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Robo-Chargers: Optimal Operation and Planning of
a Robotic Charging System to Alleviate Overstay

Yi Ju, Teng Zeng, Zaid Allybokus, and Scott Moura

Abstract—Charging infrastructure availability is a major
concern for plug-in electric vehicle users. Nowadays, the limited
public chargers are commonly occupied by vehicles which have
already been fully charged. Such phenomenon, known as overstay,
hinders other vehicles’ accessibility to charging resources. In
this paper, we analyze a charging facility innovation to tackle
the challenge of overstay, leveraging the idea of Robo-chargers
- automated chargers that can rotate in a charging station
and proactively plug or unplug plug-in electric vehicles. We
formalize an operation model for stations incorporating Fixed-
chargers and Robo-chargers. Optimal scheduling can be solved
with the recognition of the combinatorial nature of vehicle-
charger assignments, charging dynamics, and customer waiting
behaviors. Then, with operation model nested, we develop a
planning model to guide economical investment on both types
of chargers so that the total cost of ownership is minimized.
In the planning phase, it further considers charging demand
variances and service capacity requirements. In this paper, we
provide systematic techno-economical methods to evaluate if
introducing Robo-chargers is beneficial given a specific application
scenario. Comprehensive sensitivity analysis based on real-world
data highlights the advantages of Robo-chargers, especially in a
scenario where overstay is severe. Validations also suggest the
tractability of operation model and robustness of planning results
for real-time application under reasonable model mismatches,
uncertainties and disturbances.

Index Terms—Robo-charger, plug-in electric vehicle, overstay,
charging station management, mixed-integer linear programming

NOMENCLATURE

Abbreviations
PEV: plug-in electric vehicle; FC: Fixed-charger; RC: Robo-

charger; MCCS: mixed-charger charging station; FCS: FC-only
station; SR: satisfied rate; TOU: time-of-use tariff; CAPEX: capital
expenditure; OPEX: operation expenditure; TCO: total cost of
ownership; MPC: model predictive control.

Indices / Sets
• Z for integers (non-negative Z≥0, positive N). R for real numbers

(non-negative R≥0, positive R>0). Ja, bK := {x ∈ Z | a ≤ x ≤
b}.

• t, T : Index of time step within the optimization horizon and its
set. T = J0, T K where t = T is only defined for state variables.

• i, I: Index of PEVs and its set. I = J1, IK.
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zaid.allybokus@totalenergies.com). Corresponding author: Scott
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• s,S: Index of typical profile scenarios and its set. S = J1, SK.
Is = J1, IsK is the set of PEV indices under scenario s (s is
usually omitted when S = 1).

Parameters
• ∆t: Length of time steps.
• M,N ∈ Z≥0: Number of FC ports and RC ports.
• ta

i, t
d
i : Arrival and departure time of PEV i.

• Ii,t ∈ {0, 1}: Whether PEV i is (supposed to be) at the charging
station at time t.

• Xfix
i,0, X

robo
i,0 ∈ {0, 1}: Whether PEV i has already been assigned

to FC or RC before t = 0.
• Edem

i , E init
i , E targ

i : The demand charge, initial charge and target
charge of PEV i. Edem

i = E targ
i − E init

i .
• P i: Maximum charging power for PEV i.
• P base

t : Base power of the charging station at time t.
• η: Charging efficiency.
• ωi: Waiting-tolerance factor of PEV i.
• ρ: Satisfied rate requirement.
• θsr: Threshold for identifying ”satisfied” sessions.
• γ: Charging fee for per unit of charge.
• βt: TOU to import energy from the grid at time t.
• βfix, βrobo: Capital cost of one FC or RC.
• βdc: Demand charge per unit power.
• βswitch: Switch cost per charger plug-in and plug-out.
• βus

k , θ
us
k : Parameters defining a piece-wise linear penalty on short

charge, where βus
k is unit penalty and θus

k is some threshold.
• πs: Probability of sub-scenario s.

Decision variables
Followings are main decision variables:
• m,n ∈ Z≥0: Number of FC ports and RC ports to be optimized

in the planning model.
• xfix

i , xrobo
i , xleave

i ∈ {0, 1}: Whether PEV i is to be assigned to
FC, RC, or leave directly.

• xplug
i,t ∈ {0, 1}: Whether PEV i is plugged-in at time t.

• pi,t: Charging power for PEV i at time t.
• ei,t: Charge of PEV i at time t.
Followings are variables assisting the formalization:
• p̃i,t: Curtailed charging power for PEV i at time t.
• ẽi,t: Charge of PEV i at time t with curtailed power.
• qfix

i , qrobo
i ∈ Z≥0: Length of service queue of FCs and RCs at

PEV i’s arrival.
• vfix

i , vrobo
i ∈ Z≥0: Number of service queue vacancies of FCs

and RCs at PEV i’s arrival.
• pdc: Maximum aggregate power in a billing cycle.
• xswitch

i,t ∈ {0, 1}: Whether PEV i’s plug-in status changes at t.
• udisapp

i : Monetized penalty on PEV i’s disappointment.
• r: Satisfied rate.

Functions
• 1{·}: Indicator function. 1{A} = 1 if A is true else 0.
• [·]+, [·]−: Positive and negative linear rectifier functions. [x]+ :=

max{x, 0}, [x]− := min{x, 0}.
• ⌊·⌋: Floor function. ⌊x⌋ := max{z ∈ Z | z ≤ x}
• C(·): Some cost function, e.g., CTOU, Cdisapp, Cdc, Cswitch.
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I. INTRODUCTION

A. Background

Plug-in electric vehicles (PEVs) become popularized over
the past few years. Benefited from technology advancement
and cost reductions [1], the adoption rate is likely to continue
increase, which contributes to reducing carbon emissions [2].
Accessibility to charging facilities is among the top influential
factors for PEV adoption [1]. Public charging infrastructure
shows a positive causal effect on PEVs’ market diffusion
[3], and also has potential to provide grid service [4]. Public
charging infrastructure helps resolve the “range anxiety” of
PEV owners, which shows a positive causal effect on PEVs’
market diffusion [3]. Moreover, accessible public charging
shows potential to provide grid service via frequency regulation
and real-time ramping [4]. However, nowadays the number of
public chargers is approximately one-tenth of on-road PEVs
in the US [5]. Worse still, many charging stations, especially
those equipped with level-2 chargers, are commonly suffering
from the overstay issue.

Overstay is the phenomenon that a charger is occupied by
a PEV after it has been fully charged [6]. Data analysis on a
heavily-utilized charging station shows that, PEVs overstay for
1.5 hours on average in their charging sessions, approximately
an extra of 75% of the required charging time [7]. Overstayed
PEVs hinder others’ accessibility to the relatively few charging
resources, which is identified as a “bottleneck” of station service
capacity [8]. A nationwide survey on Dutch PEV users shows
a long-tailed distribution in session duration where 6% of the
most overstayed sessions occupy the charging facility for 30%
of the time [9]. The overstay issue also hampers stations ability
to achieve higher revenues by serving more PEVs.

