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Abstract

We investigate learning a set of causally related concepts
from examples. We show that human subjects make fewer
errors and learn more rapidly when the set of concepts is
logically consistent. We compare the results of these
subjects to subjects learning equivalent concepts that share
sets of relevant features, but are not logically consistent.
We present a shared-task neural network model simulation
of the psychological experimentation.

Introduction

Researchers have investigated how the relevant background
knowledge of the learner influences the speed or accuracy of
concept learning (e.g., Murphy & Medin 1985, Nakamura
1985, Pazzani 1991, Wattenmaker ef al. 1986). However,
the psychological investigation to date has only explored
problems where subjects learn a single concept and the
relevant background knowledge is either brought to the
experiment by the subject or given in written instructions.
In contrast, research in machine learning has addressed
issues that occur when learning a set of related concepts.
For example, relevant background concepts might be learned
inductively from examples before learning concepts that
depend upon this knowledge (Pazzani 1990). Here, we
report on two experiments in which subjects induce the
relevant background knowledge from examples and use this
background knowledge to facilitate later learning. The
experiments illustrate the importance of learning the
relevance of combinations of features, rather than individual
features. We model this experiment with shared-task neural
networks (Caruana, 1993).

In the first experiment, subjects first induce the relevant
background knowledge and then have the opportunity to use
this knowledge in later learning. To more closely simulate
the real world, we ran a second experiment wherein the
subjects induce the relevant background knowledge at the
same time as learning the concept that depends on this
knowledge. In both experiments, subjects were divided into
two groups. One group, the “feature consistency” group,
learned a complex concept that shared relevant features with
previously learned related concepts, but was not logically
consistent with those concepts. Another group, the “logical
consistency” group, learned a complex concept that was
logically consistent with previously learned related concepts.

Michael J. Pazzani
ICS Dept.
University of California, Irvine
Irvine, CA 92717
pazzani @ics.uci.edu
(714)824-5888
http://www ics.uci.edu/dir/faculty/Al/pazzani

Initial Psychological Experimentation

In the first experiment, subjects were asked to imagine
that they work for the US Forest Service and were assigned
the task of learning to predict years in which there is a
severe risk of forest fire danger in the fall. Four concepts
had to be learned in the experiment -- one concept in each of
four phases. All subjects learned the same 3 background
concepts in phases 1-3. Then, for phase 4, they were
divided into two groups (the logical consistency group and
the feature consistency group) to learn one of two separate
concepts which depended on the background concepts.

The first phase of the experiment was designed to
minimize the effects of the subjects’ domain-specific pre-
existing theories by having every subject learn the same
concept. In this first phase, subjects had to learn when there
is a severe risk of forest fires in the fall given data on rain in
the spring and summer. An example of these data is shown
in Figure 1. Subjects were given data that indicated that
there is a severe risk of forest fires in the fall only when
there is both a wet spring and a dry summer. This rule is
consistent with the knowledge of most people who live in
Southern California. In the remaining phases, when we
measure the learning rate and number of errors made by
subjects, novel stimuli are used as features to insure that
the knowledge was acquired during the experiment.

Next, the subjects were told that the US Forest Service
needs to do advance planning, so it cannot wait until the end
of summer to predict when there will be a severe risk of fire
in the fall. The subjects again examined data from several
years. This time, however, the data was from five simulated
scientific instruments that are used each January to detect the
presence of factors that may be useful in predicting the
amount of rain. When one of the instruments detects the
presence of a particular factor, it displays a distinctive graph,
as shown in Figure 2. Otherwise, a bar is shown to mark
the absence of the instrument’s graph (see Instrument 3 of
Figure 2) Each instrument displays a graph whose shape
differs from that of the other instruments. In this second
concept learning problem, subjects had to learn to predict
from the instrument readings when there would be a rainy
spring. All subjects were given data that indicated there
would be a wet spring when one particular instrument
showed a distinctive graph. All subjects learned a rule of the
form “There will be a wet spring when Instrument-A
displays a graph,” with the instrument corresponding to
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Instrument-A selected randomly. This concept will serve as
background knowledge tor leaming the fourth concept.

