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Real-time Scheduling of Electric Vehicles for
Ancillary Services

Frederik Juul, Matias Negrete-Pincetic, Jason MacDonald, and Duncan Callaway

Abstract—This work is part of a project that aims to demon-
strate the concept of Vehicle-to-Grid (V2G) with an operational
fleet. A fleet of electric vehicles is operated with the objective of
providing regulation services to the grid. The focus of this paper
is on the real-time operation of the fleet. Specifically, given an
optimal trajectory for the vehicle state of charge, schemes for
distributing the regulation power commands among the vehicles
are tested. A scheme based on a convex optimization problem is
proposed. Several numerical illustrations and simulations show
the effectiveness of the scheme respect to common scheduling
heuristics in terms of accuracy.

Index Terms—Electric Vehicles, Resource Scheduling, Ancil-
lary Services Market, Vehicle to Grid Control

I. INTRODUCTION

The uncertainty and intermittency of some renewable
sources require new policies for the operation and control
of the grid. The usual procedures for balancing the grid
in which supply is modified to follow demand should be
reconsidered. An alternative approach focuses on tailoring
demand for following supply by using the flexibility associated
to certain loads. A type of load that possesses a potential
for flexibility is electric vehicles (EVs). Usually, EVs have
idle time in parking lots in which they could be used to
provide additional ancillary services to the grid. Among those
services, short-term fast-response regulation services emerge
as an interesting possibility.

The scope of this work is to investigate the use of the storage
capability of a fleet of EVs to provide frequency regulation
services. The fleet is part of a real implementation of the
Vehicle-to-Grid (V2G) concept at the Los Angeles Air Force
Base (LAAFB). The pilot takes advantage of CAISO’s' non-
generating resource (NGR) model to enable market partici-
pation and to exist in the day-ahead and real-time market
systems. EVs are given the limited energy storage resource
(LESR) designation in the NGR model groups, which allows
them to provide both positive power (discharging) and negative
power (charging) to the grid when commanded. Communica-
tions of telemetry is accomplished through the OpenADR 2.0b
protocol via its reporting mechanism. Once collected by the
DR automation server, this telemetry is sent to CAISO via
a standard controls protocol over their ECN network. While
expensive, this approach has allowed the system to enter the
CAISO market under the provisions of their tariff.

FJ, MNP and DC are with the Energy Resources Group at the University of
California, Berkeley. MNP is also with the Electrical Engineering Department
at Pontificia Universidad Catolica de Chile. JM is with the Lawrence Berkeley
National Lab. Supported in part by Robert Bosch LLC through its Bosch
Energy Research Network funding program.
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Fig. 1: Overview of the project. The focus of this paper is the
development of the real time distribution.
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The compensation for regulating reserve markets has re-
cently been altered to comply with the FERC’s > Order
755 [1] so that fast and accurate response is compensated
alongside capacity payments. In particular, new performance-
based payments are being introduced into the ancillary services
markets.

The project uses an optimization platform: Distributed
Energy Resources Customer Adoption Model (DER-CAM)
which according to [2] optimizes DER operation over eco-
nomic and environmental objectives. DER-CAM is used for
generating bids for day ahead and real time markets for bulk
energy and ancillary services, based on forecasts about the
usage of the vehicles, by calculating vehicle state of charge.
Additional details about the project can be found in [3].

However, DER-CAM is not fast enough to respond to
uncertain Automatic Generation Control (AGC) signals within
a few seconds, which is key for achieving an accurate response
to such AGC signals. In this paper we focus on such real-time
operation of the fleet and we develop scheduling methods sub-
ject to the realization of uncertain AGC signals. A schematic
diagram of the LAAFB project, showing the interaction of the
real-time distribution developed in this work with the rest of
the project, is depicted in Fig. 1.

In the literature, the concept [4], [S] and impact [6], [7]
of using EVs for grid stabilization has been extensively
investigated. While [8] shows that EVs can indeed be used
to track frequency regulation signals, no method of tracking
is proposed. Though implementation projects have been done,
both in industry [9] and academia [8], none of these propose
a method for distributing power in real time.

