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ARTICLE

Contrasting effects on deep convective clouds
by different types of aerosols
Jonathan H. Jiang1, Hui Su 1, Lei Huang1,2, Yuan Wang3, Steven Massie4, Bin Zhao2, Ali Omar 5 &

Zhien Wang4,6,7

Convective clouds produce a significant proportion of the global precipitation and play an

important role in the energy and water cycles. We quantify changes of the convective cloud

ice mass-weighted altitude centroid (ZIWC) as a function of aerosol optical thickness (AOT).

Analyses are conducted in smoke, dust and polluted continental aerosol environments over

South America, Central Africa and Southeast Asia, using the latest measurements from the

CloudSat and CALIPSO satellites. We find aerosols can inhibit or invigorate convection,

depending on aerosol type and concentration. On average, smoke tends to suppress con-

vection and results in lower ZIWC than clean clouds. Polluted continental aerosol tends to

invigorate convection and promote higher ZIWC. The dust aerosol effects are regionally

dependent and their signs differ from place to place. Moreover, we find that the aerosol

inhibition or invigoration effects do not vary monotonically with AOT and the variations

depend strongly on aerosol type. Our observational findings indicate that aerosol type is one

of the key factors in determining the aerosol effects on convective clouds.
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Atmospheric aerosols are considered to have the potential
to inhibit or invigorate convective cloud development1.
For absorbing aerosols, the traditional thinking is they

may inhibit convection by blocking the radiation reaching the
surface, enhancing the low-level stability. For example, the effect
of Asian brown cloud upon rainfall over India for 1940–2040 has
been simulated2 by a coupled ocean-atmosphere model, from
which absorptive aerosols warm the first several kilometers of the
temperature profile, thereby stabilizing the lower troposphere.
This stabilization produces an inhibition of convection, and even
a weakening of summer monsoon systems in Asia3,4. It is con-
jectured that droughts in South Asia may be more likely to occur
in the coming decades of the 21st century5,6. In addition, the
regional circulation could be modified by absorbing aerosol7. It
was found that the Hadley circulation can be weakened or
expanded by absorbing aerosol, in contrast to the effects of other
forcing agents such as greenhouse gases and sulfate aerosol7,8. It
has also been hypothesized that, under a highly polluted condi-
tion, the aerosol radiative effect reduces the convective available
potential energy (CAPE) and suppresses deep convection, over-
riding the aerosol microphysical invigoration effect, and leading
to a net weakening effect on the cloud development9,10.

On the other hand, an increase in aerosol concentrations and
thus cloud condensation nuclei (CCN) may suppress warm rain
processes, permitting more liquid water to reach the freezing
level, and thereby enhance latent heat release in the upper portion
of clouds, known as “cloud invigoration”10–12. For absorbing
aerosols, the traditional suppression effect is also challenged by
more complicated mechanisms. It is suggested that the aerosol
heating near the top of the planetary boundary layer (PBL) can
stabilize the PBL, increasing convection inhibition (CIN) within
the PBL but enhancing CAPE above the PBL13. Over a longer
timescale, the suppression of the shallow convection due to
absorbing aerosols can postpone the release of energy and
moisture, thus feeding and enhancing deep convection later14,15.

Either cloud inhibition or invigoration could result in changes
in the altitude of a convective cloud. The impact of such cloud
height changes on the radiative budget of the atmosphere can be
illustrated by considering the changes in the blackbody emission
of optically thick clouds whose cloud tops are near 13 km alti-
tude. With a temperature lapse rate of −7 K km−1 near 13 km,
the blackbody σT4 emission (with σ the Stefan–Boltzmann con-
stant) associated with cloud tops near 14 km are 13.8Wm−2

lower than that at 13 km. Therefore, quantification of how
aerosols affect the development of convective clouds is extremely
important to our understanding of the aerosol effects on weather
and climate.

However, it is well recognized that quantification of how
aerosol impacts clouds is not an easy task16. Difficulties often
arise due to the potential dynamical feedbacks in a mesoscale
cloud system, which could dampen aerosol invigoration or sup-
pression effect on individual clouds; or due to the lack of
observations of cloud life cycles owing to the snapshot nature of
available satellite observations17. A major challenge is to isolate
the effects of different types of aerosol on different types of
clouds.