In this paper, we propose an innovative solution to incorpo-
rate Robo-chargers to alleviate overstay and enhance stations’
service capability.

B. Related works

In literature review, we concentrate on literature targeting
the overstay issue. Existing approaches can be roughly cate-
gorized into three directions: (i) infrastructure upgrades; (ii)
penalty or incentive design to regulate overstay behaviors; (iii)
“interchange” within charging sessions.

Infrastructure upgrades, such as installing more chargers
[10] (including multi-cable chargers [8], [11]), promoting fast
chargers [12], or shifting to battery swapping [13], can improve
service capacity of a charging station / network. However,
such upgrades largely increase investment in the early stage.
High aggregate power results in transformer upgrades and high
demand charge, which are substantial costs overlooked in many
studies [24], [25]. Shifting charging mode to battery swapping
would be a revolution across the entire PEV industry and
there’s no evidence that it will become a dominant method.

Price menu design of charging fees is an important compo-
nent of charging station management, and remains an active
area of research. There are generally two ideas: One is to
urge PEVs to leave as soon as possible by introducing an
hourly overstay penalty [14]. Alternatively, if overstayed PEVs
accept flexible charging schedules, they can be managed as

controllable loads, thus stations incentivize such choices [6],
[18]. The specific price menu design can be highly complicated
given the heterogeneity and stochasticity in behavioral patterns
and dynamics in equilibrium [15]–[17]. However, their real
performance is largely remain untested since high-quality
empirical data on customers’ behavioral model is very limited
[26]. Also, some research show that people are not quite
sensitive to cost saving when comparing with increasing
inconvenience and uncertainty.

“Interchange” basically means a charger may unplug a
plugged PEV within its duration, and rotate to another PEV
in need. “Interchange” is proposed in [7] where the authors
analyze the balance between initial investment of more chargers
and operational cost of more interchanges (assuming done by
human valets). Some related works apply this idea to district
networks accompanied with mobile chargers (for instance, using
vehicles to charge other vehicles, aka V2V [19]) or employing
human couriers [20]. Such operations are actively discussed
from the perspectives of optimal facility sizing [21], efficient
routing algorithms [19], power grid benefits [22], reservation
coordinations [23], market equilibrium analysis [20], en-route
charging service [19] and emergency management, etc.

Our proposed approach, so-called Robo-chargers, is at the
intersection of the three streams above. It is a charging
facility innovation, yet also innovations to station operations.
It enhances station’s service capacity at peak hours, while also
improves the overall charger utilization. The model incorporates
drivers’ queuing behavior based on quite simple and natural
assumptions. Before diving into formalization details of Robo-
chargers, some remarks on the aforementioned research from
a methodological perspective are as follows:

• We highlight the combinatorial optimization nature of
optimal charging problem (with interchanges) given the
limited number of chargers. However, few studies (e.g.,
[27]) explicitly formalize it. Others assume unlimited
charger accessibility, or simply relax the charging power
limit of each charger into an aggregate version [7], [28].

• A stationary analysis for site planning, usually derived
from time-invariant queuing theory, is commonly adopted
[20], [21], [23]. However, a precise model of actual
demand patterns (which is highly time-variant) does
matter since station congestion has a bottleneck effect [8].
Another limitation of such models is that charging power
optimization for each session cannot be easily integrated.
As a consequence a great opportunity for cost reduction
(especially when the station is lightly loaded) is missed.

• In existing literature, customers’ waiting tolerance is
modeled as a time threshold with the assumption that
drivers have to wait in their cars [19], [23], [27]. With
Robo-chargers, drivers can park their cars in the station
and leave to do their own business. In such context, a new
decision pattern based on expected charge at scheduled
departures is formalized, and we analyze the chance of
unsatisfied charging.

• Interchange / mobile-charger’s application at the network
level is seemingly more extensively discussed than at
the single station level. However, to solve the overstay
issue (the purpose of our paper), it is sufficient to manage
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TABLE I
RELATED LITERATURE SUMMARY.

Overstay solutions Refs Applications Limitations

Infrastructure upgrades [8], [10]–[13] Multi-cable chargers, fast chargers, bat-
tery swapping, etc.

High capital cost; low utilization at non-peak hours;
high demand charge & transformer upgrades

Pricing strategy [6], [14]–[18] Penalize overstay; incentive flexible
schedules, etc.

Lack empirical data; insensitivity in price; compu-
tational challenge

Interchange management [7], [19]–[23] Human valet; vehicle-to-vehicle (V2V);
charging-as-service, etc

Station-level energy management is overlooked;
lack holistic model for planning

Fig. 1. Overview of our work. left: conceptual analysis of FCs & RCs and MCCS decision model. right: structure of this paper.

them at a single station level. Reallocating chargers in
the network is only needed when considerable spatially
heterogeneous charging demand fluctuations exist.

Lastly, either planning or real-time scheduling requires a
forecast module to predict the charging demands (as either
discrete events or continuous arrival rates). Emerging machine
learning algorithms contribute to the task [29], [30], [18] while
it largely remains an open problem for further explorations.
A comprehensive comparison of state-of-the-art practices is
out of our scope. Instead, we demonstrate that with receding
horizon control, a quite simple forecasting model can perform
reasonably well.

C. Contributions

In this paper, we propose optimization models for station
operation and facility planning with Robo-chargers. A summary
of contributions is listed as follows:

1) A conceptual model of Robo-chargers is proposed. Robo-
chargers can proactively rotate among PEVs for charging
service, and help alleviate the overstay issue;

2) An optimal operation model is formalized for rigorous
management of charger assignment, plug-in schedules
and power optimization. The model can be reformulated
as mixed-integer linear programming (MILP);

3) A planning model which optimizes the combination of
Fixed-chargers and Robo-chargers is developed with the
operation model nested. The model further incorporates
realistic considerations such as weekly/seasonal charging
demand variances and service capacity requirements;

4) Sensitivity analysis suggests upgrading FC-only stations
to MCCS is advantageous under a variety of scenarios.

The advantage is also robust under potential uncertainties
and disturbances with model predictive control imple-
mented.

We recognize that the full-stack engineering to make MCCS
come true requires both operation research at the energy
management level, and detailed implementations on each
motion-planning tasks. We focus on the former level, and
suggest that our model is not specific to any of various available
modularized technical solutions for the latter level. Please refer
to Appx. A for more details on the hardware requirements.