In the third concept learning problem, subjects learned
another piece of background knowledge. Here, subjects had
to learn to predict from the instrument readings when there
would be a dry summer. All subjects were shown data
derived from the rule “There will be a dry summer when
Instrument-B or Instrument-C displays a graph.”

In the fourth, and final, concept learning problem,
subjects had to learn to predict from the instrument readings
when there would be a severe risk of fire in the fall.
Concepts 1-3 served as background knowledge for this
concept. Subjects in the logical consistency group were
given data that indicated there would be a severe risk of fire
when Instrument-A displayed a graph and when either
Instrument-B or Instrument-C (or both) displayed a graph,
i.e, A (B v C). This concept is logically consistent with
the first three concepts that were learned. Subjects in the
feature consistency group were given data that indicated there
would be a severe risk of fire when Instrument-C displayed a
graph and when either Instrument-B or Instrument-A (or
both) displayed a graph, ie. C A (B v A). Although not
consistent with the concepts that were learned, this concept
shares relevant features with the logical consistency concept.

Subjects. The subjects were 18 male and female
undergraduates attending the University of California, Irvine
who participated in this experiment to receive extra credit in
an introductory psychology course.

Stimuli. The stimuli consisted of data that were
displayed on a computer monitor. In the first concept, since
there are two two-valued features, 4 distinct stimuli were
constructed. In the remaining three concepts, there were 32
distinct stimuli since there are five two-valued features. The
stimuli were presented in a random order for each subject.

Procedures. Each subject was shown data on the
computer from a single year and asked to make a prediction
(e.g., whether there would be a severe risk of fire in the fall)
by clicking on a circle next to the word Yes or a circle next
to the word No (i.e., using a mouse to move a pointer to the
circle and pressing a button on the mouse). Next, the
subject clicked on a box labeled Check Answer. While still
displaying the data, the computer indicated to the subject
whether his answer was the correct answer. If the subject’s
answer was correct, the subject could click on a box labeled
Continue and data from another year was shown. Otherwise,
he selected a different answer and clicked on Check Answer
again. This process was repeated until the subjects
performed at a level that ensured they had learned an accurate
approximation to the concept (making no more than one
error in any sequence of 24 consecutive trials). The subjects
were allowed as much time as they wanted to make their
prediction and to view the data after the correct answer was
shown. This process of learning a concept to criteria was
repeated for each of the four concepts learned. We recorded
the number of the last trial on which the subject made an
error, the total number of errors made by the subject for each
concept, and the number of made on each block of 16 trials.
If the subject did not obtain the correct answer after 96 trials,
we recorded that the last error was made on trial 96.
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Results. Subjects in the logical consistency group
required an average of 27.6 trials to learn the fourth concept,
while subjects in the feature consistency group required an
average of 50.4 trials t(16) = 1.91, p <.05. Subjects in the
logical consistency group made an average of 6.8 errors,
while subjects in the feature consistency group made an
average of 14.0 errors t(16) = 2.135, p < .05.

Multiple Concept Learning

In Experiment 1, subjects accurately induced three relevant
background concepts, prior to learning a single concept
which depended upon those concepts. The order of the
concepts is the ideal order for subjects to first acquire
knowledge inductively and then use that knowledge in future
learning. However, the natural world does not have a
benevolent teacher who orders experiences for the learner.
To more closely simulate the natural world, in the second
experiment, those concepts that had the same stimuli from
the first experiment (the last three concepts) are learned at
the same time. For each presentation of stimuli, subjects
predicted whether there would be a rainy spring, a dry
summer, and a severe risk of fire in the fall (see Figure 3).
With this exception, Experiment 2 was identical to
Experiment 1. For the second learning phase, subjects had to
click on all three boxes correctly before proceeding to the
next stimuli. We recorded the number of the last trial on
which the subject made an error and the total number of
errors made by the subject only for the concept that involved
predicting whether there would be a severe risk of fire in the
fall from the instrument data. In addition, for this concept,
we also recorded the number of errors made by the subject on
blocks of 16 trials. If the subject did not obtain the correct
answer after 128 trials, we recorded that the last error was
made on trial 128.