Satellite measurements from CALIPSO and CloudSat provide a
closely collocated aerosol and cloud dataset with both aerosol-
type and cloud-type information. The CALIPSO aerosol profile
data include seven aerosol-type classifications18: elevated smoke,
polluted continental/smoke, polluted dust, dust, clean con-
tinental, clean marine and dusty marine. For brevity, we refer to
the ‘elevated smoke’ type as ‘smoke’ and the ‘polluted continental/
smoke’ type as ‘polluted continental’ in this study. The
CALIPSO–CloudSat combined cloud profile data include eight
cloud-type classifications19: Deep Convective, Cirrus, Nimbos-
tratus, Altostratus, Altocumulus, Cumulus, Stratus and Strato-
cumulus. Figure 1 illustrates an example of co-located CloudSat
cloud and CALIPSO aerosol measurements. More details are
given in the Methods section. A few studies have analyzed
aerosol–cloud interactions as a function of cloud types. For
example, Christensen et al.20 used the CloudSat data to quantify
the aerosol indirect effects on deep convective clouds. However,
this study did not consider different aerosol types.

In this article, we focus on deep convective clouds and analyze
the CloudSat/CALIPSO datasets to quantify the different con-
vective cloud heights developed in different aerosol environ-
ments, such as smoke, dust and polluted continental aerosols. We
find that different types of aerosols exert different effects on the
deep convective cloud heights and non-linearity prevails in the
aerosol effects.

Results
Type-dependent aerosol effects. The first question arises as how
to accurately measure the changes in cloud height due to aerosol
effects. Observed cloud top heights and cloud depths vary sub-
stantially due to the diverse environmental conditions they
develop in. The high vertical resolution of CloudSat measure-
ments allow us to calculate a mass-weighted altitude centroid that
integrates over a range of altitude for a deep convective cloud.
Since the cloud inhibition (invigoration) process implies a
decrease (increase) in imparted energy release in the cloud
development process, we can use the cloud ice water content
(IWC, mgm−3) and altitude (z, m) weighted centroid to measure
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Fig. 1 Curtain plot of clouds in different aerosol environments. Curtain plot of CloudSat/CALIPSO cloud water content and collocated CALIPSO smoke and
polluted continental aerosol extinction profiles along an orbit over South America on 25 October 2007. The image is smoothed by a 12 km running window
along the satellite tracks
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the changes in overall cloud ice mass being lofted into the air, and
thus the strength of deep convection.

The altitude centroid21 for each IWC profile, ZIWC is calculated
from the expression:

ZIWC ¼
Z

IWC � z � dz=
Z

IWC � dz; ð1Þ

where z is the altitude. If cloud inhibition (invigoration) is
present, the ZIWC values decrease (increase) in an aerosol
environment relative to a clean condition.

The IWC profile can be influenced by many factors, i.e., IWC
(z, aerosol type, cloud type, region, season, meteorology). For this
study, we focus our analysis on three aerosol types: smoke, dust
and polluted continental aerosol; one cloud type: deep convective
cloud; and three regions: South America (SAM, 0–30° S, 35°
−80° W), Central Africa (CAF, 20° S–15° N, 10° W–50° E) and
Southeast Asia (SEA, 0–35° N, 75°–125° E). These three regions
are chosen considering the fact that the aforementioned three
aerosols types are dominant (See Supplementary Figure 1 and the
associated discussions), and convective activities are also
abundant there.

Figure 2 shows the annual averaged ZIWC changes for
convective clouds in different aerosol (smoke, dust, polluted
continental) environments relative to clean conditions in the
three regions. It is obvious that in smoke environments, the
average convective cloud ZIWCs are lower than those in clean
conditions in all three regions. In polluted continental environ-
ments, the ZIWCs are all higher than those in clean conditions in
all three regions. When dust is the dominant aerosol type, the
impact on the convective cloud ice altitude centroid shows a
regional dependence. In SAM, dust contaminated ZIWCs are
higher than clean clouds. In CAF and SEA, ZIWCs are lower in
dust environments. In addition to the annual mean, the seasonal
changes of ZIWC in different aerosol environments, different
regions and different aerosol optical thickness (AOT) ranges are
also studied (Supplementary Figures 2 and 3). The suppression
effect of smoke and the invigoration effect of polluted continental
on deep convection holds true in the seasonal mean, however,
there are considerable variations with AOT and season due to the
combinations of aerosol-type changes and meteorological varia-
tions, which will be discussed below.