The rest of the manuscript is organized as follows: Concep-
tual analysis on Robo-chargers and mixed-charger charging
stations is presented in Sec. II, which also serves as an outline
for detailed mathematical formulations in Sec. III (constraints)
and Sec. IV (models). In Sec. V, we present numerical studies,
including sensitivity analysis and uncertainty analysis. The
manuscript is concluded in Sec. VI.

II. CONCEPTUAL ANALYSIS OF ROBO-CHARGERS
PLANNING PROBLEM

In this section, we formally define Robo-chargers (RCs), in
comparison to conventional Fixed-chargers (FCs). Then, we
introduce the highlights of our proposed operation and planning
models for mixed-charger charging stations (MCCS).

A. Robo-chargers & Fixed-chargers

Today’s off-the-shelf FCs will be occupied by the parked
PEVs throughout their plug-in duration, no matter if they have
already been fully-charged or not. On the contrary, RCs are
robot-based chargers that can automatically plug, unplug, and
move to PEVs (illustrated in Fig. 1).
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An obvious operation improvement is that RCs can unplug
PEVs once they have been fully-charged, and be available for
others, thus the station no longer suffer from the opportunity
loss caused by overstay. Another observation is that, waiting
would be much more acceptable with RCs, since drivers can
add their cars in the waiting queue of RCs by simply picking a
spot to park them and informing the system of their departure
times. Drivers can then leave to do their business. Meanwhile,
RCs will strategically rotate between vehicles, performing
interchanges based on optimized schedules.

The observations above provide intuitions for the advantages
of RCs. Meanwhile, several concerns arise. First, since RCs
are more advanced in both hardware and software than FCs,
their capital cost is higher. The trade-off between increased
initial investment and improved operation revenues needs to
be carefully balanced. Second, meeting customer expectations
requires highly optimized dispatch operations, and there is
usually no guarantee for waiting vehicles. If performing sub-
optimally, some of the waiting cars may not get fully-charged,
which would result in disappointment.

B. Optimization models for MCCS

We construct a general model to include both FCs and RCs,
known as the mixed-charger charging station (MCCS) model.
A two-stage optimization model is developed:

• operation model: Given the number of FCs and RCs,
optimize the station’s operation to minimize operation
expenditure (OPEX).

• planning model: With operation model nested, further
determine the optimal number of FCs and RCs for
minimization of total cost of ownership (TCO), which is
the sum of OPEX and capital expenditure (CAPEX).

We are going to formally state the models in Sec. III & IV,
while an outline here (also see Fig. 1) may better navigate the
readers to the core ideas.

The MCCS operation model includes three types of decision
making: (i) For each serviced PEV we either assign it to a
specific FC, or add it into the service queue of RCs. (ii) At
each time step, RCs decide how to connect with PEVs in the
service queue, if there are more PEVs than RCs; (iii) Optimize
charging power of each charger at each time step.

We enforce the constraint that only a limited number of
chargers can be accessed simultaneously. We model drivers’
leave-or-wait behavior and integrate it into the optimization
model. We consider the charging dynamics and physical
constraints, and consider time-of-use (TOU) tariff, demand
charge, as well as a penalty for unsatisfied charging service.

When extending the operation model to a planning model, we
treat the number of FCs and RCs as variables. Most constraints
and objective terms are inherited, but some more are added:
CAPEX is included in the objective; satisfied rate and daily
load profile variances can be considered.

III. FORMALIZATION OF OPERATION CONSTRAINTS

This section details three groups of operation constraints.

A. Characteristics of Fixed-chargers and Robo-chargers

A potential charging session of PEV i is characterized by a
three-tuple (ta

i, t
d
i , E

dem
i ) of its arrival time, departure time and

energy demand. We denote Ii,t := 1{ta
i ≤ t < td

i} to indicate
whether PEV i is in the charging station at time slot t. Upon
arrival, each vehicle will decide to whether stay and take the
service at the charging station (xleave

i = 0), or leave directly
(xleave

i = 1). For those choosing to stay, they are assigned to
either FCs (xfix

i = 1) or RCs (xrobo
i = 1), so

xfix
i + xrobo

i + xleave
i = 1, ∀i (1)

When PEV i is not supposed to be at charging station at
time t, or it chooses to leave directly, it is certainly not being
plugged-in (xplug

i,t = 0). When PEV i is at the station, and if it is
assigned to an FC, it is certainly being plugged-in (xplug

i,t = 1);
while if it is assigned to RCs, then its plug-in status can be
time-varying and is to be optimized. Above rules can be written
compactly as

Ii,txfix
i ≤ xplug

i,t ≤ Ii,t
(
1− xleave

i

)
, ∀i,∀t (2)

Given the constraint the there are only limited number of
chargers, the number of simultaneously plugged-in PEVs is
limited accordingly. Suppose the charging station has M FCs
and N RCs, then at any time t, there can be at most M PEVs
plugged-in to FCs and N plugged-in to RCs, which reads:

I∑
i=1

xfix
i xplug

i,t ≤M, ∀t (3)

I∑
i=1

xrobo
i xplug

i,t ≤ N, ∀t (4)

For FCs, (3) also indicates that at most M vehicles can be
assigned to FCs simultaneously. While more than N vehicles
can be assigned to RCs simultaneously, but at most N of them
can be plugged-in. This is the key difference between the two
types of chargers.

Technically, the following constraints should be considered:
(5) explicitly requires xrobo

i = 0 for all i if N = 0. (6) and (7)
indicate that for those already in service at the beginning of
optimization horizon, their present charger types (Xfix

i,0, X
robo
i,0 )

will be kept.

xrobo
i ≤ N, ∀i (5)

xfix
i ≥ Xfix

i,0, ∀i (6)

xrobo
i ≥ X robo

i,0 , ∀i (7)

B. Charging schedules and PEV charge status

For each PEV, the following constraints for charging power
and status of energy (SoE) should be satisfied1:

0 ≤ pi,t ≤ P ix
plug
i,t , ∀i,∀t (8)

ei,t = ei,t−1 + ηpi,t∆t, ∀i,∀t > 0 (9)

ei,0 = ei,ta
i
= Einit

i , ∀i (10)

1Protocols for Energy Internet, e.g., ISO/IEC/IEEE 18881, enables secure
information exchange between PEVs and the station [31].
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ei,td
i
= (Etarg

i − Einit
i )(1− xleave

i ) + Einit
i , ∀i (11)

where Edem
i = Etarg

i − Einit
i . (11) requires all PEVs get fully

charged by their departures. However, in some circumstances,
meeting such a target is either infeasible (e.g., too many waiting
PEVs) or unprofitable (e.g., when the grid TOU is higher than
charging revenue). We soften the constraint so that occasional
violation is allowed, but the short in charge will be penalized
in the objective. Technically, we introduce p̃i,t to capture the
curtailed power, which is eventually summed as the unsatisfied
energy and be penalized. With p̃i,t and the corresponding ẽi,t,
constraints (8) - (11) are modified as:

0 ≤ pi,t ≤ P ix
plug
i,t , ∀i,∀t (12)

ei,t = ei,t−1 + ηpi,t∆t, ∀i,∀t > 0 (13)

pi,t ≤ pi,t + p̃i,t ≤ P iIi,t, ∀i,∀t (14)
ẽi,t = ẽi,t−1 + η (pi,t + p̃i,t)∆t, ∀i,∀t > 0 (15)

ei,0 = ẽi,0 = Einit
i , ∀i (16)

ẽi,td
i
= (Etarg

i − Einit
i )(1− xleave

i ) + Einit
i , ∀i (17)

C. Behavioral model of leave-or-wait decisions

PEV drivers decide whether to stay and wait for charging
or leave immediately. However, their decisions depend on the
charging station’s operational situation upon arrival. Hence,
although xleave

i is a decision variable in the formulation, it (or
more precisely, its probability distribution) can be determined
given all the operations before ta

i . We refer to the set of
constraints determining xleave

i as leave-or-wait model.
In general, drivers’ decisions are based on their estimated

chance that their PEVs would be fully charged by the declared
departure times. However, an exact estimation would make the
optimization problem intractable since station’s operation model
and drivers’ decision model are deeply intertwined. Moreover,
it does not make much sense to assume drivers would perform
such complicated calculations in their mind before they make
decisions. We adopt a simplified but more intuitive assumption
that drivers’ leave-or-wait decisions depend on the service
queue length at their arrivals. Here, service queue refers to
all the PEVs in the station that would potentially compete for
chargers. For FCs, it is simply all onsite PEVs assigned to
FCs. For RCs, it refers to all PEVs in the station which are
assigned to RCs and have not been fully charged.

Specifically, an ω-tolerance model is developed: Suppose
there are N RCs, the driver waits if there are available FCs,
or at most ⌊(1 + ω)N⌋ − 1 PEVs are currently in the service
queue of RCs. Otherwise it leaves. Let vfix

i and vrobo
i be the

number of available vacancies (i.e., charging and waiting ports)
for FCs and RCs at the arrival of PEV i, then above rule can
be mathematically formalized as

xleave
i = 1{vfix

i + vrobo
i ≤ 0} (18)

Let qfix
i and qrobo

i be the queue lengths of FCs and RCs at the
arrival of PEV i, then

vfix
i =

[
M − qfix

i

]+
, ∀i (19)

vrobo
i =

[
⌊(1 + ω)N⌋ − qrobo

i

]+
, ∀i (20)

Suppose PEV indices are sorted by their arrival time, i.e., a
smaller index indicates coming earlier thus also making the
decision earlier (even though there are PEVs have the same
arrival time). Then, qfix

i and qrobo
i follow the constraints

qfix
i =

i−1∑
j=1

xfix
j Ij,ta

i
, ∀i (21)

qrobo
i =

i−1∑
j=1

xrobo
j Ij,ta

i
1{ej,ta

i−1 < etarg
j }, ∀i (22)

Verbally, at the arrival of PEV i, FC queue includes all PEVs
that arrive earlier, are assigned to FCs, and still in the station
by ta

i . RCs queue includes those that arrive earlier, are assigned
to RCs, still in the station, and haven’t been fully charged. It’s
easy to observe that the positive part function in (19) can be
omitted since M − qfix

i is always nonnegative, but the positive
part function in (20) is substantial.

A realistic extension of above model is to consider hetero-
geneous waiting tolerances, i.e., different drivers may have
different thresholds to wait. Such extension can be made by
simply replacing ω in (20) by ωi, where ωi is the waiting
tolerance of PEV i.2

IV. CHARGING STATION OPTIMIZATION
FORMULATION AND REFORMULATION

In this section, we further formulate the operation and
planning models as optimization problems.

A. Optimal control model for MCCS operation

Given the number of FCs M and RCs N and the charging
demand DT := {(ta

i, t
d
i , E

dem
i )}i∈I , as well as other parameters

such as grid TOU {βt}t∈T , charging power limits P and
waiting-tolerance factor ω, MCCS management system seeks
the optimal sequence of operations on:

1) whether to assign a PEV to an FC or service queue of
RCs

(
xfix = {xfix

i }I , xrobo = {xrobo
i }I

)
;

2) for PEVs assigned to RCs, when should they be plugged-
in to get charged

(
xplug = {xplug

i,t }I×T

)
;

3) when PEVs are being charged, what the charging power
should be (p = {pi,t}I×T ).

The objective is to maximize the operating profit, i.e., mini-
mize the operating expenditure (OPEX) considering revenues
from charging fee C fee, expenses for grid energy imports CTOU,
penalty on customers’ disappointment Cdisapp, demand charges
Cdc and also switching costs Cswitch.

min
xfix,xrobo,xplug,p

OPEX (23)

2Abstract models known as bulk queue, reneging queue, retrial queue, etc.,
are investigated by queuing theory experts, and have implications for the
real-world PEV charging systems. Though we adopt an atomic measure to
model each individual session explicitly, and address relevant issues more or
less, the non-atomic perspectives may also be inspiring for interested readers
[32].
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=

I∑
i=1

T−1∑
t=0

(βt − γ)pi,t∆t︸ ︷︷ ︸
CTOU−Cfee

+βdcpdc︸ ︷︷ ︸
Cdc

+

I∑
i=1

T−1∑
t=0

βswitchxswitch
i,t︸ ︷︷ ︸

Cswitch

+

I∑
i=1

udisapp
i︸ ︷︷ ︸

Cdisapp

subject to:
constraints (1) - (7), (12) - (22), and

pdc ≥ P base
t +

I∑
i=1

pi,t, ∀t (24)

xswitch
i,t =

∣∣xplug
i,t+1 − xplug

i,t

∣∣, ∀i,∀t (25)

udisapp
i =

(
1− xleave

i

) K∑
k=1

βus
k

[
θus
k E

dem
i − (ei,td

i
− Einit

i )
]+

,∀i

(26)

Demand charges are based on the maximum charging power
within a billing cycle. Switching cost Cswitch are included to
penalize frequent plug-in and plug-out, thus avoiding some
meaningless charging behaviors. Customers’ disappointment
udisapp
i is evaluated by a piece-wise linear function of the

unsatisfied charge of PEV i, where θus
k ’s are some thresholds

for unsatisfied charge. Severe short in required energy (failing
to meet smaller threshold θus

k ) will be more heavily penalized
(larger βus

k ) than slight mismatch. It captures the diminishing
marginal utility in a simple way [13].