Results. The subjects in the logical consistency
group required an average of 77.8 trials to predict whether
there would be a severe risk of fire in the fall from the
instrument data, while subjects in the feature consistency
group required an average of 109.9 trials t(16) = 1.81, p <
05. In addition, subjects in the logical consistency group
made an average of 29.3 errors, while subjects in the feature
consistency group made an average of 41.4. errors. This last
figure is marginally significant t(16) = 1.41, p < .1. The
results demonstrate that simultaneously learning a set of
related concepts is easier when the concepts are logically
consistent than when the concepts merely share a set of
relevant features. Figure 4a graphs the percentage of errors
made by the two groups at predicting a severe risk of fire in
the fall from the instrument data as a function of the number
of trials. It shows that subjects in logical consistency and
feature consistency groups perform similarly until trial 64.
After this point, subjects in the logical consistency group
make fewer errors than those in the feature consistency

group.
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Figure 3. An example of the stimuli used in the second phase of Experiment 2.

Discussion

There are three findings of note in these experiments. First,
subjects in the logical consistency condition make fewer
errors and require fewer trials to learn. While this finding
agrees with our intuition on how people should learn,
previous experiments involving background knowledge have
not had subjects learn this background knowledge.
Furthermore, current cognitive models do not perform in
this manner and there is no quantitative data on how
background knowledge that is learned inductively influences
the learning rate and number of errors made by learners.
Second, learning the relevance of individual features
cannot account for these findings. Wisniewski and Medin
(1994) use the term selection models to refer to learning
models that use prior knowledge to determine which features
are relevant. Lien and Cheng (1989) present one such model.
Selection models would not be able to explain the results
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since both the logical consistency and feature consistency
groups learn concepts with the same relevant features.

Third, although the subjects in the logical consistency
group learn faster and make fewer errors than subjects in the
feature consistency group, they learner slower and make
more errors than would be predicted by existing
computational models of the influence of prior knowledge
such as Explanation-based learning (EBL) (Mitchell et al.
1986). EBL is a machine learning method that derives
concepts from background knowledge. At first, it might
seem that EBL would serve as an ideal model of the use of
prior knowledge in learning. Its inputs correspond exactly to
those items learned in Phases 1-3 of the first experiment,
and its output correspond exactly to the concept to be learned
in Phase 4. However, there are several problems with EBL
as a model of human leamning. First, EBL algorithms
would learn more quickly than the logical consistency
subjects. Since the fourth concept can be deductively derived
from the preceding three, EBL would make no errors on this
data. Second, EBL cannot function unless the background



knowledge is complete. For example, EBL could not
acquire the concepts in Phases 2 and 3 since these are just
associations between stimuli and weather predictions.

Modeling with Shared-Task Networks

Here, we propose a model of the psychological experiments
using multi-layer neural networks trained with error
backpropagation (Rumelhart et al. 1986) to learn multiple
concepts. First, we would like to make a distinction
between sub-task learning and shared-task learning. In sub-
task learning, some of the concepts to be learned serve as
background concepts for the other concepts to be learned.
For instance, in poker, learning the hands two pair and one
pair is a sub-task problem because one pair is a background
concept for learning two pair. Shared-task learning, on the
other hand, involves learning concepts that share subordinate
concepts. As an example, learning both the hands two pair
and full house require knowing what one pair is, but two
pair and full house do not require knowledge of each other.

