclonal anti-Flag (F3165, Sigma), dilution factor 1:5000
(WB) or 1:1000 (IF); mouse monoclonal anti-HA (901514, Biolegend),
dilution factor 1:1000 (IF); rabbit polyclonal anti-GAPDH (GTX100118,
GeneTax), dilution factor 1:10,000 (WB); goat anti-Mouse IgG (H + L)
secondary antibody, Alexa Fluor 633 (A-21052, Invitrogen), dilution
factor 1:1,000 (IF); donkey anti-Mouse IgG (H+ L) SecondaryAntibody,
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Alexa Fluor 555 (A-31570, Invitrogen), dilution factor 1:1,000 (IF); rabbit
Anti-Mouse IgG (Light Chain Specific) (D3V2A) mAb (HRP Conjugate)
(58802, Cell Signaling), dilution factor 1:1000 (WB);mouse Anti-Rabbit
IgG (Light-Chain Specific) (D4W3E) mAb (HRP Conjugate) (93702, Cell
Signaling), dilution factor 1:1000 (WB). For immunoprecipitation, we
used a GFP Nanobody/VHH coupled to agarose beads (ChromoTek
GFP-Trap Agarose, AB_2631357). For ChIP-seq, we used anti-Flag
(Sigma, F3165) and the IgG antibody beads as included in Sim-
pleChIP Plus Enzymatic Chromatin IP Kit (Cell Signaling
Technology, 9005).

Autophagy-related assays
In vivo autophagy assay in adults and comparison of autophagy
and random sets. To compare datasets of comparable size, 106 nodes
from a randomly generated network were selected as a control gene
set and one stock per gene was screened for the modifier of Atg1
overexpression-induced eye phenotypes. Specifically, we crossed
TRiP, VDRC, or NIG-Japan RNAi fly stocks to GMR-Gal4 UAS-Atg1 flies,
then scored the eyes of adult males no older than two weeks post
eclosion for eye phenotypes (we looked at males only to avoid dif-
ferences in eye size due to sex). Tocompare the autophagy set covered
by multiple stocks per gene with the random set where only one stock
per gene was used, we randomly selected one stock per gene for the
autophagy set and compared it with the result from the random set.
We repeated this comparison process five independent times.

In vivoautophagyassay in larvae. Second instar larvaewere collected
72–96 h after egg laying and cultured in fresh fly media with yeast
paste (fed) or in vials containing 20% sucrose (starved) for 4 h.
Autophagy level is indicated by autophagosome numbers labeled by
mCherry-ATG8a. GFP-marked clones expressing RNAi or protein in the
larval fat body were generated through heat shock-independent
induction as previously described in ref. 60. Fat bodies from both
sexes were included.

Immunofluorescence assays. Dissected fat bodies were fixed in a
solution of 4% PFA/PBS for 40min. After permeabilization with 0.3%
Triton/PBS, fat bodieswerewashed, and incubatedovernightwith anti-
HA antibodies, and visualized using anti-mouseAlexa-633 (Invitrogen);
antibody dilutions as indicated above. S2R + cells expressing Flag-dwg
were fixed with 4% paraformaldehyde, permeabilized with 0.1% triton,
and processed for immunostaining. DAPI (1μg/ml) was used to stain
nuclei. Samples were examined using a Zeiss LSM 780 confocal laser
scanning microscope (Carl Zeiss Inc.) with a 63x Plan-Apochromat
(NA1.4) objective lens.