1) Model predictive control (MPC): When applying the
operation model in real-world practice, uncertainties and
disturbances, such as future charging demands, early or late
departures, and/or stochastic waiting tolerance, should be taken
into account. Model predictive control (MPC) is applicable to
resolve such challenges [33]. MPC re-optimizes at each time
step and can adaptively improve scheduling quality as more
information becomes available. Meanwhile, within each step
of optimization, model can be appropriately simplified at the
horizon “tail”, which provides opportunity to accelerate the
programming process. Detailed algorithm for MPC is explained
in Appx. B.

B. Optimal planning model for MCCS

A market decision, such as whether to incorporating RCs in
charging stations, depends not only on its OPEX, but also its
capital expenditure (CAPEX). Herein, with the operation model
nested in, we develop a planning model where the numbers of
FCs and RCs are optimized. In the planning model, FC and
RC numbers are treated as decision variables, denoted as m
and n, and the total cost of ownership (TCO), i.e., the sum
of CAPEX and OPEX, is to be minimized. All constraints in
the operation model can be inherited by simply replacing the
given constant M , N with decision variables m, n.

min
m,n,xfix,xrobo,xplug,p

TCO = OPEX + βfix ·m+ βrobo · n︸ ︷︷ ︸
CAPEX

(27)

subject to:
constraints (1) - (7), (12) - (22), (24) - (26)
with M,N replaced by m,n

Besides, some extra constraints on the overall service quality
and demand patterns can be added into the planning model.

1) Satisfied rate (SR) requirement: By minimizing the TCO
of the charging station, we primarily treat the planning problem
as pure commercial affairs. In scenarios where providing better
charging service is unprofitable (e.g., the marginal expenditure
to satisfy all demands is too high), stations may strategically
reduce the number of chargers. However, as infrastructure
construction, the benefit of charging accessibility is shared
across the community. In other words, the externality should
be somehow internalized in order to make a wise decision
in the public welfare sense. Since comprehensively discuss
the externality of charging station infrastructure is beyond the
scope of our paper, we simply consider the case where a certain
satisfied rate (SR) is required.

We define SR r as the proportion of satisfied customers to
all customers (including leaving), and enforce the constraint
that SR is above some given requirement ρ:

r =
1

I

I∑
i=1

1
{
ei,td

i
− Einit

i ≥ θsrEdem
i

}
≥ ρ (28)

where θsr, e.g., 0.9, is some threshold that a session can be
regarded as “satisfied” although the charging demand may not
be exactly met. Constraint (28) can be added to the planning
model so that the solved optimal charger numbers also meet
the given SR requirement.

2) Multiple typical sub-scenarios considered in planning:
Daily PEV charging demands fluctuate considerably across
the year, so it helps to consider multiple typical daily demand
profiles in planning. Suppose there are S sub-scenarios to
consider, indexed with s = 1, . . . , S with corresponding
probability πs, the overall OPEX is the weighted average
of OPEX under each sub-scenario.

OPEX =

S∑
s=1

πs OPEXs(Ds
T ) (29)

For constraints (24), (28), S sub-scenarios are weighted-
summed to form the new constraint. For other constraints,
each is rewritten as S individual sub-constraints, i.e., they hold
for every s.

3) Robustness of planning results: In the planning model, we
assume MCCS management system has complete information
on charging demands, as extracted in representative profiles.
While in real-world application, there exist potential model
mismatches, uncertainties and disturbances. Possible uncertain-
ties include (1) long-term uncertainty, such as the PEV market
growth in coming years; (2) short-term uncertainty, such as
charging demand fluctuations in coming hours. We validate
that our model are practical and robust under above possible
uncertainties in Sec. V-E.
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C. Reformulation and solving programs

Both the operation model and planning model can be
reformulated as a mixed-integer linear programming (MILP)
problem with some general techniques. We implemented the
optimization models via Gurobi Optimizer in Python.
Our base planning case can be solved in 3 - 5 minutes with MIP
gap set as 1% on a personal computer. 3 When implemented
as MPC, steps on the horizon tail are reasonably simplified.
The tailored operation model can be solved in 10 seconds on
average per 15-minute rescheduling step.

V. NUMERICAL STUDIES

In this section, we present simulations based on charging data
from a real-world station. We demonstrate numerical results
and visualizations of the operation and planning model. Further,
we discuss the suitable scenarios for MCCS by a series of
sensitivity analysis. Lastly, we validate the robustness of MCCS
in real-world applications by uncertainty analysis.

A. Data description and system configuration

PEV charging records from the Olser Parking Structure
charging station on UCSD campus in 2019 [34] are used as the
data source. The dataset includes detailed information of the
start and end times and energy consumption for 12259 charging
events (daily mean±std: 33.6±18.6).Charging demands varied
between weekdays (42.9±13.0) and weekends (10.2±4.4). We
construct two typical demand profiles by randomly sampling
43 and 10 sessions from all the sessions on weekdays and
weekends respectively. The sampled profiles are used as
representative demands in planning.

The capital cost of FCs (including installment and main-
tenance fees) is estimated to be $ 5400 each with a ten year
lifespan via market survey [35]. We estimate the capital cost
of a RC to be twice that of a FC in the base case, considering
the complexity of its hardware, software, manufacture and
maintenance. We also provide sensitivity analysis on RCs’
capital cost for reference. All chargers are level-2 chargers
with maximum charging power of 6.6 kW.4 PG&E’s TOU
plan for commercial charging stations is adopted, along with
a $ 18 / kW demand charge fee per billing cycle (per month).
Other parameters (for the base case) are summarized in Tab. II.

We primarily consider two scenarios on the target customers:
(1) customers have some alternative charging resources nearby
so their waiting tolerance is low. Meanwhile, the charging
station is purely profit-driven. In such a case, we assume ω = 1
for all PEV drivers and there is no SR constraint to enforce
(the “ω = 1 case”). On the contrary, (2) customers will always
stay to wait and accordingly the station should be planned
to satisfy a given SR. In such a case, we assume ω = ∞

3Gurobi 9.5.2 with academic license. PC with Intel i7-9750H CPU @
2.60GHz, 12 logical processors can be used.

4Our model itself is applicable for general chargers, AC or DC, level-1, 2, 3,
etc., as long as its protocol allows controllable charging. However, in today’s
scenario, we consider it makes the most sense to update a level-2 station with
RCs. Certainly, upper limits of charging power is an influential factor on both
CAPEX and OPEX. Also, charging power upper limits, determined by both
chargers (aka Electric Vehicle Supply Equipment (EVSE)) and PEV’s onboard
charger, can be heterogeneous.