Non-monotonic cloud responses. Figure 3 further shows, for
each region, non-monotonic responses of convective cloud ZIWC

to aerosol perturbations in three different aerosol environments,
dominated by smoke, dust and polluted continental aerosols,
respectively. For small aerosol loading up to AOT ~0.2–0.3, the
convective cloud ZIWC decreases in the smoke aerosol environ-
ment, whereas conversely in the polluted continental environ-
ment ZIWC rapidly becomes higher with increasing AOT. This
distinct difference suggests that smoke aerosol, which consists of
mostly absorbing aerosols (black and organic carbon)18,22,23,
could act to stabilize the temperature profile and suppress con-
vection as suggested by previous modeling studies and observa-
tions of Asian brown clouds2. In addition, smoke lifted by
convection might also accelerate evaporation of cloud droplet or
sublimation of ice crystals through absorptive heating10, the so-
called aerosol semi-direct effect. These combined effects could
weaken the convective development and therefore lower ZIWC in
the smoke environment. However, the behavior of convective
clouds in the polluted continental environment (e.g., mixture of
sulfate, nitrate and other pollutants), when AOT < 0.3, is con-
sistent with the aerosol invigoration hypothesis10 that an increase
in CCN energizes deep convection through the latent heat release
due to the freezing of a larger amount of water droplets, though it
is possible that meteorological factors may also be of importance.

Under heavy aerosol loading conditions (AOT > ~ 0.3), the
above effects are reversed: ZIWC increases with AOT in the smoke
environment, whereas it decreases under polluted conditions, and
both seem to stabilize at AOT > ~ 0.8. The monotonic increase of
ZIWC with AOT in the thick smoke environment can be explained
by the enhanced CAPE above the aerosol heating layer and
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Fig. 2 Changes of cloud altitude in different aerosol environment. Annual
average changes of the altitude centroid for deep convective clouds,
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South America

0.0 0.2 0.4 0.6 0.8 1.0
8.2

8.4

8.6

8.8

9.0

9.2

9.4
Smoke
Dust
P-cont
Clean

Central Africa

0.0 0.2 0.4 0.6 0.8 1.0
8.60

8.74

8.88

9.02

9.16

9.30

Southeast Asia

0.0 0.2 0.4 0.6 0.8 1.0
8.2

8.4

8.6

8.8

9.0

9.2

Aerosol optical thickness

IW
C

 w
ei

gh
te

d 
cl

ou
d 

al
tit

ud
e 

ce
nt

ro
id

 (
km

)

Fig. 3 Non-monotonic responses of convective cloud to aerosol
perturbation in different aerosol environments. IWC weighted altitude
centroid for smoke aerosol (gray line), dust aerosol (blue line) and polluted
continental aerosol (red line) as a function of aerosol optical thickness
(AOT) for SAM (top panel), CAF (middle panel) and SEA (lower panel).
The AOT includes aerosols above 500m over the surface, see Methods
section for details. The error bars denote the standard errors of the bin
average
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unconsumed instability and moisture from suppressed shallow
convection13–15. On the other hand, the decrease of ZIWC with
further increase of AOT in the heavy pollution environment
(when the polluted continental aerosol dominates) suggests that
substantial pollution could decrease the amount of sunlight
reaching the surface, which in turn could weaken convection.

The non-monotonic response of cloud properties to aerosol
perturbations is consistent with some earlier studies24–26, in
which there is often a turning point after which the aerosol effects
reverse. This reflects the competing influences of aerosol
microphysical and radiative effects. Our study further demon-
strates the type dependency of this non-monotonic cloud
response to aerosol forcing. The quantification of the
aerosol–cloud relationships is difficult, due to the inadequacy of
available tools to identify key responses to aerosol
perturbations16,27. In addition, the feedbacks from environmental
condition changes (e.g., moisture changes due to different
evaporation efficiencies28 or changes in mesoscale dynamics)
could be non-monotonic as well29.

