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ABSTRACT

The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted
somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at
angular scales that had never before been measured to cosmic-variance level precision. We investigate these shifts to determine whether they
are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized
intergalactic medium τ, the baryon density ωb, the matter density ωm, the angular size of the sound horizon θ∗, the spectral index of the primordial
power spectrum, ns, and Ase−2τ (where As is the amplitude of the primordial power spectrum), we examine the change in best-fit values between
a WMAP-like large angular-scale data set (with multipole moment ` < 800 in the Planck temperature power spectrum) and an all angular-scale
data set (` < 2500 Planck temperature power spectrum), each with a prior on τ of 0.07 ± 0.02. We find that the shifts, in units of the 1σ expected
dispersion for each parameter, are {∆τ,∆Ase−2τ,∆ns,∆ωm,∆ωb,∆θ∗} = {−1.7,−2.2, 1.2,−2.0, 1.1, 0.9}, with a χ2 value of 8.0. We find that this χ2

value is exceeded in 15 % of our simulated data sets, and that a parameter deviates by more than 2.2σ in 9 % of simulated data sets, meaning that
the shifts are not unusually large. Comparing ` < 800 instead to ` > 800, or splitting at a different multipole, yields similar results. We examine the
` < 800 model residuals in the ` > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a
broad range of angular scales. Although they partly appear like the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that
arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is
τ, which, at fixed Ase−2τ, affects the ` > 800 temperature power spectrum solely through the associated change in As and the impact of that on the
lensing potential power spectrum. We also ask, “what is it about the power spectrum at ` < 800 that leads to somewhat different best-fit parameters
than come from the full ` range?” We find that if we discard the data at ` < 30, where there is a roughly 2σ downward fluctuation in power relative
to the model that best fits the full ` range, the ` < 800 best-fit parameters shift significantly toward the ` < 2500 best-fit parameters. In contrast,
including ` < 30, this previously noted “low-` deficit” drives ns up and impacts parameters correlated with ns, such as ωm and H0. As expected, the
` < 30 data have a much greater impact on the ` < 800 best fit than on the ` < 2500 best fit. So although the shifts are not very significant, we find
that they can be understood through the combined effects of an oscillatory-like set of high-` residuals and the deficit in low-` power, excursions
consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT
data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope,
again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally
consistent picture of the ΛCDM model.

Key words. Cosmology: observations – Cosmology: theory – cosmic background radiation – cosmological parameters
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1. Introduction

Probably the most important high-level result from the Planck
satellite1 (Planck Collaboration I 2016) is the good agreement
of the statistical properties of the cosmic microwave background
anisotropies (CMB) with the predictions of the 6-parameter
standard ΛCDM cosmological model (Planck Collaboration XV
2014; Planck Collaboration XVI 2014; Planck Collaboration XI
2016; Planck Collaboration XIII 2016). This agreement is quite
remarkable, given the very significant increase in precision of
the Planck measurements over those of prior experiments. The
continuing success of the ΛCDM model has deepened the moti-
vation for attempts to understand why the Universe is so well-
described as having emerged from Gaussian adiabatic initial
conditions with a particular mix of baryons, cold dark matter
(CDM), and a cosmological constant (Λ).

Since the main message from Planck, and indeed from the
Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al.
2013) before it, has been the continued success of the 6-
parameter ΛCDM model, attention naturally turns to precise de-
tails of the values of the best-fit parameters of the model. Many
cosmologists have focused on the parameter shifts with respect
to the best-fit values preferred by pre-Planck data. Compared
to the WMAP data, for example, Planck data prefer a some-
what slower expansion rate, higher dark matter density, and
higher matter power spectrum amplitude, as discussed in several
Planck Collaboration papers (Planck Collaboration XV 2014;
Planck Collaboration XVI 2014; Planck Collaboration XI 2016;
Planck Collaboration XIII 2016), as well as in Addison et al.
(2016). These shifts in parameters have increased the degree
of tension between CMB-derived values and those determined
from some other astrophysical data sets, and have thereby mo-
tivated discussion of extensions to the standard cosmological
model (e.g., Verde et al. 2013; Marra et al. 2013; Efstathiou
2014; Wyman et al. 2014; MacCrann et al. 2015; Seehars et al.
2015; Hildebrandt et al. 2016). However, none of these exten-
sions are strongly supported by the Planck data themselves (e.g.,
see discussion in Planck Collaboration XIII 2016).

Despite the interest that the shifts in best-fit parameters has
generated, there has not yet been an identification of the particu-
lar aspects of the Planck data, and their differences with WMAP
data, that give rise to the shifts. The main goal of this paper is
to identify the aspects of the data that lead to the shifts, and
to understand the physics that drives ΛCDM parameters to re-
spond to these differences in the way they do. We choose to pur-
sue this goal with analysis that is entirely internal to the Planck
data. In carrying out this Planck-based analysis, we still shed
light on the WMAP-to-Planck parameter shifts, because when
we restrict ourselves to modes that WMAP measures at high
signal-to-noise ratio, the WMAP and Planck temperature maps
agree well (e.g., Kovács et al. 2013; Planck Collaboration XXXI
2014). The qualitatively new attribute of the Planck data that
leads to the parameter shifts is the high-precision measurement

∗Corresponding author: Silvia Galli, gallis@iap.fr
†Corresponding author: Marius Millea, millea@iap.fr
1Planck (http://www.esa.int/Planck) is a project of the

European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors provided
through a collaboration between ESA and a scientific consortium led
and funded by Denmark, and additional contributions from NASA
(USA).

of the temperature power spectrum in the 600<∼ ` <∼ 2000 range.2
Restricting our analysis to be internal to Planck has the advan-
tage of simplicity, without altering the main conclusions.

We also investigate the consistency of the differences in
parameters inferred from different multipole ranges with ex-
pectations, given the ΛCDM model and our understanding of
the sources of error. The consistency of such parameter shifts
has been previously studied in Planck Collaboration XI (2016),
Couchot et al. (2015), and Addison et al. (2016). In studying the
consistency of parameters inferred from ` < 1000 with those in-
ferred from ` > 1000 Addison et al. (2016) claim to find signifi-
cant evidence for internal inconsistencies in the Planck data. Our
analysis improves upon theirs in several ways, mainly through
our use of simulations to account for covariances between the
pair of data sets being compared, as well as the “look elsewhere
effect,” and the departure of the true distribution of the shift
statistics away from a χ2 distribution.

Much has already been demonstrated about the robustness
of the Planck parameter results to data processing, data se-
lection, foreground removal, and instrument modelling choices
Planck Collaboration XI (2016). We will not revisit all of that
here. However, having identified the power spectrum features
that are causing the shifts in cosmological parameters, we show
that these features are all present in multiple individual fre-
quency channels, as one would expect from the previous studies.
The features in the data therefore appear to be cosmological in
origin.

The Planck polarization maps, and the T E and EE polar-
ization power spectra determinations they enable, are also new
aspects of the Planck data. These new data are in agreement with
the TT results and point to similar shifts away from the WMAP
parameters (Planck Collaboration XIII 2016), although with less
statistical weight. In order to focus on the primary driver of the
parameter shifts, namely the temperature power spectrum, we
ignore polarization data except for the constraint on the value of
the optical depth τ coming from polarization at the largest angu-
lar scales, which in practice we fold in with a prior on τ.

Our primary analysis is of the shift in best-fit cosmologi-
cal parameters as determined from: (1) a prior on the value of
τ (as a proxy for low-` polarization data) and PlanckTT3 data
restricted to ` < 800;4 and (2) the same τ prior and the full `-
range (` < 2500) of PlanckTT data. Taking the former data set as
a proxy for WMAP, these are the parameter shifts that have been
of great interest to the community. There is of course a degree of
arbitrariness in the particular choice of `= 800 for defining the
low-` data set. One might argue for a lower `, based on the fact
that the WMAP temperature maps reach a signal-to-noise ratio
of unity by `' 600, and thus above 600 the power spectrum er-
ror bars are at least twice as large as the Planck ones. However,
we explicitly select `= 800 for our primary analysis because it
splits the weight on ΛCDM parameters coming from Planck so

2Although the South Pole Telescope and Atacama Cosmology
Telescope had already measured the CMB TT power spectrum over this
multipole range (e.g., Story et al. 2013; Das et al. 2014), Planck’s dra-
matically increased sky coverage leads to a much more precise power
spectrum determination.

3In common with other Planck papers, we use PlanckTT to refer
to the full Planck temperature-only CTT

` likelihood. We often omit the
“TT” when also specifying a multipole range, e.g. by Planck ` < 800 we
mean PlanckTT ` < 800.

4To avoid unnecessary detail, we write `max of 800, 1000, and 2500,
even though the true `max values are 796, 996, and 2509 (since this is
where the nearest data bins happen to fall). For brevity, the implied `min
is always 2 unless otherwise stated, e.g. ` < 800 means 2≤ ` < 800.

http://www.esa.int/Planck
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that half is from ` < 800 and half is from ` > 800,5 Addressing
the parameter shifts from ` < 800 versus ` > 800 is a related and
interesting issue, and while our main focus is on the compari-
son of the full-` results to those from ` < 800, we compute and
show the low-` versus high-` results as well. Additionally, in
Appendix A we perform an exhaustive search over many differ-
ent choices for the multipole at which to split the data.

In addition to the high-` Planck temperature data, in-
ferences of the reionization optical depth obtained from
the low-` Planck polarization data also have an impor-
tant impact on the determination of the other cosmolog-
ical parameters. The parameter shifts that have been dis-
cussed in the literature to date have generally assumed
a constraint on τ coming from Planck LFI polarization
data (Planck Collaboration XI 2016; Planck Collaboration XIII
2016). During the writing of this paper, new and tighter
constraints on τ were released using improved Planck
HFI polarization data (Planck Collaboration Int. XLVI 2016;
Planck Collaboration Int. XLVII 2016). These are consistent
with the previous ones, shrinking the error by about a factor of
2 and moving the best fit to slightly lower values of τ. To make
our work more easily comparable to previous discussions, and
because the impact of this updated constraint is not very large,
we have chosen to write the main body of this paper assuming
the old τ prior. This also allows us to more cleanly isolate and
discuss separately the impact of the new prior, which we do in a
later section of this paper.

Our focus here is on the results from Planck, and so an
in-depth study comparing the Planck results with those from
other cosmological data sets is beyond our scope. Nevertheless,
there do exist claims of internal inconsistencies in CMB data
(Addison et al. 2016; Riess et al. 2016), with the parameter
shifts we discuss here playing an important role, since they serve
to drive the PlanckTT best fits away from those of the two other
CMB data sets, namely the Planck measurements of the φφ lens-
ing potential power spectrum (Planck Collaboration XVII 2014;
Planck Collaboration XV 2016) and the South Pole Telescope
(SPT) measurement of the TT damping tail (Story et al. 2013).
Thus, we also briefly examine whether there is any evidence of
discrepancies that are not just internal to the PlanckTT data, but
also when comparing with these other two probes.

The features we identify that are driving the changes in pa-
rameters are approximately oscillatory in nature, a part of them
with a frequency and phasing such that they could be caused by
a smoothing of the power spectrum, of the sort that is generated
by gravitational lensing. We thus investigate the role of lensing
in the parameter shifts. The impact of lensing in PlanckTT pa-
rameter estimates has previously been investigated via use of the
parameter “AL” that artificially scales the lensing power spec-
trum (as discussed on p. 28 of Planck Collaboration XVI 2014
and p. 24 of Planck Collaboration XIII 2016). Here we introduce
a new method that more directly elucidates the impact of lensing
on cosmological parameter determination.

Given that we regard the ` < 2500 Planck data as providing
a better determination of the cosmological parameters than the
` < 800 Planck data, it is natural to turn our primary question
around and ask: what is it about the ` < 800 data that makes the
inferred parameter values differ from the full `-range parame-
ters? Addressing this question, we find that the deficit in low-

5More precisely, the product of eigenvalues of the two Fisher in-
formation matrices (see e.g., Schervish 1996, for a definition)—one for
` < 800 and the other for ` > 800—is approximately equal at this multi-
pole split.

multipole power at ` <∼ 30, the “low-` deficit,”6 plays a signifi-
cant role in driving the ` < 800 parameters away from the results
coming from the full `-range.