The network diagrammed on the left side of Figure 5
shows a typical way of using networks to learn sub-task
concepts with the network applied to Experiment 1. (Please
note that in order to make the diagrams more
comprehensible, only some of the connections between
nodes are drawn. In an actual network, all the nodes of a
hidden layer would be connected to all of its input and
output nodes.) The network first learns the section enclosed
in the solid line. The two inputs are analogous to the
abstract features shown our subjects in the first phase of the
experiment. The output is the network’s guess at whether
or not there will be a severe risk of fire in the fall. Second,
the network is trained on the section enclosed in the dashed
line. This represents learning the Wet Spring concept. The
five inputs (A-E) on the left represent the five instrument
displays shown to the human subjects. The output is the
network’s prediction at whether there will be a wet spring.
Third, the Dry Summer concept is trained on the network
section enclosed in the dotted line. The same five inputs are
used as were used to learn the previous concept. The output
is the network’s guess at whether there will be a dry
summer. The wet spring and dry summer concepts are the
sub-tasks the network leans. The final Fire in the Fall
concept is represented by training and testing on the entire
network. The network uses the five inputs to decide if there
will be a severe risk of fire in the fall.

A system such as KBANN (Towell et al. 1990) could set
up a network like the one on left side of Figure 5, given
symbolic inferences rules that represent the knowledge
acquired in the first three phases of the experiment. A
problem with this method in modeling the experiment is
that since the network would already be trained on the three
background concepts, it would not require any training to
learn the final concept in the logical consistency group of
our experiment. This is the same problem that EBL suffers
from.

Caruana (1993) has done work on shared-task learning
using networks with one hidden layer. The network on the
right of Figure 5 is a representation of such a network. A
major advantage of this model is that the hidden layer can
create new features which can be shared by all of the output

units. To model the first experiment, the network first uses
the five inputs and only the Wet Spring output unit is
trained, i.e., receives feedback on its performance. Second,
the same five inputs are used, but only the Dry Summer
output unit is trained. Third, the Fire in the Fall output
unit is trained and tested using the five inputs.

We performed experiments with shared-task neural nets to
see if they could model the results from our psychological
experiments since it appeared that this method could learn
the combinations of features in addition to feature relevancy.
These networks might also be able to combine features and
store the combination in the network just as it stores learned
knowledge. In both experiments, the first phase used 2
abstract features as stimuli while the later phases used 5
instrument displays. Since the network cannot learn
concepts with different forms of inputs, it cannot be trained
on the first phase. However, the network can be used to
learn the other phases of the experiments. To model the
sequential experiment (Experiment 1), the network first uses
the 5 inputs and only the Wet Spring output unit is trained,
i.e., receives feedback on its performance. Second, the same
5 inputs are used, but only the Dry Summer output unit is
trained. Third, the Fire in the Fall output unit is trained and
tested using the 5 inputs. Modeling the simultaneous
experiment (Experiment 2)is done by training all 3 of the
output nodes at the same time, but only using the Fire in
the Fall unit for testing.

The logical form of the data was the same as used in the
psychological experiments. The first output unit had a
value of one when one random feature, say A, had a value of
1. The second output unit had a value of 1 when either (or
both) of two other randomly selected features, say B and C,
had values of 1. To model the logical consistency group,
the third output unit had a value of 1 when feature A had a
value of 1 and either feature B or feature C (or both) had a
value of 1, i.e. A A (B v C). The network used was a feed-
forward system with one layer of 20 hidden units. The
generalized delta rule was used for training and the logistic
function was used for activation. At testing, a network
output value greater than 0.5 was treated as a 1 and a value
below 0.5 was treated as a 0 to model the forced guessing
that was applied to the human subjects. Momentum was set
at 0.90 and the learning rate was set at 0.25.

To model Experiment 1, we trained the network to
sequentially learn each of the 3 concepts: wet spring, dry
summer, and fire in the fall. We first trained the network to
learn when an example was a positive example of the wet
spring concept, i.e. when the first output unit would have a
value of 1 as a function of the 5 features. After each epoch
through the training data, the network was tested to see if it
could correctly predict the value of the first output unit on at
least 31 of the 32 examples. If it could, the network was
then trained on learning when the second output unit (dry
summer) was true as a function of the 5 features. If it could
not reliably predict the first feature, it was trained on another
epoch through the data. After it had learned to reliably
predict the second output unit, it was trained to predict the
third output unit the fire in the fall concept. Data was
recorded on how many epochs the network took to learn the
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final concept. The process of learning each concept
sequentially was repeated 50 times.