Influence of meteorological factors. Changes in convective cloud
vertical structure can also be caused by changes in large-scale
meteorological conditions30 in addition to the aerosol micro-
physical and radiative effects. For example, cloud formation is
usually positively correlated with relative humidity (RH) and
large-scale vertical velocity, and negatively correlated with wind
shear31–33. For convective cloud, the strength of convection is
also proportional to the buoyancy of an air parcel when it is lifted,
which is measured by the CAPE34.

To explore the meteorological impacts on the ZIWC, we
calculate the partial correlation between AOT and ZIWC. The
partial correlation is a measure of the linear dependence between
two variables where the influence from possible
controlling variables (meteorological parameters in this case) is
removed35–38. More details of this method are given in the
Supplementary section. In general, if the partial correlations
are similar to the corresponding total correlation (at least they
have the same sign), the correlation between AOT and ZIWC

exists regardless of the effects of certain meteorological
parameters. In other words, the meteorological covariations are
not likely a main reason for the correlations between AOT and

ZIWC. On the contrary, if the partial and total correlations have
different signs, the effect of meteorological covariations is
considered to dominate over the aerosol effects.

Twelve meteorological parameters are taken into account in
this analysis. They include: RH850, the RH at 800 hPa; RH500, the
RH at 500 hPa; RH300, the RH at 350 hPa; LTS, the lower
troposphere stability; VV500, the vertical pressure velocity at 500
hPa; VV300, the vertical pressure velocity at 300 hPa; U300, the U-
component of winds at 300 hPa; U1000, the U-component of
winds at 1000 hPa; V300, the V-component of winds at 300 hPa;
V1000, the V-component of winds at 1000 hPa; CAPE; VWSH, the
vertical wind shear at potential vorticity surface of 2 × 10–6 km2

kg–1 s–1. The results of regional-specific partial correlation
coefficients with each or all of them removed are summarized
in Table 1.

In South America and Southeast Asia, the annual total and
partial correlations are generally similar for smoke and polluted
continental aerosol, indicating that meteorological covariations
are not likely a major reason for the correlations between AOT
and ZIWC. Also, the seasonal total and partial correlations (see
Supplementary Table 1) are generally of the same sign as the
annual results, except for a couple of cases where the correlations
are very weak (e.g., smoke in the spring for South America).
Therefore, the invigoration effect of polluted continental and the
inhibition effect of smoke appear to be robust, although
meteorological conditions may play a role in certain situations.
In Central Africa, however, the impact of meteorological
conditions on the annual mean is much larger and dominate
the aerosol effects, as indicated by the different signs between the
annual mean total correlations and partial correlations, as well as
the presence of insignificant correlation coefficients. A closer look
at the aerosol effects and meteorological influence in different
seasons of Central Africa (See Supplementary Table 1) reveals the
existence of the contrasting aerosol effects over different seasons.
Both smoke and polluted continental aerosols show a significant
suppressing effect on convection during winter, but their signs are
reversed in the fall, resulting in a net insignificant aerosol effect in
the annual mean. A comparison of Table 1 and Supplementary
Table 1 suggests that the seasonality in meteorology might be key
for Central Africa. The aerosol effects manifest on the seasonal
timescale, but meteorology dominates on the annual mean.

Table 1 Total correlations between column AOT and IWC centroid, and the partial correlations with the effects of 12
meteorological parameters eliminated individually and simultaneously over all seasons