The paper is organized as follows. Section 2 introduces the
shifts seen in parameters between using Planck ` < 800 data and
full-` data. Section 3 describes the extent to which the observed
shifts are consistent with expectations; we make some simpli-
fying assumptions in our analysis and justify their use here.
Section 4 represents a pedagogical summary of the physical ef-
fects underlying the various parameter shifts. We then turn to a
more detailed characterization of the parameter shifts and their
origin. The most elementary, unornamented description of the
shifts is presented in Sect. 5.1, followed by a discussion of the
effects of gravitational lensing in Sect. 5.2 and the role of the
low-` deficit in Sect. 5.3. In Sect. 5.4 we consider whether there
might be systematic effects significantly impacting the parame-
ter shifts and in Sect. 5.5 we add a discussion of the effect of
changing the τ prior. Finally, we comment on some differences
with respect to other CMB experiments in Sect. 6 and conclude
in Sect. 7.

Throughout we work within the context of the 6-parameter,
vacuum-dominated, cold dark matter (ΛCDM) model. This
model is based upon a spatially flat, expanding Universe whose
dynamics are governed by general relativity and dominated by
cold dark matter and a cosmological constant (Λ). We shall
assume that the primordial fluctuations have Gaussian statis-
tics, with a power-law power spectrum of adiabatic fluctuations.
Within that framework the usual set of cosmological parameters
used in CMB studies is: ωb ≡Ωbh2, the physical baryon density;
ωc ≡Ωch2, the physical density of cold dark matter (or ωm for
baryons plus cold dark matter plus neutrinos); θ∗, the ratio of
sound horizon to angular diameter distance to the last-scattering
surface; As, the amplitude of the (scalar) initial power spectrum;
ns, the power-law slope of those initial perturbations; and τ,
the optical depth to Thomson scattering through the reionized
intergalactic medium. Here the Hubble constant is expressed
as H0 = 100 h km s−1 Mpc−1. In more detail, we follow the pre-
cise definitions used in Planck Collaboration XVI (2014) and
Planck Collaboration XIII (2016).

Parameter constraints for our simulations and comparison
to data use the publicly available CosmoSlik package, and the
full simulation pipeline code will be released publicly pend-
ing acceptance of this work. Other parameter constraints are
determined using cosmomc (Lewis & Bridle 2002). Theoretical
power spectra are calculated with CAMB (Lewis et al. 2000).

2. Parameters from low-` versus full-` Planck data

Fig. 1 compares the constraints on six parameters of the base-
ΛCDM model from the PlanckTT+τprior data for ` < 2500 with
those using only the data at ` < 800. We have imposed a specific
prior on the optical depth, τ = 0.07 ± 0.02, as a proxy for the
Planck LFI low-` polarization data, in order to make it easier to
compare the constraints, and to restrict our investigation to the
TT power spectrum only. As mentioned before, we will discuss
the impact of the newer HFI polarization results in Sect. 5.5.

We see that the constraints from the full data set are tighter
than those from using only ` < 800, and the best-fit values are

6This is the same feature that has sometimes previously been
called the “low-` anomaly.” We choose to use the name “low-` deficit”
throughout this work to avoid ambiguity with other large scale “anoma-
lies” and because it is more appropriate for a feature of only moderate
significance. See Sect. 5.3 for further discussion.
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Fig. 1. Cosmological parameter constraints from
PlanckTT+τprior for the full multipole range (orange) and
for ` < 800 (blue)—see the text for the definitions of the
parameters. Note that the constraints are generally in good
agreement, with the full Planck data providing tighter limits on
the parameters; however, the best-fit values certainly do shift.
It is these shifts that we seek to explain in this paper. A prior
τ = 0.07 ± 0.02 has been used here as a proxy for the effect
of the low-` polarization data (with the impact of a different
prior discussed later). As a comparison, we also show results for
WMAP TT data combined with the same prior on τ (grey).

slightly shifted. It is these shifts that we seek to explain in the
later sections. Fig. 1 also shows constraints from the WMAP
TT spectrum. As already mentioned, these constraints are qual-
itatively very similar to those from Planck ` < 800, although
not exactly the same, since WMAP reaches the cosmic vari-
ance limit closer to `= 600. Nevertheless, as was already shown
by Kovács et al. (2013), the CMB maps themselves agree very
well. The small differences in parameter inferences (the largest
of which is a roughly 1σ difference in θ∗), are presumably due
to small differences in sky coverage and WMAP instrumental
noise. We see that the dominant source of parameter shifts be-
tween Planck and WMAP is the new information contained in
the ` > 800 modes, and that by discussing parameter shifts in-
ternal to Planck we are also directly addressing the differences
between WMAP and Planck.

Fig. 1 shows the shifts for some additional derived param-
eters, as well as the basic 6-parameter set. In particular, one
can choose to use the conventional cosmological parameter H0,
rather than the CMB parameter θ∗, as part of a 6-parameter set.
Of course neither choice is unique, and we could have also fo-
cused on other derived quantities in addition to six that span
the space; for the amplitude, we have presented results for the
usual choice As, but added panels for the alternative choices
Ase−2τ (which will be important later in this paper) and σ8
(the rms density variation in spheres of size 8 h−1 Mpc in lin-
ear theory at z = 0). The shifts shown in Fig. 1 are fairly

representative of the sorts of shifts that have already been dis-
cussed in previous papers (e.g., Planck Collaboration XVI 2014;
Planck Collaboration XI 2016; Addison et al. 2016), despite dif-
ferent choices of τ prior and ` ranges.

To simplify the analysis as much as possible, throughout
most of this paper we will choose our parametrization of the
six degrees of freedom in the ΛCDM model so that we reduce
the correlations between parameters, and also so that our choice
maps onto the physically meaningful effects that will be de-
scribed in Sect. 4. While a choice of six parameters satisfying
both criteria is not possible, we have settled on θ∗, ωm, ωb, ns,
As e−2τ, and τ. Most of these choices are standard, but two are
not the same as those focused on in most CMB papers: we have
chosen ωm instead of ωc, because the former governs the size
of the horizon at the epoch of matter-radiation equality, which
controls both the potential-envelope effect and the amplitude of
gravitational lensing (see Sect. 4); and we have chosen to use
As e−2τ in place of As, because the former is much more pre-
cisely determined and much less correlated with τ. Physically,
this arises because at angular scales smaller than those that sub-
tend the horizon at the epoch of reionization (`' 10) the primary
impact of τ is to suppress power by e−2τ (again, see Sect. 4).

As a consequence of this last fact, the temperature power
spectrum places a much tighter constraint on the combination
As e−2τ than it does on τ or As. Due to the strong correlation be-
tween these two parameters, any extra information on one will
then also translate into a constraint on the other. For this rea-
son, a change in the prior we use on τ will be mirrored by a
change in As, given a fixed As e−2τ combination. Conversely, the
extra information one obtains on As from the smoothing of the
small-scale power spectrum due to gravitational lensing will be
mirrored by a change in the recovered value of τ (and this will
be important, as we will show later). As a result, since we will
mainly focus on the shifts of As e−2τ and τ, we will often inter-
pret changes in the value of τ as a proxy for changes in As (at
fixed As e−2τ), and thus for the level of lensing observed in the
data (see Sect. 5.2).

3. Comparison of parameter shifts with
expectations

In light of the shifts in parameters described in the previous sec-
tion, we would of course like to know whether they are large
enough to indicate a failure of the ΛCDM model or the presence
of systematic errors in the data, or if they can be explained sim-
ply as an expected statistical fluctuation arising from instrumen-
tal noise and sample variance. The aim of this section is to give
a precise determination based on simulations, in particular one
that avoids several approximations used by previous analyses.

One of the first attempts to quantify the shifts was per-
formed in appendix A of Planck Collaboration XVI (2014),
and was based on a set of Gaussian simulations. More re-
cent studies using the Planck 2015 data have generally com-
pared posteriors of disjoint sets of Planck multipole ranges (e.g.,
Planck Collaboration XI 2016; Addison et al. 2016). There, the
χ2 is computed,

χ2 = ( p̄(1) − p̄(2))Σ−1( p̄(1) − p̄(2)), (1)

with Σ = C(1) + C(2), where C(α) are the parameter posterior co-
variances of the two data sets and p̄α are the vectors of parameter
means. A probability to exceed χ2 is then calculated assuming a
χ2 distribution with degrees of freedom equal to the number of

4
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Fig. 2. Differences in best-fit parameters between ` < 800 and ` < 2500 as compared to expectations from a suite of simulations. The
cloud of blue points and the histograms are the distribution from simulations (discussed in Sect. 3), while the orange points and lines
are the shifts found in the data. Although the shifts may appear to be generally large for this particular choice of parameter set, it is
important to realise that this is not an orthogonal basis, and that there are strong correlations among parameters; when this is taken
into account, the overall significance of these shifts is 1.4σ, and the significance of the biggest outlier (Ase−2τ), after accounting
for look-elsewhere effects, is 1.7σ. Fig. 3 shows these same shifts in a more orthogonal basis that makes judging these significance
levels easier by eye. Choosing a different multipole at which to split the data, or comparing low `s versus high `s alone, does not
change this qualitative level of agreement. We note that the parameter mode discussed in Sect. 3.2 is not projected out here, since it
would correspond to moving any data point by less than the width of the point itself.

parameters. This number is usually five, since τ is ignored be-
cause prior information on τ went into both sets of estimated
parameters.

There are assumptions, both explicit and implicit in previ-
ous analyses, which we avoid with our procedure. We take into
account the covariance in the parameter errors from one data
set to the next, and do not assume that the parameter errors are
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Fig. 3. Visually it might seem that the data point in the 6-
parameter space of Fig. 2 is a much worse outlier than only
1.4σ. One way to see that it really is only 1.4σ is to transform
to another parameter space, as shown in this figure. Linear trans-
formations leave the χ2 unaffected, and while ours here are not
exactly linear, the shifts are small enough that they can be ap-
proximated as linear and the χ2 is largely unchanged (in fact it
is slightly worse, 1.6σ). We have chosen these parameters so
the shifts are more decorrelated while still using physical quan-
tities. The parameter Ãs is the amplitude at a pivot of scale of
k = 0.035 Mpc−1, chosen since there is no shift in Ãse−2τ. Tick
marks are omitted here for clarity.

normally distributed. Additionally our procedure allows us to in-
clude τ in the set of compared parameters. As we will see, our
more exact procedure shows that consistency is somewhat better
than would have appeared to be the case otherwise.

3.1. Description of Simulations

To calculate the expected shifts, we generate a suite of simu-
lated Planck data and, for each data set, compute a likelihood
and numerically maximize it to obtain the best-fit parameters,
subject to various multipole range cuts. The difference in best-
fit parameters between different cuts builds up a distribution of
the expected shifts, which can be compared to the shifts seen in
real data. The goal of these simulations is to be as consistent as
possible with the approximations made in the real analysis (as
opposed to, for example, the suite of end-to-end simulations de-
scribed in Planck Collaboration XI 2016, which aim to simulate
systematics not directly accounted for by the real likelihood). In
this sense, our simulations are a self-consistency check of Planck
data and likelihood products. We will now describe these simu-
lations in more detail.
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Fig. 4. Distribution of two different statistics computed on the
simulations (blue histogram) and on the data (orange line). The
first is the χ2 statistic, where we compute χ2 for the change in
parameters between ` < 800 and ` < 2500, with respect to the co-
variance of the expected shifts. The second is a “biggest out-
lier” statistic, where we search for the parameter with the largest
change, in units of the standard deviation of the simulated shifts.
We give the probability to exceed (PTE) on each panel. For both
statistics, we find that the observed shifts are largely consistent
with expectations from simulations.

For each simulation, we draw a realization of the
data independently at ` < 30 and at ` > 30.7 At ` < 30 we
draw realizations directly at the map level, whereas for
` > 30 we use the plik lite CMB covariance (described in
Planck Collaboration XI 2016) to draw power spectrum re-
alizations. For both ` < 30 and ` > 30, each realization is
drawn assuming a fiducial model. This model is the best-
fit ΛCDM model for the PlanckTT data, with τ fixed to
0.07, and the Planck calibration parameter, yP, fixed to
1. More explicitly, we use {Ase−2τ, ns, ωm, ωb, θ∗, τ, yP} =
{1.886, 0.959, 0.1438, 0.02206, 1.04062, 0.07, 1}. The reason for
fixing τ and the calibration in obtaining the fiducial model is
that for the analysis of each simulation, priors on these two pa-
rameters are applied, centred on 0.07 and 1, respectively; if our
fiducial model had different values, the distribution of best-fits
across simulations for those and all correlated parameters would
be biased from their fiducial values, and one would need to re-
centre the distributions. Our procedure is more straightforward
and clearer to interpret. In any case, our analysis is not very sen-
sitive to the exact fiducial values and we have checked that for a

7We thus ignore `-to-` correlations across this multipole, consistent
with what is assumed in the real likelihood (Planck Collaboration XI
2016).
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fiducial model with τ= 0.055 the significance levels of the shifts
given in the next section change by < 0.1σ.8

For ` > 30, we draw a random Gaussian sample from the
plik lite covariance and add it to the fiducial model. This,
along with the covariance itself, forms the simulated likelihood.
The plik lite covariance includes in it uncertainties due to
foregrounds, beams, and inter-frequency calibration, hence these
are naturally included in our analysis. We note that the level of
uncertainty from these sources is determined from the Planck
` < 2500 data themselves (extracted via a Gibbs-sampling pro-
cedure, assuming only the frequency dependence of the CMB).
Thus, we do not expect exactly the same parameters from plik
and plik lite when restricted to an `max below 2500 be-
cause plik lite includes some information on foregrounds
from `max < ` < 2500.9 For our purposes, this is actually a ben-
efit of using plik lite, since it lets us put well-motivated
priors on the foregrounds for any value of `max in a way that
does not double count any data. Regardless of that, the differ-
ence between plik and plik lite is not very large. For ex-
ample, the largest of any parameter difference at `max = 1000 is
0.15σ (in the σ of that parameter for `max = 1000), growing to
0.35σ at `max = 1500, and of course back to effectively zero by
`max = 2500. Regardless, since our simulations and analyses of
real data are performed with the same likelihood, our approach
is fully self-consistent.