TABLE II
PARAMETERS USED IN BASE PLANNING CASES

variable meaning value unit

T optimization horizon 96
∆t step length 0.25 hr
S; π sub-scenarios num. & prob. 2; [5/7, 2/7]
I session numbers [43, 10]
ω waiting tolerance factor 1 or ∞
P maximum charging power 6.6 kW
γ charging fee 35 ¢/kWh
βt TOU: super off-peak 11 ¢/kWh

off-peak TOU 13 ¢/kWh
peak TOU 34 ¢/kWh

βdc demand charge (per month) 18 $/kW
βus; θus unsatified penalty params [10, 20]; [1, 0.9] ¢/kWh;
ρ; θsr SR req. & satified thres. 0.9(ω=∞); 0.9
βfix capital cost of an FC 5400 $
βrobo capital cost of a RC 10800 $

and enforce a SR requirement at 90% with θsr = 0.9 (the
“ω =∞ case”). It is worth mentioning that, though ω acts as
an important empirical parameter to model customers’ behavior,
its exact reference value can be very context-specific and is
now unavailable. Our discussion on these two “representative”
scenarios is a primitive attempt to investigate their influence
categorically.

B. Optimized charging operations with Robo-chargers

As introduced above, for a given MCCS with determined
number of FCs and RCs, the operation includes three types
of decisions to maximize net profit, illustrated in Fig. 2: (1)
For each arriving PEV (excluding those leaving directly), the
station decides whether to assign it to an FC (blue underlines),
or to add it into the service queue of RCs (orange underlines).
(2) At each time slot, the station decides which PEVs in the
service queue of RCs are plugged-in and receiving charge
(solid orange underline segments). (3) At each time slot, the
charging power of each charger is optimized (indicated by the
shades of squared dots).

We can also clearly see the OPEX and SR differences across
the three portfolios in Fig. 2, although they share the same
CAPEX. This is further investigated in Sec. V-C.

C. Optimal investment plan for MCCS

Considering the different characteristics of FCs and RCs,
they have relative advantages under different circumstances.
RCs are advantageous to stations that face severe overstay
issues given their flexibility. Meanwhile, for sessions with little
overstay, FCs are preferable for their lower capital costs. Given
PEV charging demands as well as other required parameters,
the planning model returns an optimal investment combination
of FCs and RCs that minimizes the expected TCO.

In our base case, the optimal plan is “F3 / R4” for “ω = 1
case”, and “F4 / R4”5 for “ω =∞ case”. The solved optima are
marked in green circles in Fig. 3. Additionally, TCO and OPEX
heat maps of varying charger combinations are included for
comparison. The planning model can return a single optimal

5Stands for 4 FCs and 4 RCs. Similar for others.
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Fig. 2. Optimized charging station operations. It is a conceptual illustration - a “toy” profile of 20 sessions is sampled as a case study here. Each subplot
represents an optimized operation schedule under corresponding charger combination settings, indicated by “M” and “N” at the left-top corner. Each horizontal
bar represents one individual charging session. Gray dashed lines indicate leaving directly. Underline colors indicate charger types (blue-FC; orange-RC). Solid
orange underline segments indicate being plugged-in by RCs. Shades of squares in the session bars represent charging power (deeper indicates greater power).

Fig. 3. TCO & OPEX of different charger combinations. Global optimum
plans are marked in green circles. Heat maps of profits are generated based
on grid search results of charger combinations. Dashed gray diagonal lines
are CAPEX contours. Yellow lines are SR contours.

combination efficiently (solution time is in the same order
of solving operation model once). The appended heat maps,
exhaustively computed for each combination, also provide
useful insights on, for example, where those sub-optimal
solutions locate and how close their performances are.

Comparing “ω = 1 case” and “ω =∞ case”, more chargers
are planned for the latter because customers always wait and
SR ≥ 90% is enforced to satisfy. Meanwhile, more staying
PEVs also provide opportunities to earn higher revenues. As a
consequence, the ω = 1 case” yields an annualized net profit of

$ 5233 with (most economical) SR of 89.4%, and the “ω =∞
case” yields $ 5611 with SR = 100%.

Comparing optimal plan for MCCS and that for FCS, in
FCS, 8 and 20 FCs should be installed for “ω = 1 case” and
“ω = ∞ case” respectively. We find the main advantage of
MCCS in “ω = 1 case” is the OPEX improvement potential
by serving more PEVs. While in “ω = ∞ case”, MCCS is
advantageous because much fewer chargers are required to
meet a given SR, thus greatly reducing CAPEX.

D. Sensitivity analysis

The optimal investment plan is highly scenario-sensitive.
We characterize the main influential factors as three variables:
(1) Robo-charger capital cost ratio index (RCI); (2) Charging
slackness index (CSI); and (3) Load-tariff peak overlap index
(POI). We conduct a series of sensitivity analyses on them to
provide references for practitioners. More importantly, it offers
insights on the suitable conditions under which incorporating
RCs can significantly improve the TCO of stations.

Figure. 4 visualizes the optimal planning results under
different scenarios, including charger combinations and their
corresponding TCO. TCO of optimally-planned FC-only sta-
tions and RC-only stations are also added for reference. For
the base case: RCI = 2.0, CSI = 0.5, POI = 0.2.

1) Capital cost of Robo-chargers, RCI: Since FCs are off-
the-shelf products nowadays, their capital costs are relatively
stable. However, estimation on RCs’ capital cost may have high
variance at current stage due to the lack of in-depth design and
manufacture details as well as survey on market willingness.
We define Robo-charger capital cost index (RCI) as the ratio
of capital cost between one RC and one FC, i.e.,

RCI = βrobo/βfix (30)

with βfix = 1.5 ¢/day ($ 5400 each for ten years) fixed. The
results are rather intuitive: since RCs can operate exactly the
same as FCs (but not the reverse), when RCI = 1, a RC-only
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Fig. 4. Sensitivity analysis. row 1&3: optimal planning results of charger
numbers (blue: Fixed-chargers; orange: Robo-chargers). row 2&4: TCO
corresponding to optimal plans. Green dots for global optimum. Blue markers
for “only fixed-chargers” situation, while orange for “only Robo-chargers”.

plan will be the optimal. When RCI increases, the proportion
of RCs in the optimal plan goes down.

2) Charging slackness, CSI: The severity of overstay is
closely related to the need for RCs. We define charging
slackness index (CSI) to quantify it. Let slack of a charging
session τ̃i be the difference between PEV i’s duration at the
station and the minimum required charging hours τ i (charging
with power limits P i). Then CSI is defined as the average
proportion of slack to its duration, i.e.