South America Central Africa Southeast Asia

Smoke Dust Polluted
continental

Smoke Dust Polluted
continental

Smoke Dust Polluted
continental

Total
correlation

–0.076 0.030 0.14 −0.007 −0.020 0.010 −0.035 −0.13 0.071

RH850 −0.072 0.028 0.15 −0.008 −0.018 0.030 −0.030 −0.12 0.067
RH500 −0.072 0.028 0.15 −0.008 −0.018 0.030 −0.030 −0.12 0.067
RH350 −0.070 0.038 0.17 −0.023 −0.030 0.006 −0.032 −0.13 0.078
LTS −0.077 0.029 0.14 −0.010 −0.020 0.007 −0.030 −0.12 0.069
VV500 −0.084 0.015 0.13 −0.007 −0.021 0.008 −0.046 −0.14 0.061
VV300 −0.069 0.014 0.14 −0.009 −0.020 0.008 −0.032 −0.13 0.071
U300 −0.099 −0.046 0.11 −0.007 −0.020 0.009 −0.076 −0.18 0.070
U1000 −0.068 0.031 0.14 −0.010 −0.024 0.006 −0.031 −0.12 0.083
V300 −0.091 −0.004 0.13 −0.005 −0.021 0.010 −0.054 −0.14 0.078
V1000 −0.077 0.031 0.14 −0.005 −0.020 0.010 −0.027 −0.13 0.079
CAPE −0.050 −0.011 0.13 0.023 −0.001 0.021 −0.080 −0.17 0.067
VWSH −0.079 0.033 0.14 −0.006 −0.025 0.008 −0.036 −0.13 0.071
All parameters −0.033 −0.43 0.16 0.009 −0.016 0.015 −0.078 −0.18 0.064

AOT range is [0, 0.25]. Bold font indicates the significant agreement (same sign) between total and partial correlation, whereas non-bold font indicate the significant opposite signs between them. If
total/partial correlation is not statistically significant at the 95% level, the corresponding font is italic
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The above analyses demonstrate the complexity of the AOT–
ZIWC relationship in different seasons and meteorological
conditions. In some places, meteorology affects convection in
the same direction as aerosol, but in other places it might work in
the opposite direction. However, the bulk behaviors of the
inhibition effect of smoke and the invigoration effect of polluted
continental aerosol shown in the annual mean (Fig. 2) and
seasonal means (Supplementary Figure 3) are robust no matter
what meteorological factors are considered. This is especially true
for the smoke aerosol. The mechanisms for the observed relations
should be identified through detailed cloud-resolving modeling
studies in the future.

Discussion
Impacts of different types of aerosols on deep convective clouds
are examined in this study based on the latest available satellite
data. Capitalizing on the aerosol speciation capability of
CALIPSO and vertical profiling capability of CloudSat, we cal-
culate changes in convective cloud altitudes weighted by ice water
content (ZIWC) as a function of AOT for smoke, dust and polluted
continental aerosol types over South America, Central Africa and
Southeast Asia. The ZIWC and AOT are calculated from the latest
version of data from the CloudSat and CALIPSO experiments.
We demonstrate that the impacts of different aerosol types on
convective cloud development are substantially different. For the
smoke aerosol environment, the ZIWC decreases with small
aerosol loading up to AOT ~0.2, then gradually increases as
aerosol loading increases. Conversely in the polluted continental
environment, the ZIWC increases with mild aerosol loading, but
decreases with further aerosol enhancement. The influence of
dust on convective cloud ice has a strong regional dependence
compared with the smoke and pollution impacts. Our findings
provide observational evidence that the aerosol “inhibition” and
“invigoration” processes, previously hypothesized in the litera-
ture, strongly depend on aerosol type and concentration. In a
light smoke environment, aerosols suppress deep convection,
producing ice clouds with lower altitude centroid. If smoke is
substantial, shallow convection can be totally shut down, but
subsequent deep convection can become even stronger due to the
unconsumed CAPE15,39,40, especially above the PBL13. The
reverse is true for aerosols from anthropogenic pollution, in
which lightly polluted air invigorates convection and produces ice
clouds at higher altitude. In a heavily polluted environment,
convection is weakened by decreasing the amount of sunlight
reaching the surface. The aerosol effects on convective clouds
over Central Africa are generally less pronounced than those over
South America and Southeast Asia.

In South America, dust tends to invigorate convection on the
annual mean (Fig. 1) but have mixed results when meteorological
factors are considered (Table 1). In Southeast Asia and Central
Africa, dust aerosols behave like smoke that suppress convection.
We note that a substantial amount of South American dust ori-
ginates in the Sahara41. In contrast, the Southeast Asia and
Central Africa dusts originate from the same continent. Because
dust near the source is likely to be at a lower altitude than dust
transported over a long distance, the South American dust likely
has a different altitude profile compared with the Southeast Asia
and Central Africa dust. Dust at lower altitudes influences the
temperature profile and atmospheric stability in a manner dif-
ferent from dust at higher altitudes. This likely explains the dif-
ferences in the effect of dust on ZIWC in South America when
compared with Southeast Asia and Central Africa.