At ` < 30, so as to simulate the correct non-Gaussian shape
of the C` posteriors, we draw a map-level realization of the
fiducial CMB power spectrum. In doing so, we ignore un-
certainties due to foregrounds, inter-frequency calibration, and
noise; we will show below that this is a sufficient approxima-
tion. For the likelihood, rather than compute the Commander
(Planck Collaboration IX 2016; Planck Collaboration X 2016)
likelihood for each simulation (which in practice would be com-
putationally prohibitive), we instead use the following simple but
accurate analytic approximation. With no masking, the probabil-
ity distribution of (2` + 1)Ĉ`/C` is known to be exactly a χ2 dis-
tribution with 2`+ 1 degrees of freedom (here Ĉ` is the observed
spectrum and C` is the theoretical spectrum). Our approximation
posits that, for our masked sky, f`(2` + 1)Ĉ`/C` is drawn from
χ2[ f`(2`+ 1)], with f` an `-dependent coefficient determined for
our particular mask via simulations, and with Ĉ` being the mask-
deconvolved power spectrum. Approximations very similar to
this have been studied previously by Benabed et al. (2009) and
Hamimeche & Lewis (2008). Unlike some of those works, our
approximation here does not aim to be a general purpose low-`
likelihood, rather just to work for our specific case of assuming
the ΛCDM model and when combined with data up to `' 800 or
higher. While it is not a priori obvious that it is sufficient in these
cases, we can perform the following test. We run parameter esti-
mation on the real data, replacing the full Commander likelihood
with our approximate likelihood using Ĉ` and f` as derived from
the Commandermap and mask. Note that this also tests the effect
of fixing the foregrounds and inter-frequency calibrations, since
we are using just the best-fit Commander map, and it also tests
the effect of ignoring noise uncertainties, since our likelihood
approximation does not include them. We find that, for both an

8In Sect. 5.5 we discuss changing the prior on τ, rather than chang-
ing its fiducial value, which does affect the significance levels some-
what.

9Of course, the two likelihoods are identical when `max = 2500, as
demonstrated in Planck Collaboration XI (2016).

` < 800 and an ` < 2500 run,10 no parameter deviates from the
real results by more than 0.05σ, with several parameters chang-
ing much less than that; hence we find that our approximation is
good enough for our purposes. Additionally, in Appendix B we
describe a complementary test that scans over many realizations
of the CMB sky as well, also finding the approximation to be
sufficient.

The likelihood from each simulation is combined with a
prior on τ of 0.07± 0.02 (with other choices of priors discussed
in Sect. 5.5). It is worth emphasizing that the exact same prior
is imposed on every simulation, and hence implicitly we are not
drawing realizations of different polarization data to go along
with the realizations of temperature data that we have discussed
above. This is a valid choice because the polarization data are
close to noise dominated and therefore largely uncorrelated with
the temperature data. We have chosen to do this because our aim
is to examine parameter shifts between different subsets of tem-
perature data, rather than between temperature versus polariza-
tion, and thus we regard the polarization data as a fixed exter-
nal prior. Had we sampled the polarization data, the significance
levels of shifts would have been slightly smaller because the ex-
pected scatter on τ and correlated parameters would be slightly
larger. We have explicitly checked this fact by running a sub-
set of the simulations (ones for ` < 800 and ` < 2500) with the
mean of the τ prior randomly draw from its prior distribution for
each simulation, i.e., we have implicitly drawn realizations of
the polarization data. We find that the significance levels of the
different statistics discussed in the following section are reduced
by 0.1σ or less. Note that this same subset of simulations is de-
scribed further in Appendix B, where it is used as an additional
verification of our low-` approximation.

3.2. Results

With the simulated data and likelihoods in hand, we now nu-
merically maximize the likelihood for each of the realizations
to obtain best-fit parameters. The maximization procedure uses
“Powell’s method” from the SciPy package (Jones et al. 2001–
2016) and has been tested to be robust to a satisfactory level by
running it on the true data at all ` splits, beginning from several
different starting points, and ensuring convergence to the same
minimum. We find in all cases that convergence is sufficient to
ensure that none of the significance values given in this section
change by more than 0.1σ.

Using the computational power provided by the volunteers at
Cosmology@Home,11 whose computers ran a large part of these
computations, we have been able to run simulations not just for
` < 800 and ` < 2500, but for roughly 100 different subsets of
data, with around 5000 realizations for each. We discuss some
of these results in this section, with a more comprehensive set of
tests given in Appendix A.

Figure 2 shows the resulting distribution of parameter shifts
expected between the ` < 800 and ` < 2500 cases, compared to
the shift seen in the real data. To quantify the overall consis-
tency, we pick a statistic, compute its value on the data as well
as on the simulations, then compute the probability to exceed
(PTE) the data value based on the distribution of simulations.
We then turn this into the equivalent number of σ, such that a
1-dimensional Gaussian has the same 2-tailed PTE. We use two
particular statistics:

10The low `s have more relative weight in the ` < 800 case, hence
that is the more stringent test.

11http://www.cosmologyathome.org
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– the χ2 statistic, computing χ2 = ∆pΣ−1 ∆p, where ∆p is the
vector of shifts in parameters between the two data sets and
Σ is the covariance of these shifts from the set of simulations;

– the max-param statistic, where we scan for max(|∆p/σp|),
i.e., the most deviant parameter from the set {θ∗, ωm, ωb,
Ase−2τ, ns, τ}, in terms of the expected shifts from the simu-
lations, σp.

There are of course an infinite number of statistics one could
compute, but these two are reasonable choices, which test agree-
ment across all parameters as well on individual outliers.

In the case of the χ2 statistic, and when one is comparing
two nested sets of data (by “nested” we mean that one data set
contains the other, i.e., ` < 800 is part of ` < 2500), there is an
added caveat. In cases like this, there is the potential for the exis-
tence of one or more directions in parameter space for which ex-
pected shifts are extremely small compared to the posterior con-
straint on the same mode. These correspond to parameter modes
where very little new information has been added, and hence one
should see almost no shift. It is thus possible that the χ2 statis-
tic is drastically altered by a change to the observed shifts that
is in fact insignificant at our level of interest. Such a mode can
be excited by any number of things, such as systematics, effects
of approximations, minimizer errors, etc., but at a very small
level. These modes can be enumerated by simultaneously diag-
onalizing the covariance of expected shifts and the covariance
of the posteriors, and ordering them by the ratio of eigenvalues.
For the case of comparing ` < 800 and ` < 2500, we find that the
worst offending mode corresponds to altering the observed shifts
in {H0, ωm, ωb, Ase−2τ, ns, τ} by {0.02, −0.01, 0.02, −0.003,
0.04, 0.01} in units of the 1σ posteriors from ` < 2500. This can
change the significance of the χ2 statistic by an amount that cor-
responds to 0.6σ, despite no cosmological parameter nor linear
combination of them having changed by more than a few per-
cent of each σ. To mitigate this effect and hence to make the χ2

statistic more meaningful for our desired goal of assessing con-
sistency, we quote significance levels after projecting out any
modes whose ratio of eigenvalues is greater than 10 (which in
our case is just the aforementioned mode). We emphasize that
removal of this mode is not meant to, nor does it, hide any prob-
lems; in fact, in some cases the χ2 becomes worse after removal.
The point is that without removing it we would be sensitive to
shifts in parameters at extremely small levels that we do not care
about. In any case, this mode removal is only necessary for the
case of the χ2 statistic and nested data sets, which is only a small
subset of the tests performed in this paper.

Results for several data splits are summarized in Table 1,
with the comparison of ` < 800 to ` < 2500 given in the first
row and shown more fully in Fig. 4. In this case, we find that
the parameter shifts are in fairly good agreement with expec-
tations from simulations, with significance levels of 1.4σ and
1.7σ from the two statistics, respectively. We also note that the
qualitative level of agreement is largely unchanged when con-
sidering ` < 800 versus ` > 800 or when splitting at `= 1000.

Of the other data splits shown in Table 1, the ` < 1000 versus
` > 1000 case may be of particular interest, since it is discussed
extensively in Addison et al. (2016). Although not the main fo-
cus in their paper, those authors find 1.8σ as the level of the
overall agreement by applying the equivalent of our Eq. (1) to
the shifts in five parameters, namely {θ∗, ωc, ωb, log As, ns}. This
is similar to our result, although higher by 0.2σ. There are three
main contributors to this difference. Firstly, although Addison
et al. drop τ in the comparison to try to mitigate the effect of
the prior on τ having induced correlations in the two data sets,

Table 1. Consistency of various data splits, as determined from
two statistics computed on data and simulations. Fig. 4 shows
the actual distribution from simulations for the first row in this
table. Entries marked with a dagger symbol have had a parameter
mode projected out, as discussed in Sect. 3.2.

Test

Data set 1 Data set 2 χ2 max-param

` < 800 . . . . . . . . ` < 2500 . . . . . . . 1.4σ† 1.7σ (Ase−2τ)
` < 800 . . . . . . . . ` > 800 . . . . . . . . 1.6σ 2.1σ (Ase−2τ)
` < 1000 . . . . . . . ` < 2500 . . . . . . . 1.8σ† 1.5σ (Ase−2τ)
` < 1000 . . . . . . . ` > 1000 . . . . . . . 1.6σ 1.6σ (ωm)

30< ` < 800 . . . . . ` > 30 . . . . . . . . . 1.2σ† 1.3σ (τ)
30< ` < 800 . . . . . ` > 800 . . . . . . . . 1.2σ 1.2σ (Ase−2τ)
30< ` < 1000 . . . . ` > 30 . . . . . . . . . 1.4σ† 1.5σ (τ)
30< ` < 1000 . . . . ` > 1000 . . . . . . . 1.2σ 0.7σ (ωm)

they keep log As as a parameter, which is highly correlated with
τ. This means that their comparison fails to remove the corre-
lations, nor does it take them into account. One could largely
remove the correlation by switching to Ase−2τ (which is much
less correlated with τ); this has the effect of reducing the sig-
nificance of the shifts by 0.3σ. Secondly, the Addison et al.
analysis puts no priors on the foreground parameters, which is
especially important for the ` > 1000 part. For example, fixing
the foregrounds to their best-fit levels from ` < 2500 reduces the
significance by an additional 0.2σ. Finally, our result uses six
parameters as opposed to five (since we are able to correctly ac-
count for the prior on τ); this increases the significance back up
by around 0.3σ.

There is an additional point that Addison et al. (2016) fail
to take into account when quoting significance levels—and the
same issue arises in some other published claims of param-
eter shifts that focus on a single parameter. This is that one
should not pick out the most extreme outlying parameter with-
out assessing how large the largest expected shift is among
the full set of parameters. In other words, one should account
for what are sometimes called “look elsewhere” effects (see
Planck Collaboration XVI 2016, for a discussion of this issue in
a different context). Our simulations allow us to do this easily.
For example, in the ` < 1000 versus ` > 1000 case, the biggest
change in any parameter is a 2.3σ shift in ωm; however, the sig-
nificance of finding a 2.3σ outlier when searching through six
parameters with our particular correlation structure is only 1.6σ,
which is the value we quote in Table 1.

To summarize this section, we do not find strong evidence of
inconsistency in the parameter shifts from ` < 800 to those from
` < 2500, when compared with expectations, nor from any of the
other data splits shown in Table 1. We also find that the results
of Addison et al. (2016) somewhat exaggerate the significance
of tension, for a number of reasons, as discussed above.