The network required an average of 5.96 epochs, or 190.72
trials, to learn the logical consistency set, while it took
significantly longer, 8.50 epochs or 272.00 trials, to learn
the feature consistency set, t(98) = 6.06, p < .05. Similar
to the human subjects, this network sequentially learned the
set of concepts more easily when it was logically consistent
than when the concepts merely share features.

To model Experiment 2, we trained the network to
simultaneously learn all three concepts. The network was
trained on all 3 of the concepts, but was tested only on the
third concept. After each epoch through the training data,
the network was tested to see if it could correctly predict the
value of the third feature on at least 31 of the 32 examples.
If it could, then training stopped; otherwise, it was trained
for another epoch. Data was kept on how many errors the
network made on each epoch and on which epoch the
network learned the final concept. The process of learning
the concepts was repeated 50 times.

The neural net required an average of 7.12 epochs, or
227.84 trials, to learn the logical consistency set, while it
took significantly longer, 9.66 epochs or 309.12 trials, to
learn the feature consistency set, t(98) = 5.039, p < .05.
Similar to the human subjects, this network simultaneously
leamned the set of concepts more easily when it was logically
consistent than when the concepts merely share features.
Figure 4b graphs the percentage of errors made on the two
sets as a function of the number of epochs. It shows that
after the second epoch, the graph is similar to Figure 4a.
On the logically consistent condition, the network becomes
accurate with fewer training epochs.

Shared task networks are able to model these results
because they can create new abstract features and use these
features to influence learning other concepts. The network
requires some training to determine how to use these abstract
features, but less training than would be required if new
concepts were not consistent with the concepts learned
earlier. The shared task network is an example of what
Wisniewski and Medin (1994) call a tightly coupled model.
Prior knowledge, in this case created by prior learning,
selects the relevance of features (by having higher weights
on some connections), and creates new features (as
represented in the hidden units). Furthermore, feedback
during learning one concept can change the features or
strengths of the hidden units used by other concepts.

Conclusions

Although the general topic of learning a series of concepts
has been discussed, previous research has focused on
attentional phenomena such as the intradimensional and
extradimensional shift in which subsequent concepts share
related features with prior concepts. However, these
approaches consider sets of arbitrary groups of concepts
rather than concepts that are causally related. Waldmann and
Holyoak (1990) argue that the causal induction process
differs from the learmning process used to acquire arbitrary
concepts. In particular, we show that concepts acquired by
induction in one phase of an experiment influence later

learning in much the same manner as concepts acquired by
reading written instructions or prior background conceplts.

We have focused on how prior knowledge facilitates
learmming. We should also point out that incorrect prior
knowledge may also hinder learning by providing
misconceptions (Chi, Slotta & de Leeuw, 1994). It is only
when prior knowledge is compatible with the new
knowledge to be acquired that we anticipate a positive effect.

Classical concepts that consistent of sets of necessary and
sufficient features have several flaws. Few concepts people
encounter have such rigorous logical definitions (Rosch,
1978). More recently, it has become apparent that concepts
do not exist and are not learned in isolation. Here, we have
presented quantitative results on how induced background
knowledge influence the rate of learning and the number of
errors made during learning. While we have found that
having relevant, correct background knowledge facilitates
learning, it does not eliminate the need for learning. That is,
unlike previous learning models, when subjects have learned
rules corresponding to “A — WetSpring,” “B v C —
DrySummmer” and “WetSpring A DrySummmer —
FireInFall” they do not automatically know that “A A (B v
C) — FirelnFall.” We believe that one flaw in previous
learning models that use prior knowledge is that the equate
an explanation with a logical proof, and use rules that have
necessary and sufficient preconditions. Such rules may be as
rare in the real world and as cognitively implausible as
concepts that consistent of necessary and sufficient
definitions.
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