Our study presents interesting results, which can be compared
with previous studies. Koren et al.24 used MODIS aerosol and
cloud top pressure data to study how cloud top pressure changes

along with aerosol variations. Figure 2 of their study indicates that
cloud top height first increases and then decreases as aerosol
increases. This behavior was attributed to the enhanced aerosol
that reduces the amount of surface illumination. The polluted
continental curves in our Fig. 3 display similar characteristics.
However, we find that clouds in smoke, polluted continental and
certain dust environments behave differently, suggesting that
cloud heights are also sensitive to the aerosol type. Figure 10 of
Koren et al.32 indicates that cloud top pressure changes, due to
changes in aerosol, also are dependent upon RH and the con-
vective regime (i.e., the ω pressure vertical velocity). They found
that cloud heights are higher for larger RH values. Our study
finds that the cloud heights are sensitive to aerosol type,
regardless of moisture content in the atmosphere. Massie et al.21

analyzed the vertical shapes of IWC profiles as a function of
MODIS aerosol, ozone monitoring instrument absorbing aerosol
and Microwave Limb Sounder CO at 215 hPa (a smoke proxy).
They suggested that differences in the IWC vertical shape profiles
for deep convective clouds are consistent with the assumption
that absorptive aerosol inhibits convective cloud development.
This aspect of their results is confirmed by our study’s analysis.
Previous studies25,42 show aerosol can either suppress24,43,44 or
invigorate12,45–47 the development of deep convective clouds. Our
analyses highlight, in addition to meteorological factors, that the
aerosol type is one of the key factors that determine the aerosol
effects on convective clouds.

It is worth noting that caveats exist when using CloudSat and
CALIPSO in the study. For example, polar-orbit satellite data,
measured at fixed 1:30 a.m./p.m. observation times, only provide
an instantaneous relationship between aerosol and clouds, and do
not address aerosol effects on cloud lifecycle and time-dependent
mesoscale convection systems. However, as current global climate
models do not accurately depict deep convective cloud structure
and lack a comprehensive representation of aerosol radiative,
CCN and ice nuclei (IN) effects, especially on the convection-
resolving scale46, satellite observations do provide a unique
opportunity to address the aerosol–cloud interaction challenges
for different regions around the world. Our observational findings
of aerosol-type impacts on convective clouds serve as valuable
constraints on the modeling of aerosol–cloud interactions.

Methods
Data. The newest data versions are used in this study. For CALIPSO, we analyze
Version 4 Level 2 aerosol profile data (CAL-LID-L2-05 kmAPro). For CloudSat, we
analyze version R04 combined Level 2 cloud profile data (2C-ICE and 2B-
CLDCLASS-LIDAR). We primarily use aerosol optical thickness (i.e., we call it
AOT here) and aerosol-type information from CAL-LID-L2-05 kmAPro data, IWC
from 2C-ICE data, and cloud-type information from 2B-CLDCLASS-LIDAR data.

The features identified by CALIPSO are first classified as aerosol or cloud using
a cloud–aerosol discrimination (CAD) algorithm48. The level of confidence in the
aerosol–cloud classification is indicated by a CAD score, with negative values
(−100 to 0) for aerosol and positive values (+100 to 0) for cloud. After an aerosol
layer is identified, the scene classification algorithm further categorizes the aerosol
layer to 1 of 7 aerosol types, by using input parameters including altitude, location,
surface type, volume depolarization ratio and integrated attenuated backscatter
measurements18. The new Version 4 Level 2 CALIPSO aerosol data products,
released in November 2016, include substantial improvements to the aerosol
subtyping and lidar ratio selection algorithms over the prior Version 3 product.
The aerosol detection thresholds of this product are discussed and quantified in the
literature49 and are taken into account by our analyses.