Contributions of this work include the development of a
framework for modeling single vehicles requirements tailored
to the needs of the frequency regulation problem. By charac-
terizing the ability of a single vehicle for providing regulation,

2Federal Energy Regulatory Commission.



we find expressions that capture the aggregate ability of the
complete fleet. We then investigate algorithms for real-time
scheduling. In particular, we analyze two common heuristics
for scheduling: Earliest Deadline First (EDF) and Least Laxity
First (LLF). However, the performance of these policies is
not effective given the objective of distribute power among
vehicles for following frequency regulation signals. As an
alternative, we propose a scheme constructed around the idea
of distributing the power among the vehicles by minimizing
the deviation from pre-specified optimal charging schedules
absent frequency regulation calculated by DER-CAM. Several
simulation and numerical experiments are performed. The
results reflect the effectiveness of the approach for accurately
following frequency regulation signals, minimizing penalties
from performance payments.

The paper structures as follows. In Section II, models are
presented. Section III is devoted to developing the real-time
resource allocation schemes. Simulations and numerical results
are provided in Section IV. Finally, concluding remarks and
extensions are presented in Section V.

II. MODELS

The charging scheduling of the electric vehicles fleet is
done in two stages. In the day-ahead and then again in hour-
ahead, based on forecasts of arrival and departure times, trip
requirements and AGC signals, a set of charging trajectories
is constructed. In real-time, based on the realization of the
different uncertainties including the regulation signals, a dy-
namic re-scheduling of these trajectories must be performed.
In this paper, we focus specifically on the real-time stage of
this procedure taking as an input the scheduled trajectories.
We consider the real-time scheduling of the fleet subject to
frequency regulation requirements over an operating period
[0,T7], time is indexed by k = 1,...,T. At each operational
time, we are interested on finding how to modify the pre-
specified charging trajectories of each vehicle.

A. Vehicle Battery Modeling

We start by considering the problem of allocating power
to a single electric vehicle in discrete time. Let the set of
all vehicles be denoted V. A vehicle, V;, can store energy
between a lower bound, 3;, and an upper bound, 3;" given by
the physical characteristics of the vehicle battery. The highest
amount of power which can be charged to the battery is
denoted m;" while the highest amount that can be discharged
is denoted m_ . Let p;; be the power delivered to vehicle V;
at time step k. Define At as the time of each time step k. We
assume that power is kept constant between time steps, such
that the energy charged to the vehicle from time & until & + 1
is equal to p;rAt. We assume that p;; can take any value in
the continuous interval [m; ,m;].

When charging a vehicle the charging is subject to efficiency
losses. Efficiency of charging is denoted 7;, defined as 0 <
n; < 1. Since there can be different efficiencies when charging
and discharging these are denoted n;r and 7;" respectively. Let
At be the energy necessary from a source to charge the
battery of vehicle V; with p;; At. This implies the relationship

pi = xikn; . Conversely, when discharging, such that the
vehicle now acts as a source p;p = Lik,

From this, the relationship between pir and x;, can be
described as:

+ +
n; 1 : 1

ik = L-Fi 'i+ < - — ik 1
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The inverse relationship is defined by F(p;r) = x;; and can
be easily derived from (1).

B. Charging Trajectories

Consider the case of an operator performing the real-time
scheduling of the vehicles. A vehicle, V;, arrives back from
a trip at time a; with a known state of charge, F;,,, and is
scheduled to leave at time d;. For every time step k, V; has an
energy state, F;;. At the time d; the vehicle must be charged
to a minimum state of charge, F; . If E;, < E; there is a
time where the vehicle must be charged at its maximum charge
rate to satisfy F;y, > E; . The time until this time is known
as the laxity, ¢;x.

Definition 1: The laxity, ¢;i, is defined as the amount of
time left until a vehicle must charge at its maximum charge
rate to reach its minimum state of charge, £, at time d;. This
is calculated as (2).
bir = dy —k — Zr ik 2

m;

From this we introduce the concept of charging trajectories.
A feasible charging trajectory, t;, is any trajectory which
goes from (a;, Ejq,) to (d;, [E;, 8;]) without exceeding the
boundaries. In general these trajectories are fixed in the hour
ahead scheduling and the real-time scheduling updates them
in a feasible way. Two examples of charging trajectories (Tra-
jectory Ex. 1 and Ex. 2) from a given state of charge, E;,,, to
a state of charge between I, and 5; , the boundaries defined
by the battery parameters and the laxity can be visualized in
Fig. 2. We can model the problem of charging a vehicle as a
task, following the approach introduced in [10].