CSI =
1

I

I∑
i=1

τ̃i
τ̃i + τ i

(31)

where τ i = Edem
i /(ηP i) and τ̃i =

(
td
i − ta

i

)
∆t − τ i. Higher

CSI indicates more severe overstay, where more OPEX improve-
ment potential can be achieved by RCs. Another interpretation
is, as CSI increases, the proportion of required charging time
to the entire duration decreases. Thus, RCs can hold longer
service queues without the concern of unsatisfied sessions.

3) Load-tariff peak overlap, POI: OPEX can be improved
if most energy can be delivered during valley hours of the
TOU plan, and vice versa. We define load-tariff peak overlap
index (POI) as the proportion of energy charged when TOU
is at its peak values to all charged energy, assuming charging
uniformly throughout duration, i.e.

POI =
1∑I

i=1 E
dem
i

T−1∑
t=0

[
1{βt = βpeak}

I∑
i=1

(
Ii,t

Edem
i

η(td
i − ta

i)

)]
(32)

As POI increases, more energy has to be charged at TOU peak.
As a consequence, the average energy cost increases and makes

some sessions less profitable. For “ω = 1 case”, the planning
model strategically reduces charger numbers to save CAPEX,
since OPEX increases because revenue does not offset costs
as much.. For “ω =∞ case”, since a 90% SR should be met
anyway, charger numbers do not differ a lot, but TCO at high
POI may even be positive, indicating the station will not be
profitable by itself and subsidies are needed.

E. Uncertainty Analysis

As motivated in Sec. IV-B3, since complete information and
perfect execution is unreachable, it is likely that the estimated
TCO provided by the planning model is over-optimistic and not
achievable in real applications. We want to validate that, under
potential long-tern and/or short-term uncertainties, at least: (1)
MCCS can robustly outperform FCS. (2) The optimal charger
combination solved by the planning model is acceptable.

Fig. 5. Sensitivity analysis under various DGI. left: TCO. right: SR. In each
subplot, two plans - the optimal plan solved when DGI=1 (solid lines) for
MCCS (green) or FCS (blue) - are tested under 5 DGI scenarios respectively.
Dashed lines indicates TCO and SR if planned under the exact DGI.

1) Long-term uncertainty: For a specific charging station, it
is difficult to foresee the localized future charging demand. We
define demand growth index (DGI) as the proportion of charging
demands in a future scenario to that of today. We experiment
with different DGI when the fixed “optimal” combination is
solved at DGI= 1. We compare both TCO and SR changes
between MCCS and FCS, shown in Fig. 5.

In all cases, even with up to 60% of DGI underestimation,
MCCS still outperforms FCS in terms of TCO. With increasing
DGI, on the one hand, charger utilization may increase in times
when demand was previously relatively low, thus earning more
revenue. On the other hand, during peak hours, more PEVs
either have to leave directly (if ω = 1) or do not meet the
charge target by their departure (if ω =∞), thus SR decreases
and the station may also get penalized. Consequently, in the
“ω = 1 case”, growing DGI is generally beneficial to charging
stations, even if they are undersized. While the “ω =∞ case”
is more sensitive to DGI. Lastly, considering that RCs are also
more flexible to scale up and down, MCCS’s advantages over
FCS can be even larger (approaching the dashed lines).

2) Short-term uncertainty: We run simulations of station
management with a MPC controller for one week (672 steps).6

6Details on how uncertainties are simulated can be found in Appx. C.
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Fig. 6. Simulated performances under short-term uncertainties and disturbances.
left: comparison between MCCS and FCS. Both are optimally invested as
suggested by the planning model. Grey dashed lines (top of bars) mark CAPEX
of the plans, and bottom of bars are TCO of the plans, so the lengths of bars
indicate their OPEX. Fully-filled bars are under control with simple predictors
(thus upper bound of TCO). Slash-hatched bars are under control with complete
information (thus lower bound of TCO). right: comparison among the top 20
combination candidates. Each dot represents TCO for one combination, ordered
by their estimated TCO along x-axis. Gold circles are estimated TCO in the
planning phase. Purple triangles and pink squares are simulated performances
with simple predictors and complete information respectively.

To deal with unknown future demands, we set up a simple
load forecast model that estimates and generates coming PEVs
based on the hour in a day and whether the day is weekend
or not. We also add random perturbations on waiting factors
and departure times, which are assumed unpredictable for our
simple predictor. The performance under such a predictor can
be interpreted as the upper bound (i.e., worst possible) of TCO
in real applications, since a station can always develop such
a predictor as long as it keeps the historical data, and there
is plenty of room to improve. We set up another idealized
controller which has complete information of ongoing and
coming sessions for decision making. Its performance should
be considered as the lower bound (i.e., best possible) of TCO.

In the left part of Fig. 6, we compare TCO of MCCS and
FCS. Suppose they are both controlled with simple predictors,
or both with complete information, TCO of MCCS is always
lower than FCS. Moreover, MCCS with simple predictors
actually outperforms FCS with complete information, which
suggests that the benefits of upgrading FCS to MCCS are
guaranteed even under imperfect conditions.

In the right part of Fig. 6, we further compare actual
performances among top 20 charger combinations with the
best estimated TCO. Ordered by their estimated TCO, their
performances (the purple triangles) can be quite disordered, and
some candidates outperform the chosen plan, i.e., the plan with
lowest estimated TCO. It seems that plans with more chargers
(high CAPEX) are more likely to show large TCO deviations,
which might be because more coordinations are required for
those plans, thus suffering more from incomplete information
and randomness. However, all these “elite” candidates are
MCCS plans, and difference in their estimated TCO is relatively
small. So compared with FCS we have today, MCCS is
hopefully to be a more profitable solution, and the MCCS

plan suggested by our planning model would give a reasonable
choice for station planning.

F. Limitations

Although the benefits of upgrading FCS to MCCS are
supported by uncertainty analysis, we recognize that the results
are not yet perfect. To our understanding, these deviations in
estimated and actual performances are quite general challenges,
but they have not drawn enough attention from the community.
Some of our general thoughts are: On the one hand, improving
the quality of forecasts can assist the system for better decision
making. On the other hand, since perfect forecasts and zero
disturbances are unreachable, integrating these considerations
into the planning phase can be of substantial help. It leads to
the active research area of robust optimization, but also more
challenging in both formulation and computation. Lastly, as a
human-in-the-loop societal system, there are also great needs
to better understand customers’ behavioral patterns and design
better market mechanisms accordingly.

VI. CONCLUSION

We concentrate this paper on the conceptualization, formu-
lation, simulation and result interpretation of the key charac-
teristics of RCs and MCCS. We propose optimal operation
and planning models for station management with RCs, which
is suggested to be advantageous to today’s FC-only stations.
Interested practitioners can adopt our model for investment
suggestions and implement the robust and efficient MPC
algorithm for real-time operations. Moreover, our operation
research on MCCS provides insights on how to better invest
and utilize public charging infrastructures to attain a win-win
outcome for PEV drivers, charging stations and power grid,
which is a promising path towards a sustainable future.