The 2B-CLDCLASS-LIDAR product classifies cloud scenarios into eight cloud
types by using vertical and horizontal cloud properties, the occurrence and
intensity of precipitation, cloud temperature and cloud phase50. A cloud type is
assigned to each cloud layer, so clouds in a single radar profile may be partitioned
into several types if there are well separated cloud layers.

The CALIPSO aerosol profile data have a uniform spatial resolution of 60 m
vertically and 5 km horizontally, over a nominal altitude range from the surface to
20 km. The footprint for a single profile of CloudSat observation is approximately
1.3 km across-track by 1.7 km along-track, with along-track sampling spaced every
1.1 km51. The cloud measurements are reported on an increment of ~240 m with
125 vertical layers. The time period for this study is from June 2006 to December
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2010, since the CALIPSO/CloudSat combined cloud profile data are publicly
available only for this period. For the meteorological fields, we use CloudSat
auxiliary ECMWF data (ECMWF-AUX), which provide the vertical profiles of
pressure, temperature and specific humidity from the surface to the upper
troposphere co-located with each CloudSat profile measurement. All the
meteorological parameters are calculated from ECMWF-AUX data for each
CloudSat profile.

Data collocation. To co-locate daily CALIPSO aerosol with CloudSat cloud
observations, we first identify a 1° × 1° grid box that is centered on each CloudSat
profile, then find all the CALIPSO aerosol profiles within this grid box. The
occurrence frequency of each aerosol type is calculated as the number of each
aerosol-type samples divided by the total number of all aerosol-type samples for all
the co-located aerosol profiles. To reduce the effects of surface contamination in
CALIPSO aerosol data, all aerosol samples with an altitude <500 m are ignored.
The co-located AOT is the average of column AOT for all the co-located aerosol
profiles. If no aerosols (above 500 m) are detected within the 1° × 1° grid box, it is
defined as a “clean” (i.e., no aerosols) environment case; if an aerosol type has
occurrence frequency larger than 90%, then it is defined as an “aerosol” environ-
ment case dominated by that particular type. This type definition approach is also
applied to CloudSat cloud types. Since this study focuses on deep convective
clouds, we only select the CloudSat profiles where deep convective cloud is the
dominant cloud type. CloudSat measurements within the lowest kilometer are
affected by ground contamination19,52, thus we limit our analysis to cloud profiles
above 1 km. The IWC data from 2C-ICE are interpolated into 15 altitude bins with
1 km interval extending from 1 km to 16 km altitude.

Whenever a deep convective cloud profile is identified in one of the three
aerosol types (smoke, dust and polluted continental aerosol) environment, we
calculate the altitude centroid ZIWC for the IWC profile using Eq. (1). Then, we
calculate the seasonal and annual average of ZIWC for each target region using all
the available data. The impacts of different aerosol types on ZIWC is determined by
the difference of ZIWC between each aerosol-type environment and the clean
environment (i.e., case without any aerosol).

Partial correlation between AOT and ZIWC. To exclude the impact of meteor-
ological covariation, we calculate the partial correlation between AOT and ZIWC.
Let X denote a vector of meteorological parameters, the effects of which we would
like to eliminate. The partial correlation between AOT and ZIWC, eliminating the
effects of X, is:

ρAOT�ZIWC �X ¼ σAOT�ZIWC �X
σAOT�XσZIWC �X

ð2Þ

where σAOT�ZIWC �X is the conditional covariance between AOT and ZIWC, elim-
inating the effects of X; σAOT�X is the square root of the conditional variance of
AOT, eliminating the effects of X; σZIWC �X is the square root of the conditional
variance of ZIWC, eliminating the effects of X. More details of the calculation
method for partial correlation are described in other references35–38.

The total and partial correlations are calculated using the samples with
0 ≤AOT ≤ 0.25 and averaged for every 500 samples. Note that the correlation
coefficients among aerosol, meteorological factors and ZIWC are generally low in
both Table 1 and Supplementary Table 1, due to noise in the transient observations
and spatial scale differences between satellite (~ 1 km pixel level) and reanalysis
(~1° gridded). For example, the total correlation is only 0.092 between RH350 and
ZIWC and 0.28 between CAPE and ZIWC.

Data availability
The data used for this study can be downloaded from the NASA Distributed Active
Archive Centers at https://earthdata.nasa.gov/about/daacs.
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