Definition 2: A task, T;, can be defined by its parameters
(B, Ef,mb,m;,nt, n, ai, diy B, B, ti) with states
FEii, ¢ir. Let Ty, be the set of all tasks and Nj be the number
of tasks in set Ty at time k. In the rest of the paper, for
notational simplicity, we will equal the maximum state of
charge at departure E;’ with the maximum energy level given
by the physical characteristic of the battery, ;.

C. Ancillary services

The fleet participates, in aggregate, in two markets: The
energy market and the frequency regulation market. From
these, the aggregate resource receives a power dispatch signal
every four seconds which must be distributed among the
individual vehicles. The aggregate power dispatch is composed
of a known quantity that results from the energy market
award, By at time k, and a variable regulation quantity, 7
at time k, falls between the range of values [r; ,r; ], with
with 7, < 0 and r; = 0. r,j and r,; are the hourly ancillary
services market awards for regulation up and regulation down,
respectively.



For the fleet to participate in the regulation services their
total load must follow the combination of the energy signal
and the regulation signal as accurately as possible. We call
their sum the generation signal and we denote it by g;, at time
k. We define the difference between the load associated with
the vehicles and the generation signal as

e = me — Ok (3)

€Ty

Therefore any algorithm which desires to follow the regu-
lation signal must aim to minimize |eg].

D. Performance Metric

Based on the new rules associated with ancillary services
markets, compensation for providing regulation services is
done in two parts: Capacity and Performance Payment. The ca-
pacity compensation is calculated simply as the price per unit
of capacity times the amount of regulation. The performance
payment depends on the accuracy of the load following. The
accuracy as defined in the CAISO market rules is calculated
as

1

T T -
ACC=1— | Y lexl | { D loxl )
k=1 k=1

We use also the accuracy as a metric to measure the perfor-
mance of the proposed scheduling algorithms.

E. Limits

If a task is close to its boundaries and the energy state
approaches its upper bound, as shown in Fig. 2, it is possible
that the charging rate may need to be reduced. The limits for
charging which guarantees that no boundaries are violated are
denoted I';;. The amount of energy charged to the battery for
a given time £ is bounded by m; ", m;r, E;r, E;, Ey; and B; .
The maximum load a vehicle can deliver at time k, 1";;, is
defined as

Ef — Ey

I} = min [m;r, lAt] ®)

While the minimum, I';,, is defined as:

B — B,

~ (1—¢ik)mﬂ7ri+k]

I';, =min [max[mi ,

From this it can be seen that the fleet is able to meet
any generation signal within the bounds of the fleet,

ex =0, Yare | Y F(T), ZF@;)].
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III. REAL-TIME SCHEDULING

A. Benchmark Algorithms

We consider two common heuristics for resource allocation:
Least Laxity First (LLF) and Earliest Deadline First (EDF)
as a benchmark for comparison to the proposed scheduling
algorithm.

1) Least Laxity First: At each time k this heuristic creates
a merit order list ordered by laxity. If a task is charging at its
full power, its laxity stays constant. However any task which
is not charging will decrease its laxity by one. Due to this fact,
tasks will fluctuate between fully charging and not charging,
as their laxities converge towards the same value. While this
is undesirable the approach is still considered.

The algorithm in essence prioritizes finishing the tasks with
the least laxity first. This in turn means that the task with the
highest laxity is considered the task with the lowest priority.
To allow the algorithm to work for discharging, we therefore
discharge the vehicles with the highest laxity first.

2) Earliest Deadline First: Earliest Deadline First will
fully charge the vehicles with the earliest deadline and allow
vehicles with the latest deadlines to remain at a low state of
charge until sufficient resources are available to charge them.

To allow this algorithm to work for discharging as well, we
consider the vehicle with the latest deadline to have the least
priority, and is therefore discharged first.

However, this approach prioritizes charging some vehicles
to their maximum capacity while allowing others to discharge
to their minimum capacity. As hitting these capacity bound-
aries limit the capacity of the fleet to absorb the regulation sig-
nal this is undesirable. We therefore propose a method based
on following a predetermined charging trajectory charging for
each vehicle.

B. Trajectory Following

We wish to distribute the generation signal across the vehi-
cles in such a way that the deviation from the predetermined
charging trajectory is minimized for each individual vehicle.
The deviation from the predetermined charging trajectory, t;,
for the next time step can be formulated as:

Oik+1 = tik+1 — (Eik + piAt) (6)

in which E;j, is the state of charge of the battery at time inter-
val k. The minimization of the deviations can be formulated as
a convex optimization problem which minimizes the ¢ norm
of the vector of deviations.