As a final note, we show in Table 2 the consistency of various
data splits as in Table 1, but using data and simulations that have
a prior of τ= 0.055± 0.010 instead of τ= 0.07± 0.02. In general
the agreement between different splits changes by between −0.1
and 0.3σ, thus slightly worse. A detailed discussion of these
results will be presented in Section 5.5.
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Fig. 5. Response of DTT
l (≡ `(` + 1)C`/2π) to 1σ increases in each of the parameters (calculated using CAMB, Lewis et al. 2000).

All changes are made with the other five parameters pictured here held fixed. The dashed orange line in each panel shows the
contribution from gravitational lensing alone. Note that the y-axis scale changes in some of the panels at `= 800.

Table 2. Same as Table. 1, but using data and simulations that
have a prior of τ= 0.055 ± 0.010 instead of τ= 0.07 ± 0.02. See
Sect. 5.5 for more discussion on the impact of this updated con-
straint on τ. Entries marked with a † have had a parameter mode
projected out, as discussed in Sect. 3.2.

Test

Data set 1 Data set 2 χ2 max-param

` < 800 . . . . . . . . ` < 2500 . . . . . . . 1.8σ† 2.1σ (Ase−2τ)
` < 800 . . . . . . . . ` > 800 . . . . . . . . 1.9σ 2.2σ (Ase−2τ)
` < 1000 . . . . . . . ` < 2500 . . . . . . . 1.9σ† 1.9σ (Ase−2τ)
` < 1000 . . . . . . . ` > 1000 . . . . . . . 1.9σ 1.5σ (ωm)

4. Physical explanation of the power spectrum
response to changing ΛCDM parameters

Having studied the question of the magnitude of the parame-
ter shifts relative to expectations, we now turn to an analysis of
why the best-fit model parameters change in the particular way
that they do. Understanding this requires reviewing exactly how
changes to ΛCDM parameters affect the CMB power spectrum,
so that these can be matched with the features in the data that
drive the changes. The material in this section is meant as back-
ground for the narrative that will come later, and readers may
want to skip it on a first reading; nevertheless, the information
collected here is not available in any single source elsewhere,
and will be important for understanding the relationship between
parameters and power spectrum features. The key information is
the response of the angular power spectrum to changes in pa-
rameters, shown in Fig. 5. In Sect. 5 we will close the loop on
how the physics embodied in the curves of Fig. 5 interacts with
the residual features in the power spectrum to give the parameter
shifts we see in Fig. 1.

The structure in the CMB anisotropy spectrum arises from
gravity-driven oscillations in the baryon-photon plasma before

recombination (e.g., Peebles & Yu 1970; Zel’dovich et al. 1972).
Fortunately our understanding of the CMB spectrum has be-
come highly developed, so we are able to understand the physi-
cal causes (see Fig. 5) of the shifts already discussed as arising
from the interaction of gravitational lensing, the early integrated
Sachs-Wolfe (ISW, Sachs & Wolfe 1967) effect, the potential en-
velope, and diffusion damping. In this section we review the
physics behind the ∂CTT

` /∂pi curves and clarify some interest-
ing interactions by “turning off” various effects. The reader is
referred to Peacock (1999), Liddle & Lyth (2000), and Dodelson
(2003) for basic textbook treatments of the physics of CMB
anisotropies.

4.1. The matter density: ωm

We begin by considering how changes in the matter density af-
fect the power spectrum, leading to the rising behaviour seen in
the top left panel of Fig. 5. Note that here we have plotted the
linear response in the quantity D` ≡ `(` + 1)C`/2π rather than
C`.

Since much of the relevant action occurs near horizon cross-
ing, a description of the physics is best accomplished by picking
a gauge; we choose the Newtonian gauge here and focus primar-
ily on the potentials Φ and Ψ and the density. Within this picture,
the impact of the matter density comes from the “early integrated
Sachs-Wolfe effect” (i.e., the evolution of the potentials immedi-
ately after last scattering) and from the “potential envelope”. The
effect of main interest to us is the latter—the enhancement of
power above `' 100 arising due to the near-resonant driving of
the acoustic oscillations by decaying potentials as they cross the
horizon near, or earlier than, the epoch of matter-radiation equal-
ity (Hu & White 1996a, 1997; Hu et al. 1996). Overdense modes
that enter the horizon during radiation domination (ρm/ρrad � 1)
cannot collapse rapidly enough into their potential wells (due
to the large pressure of the radiation) to prevent the potentials
from decaying due to the expansion of the Universe. The time
it takes the potential to decay is closely related to the time at
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which the photons reach their maximal compression and hence
maximal energy density perturbation. The near-resonant driving
of the oscillator, and the fact that the photons do not lose (as
much) energy climbing out of the potential well (as they gained
falling in), leads to a large increase in observed amplitude of the
temperature perturbation over its initial value. For modes that en-
ter the horizon later, the matter density perturbations contribute
more to the potentials, which are (partially) stabilized against
decay by the contribution of the CDM. This reduces the ampli-
tude enhancement. The net result is an `-dependent boost to the
power spectrum amplitude, transitioning from unity at low ` to a
factor of over 10 in the high-` limit. This boost is known as the
“potential envelope.” It is not immediately apparent in the power
spectrum, due to the effects of damping at high `, but it imprints
a large dependence on ωm and can be uncovered if the effects of
damping and line-of-sight averaging are removed (e.g., figure 7
of Hu & White 1997).

The characteristic scale of the power boost is set by the an-
gular scale, θeq, which is the comoving size of the horizon at
the epoch of matter-radiation equality projected from the last-
scattering surface. Thus the CMB spectra are sensitive to θeq.
In the ΛCDM model θeq depends almost solely on the redshift
of matter-radiation equality, zeq (with an additional, very weak,
dependence on Ωm). Higher ωm means higher zeq and thus θeq
is smaller; the rise in power from low ` (modes that entered at
z < zeq) to high ` (modes that entered at z > zeq) gets shifted
to higher `. This shifting of the transition to higher ` results in
a decrease in power in the region of the transition and thus the
shape of the change in DTT

` shown in Fig. 5. As we will see in
Sect. 5.1, an oscillatory decrease in lower ` power (from increas-
ing ωm) will be a key part of our explanation for the parameter
shifts. Indeed, once the impact of the low multipoles is reduced
by the addition of high-` data, the increase in power near the first
peak from a redder spectrum must be countered by a higher ωm
(and other shifts, see Sect. 5.3).

Additional dependence on ωm comes from the change in the
damping scale and how recombination proceeds. The damping
scale is the geometric mean of the horizon and the mean free
path at recombination, and changing the expansion rate changes
this scale (Silk 1968; Hu & Sugiyama 1995b). An increase inωm
corresponds to a decrease in the physical damping scale (which
corresponds to a decreased angular scale at fixed distance to last
scattering). However, within the range of variation inωm allowed
by Planck, changes in damping are a sub-dominant effect.

Finally, the anisotropies we observe are modified from their
primordial form due to the effects of lensing by large-scale struc-
ture along the line of sight. One effect of lensing is to “smear”
the acoustic peaks and troughs, reducing their contrast (Seljak
1996). The peak smearing by lensing depends on ωm through the
decay of small-scale potentials between horizon crossing and the
epoch of equality (see e.g., Pan et al. 2014). While ωm is an im-
portant contributor to the lensing effect, we will see in Sect. 5.2
that lensing will primarily drive shifts in τ and Ase−2τ.

4.2. The baryon density: ωb

For the nearly scale-invariant, adiabatic perturbations of interest
to us, the presence of baryons causes a modulation in the heights
of the peaks in the power spectrum and a change in the damping
scale due to the change in the mean free path. Physically a non-
zero baryon-photon momentum density ratio, R = 3ρb/(4ργ),
alters the zero-point of the acoustic oscillations away from zero
effective temperature (Θ0 + Ψ = 0) to Θ0 + (1 − R)Ψ = 0 (see
e.g., Seljak 1994; Hu & Sugiyama 1995a; Hu et al. 1997). For

non-zero RΨ this leads to a modulation of even and odd peak
heights, enhancing the odd peaks (corresponding to compres-
sion into a potential well) with RΨ < 0 and reducing the even
peaks (corresponding to rarefactions in potential wells). Given
only low-` data, such as for WMAP, the relative heights of the
first and second peaks, in particular, are important for determin-
ing R and therefore ωb. An increase in ωb boosts the first peak
relative to the second, as is apparent in the ωb panel of Fig. 5.
We will see in Sect. 5.1 that the inclusion of the high-` data will
lead to a decrease in ωb, which will be required to better match
the ratio of the first and second peaks once the other parameters
have shifted.

A change in ωb also changes the mean free path of photons
near recombination, and the process of recombination itself, thus
affecting the diffusion damping scale. As with an increase in ωm,
an increase in ωb decreases the physical damping scale. The an-
gular scale which this corresponds to depends on the distance to
last scattering, which can be altered by changing ωb, depending
on what other quantities are held fixed. For the choice shown in
Fig. 5, we find that the angular scale decreases as well, leading
to less damping and the excess of power seen at high ` in the ωb
panel.

4.3. The optical depth: τ

Reionization in the late Universe recouples the CMB photons
to the matter field, but not as tightly as before recombination
(since the matter density has dropped by over six orders of mag-
nitude in the intervening period). Scattering of photons off elec-
trons in the ionized intergalactic medium suppresses the power
in the primary anisotropies on scales smaller than the horizon
at reionization (` >∼ 10) by e−2τ (Kaiser 1984; Efstathiou 1988;
Sugiyama et al. 1993; Hu & White 1996b). Because of this, in-
creasing τ at fixed As e−2τ keeps the power spectrum at ` � 10
nearly constant. The small wiggles in the τ panel are entirely
from the increased gravitational lensing power, due to the in-
crease in As necessary to keep As e−2τ constant. At very low `
this increase in As directly boosts anisotropies.

Increasing As e−2τ at fixed τ results in changes to DTT
` that

are almost exactly proportional to DTT
` , with small corrections

due to the second-order effect of gravitational lensing.

4.4. The spectral index, ns, and acoustic scale, θ∗

The final two effects are very easy to understand. A change
in the spectral index of the primordial perturbations yields a
corresponding change to the observed CMB power spectrum
(e.g., Knox 1995). Increasing ns with the amplitude fixed at the
pivot point k = k0 = 0.05 Mpc−1, increases (decreases) power at
` >∼ (<∼ ) 550, since modes with k = k0 project into angular scales
near `= 550. We will see in Sect. 5.1 that a tilt towards redder
spectra (i.e. a decrease in high-` power) will be necessary to best
fit the high-` data. Alternatively, as discussed in Sect. 5.3, when
not tightly constrained by the ` > 1000 data, a higher ns allows
a better fit to the “deficit” of power at ` < 30.

The predominant effect of altering θ∗ (which, with the other
parameters held fixed, is performed by modifying ωΛ) is to
stretch the spectrum in the ` direction, causing large changes in
the rapidly-varying regions of the spectrum between peaks and
troughs. Note that the high sensitivity of the power spectrum to
this scaling parameter (e.g., Kosowsky et al. 2002) means that
small variations in θ∗ can swamp those of other parameters. In
Sect. 5.1 we will see that one of the differences between the
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` < 800 best-fit model and that for ` < 2500 is a variation in θ∗
that shifts the third peak in the angular power spectrum slightly
to the right, removing some oscillatory residuals.

4.5. The Hubble constant, H0

With these effects in hand it is easy to understand how changes
in other parameters, such as H0, impact DTT

` . As discussed in
Planck Collaboration XVI (2014, section 3.1), the characteris-
tic angular size of fluctuations in the CMB (θ∗) is exception-
ally well and robustly determined (better than 0.1 %). Within
the ΛCDM model this angle is a ratio of the sound horizon
at the time of last scattering and the angular diameter distance
to last scattering. The sound horizon is determined by the red-
shift of recombination, ωm, and ωb, so the constraint on θ∗
translates into a constraint on the distance to last scattering,
which in turn becomes a constraint on the 3-dimensional sub-
space ωm–ωb–h. Marginalizing over ωb gives a strong degener-
acy between ωm and h, which can be approximately expressed
as Ωm h3 = constant (as will be important in Sect. 5.3). For ex-
ample, an increase in ωm decreases the sound horizon as ω−0.25

m
(softened by the influence of radiation) and hence the distance
to last scattering must decrease, to hold θ∗ fixed. This distance is
an integral of 1/H(z), with H2(z) ∝

{
ωm
[
(1+z)3−1

]
+h2} for the

dominant contribution from z � zeq. Thus h must decrease in
order for the distance to last scattering not to decrease too much.

4.6. Lensing

As mentioned earlier, the anisotropies we observe are modi-
fied from their primordial form by several secondary processes,
among them the deflection of CMB photons by the gravita-
tional lensing associated with large-scale structure (see e.g.,
Lewis & Challinor 2006, for a review). These deflections serve
to “smear” the last scattering surface, leading to a smoothing of
the peaks and troughs in the angular power spectrum, as well as
generating excess power on small scales, B-mode polarization,
and non-Gaussian signatures. Our focus is on the first effect.