Co-Immunoprecipitation analysis in Drosophila cells
Plasmids. Full-length ORFs of CG11486 (GEO01712), CG9667
(GEO12785), Deaf1 (GEO12259), RfC4 (GEO04321), CG7006
(GEO04456), Larp (GEO13890), CG4813 (GEO05615), lwr (GEO03784),
DOR (GEO05909), dwg (GEO06061), wash (GEO08420), mri
(GEO13088), me31B (GEO01853), MED15 (GEO05444), Nup54
(GEO04647), sm (GEO09592), smB (GEO05072), CG10209
(GEO04957), MED4 (GEO04489), Odj (GEO06447), Dpy-30L2
(GEO12106), MED19 (GEO06036), Chro (GEO02531), Atg8b
(GEO01803), Atg8a (GEO03266), CG5446 (GEO09660), CG4813
(GEO05615), kin17 (GEO12682), CG7484 (GEO09148), sala (GEO07724),
and CG9667 (GEO12785), from the FlyBi ORF clone collection reported
in this work. ORFs were transferred into the Drosophila gateway vec-
tors pAWF, pAGW or pAWG. The GFP ORF was cloned into pAWM as a
control. To generate the Dwg deletion mutant proteins, DNA sequen-
ces corresponding to amino acids 1-150, 134-215, 215-393, and 385-592
of dwgwere PCR amplified and subcloned into the pAWF vector. Using
PCRmutagenesis, we generated dwgY129A-I132A, dwgF401A-L404A, and dwgY129A-

I132A-F401A-L404A mutants by replacing tyrosine 129, isoleucine 132,

phenylalanine 401, or leucine 404 with alanine, followed by cloning
into pAWF or pTWH. Mutant ORF sequences were verified by Sanger
DNA sequencing.

Antibodies. Antibodies used for the study were as follows: anti-GFP
(Molecular Probes, A6455), anti-Atg8 (Abcam, ab109364), anti-Flag
(Sigma, F3165), and anti-GAPDH (GeneTex, GTX100118); antibody
dilutions as indicated above.

Cell culture. Drosophila cells were cultured in Schneider’s medium
supplemented with 10% fetal bovine serum (FBS) at 25 °C. For Rapa-
mycin (LC Laboratories, R-5000) or Bafilomycin (Sigma, B1793) treat-
ment, S2R + cells were treated with 20 nM Rapamycin or 100nM
Bafilomycin-A1 (Baf-A1) for 24 h.

Immunoprecipitation and immunoblotting. DNA was transfected
into S2R + cells in a 10 cm plate with Effectene transfection reagent
(Qiagen) following manufacturer’s protocol. After 3 days of incuba-
tion, cells were lysed using lysis buffer (Pierce) with protease inhibitor
(Thermo Fisher Scientific) and phosphatase inhibitor (Sigma). Lysate
was incubated with GFP-Trap agarose beads (Bulldog Bio) or anti-Flag
M2 magnetic beads (Sigma) for 2 h at 4 °C to precipitate the protein
complexes. Beads were washed 3–4 times with 1ml lysis buffer. SDS-
sample buffer was added, and the samples were boiled at 95 °C for
10min. Boiled samples were run on polyacrylamide gel (Bio-Rad) and
transferred to Immobilon-P polyvinylidene fluoride (PVDF) membrane
(Millipore). The blot was probed with primary antibody, followed by
HRP-conjugated secondary antibody, and signal was detected by
enhanced chemiluminescence (ECL; Amersham).

Quantification of mRNA expression. Total RNA was extracted from
control or dwg8 mutants using TRIzol® reagent (Invitrogen). We syn-
thesized the first strand cDNA with 1 µg of total RNA using iScriptTM
Reverse Transcription Supermix (BIO-RAD) followed by quantitative
PCR with CFX96 Real-Time System (BIO-RAD) using iQTM SYBR Green
Supermix (BIO-RAD). All expression values were normalized to RpL32
(also known as rp49). All assays were performed in triplicate. The pri-
mer sequences used for PCR are as follows:

Rp49: ATCGGTTACGGATCGAACAA, GACAATCTCCTTGCGCTTCT
Atg1: CTAAAGCCGTCGTCCAATGT, GAACAGCATGCTCCGGTATT
Atg17: GAAGCTGCACAACATCCCG, GCTGAGTAGCACGACACTTGG
Atg3: CCAAGACAAAACCCTACCTACC, GCCGACGTATTCCATCTGCT
Atg13: GAACCTAAAGACAGGAGAGAGCA, ACCCTCAGTCGTTTTCA

GGGA

Chromatin immunoprecipitation (ChIP)
S2R + cells expressing Flag-dwg were subjected to ChIP assays using
SimpleChIP Plus Enzymatic Chromatin IP Kit (Cell Signaling Technol-
ogy, 9005) according to the manufacturer’s protocol. DNA co-
immunoprecipitation with either anti-Flag antibody (Sigma, F3165) or
IgG control antibody (a component of the kit) was analyzed by deep
DNA-sequencing or quantified by ChIP-qPCR using primers
shown below.