By defining the cost matrix W and the cost M (usually with
large values to penalize deviations) and the vectors o1 =

[C1k+15 O2kt1y- - ONgkt1]s Pk = [Piks Dok - - - PNk We
can state the optimization problem:
min ol Wogit + |eg|M
Pk
st D e =g )
€T
pik <Th, pu=T;, VieTy 3

For the optimization problem to be efficiently solved by
packages such as CVX for MATLAB, the problem must be
a disciplined convex programming problem [11]. However,
since the definition of the deviation includes the conversion
from x to p, which includes an absolute value as seen in
expression (1), the problem is no longer disciplined as it
breaks the “no products” rule of disciplined convex pro-
gramming [12]. Therefore, a disciplined convex optimization
problem is proposed by modifying the objective function of



the previous optimization problem. By defining the vectors
T = [:Elk, T2ky o - 7'1:Nkk]’ Ek = [Elka EQk, A ,ENkk-],
tis1 = [tik+1,t2k+1,---5ENk+1]), the problem can be de-
fined as follows

H}vin (tp+1 — (B + :BkAt)T W (ti+1 — (Ex + xpAt)

+ |6k|M

S.t. Z{L‘ik — €L = gk 9
€T
pi <Tf, pu=T5,, VieTy (10)

In the objective function of the disciplined convex problem,
we remove the efficiency term and approximate the energy put
into the battery by the energy taken from the grid.

C. Uncertainty Handling

As the arrival and departure times, a; and d;, as well as the
arrival state of charge, E,,,, are dependent on uncertain factors
such as human behavior, weather, failures, etc., these are
considered estimations of stochastic variables. The realization
of the arrival and departure times are denoted by a] and d},
respectively. Given that the optimization algorithm considers
the trajectory at the next time step, this information must
be available. Because d; is the time in which the vehicle is
expected to be no longer available, if a vehicle is available after
this time, d] > d,, it is treated as it is just about to leave, and
the trajectory is kept constant at the expected departure value.
Similarly, if a vehicle arrives early, a] < a;, its trajectory is
kept constant at its expected arrival value until a;. Thus, as
depicted in Fig. 2, outside the estimated interval the trajectory
is kept at a constant value equal to the first or last values.
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Fig. 2: To handle the realization of the uncertainties, the trajectory
values are held constant outside the interval [a;, d;].

Another uncertainty might be unforeseen limitations in
power by the charging circuitry in the vehicles. However this
can be mediated by feeding the maximum power back to
the optimization algorithm as a new limit and running the
optimization again because there is no communication with
on-board vehicle charging control.

D. Examples

We use some examples to illustrate advantages and issues
of the approaches explained before. In particular, we focus
on EDF and trajectory following. As the examples illustrate,
trajectory following can handle better situations in which
constraints are binding.
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Fig. 3: (Left) An example realization of the AGC signal, handled
by the different distribution algorithms. The algorithms are equally
capable of minimizing the error. (Right) An example realization of the
AGC signal, handled by the different distribution algorithms. When
the SoC are at their extremes, the regulation capacity of the system
is limited.

1) Example 1: Consider the case of 2 identical vehicles,
V1 and V5, each with E;’ =10, E; =0, mf = 2 and
m; = —2, with initial state of charge E;,, = 5 and with
unequal deadlines somewhere in the future. The efficiency is
not considered. Each of these vehicles has a trajectory ¢, = 5
for all time steps in this example.

We consider two example realizations of an AGC signal.
They both share the feature that they are at all times in the
range [m; +my,m{ +my3]. Given that the vehicles do not
hit their boundaries, they should be able to follow this signal
perfectly. We wish to show that EDF distributes the power in
such a way that the regulation capacity of the system is lesser
that it would be with trajectory following. On Fig. 3 (Left) we
see how small perturbations of the generation signal let the
state of charge of the vehicles go towards different extremes
for EDF. For trajectory following on the other hand the state
of charge is always close to the trajectory. We also see that
the algorithms are equally capable of handling the signal for
this realization.

2) Example 2: Now we will focus on a case in which there
are tangible differences between EDF and trajectory following.
As seen in section II-E, the regulation capacity of the vehicles
are diminished when near the boundaries. This can easily be
seen if a large signal, still within the boundaries of the system,
is introduced after the system has reached it’s steady state, as
seen on Fig. 3 (Right).