Gradients in the gravitational potential bend the paths of pho-
tons by a few arcminutes, with the bend angles coherent over
degree scales, leading to a pattern of distortion and magnifica-
tion on the initially Gaussian CMB sky. In magnified regions
the power is shifted to lower `, while in demagnified regions
it is shifted to higher `. Across the whole sky this reduces the
contrast of the peaks and troughs in the power spectrum (while
conserving the total power), and generates an almost power-law
tail to very high `. The amplitude of the peak smearing is set by
(transverse gradients of) the (projected) gravitational potential
and this is sensitive to parameters (such as As and ωm), which
change its amplitude or shape. The separate topic of CMB lens-
ing through the 4-point functions (to derive Cφφ

`
) is discussed in

Sect. 6.3.

5. Connecting parameter shifts to data to physics

With an understanding of the different ways in which the ΛCDM
model parameters can adjust the TT spectrum, we can now be-
gin to try to explain the parameter shifts of main interest for
this paper. We start in Sect. 5.1 by showing how the best-fit
model has adjusted from its ` < 800 solution to match the new
data at ` > 800. This story tracks more or less chronologically
how our best understanding of the ΛCDM model has progressed,
since the modes at ` <∼ 800 had mostly been measured first with

WMAP. Additionally, it highlights the features of the Planck
data that are important for driving parameter shifts with respect
to the ` < 800 best-fit model.

The question answered in Sect. 5.1 is “what caused the pa-
rameters to shift from their ` < 800 values to their ` < 2500
ones?” A different, and also useful, question is “what causes
there to be shifts at all, i.e., where do the differences come
from?” This puts the ` < 800 and ` > 800 data on more equal
footing, allowing us to pick aspects of each that generate most
of the difference between the two. Although the resulting story
is not unique, we find that the particular choice we have made
results in a helpful explanation. It leads us to identify the con-
nection with gravitational lensing, which we discuss in Sect. 5.2,
and of the low-` deficit, which we discuss in Sect. 5.3.

5.1. From ` < 800 to ` < 2500

We begin by examining how parameters shift as we increase
`max from 800 to 2500. The best-fit parameters from the range
` < `max are shown by the solid blue curve in Fig. 6 (where `split
is, in this case, `max). Although eight parameters are displayed in
this figure, for the purpose of explaining shifts it is important to
consider only six parameters at a time (since there are only six
degrees of freedom in the ΛCDM model). We will use the set
of six discussed in Sect. 2, for the reasons described there. As
a reminder, they are θ∗, ωm, ωb, ns, As e−2τ, and τ. Focusing on
these parameters, one can see in Fig. 6 the following changes:

– a sharp drop in θ∗ between `max = 800 and 1000;
– a highly correlated gradual drop in ωb, drop in ns, increase in
ωm, and increase in Ase−2τ across the whole multipole range;

– an increase in τ between `max = 1000 and 1500.

Figure 7 illustrates even more explicitly how these different
multipole ranges cause the parameter shifts. This figure com-
presses a large amount of information into a combination of 10
panels, the full understanding of which requires a slow stepwise
explanation. Each of the panels in the left column shows resid-
uals of the data relative to the best-fit ` < 800 model. The thick
black line is the best-fit model for ` < `max, with `max increased in
each subsequent panel and represented by the darker data points
(varying from `max = 800 in the top panels to `max = 2500 in the
bottom panels).

In panel (1a) of Fig. 7 we have `max = 800 and thus we see di-
rectly the residuals in the ` > 800 data with respect to the ` < 800
model that cause the parameter shifts of main interest for this
work. We will sometimes refer to these features as the “oscil-
latory residuals”; for definiteness, we are referring to the up-
ward trends at `' {900, 1300, 1600, 1800} and downward ones at
`' {1100, 1400, 1700}. Note that these oscillations are (roughly)
out of phase with the CMB peaks themselves, a point which will
be important for future discussion.

We can assess the significance of the residuals at the power
spectrum level by computing their χ2. With the same ∆`= 50
bins as in Fig. 7, we find χ2 = 36.4 for 34 bins, equivalent to a
0.6σ Gaussian fluctuation. This lack of significance in the resid-
uals in the power spectrum itself underscores the fact that we
are not talking about large residuals here, even if they happen
to appear more significant in the cosmological parameter space.
Finally, we point out that these residuals are of course not inher-
ent to the ` > 800 data themselves, rather to the difference with
the best-fit model predicted from the ` < 800 data; in Sect. 5.3
we will comment on how the ` < 30 data in particular threw off
this model from the best estimate coming from the full ` range.
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Fig. 6. Shifts in the best-fit values of parameters when one considers the multipole range either below or above different values of
`split. This uses the PlanckTT+τprior data combination, with ` > 30 computed using plik lite. The different lines correspond to
restricting the data to ` < `split (blue), 30< ` < `split (green), and ` > `split (orange). These shifts are described in Sect. 5.1. One can see
here that excising the ` < 30 region moves the low-` parameters closer to the high-` parameters, as discussed in detail in Sect. 5.3.
Error bands are the ±1 and ±2σ scatter in the simulations away from the input fiducial model. We have chosen to plot this quantity
as opposed to posterior constraints on these parameters (which is different because of our prior on τ) because it is these bands that
are appropriate for comparing the blue and orange lines against each other. Note that this has the perhaps counter-intuitive effect of
having the error bands in the τ panel increase as more data are added. None of the local “spikes” are found to be significant, as can
be seen from the bottom panel of Fig. A.1.
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Fig. 7. How the best-fit ` < `max PlanckTT+τprior ΛCDM model adjusts as `max is increased from 800 to 2500 (going from the top
panels to the bottom panels). Left column: all panels show residuals relative to the ` < 800 model. Planck power spectrum binned
estimates and ±1σ errors on the CMB spectrum, as extracted with plik lite, are shown as grey boxes. Note the change in y-axis
scale at `= 500, indicated by the vertical dotted line. The solid black line is the best-fit model for ` < `max, where `max is different
for each panel, as indicated by which of the boxes are shaded darker. The various coloured lines indicate the linear response to the
shift in individual parameters between their ` < 800 best-fit value and their ` < `max one. Right column: identical to the left column,
except that the contribution from θ∗ (i.e., the blue line from the corresponding left panel) has been subtracted from the sums, as well
as from the actual model and from the data. For reference, the arrows in the top and bottom panels show the locations of the peaks
in the power spectrum.
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Beginning now to increase `max up to 1000, in panel (2a) we
see the model adjusting to match the data in the 800 to 1000
region. We would also like to understand why and how the vari-
ous parameters have shifted to incorporate these data, which we
can do in the following way. Under the approximation of lin-
ear response, it is possible to break apart the total change in the
model into the contribution from each individual parameter. This
is given by the quantity ∆pi dC`/dpi, where pi represents each of
the parameters and ∆pi is the shift in each parameter’s value be-
tween the two cases being compared. If the linear approximation
were perfect, the sum of the contributions from each parameter
would give exactly the total shift; here we find that the approx-
imation is accurate to 10 % of the total shift, which is sufficient
for our discussion here. We have computed these derivatives for
the best-fit ` < 800 model. Because these are linear responses,
the model can only change their amplitudes.

Panel (2a) of Fig. 7 shows that the only response with signifi-
cant support on the 800–1000 region is θ∗, which indeed shifts to
almost perfectly pick up the difference there. The effect is essen-
tially that the third peak has shifted slightly to the right. With the
other parameters held fixed, this change in θ∗ alone is responsi-
ble for lowering H0 by 0.5 km s−1 Mpc−1. An additional decrease
in H0, by about the same amount, can be ascribed to an increase
of the matter density, which, in combination with an increased
Ase−2τ, better fits the position of the second trough at `' 650.

Because no further increase in `max changes θ∗ by much (and
because Planck’s measurement of θ∗ is so sensitive that the os-
cillation caused by changing θ∗ can be accommodated by only
a small shift in its value), we subtract its effect from the model
and data to better see the effects of the other parameters and we
plot the result in the right column of Fig. 7. With this shift in
θ∗ subtracted, panel (2b) shows that qualitatively this makes the
oscillatory features that we have already seen become slightly
more pronounced.

The first way in which the parameters adjust to fit the re-
maining data is via movement along a parameter direction in-
volving ωb, ωm, Ase−2τ, and ns. Although this is a fairly com-
plicated combination, the biggest change in the spectrum comes
from the increase in primordial power that results in an oscil-
latory increase in the CMB spectrum, and an increase in the
matter density that results in an oscillatory decrease in power.
This leaves an oscillatory pattern oscillating about zero when
we consider `max = 1000. As we increase `max between panels
(2b) and (5b), this same parameter mode grows in amplitude.
Furthermore, the effect of the change in the primordial power
spectrum, both the increase in amplitude and tilt towards redder
spectra, is also necessary to match the oscillations. This com-
bination of parameters, and in particular the decrease in ns, also
drives disagreement with the very lowest bin in this figure, ` < 30
(as we discuss in Sect. 5.3).

Finally, we observe an increase in τ and a corresponding in-
crease in As, which, although barely visible in Fig. 7, does also
track the same oscillatory features. We discuss this shift further
in Sect. 5.2.

To summarize, the features in the ` > 800 data that are pri-
marily responsible for the shifts in parameters are largely oscil-
latory, as seen in e.g., panel (1a) of Fig. 7. After an initial shift in
θ∗ to pick up the excess between `= 800 and 1000, the remain-
ing residuals are tracked by two directions in parameter space,
namely an increase in τ and a movement along the Ase−2τ–ns–
ωb–ωm degeneracy direction, both of which serve to increase the
amplitude of the oscillations.
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Fig. 8. Power spectrum residuals for a few additional cases, in
the same format as Fig. 7. Note that for the top panel, the fidu-
cial model is the best-fit from 30< ` < 800, as opposed to from
` < 800, as is the case in Fig. 7 and in the bottom two panels of
this figure. In all cases the black line is the best-fit ΛCDM model
in the range indicated by the shaded data boxes. The coloured
lines are the linear responses to the shifts in parameters between
these two best-fit solutions. Top: The way in which the best-fit
model from 30< ` < 800 is “thrown off” by inclusion of ` < 30
data. Note that although visually the ` > 800 data appears to be
a better fit with ` < 30, the χ2 is worse by ∆χ2 = 3.2. Middle:
Same as panel (5a) of Fig. 7, but with dashed lines showing the
responses with the gravitational potential fixed. Bottom: Same as
panel (5a) of Fig. 7, but with an additional free parameter, AL,
shown in yellow. This added degree of freedom tracks reason-
ably well the oscillatory residuals, leaving smaller shifts for the
other parameters and a reduced low-` deficit.
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Table 3. Comparison of the expected dispersion (“Exp.”) and observed (“Obs.”) parameter shifts between pairs of datasets. We
show results for the case where we use all the lowest multipoles, where we excise the ` < 30 multipoles, and where we also fix
the lensing potential, as described in Sect. 5.2. The shifts are shown in units of standard deviation of the respective ` < 800 runs
for each case. The ratio between observed shifts and expected dispersions becomes smaller when excising the ` < 30 multipoles,
and even more when factoring out the impact of lensing. Note the final column has expected shifts calculated as in equation 53 of
Planck Collaboration XI (2016) rather than using simulations.