Atg1: CACTTGCAGGATCGATGGCA, TTACGCTGATCGTCCGTGTG
Atg17 promoter: CACATGCTCGGCCTGCTATT, CAGACTGTCGCT

GGTGCTTT
Atg17 intron: TGCCCGCATCGTGTAAATGG, CTGCTGCTGCTGTG

AGTGTT
Atg3: AGCTGCGAAGTGCAAGTCAA, GCGTCAGATATTCGGCCACA
Atg13: AATCGCAGTGAAAGGGCGTT, AGTTCGCTGTCTGCGTTTGT
For ChIP-seq data analysis, low-quality reads and adaptor primer

sequences were trimmed using TrimGalore 0.6.4 (https://github.com/
FelixKrueger/TrimGalore), and trimmed readsweremappedagainstfly
genome dm6 by bowtie2 2.3.5.1 with the additional argument “-q
–local”84. Samtools 1.6wasused to sort,filter unique reads, and convert
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file format to bam files85. Peak calling was performedwithMACS2 2.2.6
using the additional parameter “-B –SPMR -f BAMPE -g dm”86. Peaks
were annotated with HOMER 4.1187. DeepTools 3.4.0 were used for
normalizing readcounts toCPMandconvert bamfiles to lyby format88.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
FlyBi binary interaction data and all data described in this study are
provided without restrictions. These data are provided as Supple-
mentary file 5 and are also available as a table and as a downloadable
data file at the FlyBi project webpage ([https://flybi.hms.harvard.edu/
]). In addition, these data have been integrated with other datasets at
IntAct ([https://www.ebi.ac.uk/intact/])44 and in the Molecular Inter-
action Search Tool (MIST; [https://fgrtools.hms.harvard.edu/MIST/])33.
MAPPIT data is provided as Supplementary Data 6. RNAi data for the
autophagy-related network is provided as Supplementary Data 8.
Plasmid clones and associated information are available from both the
Drosophila Genomics Resource Center (University of Indiana, Bloo-
mington, IN) and the DNASU plasmid repository (Arizona State Uni-
versity, Phoenix, AZ). ORFs in the Gatewaydonor vector were end-read
sequenced (see above, “Generation of a large-scale ORF clone
resource”). Sequence data is available at GenBank and at the FlyBi
project website (see Genbank Accession columns in the table at
[https://flybi.hms.harvard.edu/results.php]). For a subset of 954 ORFs,
the end-reads sequence spanned the full ORF. This sequence data is
available at NCBI (Project Accession ID PRJNA349744) and a list of
these ORFs, along with NCBI IDs, is available at the FlyBi project
website (see [https://flybi.hms.harvard.edu/clones.php]). Interaction
data was deposited at EBI IntAct (all Drosophila PPIs viewable at
[https://www.ebi.ac.uk/intact/query/pubid:IM-28761]) and DroRI PPIs
are available at MIST (see DroRI tab at [https://fgrtools.hms.harvard.
edu/MIST/]). ChIPseq data is available at NCBI GEO (Accession ID
GSE220887). Source data are provided with this paper.

Code availability
The code for node shuffling used to generate random networks based
on the FlyBi network is available at <https://github.com/moontreegy/
flybi-network-analysis > . All other code was previously published. The
L3 prediction code, together with example datasets, input data files
and predictions, is available at <https://doi.org/10.5281/zenodo.
2008592 > (see ref. 43). Code relevant to Y2H and PPI analyses is
available at <https://github.com/CCSB-DFCI/HuRI_paper > (see ref. 3).
SAFE analysis software from Baryshnikova and colleagues is available
at <https://github.com/baryshnikova-lab/safepy > (see ref. 72). FBgn
IDs were updated and validated using <http://flybase.org/
convert/id>75.
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