From this we can see that there are realizations of the AGC
signal where trajectory following behaves better than EDF.
As we will present in the next section, this difference has real
impacts on the system performance.

IV. SIMULATION STUDIES

To analyze the performance of the different scheduling
schemes in terms of effectively charging the vehicles for
their trips and following the regulation signals, we perform
several simulation studies. Given that the project is currently
under development, we use a mixture of real and simulated
data. We focus on a fleet of 18 electric vehicles. In terms
of trips, we use real arrival and departure data from the



LAAF base. Vehicle parameters and charging requirements
are taken from simulated data provided by the DER-CAM
platform. The regulation signal is constructed by assuming
a symmetric signal modeled by a random variable with an
uniform distribution with support [r; , 7 ]. This signal is also
smoothed with a moving average filter of length five. In
order to compare the schemes, we quantify the performance
in terms of the accuracy in following the generation signal.
For each running, the same schedule and realization of the
generation signal is used. The simulation period is 2 days. The
implementations are run with a symmetric regulation capacity
bid of 280 kW. We provide several tracking performance
plots. Further, we investigate the impact of the regulation bid
capacity. We perform simulations for both EDF and trajectory
following schemes. Results can be appreciated in Fig. 4 (Left).
The red line represents the generation signal while the blue line
denotes the load from the vehicles. As expected both methods
see the largest tracking errors when the vehicles are leaving
and away, as they must charge to their minimum state of
charge and will not be available while they are gone. However
it can be seen that EDF has a noticeably larger error. To
further investigate the difference between the algorithms, we
see how this error behaves by simulating the behavior of the
system under the exact same conditions, with the exact same
generation signal, but with increased r,; and r,j. This is then
averaged over 10 realizations of the signal. The result can be
seen on Fig. 4 (Right). This figure shows that for regulation
bids greater than 10% iof maximum resource capacity, the
trajectory following approach has significantly higher accuracy
than both heuristics. As the bid increases, we expect to see
some tracking error due to spikes of power demand higher
than the maximum charging rate of the available vehicles. As
the bid further increases, we expect to see a significant drop in
regulation capacity as batteries reach their limits and vehicles
are unable to consume any more power. Note that the size
of this error would be mitigated by reducing the regulating
capacity available at times in which the vehicles were not
expected to be plugged in. As it is right now, the metric for
accuracy is aggregated across the two days, but it would be
better to see this accuracy rating for each hour, or even in
shorter periods.

V. CONCLUDING REMARKS

In this paper, we focus on the real-time scheduling of a
fleet of EVs with the aim of providing frequency regulation
services. We investigate several scheduling schemes. First,
we consider two common scheduling heuristics, namely EDF
and LLF and we show several deficiencies in terms of ex-
cessive battery cycling and limited regulation capacity. As
an alternative to these schemes, we propose one based on
a convex optimization model which aims to minimize the
tracking error for each individual vehicle. Simulation results
shows the effectiveness of the proposed schemes in terms of
accuracy in following the regulation signal.

This work confirms the expectation that vehicles operated
away from the physical limits of the battery perform better
when subjected to uncertain power requests from the grid.
This result is in a congruence with the results of economic

EDF

_ 200
A
T

Z-m

0 100 200 300 400 500

5 A )
= 0
5

Trajectory Following

‘Err
o
S
S

o
o
b3

e
o

Power [kW]
o
Accuracy [%]

0 100 200 300 400 500

N

S

=3
o
o
X

0.8
0 100 200 300 400 500 0

|
~
=3
3

Error [Wh]
o

100 200 300
Regulation Capacity [kW]

~
S

Vehicles
H

o
o

100 200 300 400 500
Time

Fig. 4: (Left) The generation signal is tracked using EDF and
Trajectory Following (TF). (Right) Comparison between the accuracy
of TF, EDF and LLF averaged over 10 realizations of the generation
signal.
optimization of vehicle resources that will preferentially place
batteries with a battery C-rate, the ratio of discharge power to
energy stored, less than one somewhere significantly between
the minimum and maximum state of charge. An economic
optimization will attempt to maximize regulation revenue by
having energy storage capacity available for both discharging
and charging the vehicle simultaneously. The simulation of
control response suggests that participating in frequency regu-
lation in states similar to this results in more accurate response.
Future work will explore losses in greater detail, apply
model predictive control techniques to resource scheduling,
evaluate the response characteristics to temporary inaccuracies
in uncertain resource parameters, and evaluate in greater detail
the generality of the approach.
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