(2, 800) vs. (2, 2500) (30, 800) vs. (30, 2500) (30, 800) vs. (30, 2500), fixlens

Parameters Exp. Obs. |Obs./Exp.| Exp. Obs. |Obs./Exp.| Exp. Obs. |Obs./Exp.|
[σ] [σ] [σ] [σ] [σ] [σ]

ωb . . . . . . . . . . . . . . . . . 0.8 0.9 1.1 0.8 0.0 0.0 0.8 −0.5 0.6
ωm . . . . . . . . . . . . . . . . 0.8 −1.6 2.0 0.8 −0.7 0.9 0.7 −0.3 0.4
θMC . . . . . . . . . . . . . . . . 0.9 0.9 0.9 0.9 0.4 0.4 0.9 0.2 0.2
τ . . . . . . . . . . . . . . . . . . 0.4 −1.0 1.7 0.4 −0.7 1.9 0.2 −0.0 0.2
ln(1010As) . . . . . . . . . . . 0.4 −1.0 2.4 0.4 −1.0 2.2 0.1 −0.2 1.7
ns . . . . . . . . . . . . . . . . . 0.8 1.0 1.2 0.9 0.0 0.0 0.9 −0.5 0.5
H0 . . . . . . . . . . . . . . . . 0.8 1.4 1.8 0.8 0.5 0.6 0.8 0.1 0.1
As e−2τ . . . . . . . . . . . . . . 0.7 −1.5 2.2 0.7 −0.9 1.3 0.6 −0.7 1.1
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Fig. 9. Marginal mean and 68 % error bars on cosmological parameters estimated with different data choices, assuming the ΛCDM
model (unless otherwise labelled). We use the PlanckTT likelihood in combination with a prior τ = 0.07 ± 0.02. Excising the low
multipoles, i.e., ` < 30, substantially improves the agreement between the parameters from ` < 800 and the ` < 2500 range. Further
agreement is then achieved when removing the effect of gravitational lensing.
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5.2. Gravitational lensing

Having described the shifts fairly pragmatically, we now turn
to trying to understand what, physically, is driving them. It is
clear that the oscillatory residuals are important, and qualita-
tively we can see that they look like extra smoothing of the
peaks and hence resemble the effects of gravitational lensing.
Indeed, along with the parameter shifts themselves, much at-
tention has been given in the literature to the fact that the
Planck high-` data appear to favour an overly enhanced grav-
itational lensing potential with respect to that expected from
ΛCDM (Planck Collaboration XIII 2016; Couchot et al. 2015;
Addison et al. 2016). Given this, and noting that the parameters
shift to increase As and ωm (both of which increase the gravi-
tational lensing potential) it may be tempting to think that the
parameter shifts are dominantly driven by a desire to increase
lensing and hence increase peak smoothing at high `. We will
see, however, that this only explains about a third of the total
shifts and instead most of the change in the best-fit model spec-
trum is related to non-lensing effects such as changing the matter
envelope (Sect. 4.1) and the primordial tilt (Sect. 4.4).

The effect of lensing of the TT spectrum has tradition-
ally been studied by introducing an additional phenomenolog-
ical parameter, AL, which artificially scales the lensing poten-
tial power spectrum used to calculate the lensed CMB spec-
tra. By definition AL = 1 corresponds to ΛCDM. The Planck
` < 2500 data prefer a value higher than unity, AL = 1.22 ± 0.10
Planck Collaboration XIII (2016). The bottom panel of Fig. 8
shows the same power spectrum residual and linear responses
of Fig. 7, now with AL as an additional free parameter. As we
see, the response from increasing AL on its own does a some-
what good job of fitting the data, particularly at ` > 1000, leaving
smaller shifts in the other parameters. We do note, however, that
although some of the other cosmological parameters shift closer
to the values preferred by the ` < 800 case,12 differences remain.
For example, as shown in Fig. 9, about half of the shifts (in e.g.,
ωm and H0) remain even in the ΛCDM+AL case. Thus, the shift
in parameters between ` < 800 and ` < 2500 cannot be entirely
explained through an extra peak-smoothing effect at high `; other
aspects of the data are also independently pointing to similar
shifts.

In terms of understanding physically how the features in the
` > 800 data are fit by the ΛCDM model, the AL test is, however,
not entirely useful. The ΛCDM model, unlike ΛCDM+AL, is
of course not free to arbitrarily increase the lensing potential; it
must do so through other parameters that also have non-lensing
related effects. Thus the particular way in which ΛCDM chooses
to optimally fit the features will be a balance between lensing
and non-lensing effects. It is now useful to define more exactly
the question we are seeking to answer. Ascertaining what as-
pects of the data “are lensing” is an ill-defined question; con-
versely, ascertaining which parts of the change between two
model power spectra come from lensing is perfectly well de-
fined because we can theoretically calculate the two spectra with
and without lensing included. This is what is shown in the mid-
dle panel of Fig. 8. Here we plot the same power spectrum lin-
ear responses as in Fig. 7, but additionally (as the dashed lines)
we remove the contribution from changing the lensing potential;
more precisely, the dashed lines are dC`/dp, with C` being the
unlensed power spectrum. Thus, even without affecting the lens-
ing potential, the shifts in parameters we have been discussing

12The best-fit cosmology of the ` < 800 case is not significantly in-
fluenced by the impact of lensing.

cause the spectrum to largely match the oscillatory features we
see in the data.

In terms of cosmological parameters, we can verify that most
of the shifts are still there even in the absence of changes to
the gravitational lensing potential with the following test. We
again look at shifts between ` < 800 and ` < 2500, but for the
` < 2500 case we fix the lensing potential to its own best-fit from
` < 2500. In doing so, the cosmological parameters no longer im-
pact the amplitude of the lensing potential, which is already at
the value favoured by the full `-range fit. Any remaining shifts
must reflect features in the data that are not accounted for by
the change to the lensing potential alone, and are instead fit by
non-lensing effects of changing the cosmological parameters.
We find, as shown in Fig. 9, that the majority of the shifts are
still present. For example, H0 still moves from (70.0 ± 1.9) with
` < 800 to (68.4 ± 1.1) km s−1 Mpc−1 with ` < 2500 and fixed
lensing. Roughly speaking, about two thirds of the shift in the
Hubble constant and other parameters comes from non-lensing
effects.

The only exception to lensing being a sub-dominant part of
the shifts is τ and the corresponding change in As, whose en-
tire shift is explained by lensing. This confirms what we might
expect, since at ` > 100 the only effect of changing τ (at fixed
Ase−2τ) is via lensing effects, and if the non-lensing effect of
τ at ` < 100 would have been driving its shift, it is clear from
Fig. 7 that it would have shifted in the other direction. We have
gone further and also investigated whether the part of shifts in
As and ωm that are related to lensing are due to the fact that
both of these parameters directly impact the lensing amplitude,
or whether this is rather through the correlation between the two
due to non-lensing effects in the power spectrum. We checked
this by fixing the lensing potential to the 30< ` < 800 best-fit
case, and letting only As change its amplitude. We find that in
this case, As and τ are forced to values even higher than in the
standard 30< ` < 2500 case, while the posterior of ωm remains
very close to the best-fit of the 30< ` < 800 case. We thus con-
clude that it is indeed the direct impact of both ωm and As on the
lensing amplitude that is important.

One reason the sub-dominant impact of lensing discussed in
this section is subtle is because of a coincidental parameter de-
generacy. As discussed in the previous section, fitting the oscil-
latory features increases ωm and Ase−2τ. By coincidence, these
shifts both increase the lensing potential and increase the ampli-
tude of the peak smoothing via non-lensing effects, but it is the
latter that is more important.

5.3. The low-` deficit

With part of the shifts explained by a preference, albeit sub-
dominant, for an increased lensing potential, we now seek to
explain the rest of the differences. If we are free to attribute the
variations to specific multipoles in either of the two data sets
we are comparing, there is not a unique way to tell this story.
For example, one could look further at the ` > 800 data and iso-
late what, aside from the lensing piece we have just described,
is causing the shifts. We choose here a different path, which we
believe is more elucidating and attributes the remaining differ-
ence to the ` < 800 data instead. It also has the advantage that it
likely explains, chronologically, why the parameters have shifted
(since, again, these modes were measured first with WMAP).
The specific explanation is that a large remaining part of the dif-
ferences is due to multipoles at ` < 30 having “thrown off” the
` < 800 result.
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In the previous section, it was noted that as the model ad-
justed to fit the data in the 1000< ` < 1500 region, the fit at
` < 30 became much worse. This is evidence that the ` < 30 re-
gion might play a major role in driving disagreement between
the low and high multipoles. Indeed, “anomalies” related to the
low-`’s have been discussed extensively in the literature, for ex-
ample the low quadrupole or the localized “dip” near `' 20
(Bennett et al. 1996; Hinshaw et al. 2003; Spergel et al. 2003;
Peiris et al. 2003; Mortonson et al. 2009; Cai et al. 2015). Here
we are interested mainly in the overall deficit in power across
the entire ` <∼ 30 region (which does of course gain some con-
tributions from the low quadrupole and the `' 20 dip, but also
from other multipoles); we refer to this as the “low-` deficit.”
This is exactly the same deficit in power discussed previously
in Planck Collaboration XV (2014), Planck Collaboration XVI
(2014), Planck Collaboration XIII (2016), and others papers,
where it is sometimes called the “low-` anomaly.” We explic-
itly call it a “power deficit” here to avoid confusion with any
other “anomalies” at low-`, and because it is a more appropri-
ate name for a feature of only moderate significance. Indeed, if
one models the deficit simply as an overall power rescaling at
` < 30 with respect to the ΛCDM model, its significance is 1.1σ
when considering the ` < 800 data, growing to 1.6σ for the full-
` range (since the ΛCDM model prediction is moved higher).13

Assuming ΛCDM, the low-` deficit is thus most likely a sample-
variance fluctuation in C` that happens to be concentrated at the
lowest multipoles. Despite interpretation of the deficit from dif-
ferent perspectives (e.g. Contaldi et al. 2003; Iqbal et al. 2015;
Chen & Lin 2016), up until now, its effect on the parameter shifts
has not been thoroughly explored.

Indeed, when excising the range ` < 30, we observe a
relatively large, correlated shift in parameters, as shown in
Fig. 9. For example, H0 shifts from (70.0± 1.9) km s−1 Mpc−1

when using ` < 800 to (68.0± 2.2) km s−1 Mpc−1 when using
30< ` < 800, much closer to the value preferred by the full mul-
tipole Planck cosmology, which is (67.3± 1.0) km s−1 Mpc−1.
This shift is 1.8 times larger than the expected shift from simula-
tions for the two data sets, in line with its somewhat anomalous
nature. Although the deviations induced by these low multipoles
are not statistically very significant, they are one of the main
sources of difference between the ` < 800 and ` < 2500 parame-
ters, as also shown in Table 3. Furthermore, if one considers this
“deficit” as a mere statistical fluctuation in the power spectrum,
the fact that it happens to occur at the lowest multipoles gives it
greater weight in shifting parameter like ns than if it had occurred
elsewhere. In detail we find that the shifts between the two
ranges {∆Ase−2τ,∆ns,∆ωm,∆ωb,∆H0,∆τ} in units of the 1σ ex-
pected shifts are {−2.2, 1.2,−2.0, 1.1, 1.8,−1.7}; without ` < 30
in either data set, they become {−1.3, 0.0,−0.9,−0.0, 0.6,−1.9}.

We now turn to understanding in more detail the way that
the low-` deficit sources these parameter differences. This dis-
cussion follows closely the top panel of Fig. 8, which shows
how one goes from the 30< ` < 800 best-fit (the fiducial model
against which the points in the figure are differenced) to the
` < 800 best-fit (the black line). Here we see how the low ampli-
tude of the first 30 multipoles can be fit by a correlated change in
ns, ωb, ωm, and As e−2τ. In particular, with the 30< ` < 800 best-
fit as a starting point, the model needs to decrease power at ` < 30

13See sections 8 and 9 of Planck Collaboration XX (2016) for alter-
native investigations of the significance of the power deficit using P(k)
reconstruction and parameterized model fits. Inflationary models with
features are not found to give sufficiently improved fits (compared to a
featureless power spectrum) to justify adding the additional parameters.

to fit the low-` deficit; this can be achieved with an increase in ns,
which tilts the spectrum and decreases power at the lowest mul-
tipoles. However, this has three additional effects that trigger the
response of the other cosmological parameters. Firstly, since the
increase in ns reduces power not just at ` < 30 but over the en-
tire ` <∼ 550 part of the power spectrum (because our pivot scale
corresponds to `' 550), ωm decreases to compensate by shift-
ing the matter envelope and increasing the early ISW effect (see
Sect. 4.1). The change in ωm in turn raises the value of H0 due to
the angular diameter distance degeneracy discussed in Sect. 4.5.
Secondly, the increase in ns increases the amplitude of the power
spectrum at ` >∼ 550; this can be compensated by a lower value of
As e−2τ. Thirdly, this shift in As e−2τ also reduces power around
the first peak, and so yields an increase in ωb, which increases
the amplitude to partially compensate (through the modulation
effect described in Sect. 4.2). Finally, some further adjustments
are achieved by selecting a larger value of θ∗, which shifts the
position of the peaks to the left. Comparatively speaking, excis-
ing ` < 30 from ` < 2500 leads to shifts that are similar to those
just described but of smaller amplitude, since the excised region
is a smaller fraction of the data. Hence, the parameter shifts are
smaller without ` < 30, as can be seen in Fig. 9.