APPENDIX A
HARDWARE REQUIREMENTS

We provide a summary of the hardware (and also some
software) requirements to implement our proposed system in
the real-world in Fig. 7. It includes sensors and algorithms
that enable Robo-chargers to detect vehicles, route to a
target PEV, plug into / out from the PEV’s charging port,
communicate with a central server to update the PEV states,
and receive charging schedules. Other infrastructure support
may include a user interface (a machine in the station or a
mobile phone application) that customers interact with to see
charger occupancy, register their sessions, and make payments,
etc.

The optimal operational model is not specific to any
particular hardware or software. In fact, there are multiple
hardware and software alternatives available in literature, for
instance, vehicle recognition [36], routing [37], automatic plug-
in [38], communication [39], charging control [40], etc. Note
the operational model focuses on the energy management level.
The lower-level motion planning tasks are not a focus on this
manuscript.
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Fig. 7. Hardware requirement to implement smart charging in MCCS. left: a
conceptual diagram highlights the differences between energy management
and motion planning perspectives. right: a summary of hardware (and also
some software) requirements to implement our proposed system.

APPENDIX B
MODEL PREDICTIVE CONTROL (MPC)

Algorithm 1 provides a sketch of our MPC algorithm in the
MCCS. Before optimization the scheme updates the system
state from PEVs onsite, updates the future load forecasts,
and considers uncertainties and disturbances revealed in the
previous steps. Technically, the station maintains a data table
tracking the status of all PEVs in the station, denoted as L.
We use the notation A[ki] to refer to values of field k on index
i in data table A.

Algorithm 1: MPC algorithm for MCCS operation
Input: DT , Θ, GetPred
Output: {Ot}t∈T

1 Initialize L: an empty date table;
2 for t in T do
3 for i in L do
4 if DT [t

d
i ] = t then remove i from L;

5 for i in DT do
6 if DT [t

a
i ] = t & it stays then add DT [i] into L;

7 Initialize Vt: an empty data table;
8 for i in L do
9 Vt[ta

i]← 0; Vt[td
i ]← max{1,L[t̂d

i ]− t};
10 Vt[Einit

i ]← L[ecurr
i ]; Vt[Etarg

i ]← L[Etarg
i ];

11 Vt[ωi]←∞; Vt[P i]← L[P i]; Vt[Xc
0]← L[xc

i]

12 V̂t ← GetPred(t;DT ′);
13 Ṽt ← merge Vt, V̂t;
14 Õt = (Ot, Ôt)← SolveOp(Ṽt; Θ);
15 for i in Ot do
16 Execute Ot[pi,0];
17 L[ecurr

i ]← Ot[ei,1];

Nomenclature

• DT : Charging demands (PEV information) over the opera-
tion/simulation horizon T - indexed on PEVs’ index i, with
keys [ta, t̂d, td, Edem, ω, P ].

• L: A log keeping onsite PEV information - indexed on PEVs’
index i, with keys [ta, t̂d, E init, E targ, P , xc, ecurr], where:

– ecurr
i : Current charge of PEV i.

– xc
i: Charger type (FC or RC) PEV i is assigned to (NA for

new arrival PEVs).
• Θ: All the related parameters required in the operation model.
• SolveOp: Optimization solver for the operation model.
• GetPred: Predictor generating future charging instances.
• Vt: Collection of onsite PEV information at time t for operation

model SolveOp, including all parameters related to PEV.
Similarly:

– V̂t: information of predicted sessions
– Ṽt: concatenate Vt and V̂t

• Õt: Optimized operations solved by SolveOp. Decompose into
Ot and Ôt, where Ot are operations on onsite PEVs.

Remarks
• row 6 (“it stays”): When a PEV arrives, a separate simulator

will simulate if it will stay or leave directly. Details is described
in Appx. C.

• row 10: We allow “planned short in charge” (p̃i,t), how-
ever, ecurr

i does not track p̃i,t. To ensure the operation
problem is always feasible, we adjust Vt[E

targ
i ] to be

min {L[E targ
i ],L[ecurr

i ] + (L[t̂d
i ]− t)P iη∆t}.

• row 11: Penalty term on unsatisfied charge should always based
on the original demand. To fix this, we include another two terms
to the optimization problem: Vt[Ẽ

init
i ] = DT [E init

i ],Vt[Ẽ
targ
i ] =

DT [E targ
i ] (not necessarily the same as Vt[E

init
i ],Vt[E

targ
i ]).

• For demand charge, we include a parameter pdc to track the
maximum aggregate power observed in current billing cycle,
and add pdc ≥ pdc in constraint (24).

• Strategies to accelerate the optimization: (1) No need to consider
PEVs which come later than all onsite PEVs have departed.
(2) Introduce ”varying intervals” to reduce decision variables.
Instead of 15-min intervals for 96 steps, we consider 15-min
intervals for the first 8 steps, 1-hr intervals for the next 4 steps,
and 2-hr intervals for the last 9 steps (21 steps in total.)

APPENDIX C
STOCHASTICITY SIMULATION

We integrate three sources of uncertainties in the simulator
to validate the robustness of our model in Sec. V-E.

a) Future charging demand: The optimizer does not know
exact information on future sessions, which is used for solving
the operation problem. We test the model with a naive forecast
model, which has high forecast error. Namely, we extract two
typical profiles from all historical sessions (randomly sampled
from the number of daily average sessions), one for weekdays
and one for weekends. Next, at every time step, the forecaster
simply uses these averaged profiles for the future demand.

b) Heterogeneous and stochastic behavioral model: In
the “ω = 1 case”, the actual waiting tolerance factor ωi of each
driver is sampled from a normal distribution N (1, 0.22), but
the optimizer always forecasts future drivers with ω = 1. Given
ωi, we can calculate the number of vacancies in the RC queue
by (20) and (22). In the optimization model, the choice is
deterministic: suppose the number of vacancies is v, the driver
stays if v > 0 and leaves otherwise. While in the simulator,
a sigmoid-like probabilistic model is used: the probability of
staying is (1+a exp{−bv})−1, where we use a = 2 and b = 2,
so P (stay) = 0.79, 0.33, 0.06 when v = 1, 0,−1 respectively.
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c) Earlier/later departures: We consider the disturbance
that PEVs may depart earlier or later than their registered
departure time. Early departure may create an unsatisfied
charging experience, and late departure may cause overstay if
being assigned to FCs. To simulate this uncertainty, we make
the actual departure time a random variable N (t̂d, σ

2) where
t̂d is the registered departure time of a session, and σ is set as
15 minutes (and the actual duration is clipped to be 15 minutes
if it is even shorter).
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