As a final check, we have tested the degeneracy between
the low-` deficit and the peak smoothing effect. The purpose
of this test is to verify that these are two different effects, and
that one cannot be explained with the other through degeneracies
among cosmological parameters. In order to perform this test,
we use an additional parameter Alow that multiplies the ampli-
tude of the power spectrum at ` < 30. This parametrization does
not fully capture the feature at low-`, but should be enough for
our purpose here, since we verified that the results we obtain in
the ΛCDM +Alow case overlap those from excising completely
the ` < 30 region. We then estimate parameters for a ΛCDM
+AL+Alow case. Fig. 10 shows the results of this exercise. As
expected, we find a moderate degeneracy between AL and Alow,
at the level of 30 %, which reduces the deviations of both these
parameters. Therefore, when looking at parameter shifts due to
one of these two effects, one has to keep in mind that they are
somewhat correlated. At the same time, since in Fig. 10 both pa-
rameters remain deviant at more than about the 1σ level, this
test suggests that both effects are present and cannot mutually
explain each other.

5.4. Robustness tests

A large number of tests were performed in
Planck Collaboration XI (2016) in order to validate the ro-
bustness of the Planck likelihood against possible systematics
(for more details, see section 5 in that paper). We recall here
briefly the tests performed on the high-` TT likelihood, and
describe an additional one that has been added specifically for
this work.

The Planck likelihood was tested against methodological
(e.g., incorrect likelihood approximations), instrumental (e.g.,
incorrect instrument characterization) and astrophysical (e.g., in-
correct foreground modelling) systematics, through specific tests
and the use of simulations. These three sources were shown, to
the best of our knowledge, to introduce a possible bias on cos-
mological parameters smaller than about 0.2σ.

More specifically, a number of tests were performed to as-
sess the impact of the use of: “detset” cross-spectra in place of
“half-mission” ones (the former are less affected by systemat-
ics that are uncorrelated between detectors, the latter by system-
atics with timescales shorter than half of the mission); smaller
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Fig. 10. Posterior distributions for Alow (which phenomenologi-
cally parametrizes the low-` deficit by multiplying the amplitude
of the power spectrum at multipoles smaller than ` < 30) and for
AL (which parametrizes the peak smoothing effect). We show
the results for a ΛCDM+Alow + AL model (black solid line), for
ΛCDM+Alow (blue) and for ΛCDM+AL (red). Although a de-
generacy is present between the two parameters, small devia-
tions with respect to the ΛCDM expectations remain even when
varying both parameters at the same time.

Galactic masks (less contaminated by foregrounds); Galactic
dust template and amplitude priors; beam uncertainties; and fre-
quency cross-spectra. All of these showed consistent results.

The latter test is particularly interesting. The baseline Plik
likelihood at ` > 30 uses half-mission cross-spectra from the
100, 143, and 217-GHz frequency channels. Consistent results
are obtained if one takes out one frequency at a time. For ex-
ample, using two frequencies at a time with ` > 30, a prior on
τ = 0.07 ± 0.02, and leaving foregrounds free to vary, for the
Hubble parameter we obtain: (67.0 ± 1.1) km s−1 Mpc−1 for 100
and 143 GHz; (67.1 ± 1.1) km s−1 Mpc−1 for 100 and 217 GHz;
and (66.9±1.0) km s−1 Mpc−1 for 143 and 217 GHz. These are in
excellent agreement with the final result using all three frequen-
cies, (66.9±0.95) km s−1 Mpc−1. This indicates that if the Planck
results are affected by systematic effects, then all the main CMB
channels must be affected in a similar way.

Another consistency check comes from the comparison of
the results from the TT spectrum with those obtained from the
high-` polarization power spectra. Although known to be af-
fected by small levels of residual systematics, both T E and EE
provide cosmological parameters that are consistent with those
from TT . We discuss this point further in Sect. 6.1.

We also present here an additional test to verify that the
shifts analysed in the previous sections are consistently present
in different frequency channels. In order to do this, we estimated
cosmological parameters from ` < 800 and ` > 800 using one
frequency spectrum at a time, i.e., the 143 × 143, 143 × 217,
or 217 × 217 combinations. Due to the low resolution of the

100 × 100 data, for this case we only estimate parameters for
` < 800 . We only use the Plik likelihood at ` > 30 in combi-
nation with a prior on τ. As shown in Fig. 11 we find very good
agreement between the different cases, suggesting that the shifts
are not induced by one particular frequency. This confirms the
findings of Planck Collaboration XI (2016).

In Fig. 12 we also show the frequency residuals with respect
to the best fit of the ` < 800 case. We find that the features iden-
tified in Sect. 5 to be driving the shifts are present in all fre-
quency channels. This also confirms the findings of section 5 of
Planck Collaboration XI (2016), which showed good agreement
in the comparison of the inter-frequency residuals.

5.5. Impact of the τ prior

While this paper was being prepared, an updated anal-
ysis of Planck HFI large-scale polarization data was re-
leased (Planck Collaboration Int. XLVI 2016). These results
give somewhat smaller values of the optical depth to reion-
ization, with smaller uncertainties than from previous re-
sults. The tightest constraint derived is τ= 0.055 ± 0.009,
with slightly different values resulting from other choices of
data combination and treatment, e.g., τ= 0.058 ± 0.012 in
Planck Collaboration Int. XLVII (2016). By comparison, the
prior we have been using is τ= 0.07±0.02 (which was picked to
correspond roughly to previous Planck LFI results). This tight-
ening of the error bar and change in the central value affects
the significance of the parameter shifts we have been discussing.
Although this paper could have been written from the beginning
with this updated constraint on τ, we chose not to and instead
discuss its impact separately here because: (1) it does not have a
very big impact on the main results of this paper; (2) the parame-
ter shifts that have been discussed extensively to this point in the
community were the ones coming from the earlier τ constraint;
and (3) we can more clearly isolate and discuss the effect of the
new prior in this way.

As discussed in Planck Collaboration Int. XLVI (2016), the
lower value of τ leads to some shifts in ΛCDM parameters from
the full `-range. At fixed Ase−2τ, the main effect of lowering τ
is to reduce As and hence reduce the gravitational lensing po-
tential and associated smoothing of the peaks. A secondary ef-
fect of changing τ at very low `’s (e.g., see Fig. 5) is too small
with respect to the error bars at these these multipoles to have
an appreciable effect. The ` < 800 data are largely insensitive to
the peak smoothing, so no other parameters besides τ and As
are affected (and we note that As alone is not one of the six pa-
rameters with which we compute the significance of the shifts).
Conversely, the ` > 800 data do have sensitivity to gravitational
lensing, hence other parameters try and shift to compensate for
the decreased smoothing of the peaks. The way that they do this
is exactly along the degeneracy direction discussed in Sect. 5.2,
which gives extra peak smoothing and involves increasing ωm
and Ase−2τ, while reducing ns and ωb. This leads to, for exam-
ple, a decrease in H0 of about 0.5 km s−1 Mpc−1. This is in the
direction of making the shifts slightly more significant.

The exact level of agreement when using the updated con-
straint on τ is summarized in Table 2. These numbers come from
running simulations identical to those which led to Table 1 ex-
cept that we use a prior on τ of 0.055± 0.010 instead. In practice
this means that the prior applied to each simulation is differ-
ent, as well as the fiducial model from which the simulations
are drawn, since this model is obtained with τ fixed to the mean
of the prior (as discussed in Sect. 3.1). Generally, the effective
agreement changes by between −0.1 and 0.3σ, thus slightly
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tent across frequencies.

worse. In any case, the differences due to the lower value of τ
do not qualitatively alter the main conclusions from this paper,

and Table 2 should be considered our best estimate of the level
of agreement.

Given that we have seen a lower τ prior increase the signif-
icance of the shifts, we might also ask if a higher τ prior can
reduce them. Indeed, the PlanckTT data alone do prefer a higher
value of τ (Planck Collaboration II 2016; Couchot et al. 2015),
so one might be tempted to think that perhaps the parameter
shifts reflect a tension between the values of τ from PlanckTT
and from large scale polarization. To some extent this is true, and
we have checked the significance of the shifts between ` < 800
and ` < 2500 with a prior of τ = 0.10±0.02, finding that they are
reduced from 1.4σ to 1.0σ. This is consistent with the results of
Addison et al. (2016), who also showed that a higher value of τ
can reduce the size of the shifts, although given the results from
Planck HFI polarization it is very unlikely that τ actually being
significantly higher than thought could be a realistic solution to
any tension that might be present.

6. Comparison with other data sets

Having considered the internal consistency of the PlanckTT data
themselves, as well as implicitly considering the comparison
with WMAP, we now extend our discussion to a number of other
CMB data sets. Although many measurements and analyses of
the CMB have been made that have a bearing on agreement with
Planck (e.g., Calabrese et al. 2013; Story et al. 2013; Das et al.
2014; Louis et al. 2014; Naess et al. 2014; George et al. 2015), it
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Fig. 13. Constraints on ΛCDM parameters from: SPT data from Story et al. (2013) in pink; PlanckTT ` > 800 in green; and WMAP
in blue. Except for the latter data set, which has no sensitivity to τ, all others have been combined with a prior τ = 0.07± 0.02. The
significance of parameter shifts between these three approximately uncorrelated data sets can be roughly calculated using Eq. (1).
We find no strong evidence of discrepancies, with SPT and WMAP agreeing at the 1.7σ level, Planck ` > 800 and WMAP agree
even better at 1.1σ, while Planck ` > 800 and SPT agree with each other at 2.1σ. Also plotted in orange is Planckφφ with θ∗, ωb,
and ns fixed to the Planck best-fit values. This data set, across the two parameters it constrains, is also not in significant tension with
the others. Sect. 6 discusses these comparisons in more detail.

is impossible here to discuss them all in detail. We thus limit our-
selves only to those that are the most constraining on ΛCDM pa-
rameters and therefore have the power to test the level of consis-
tency most stringently. We will specifically consider the Planck
T E, EE, and φφ power spectra, as well as measurements of the
TT damping tail from Story et al. (2013).

6.1. Comparison with Planck polarization

The first analysis of Planck high-` T E and EE spectra was
presented in Planck Collaboration XI (2016). Consistency be-
tween parameters obtained from T E and EE with those ob-
tained from TT was discussed in Planck Collaboration XIII
(2016), which showed that error bars on ΛCDM param-
eters obtained from T E alone are of similar magnitude
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to those from TT , and the best-fit values are gener-
ally within 0.5σ. For example, from PlikTE+τprior we
find H0 = (67.9± 0.93) km s−1 Mpc−1 as compared to
(66.9± 0.95) km s−1 Mpc−1 from PlikTT+τprior. The EE con-
straints are considerably noisier, but generally within 1σ, with
PlikEE+τprior giving H0 = (70.0± 2.8) km s−1 Mpc−1, for ex-
ample. Because cosmic variance partially correlates the T E and
EE constraints with those from TT , determining the exact level
of consistency requires simulations. This study was discussed in
appendix C.3.6 of Planck Collaboration XI (2016), where it was
found that the cosmological parameters obtained from EE and
T E are in agreement with those obtained with TT . Given that
there are still some residual systematic effects in the polarization
spectra, which prevented them from being used for the baseline
parameters for the 2015 Planck release (Planck Collaboration XI
2016), we stop at this point, rather than performing any more so-
phisticated tests. Further comparisons will be made following
the next Planck data release.

6.2. Comparison with SPT

The tightest constraints on ΛCDM parameters obtained from the
TT damping tail with a single experiment other than Planck
come from the South Pole Telescope (SPT, as presented in
Story et al. 2013). As such, assessment of the level of consis-
tency between the two is of great interest. Disagreement between
the two data sets has been claimed as an argument that the pa-
rameter shifts we have been discussing are not of cosmological
origin (Addison et al. 2016). Although a more detailed compari-
son is outside of the scope of this paper, we perform a few basic
tests of compatibility here, showing that any tension between
Planck and SPT is not very statistically significant.

On their own, the SPT data are not very constraining on
ΛCDM parameters because the sky coverage is about a fac-
tor of 10 times smaller than Planck’s. If we limit Planck to
` > 800, roughly the same multipoles measured by SPT, the er-
rors on all ΛCDM parameters are twice as large or more, as can
be seen by comparing the green and pink contours in Fig. 13.
Combining SPT with WMAP yields somewhat tighter ΛCDM
constraints, although still larger than Planck’s full-` range. It
is not straightforward to compare Planck and WMAP+SPT be-
cause both Planck and WMAP are cosmic variance limited at
low multipoles and hence very correlated. Instead, we will limit
ourselves to data sets that are uncorrelated and use Eq. (1), which
we will apply to the five parameters shown in Fig. 13. This will
suffer from all of the problems mentioned in Sect. 3, but will still
give us a rough idea of the level of agreement. For WMAP+SPT
versus Planck ` > 800 we find χ2 = 12.0, which is equivalent to a
2.1σ fluctuation. SPT alone compared to Planck ` > 800 yields
χ2 = 11.9, also equivalent to 2.1σ. We can additionally compare
SPT to the Planck full multipole range, which gives χ2 = 12.3,
equivalent to 2.2σ. Although we cannot compare WMAP+SPT
and Planck directly, we already know from Kovács et al. (2013)
that WMAP and Planck agree extremely well over the common
multipole range. Therefore, we would expect WMAP+SPT and
Planck parameters to be consistent to a similar level as the num-
bers just quoted.

Additionally, we point out that despite the impression some-
times given, both implicitly and explicitly, that the Planck high-
`’s are “anomalous” with respect to parameters derived from
WMAP, the same and more can be said of the SPT parameters.
Again using Eq. (1) and the five ΛCDM parameters shown in
Fig. 13, WMAP and SPT agree to within 1.7σ, while WMAP
and Planck ` > 800 are in better agreement, 1.1σ. Of course,

given the significances we have seen in this section, the point is
that we find no strong evidence for disagreement between any of
these different CMB data sets.

6.3. Comparison with Planck lensing

Finally, we consider the level of agreement with the power spec-
trum of the gravitational lensing reconstruction from Planck
data. It has previously been noted that there is some tension
between this data set and PlanckTT (Planck Collaboration XIII
2016; Planck Collaboration XV 2016; Addison et al. 2016).

One way to quantify agreement is via constraints on the AL
parameter. As described in Sect. 5.2, this scales the gravitational
lensing potential used in the calculation of the TT spectrum. A
similar parameter, usually called Aφφ, can be introduced when
computing constraints from PlanckTT+lensing, this time scal-
ing the lensing potential used in the lensing likelihood (but not
the one used in the TT spectrum calculation). We find AL =
1.21± 0.10 from PlanckTT, compared to Aφφ = 0.95± 0.04, a
difference of 2.6σ. This comparison, however, is somewhat mis-
leading because Aφφ and AL are a rescaling of the lensing poten-
tial with respect to two different models. If we remove these in-
termediary models and compare directly the lensing power pre-
ferred by the two data sets, for example Cφφ

`
at ` = 100, agree-

ment is instead 2.3σ.
Another way to compare these data sets, which has the ad-

vantage that it assumes ΛCDM unlike the previous case, is to
simply analyse each data set independently given the ΛCDM
model and compare constraints on parameters. These constraints
are shown in Fig. 13, in orange for PlanckTT and in green for
lensing (the lensing data assume a fixed θ∗, although are largely
insensitive to the exact value). The parameter most often com-
pared is σ8Ω0.25

m because it is a good proxy for the amplitude of
the lensing potential and is most tightly constrained by the lens-
ing data. Here, we find σ8Ω0.25

m = 0.600± 0.011 from Planckφφ
and 0.623± 0.013 from PlanckTT, a difference of 1.3σ. We note
that this agreement becomes even better with the addition of the
lower prior on τ discussed in Sect. 5.5.

As pointed out by Addison et al. (2016), despite this good
agreement over the full `-range, the constraint on σ8Ω0.25

m from
just the ` > 1000 data is in tension with lensing at 2.4σ. Unlike
for the full `-range, however, constraints from ` > 1000 on a sec-
ond parameter, ωm, are now comparable to those from lensing,
hence it makes sense to include this in the comparison. This
slightly reduces the tension to 2.2σ.

Addison et al. (2016) further pointed out that the quantity
σ8Ω0.25

m is internally inconsistent within the Planck tempera-
ture data themselves at a level of 2.9σ between ` < 1000 and
` > 1000. We find instead 2.5σ. The most likely source of differ-
ence is that we use plik lite, which we believe gives the more
correct result, since it imposes more reasonable priors on the
foreground parameters and thus reflects more realistically our
knowledge of foreground contamination.

To conclude this section, although it is possible to single out
specific parameter differences, overall we find no significant ev-
idence of any strong discrepancies between the PlanckTT and
Planckφφ data.

7. Conclusions

The main goals of this paper have been threefold: (i) to isolate
the features in the Planck ` > 800 temperature power spectrum
that cause the shifts in parameters away from the ` < 800 (or sim-
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ilarly WMAP) parameters; (ii) to assess the consistency of these
shifts with expectations; and (iii) to provide an explanation of
the physics behind why the parameters are shifting. In our view,
such a physical explanation and this “opening of the likelihood
black box” serves to assuage some of the concern that one might
initially have about the apparently unlikely nature of some of
the shifts, and hence increases the confidence one places in the
Planck data. While some discussions of points (i) and (ii) have
already appeared in the literature, we have greatly expanded and
clarified them here.

In particular, we have made extensive use of numerical sim-
ulations in order to evaluate the consistency of the results ob-
tained from a large number of different multipole ranges. This
allowed us to properly account for the correlations between the
different ` ranges and compute the exact posterior distribution
of the expected parameter shifts, avoiding the use of a Gaussian
approximation, contrary to what was done in previous studies. In
evaluating the probability of a shift in the most deviant parameter
out of the six ΛCDM ones, we also pointed out the importance
of taking into account look-elsewhere effects (i.e., marginalizing
over the set of parameters).

We have found that the cosmological parameters inferred
from ` < 800 versus the full multipole range ` < 2500 in the con-
text of the ΛCDM model are consistent with each other within
approximately 10 % PTE. We find similar significance levels
when evaluating the probability of shifts in the most deviant
parameters, when comparing high-` data with low-`, or when
splitting at multipoles other than `= 800. Table 1 and Fig. A.1
summarize these results. In light of the recent Planck results on
the reionization optical depth (Planck Collaboration Int. XLVI
2016; Planck Collaboration Int. XLVII 2016), we find that using
a lower and tighter prior of τ = 0.055 ± 0.010 has a mild im-
pact on the significance levels of the parameter shifts, increasing
them by about 0.3σ.

The discussion of point (iii), i.e., explaining the physics un-
derlying the shifts, has not previously existed at all. While we
point out that the interpretation of the shifts is not unique, we
provide one possible explanation by connecting features in the
spectra with shifts in parameters. We find that when reducing
the lever arm of the data by only using the larger angular scales
(` < 800), cosmological parameters are more strongly affected
by the low-` deficit, i.e., the apparent lack of power at ` < 30.
To decrease power at ` < 30, ns increases, Ase−2τ is then low-
ered to reduce power at ` >∼ 500, ωm decreases to compensate the
induced change of power below `' 500, while ωb increases to
reduce the amplitude of the second peak (which was raised by
the decrease in ωm). The Hubble constant is in turn pulled high
to keep the angular size of the horizon unchanged.

On the other hand, we find that the small-scale results are
influenced by the preference for a larger smoothing of the power
spectrum peaks and troughs at ` >∼ 1000. While at face value it
might seem like this smoothing is the sign of an excess ampli-
tude of gravitational lensing, we find that most of the shifts in
the ΛCDM parameters serve not to increase the lensing poten-
tial, but rather to fit these features through non-lensing related
effects. While neither the peak smoothing nor low-` features are
statistically very significant, and could just be statistical fluctu-
ations in the data, we show that they can explain a large part of
the observed parameter shifts.

In summary, we have identified the main features of the
data leading to the observed parameter shifts and explained the
physics of why the parameters of the ΛCDM model adjust in the
way they do to fit these features. Further, we find that these shifts
are not in strong disagreement with expectations for the size of

such differences among a set of parameters; thus there is no re-
quirement to explain such shifts with either systematic effects or
new physics.
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Appendix A: A more exhaustive set of tests

The main focus of this paper has been on shifts between param-
eters derived from ` < 800 data and those from ` < 2500 data.
We considered this the most interesting choice because `= 800
evenly splits the Fisher information on ΛCDM parameters in
the PlanckTTdata; additionally, we focused on low-` parame-
ters versus full-` parameters (as opposed to low-` versus high-`),
since this is most directly relevant for the issue of WMAP versus
Planck parameter shifts.

Despite this decision, we would like to know if our partic-
ular choice of `split = 800 greatly affected results, either making
them seem more or less consistent than otherwise. Additionally,
in terms of a generic test of the Planck data, there are many other
data splits that one might consider to test the consistency even
more stringently. We present results from a more exhaustive set
of such tests in this appendix. More specifically, we look at three
different ways of splitting the data:

1. ` < `split vs. ` < 2500;
2. ` < `split vs. ` > `split;
3. ` < `split vs. ` > `split + 50.

We do this at several different values of `split across the range
allowed by our simulations. For each case, we compute the χ2

and max-param statistics.
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Of course, since we are now explicitly scanning over statis-
tical tests, we need to account for a posteriori corrections to in-
terpret the significance of any outliers we find. This is the same
effect already discussed in the context of searching for a max-
imally discrepant parameter, but now for finding a maximally
discrepant partitioning of the data. It is straightforward to calcu-
late these corrections based on the suite of simulations. For each
realization, we search for the most discrepant result as a function
of `split. We then compare the result on the real data against this
distribution and compute a PTE as before.

We have computed results varying `split between 650 and
2500 with a step size ∆` = 50. The results are shown in Fig. A.1.
The blue line shows the raw (so-called “local”) significance for
each case, computed exactly as described in Sect. 3.2. The sig-
nificance shows considerable scatter, as one might expect due to
noise, with no outlier above roughly 2.5σ. We see that any other
choice of `split in the vicinity of 800 would have given the same
qualitative results that we have focused in the main body of this
paper.

If we search for the `split which gives the largest local sig-
nificance, we need to account for the look-elsewhere effect to
interpret the true significance of this outlier. This is given by the
orange line and labeled “global.” For example, if for some `split
we find a local significance of 2σ, then the global significance
is the fraction of simulations for which we find a shift at any
`split with a local significance exceeding 2σ. Generally speak-
ing, this marginalization lowers the significance of any outliers
we find by around 1σ. To be clear, we are not claiming the ac-
tual significance of the shifts presented in the main body of the
paper are lower by 1σ, since we did not choose `split = 800 based
on finding a most discrepant data split. Nevertheless, if we now
look through Fig. A.1 for outliers (for example the roughly 2.5σ
outlier in the top right panel at `split = 1100), it is clear that the
true significance is somewhat lower. The conclusion after this
wider set of tests is that we find no evidence for any inconsis-
tency in the data that was hidden by our specific choice of data
partitioning.

Appendix B: The low-`approximation

The simulations used in this paper make use of an approxi-
mate low-` likelihood, as discussed in Sect. 3.1. Our main check
of this approximation, as described in that section, is to esti-
mate parameters from ` < 800 with the actual Commander like-
lihood swapped out for our approximate likelihood applied to
the Commander CMB map. The ` < 800 case is important be-
cause it gives more weight to the low multipoles than, for exam-
ple, ` < 2500; hence it is a more stringent test of the approxima-
tion. In either case, we find that all ΛCDM parameters are within
0.05σ and thus that the approximation is good enough.

Of course, this test relies on one particular realization of the
CMB (namely, our actual CMB sky), and it is technically pos-
sible that this realization randomly conspired to make our ap-
proximation seem better than it actually is. In this appendix we
therefore describe a further test that looks at many different re-
alizations.

If our low-` approximation is correct, it should be the case
that the mean of the best-fit values from the simulations recovers
the input fiducial parameters, and the scatter in the simulations
should be the same as the posterior constraints from an MCMC
chain run with the Commander likelihood. An error in the ap-
proximation at low `, even just in the error bars, could manifest
itself as both a bias in the mean of the best-fit parameters and a
scatter that does not match the true posterior.

In Fig. B.1 we show a distribution of the best-fit values from
simulations for the ` < 800 case, along with the input fiducial
values and the posteriors from a chain (which have been re-
centred on the fiducial values). However, there is one detail dif-
ferent about these simulations than the ones used in the main
body of the paper. Whereas those all have the same prior on τ
applied (so as to be consistent with what is done to the real data),
these simulations have a different prior for each realization; the
prior is still Gaussian with a width of 0.02, but its mean has been
randomly sampled from 0.07± 0.02 itself. This is akin to having
drawn realization of the low-` polarization data, and although it
has no bearing on the accuracy of the low-` approximation, it is
necessary in order that the scatter actually matches the posterior.
We find then, as expected, that the simulations are centred on
the fiducial values to within the scatter expected from the finite
number of simulations, and the distribution does indeed track
the posterior constraint. We therefore conclude that our low-`
approximation is sufficient and our previous determination of its
accuracy on the real data was not affected by our particular real-
ization of the CMB. We stress that this is not an easy test to pass;
for example, we have checked that had we used the traditional
fsky approximation this test would have failed noticeably.
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Fig. A.1. Significance levels (in units of effective σ) of the parameter shifts between two multipole ranges, according to a given
statistic, as a function of `split. The specific choice of the two multipole ranges and the statistic used are labelled on each panel. The
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83 Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse cedex
4, France

84 University of Granada, Departamento de Fı́sica Teórica y del
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