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Abstract

DISLEX models the human lexical system at the level of
physical structures, i.e. maps and pathways. It consists of
a semantic memory and a number of modality-specific sym-
bol memories, implemented as feature maps. Distributed
representations for the word symbols and their meanings
are stored on the maps, and linked with associative connec-
tions. The memory organization and the associations are
formed in an unsupervised process, based on co-occurrence
of the physical symbol and its meaning. DISLEX models
processing of ambiguous words, i.e. homonyms and syn-
onyms, and dyslexic errors in input and in production.
Lesioning the system produces lexical deficits similar to
human aphasia. DISLEX-1 is an Al implementation of
the model, which can be used as the lexicon module in
distributed natural language processing systems.

1 Introduction

The lexicon in symbolic NLP systems is a list of word
symbols and phrasal patterns, with pointers to conceptual
memory. The memory contains syntactic and semantic
knowledge about the lexicon entry in the form of decla-
rations, or procedures which specify how the word should
be interpreted in different environments [29; 1; 6]. This
knowledge has been explicitly programmed into the sys-
tem with specific examples in mind. The symbolic lexi-
cons are intended to model the processes of lexical access,
not the physical structures that implement the processes.
Consequently, these models lack the capacity to account
for lexical errors in human performance, as well as lexical
deficits in acquired aphasia.

A number of connectionist models of lexical disambigua-
tion have been proposed [5; 25; 7; 12; 8]. These models
aim at explaining lexical processing with low-level mecha-
nisms, and can better account for the timing of the pro-
cess, as well as for certain types of performance errors and
deficits. However, they are still primarily process mod-
els, detached from the physical structures. They are de-
signed as controlled demonstrations, not as building blocks
in larger NLP systems.

*This research was supported in part by an ITA Foundation
grant and by fellowships from the Academy of Finland, the Emil
Aaltonen Foundation, the Foundation for the Advancement of
Technology and the Alfred Kordelin Foundation (Finland).
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The main goal of the DISLEX project (DIStributed fea-
ture map LEXicon) is to develop a computational model
of the human lexical system, which is plausible at the level
of physical structures such as maps and pathways. The
model is based on current cognitive neuroscience theories
and accounts for several documented lexical deficits in ac-
quired aphasia and dyslexia. A secondary goal is to build
a practical implementation of the model for a distributed
story understanding system [19].

In terms of the symbolic lexicon models, DISLEX con-
tains both the symbol memory and the conceptual mem-
ory, and implements a mapping between them. However,
DISLEX is based on distributed representations of the
word symbols and the word semantics. The lexical system
is seen more like a filter, which transforms an input word
symbol into its semantic representation, and vice versa.
The memory organization and the mapping are formed in
an unsupervised self-organizing process, based on examples
of co-occurrence of the word and its meaning. As a model
of the lexical system, DISLEX is in good agreement with
Caramazza’s theory [3]. The architecture offers a simple
explanation to several types of lexical errors and deficits.

2 Overview of DISLEX

DISLEX has separate symbol memories for each input and
output modality (figure 1). These memories store dis-
tributed representations for the physical word symbols,
which are used in communication with the external world.
For example, an orthographic word representation for DOG
consists of the visual form of the letters D, 0, G, while
the phonological representation stands for the string of
phonemes do:g. The separation of modality-specific chan-
nels is intuitively compelling, since the modalities give rise
to different representations, and are processed through dif-
ferent structures [3]. The symbol spaces are not identical
across modalities, there are homophones and homographs.
Considerable experimental evidence also supports dissoci-
ation of the lexical components [3] (section 8).

The semantic memory of DISLEX consists of distributed
representations of meanings, called semantic words. The
semantic word dog (or e.g. dog32) refers to a specific ani-
mal and contains information such as domestic, mammal,
brown color etc. There is a pathway from the semantic
memory to the higher level language processing systems,
which use semantic representations. The semantic memory
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Figure 1: The DISLEX architecture. The physical sym-
bol memories are modality and direction specific. The arrows
indicate pathways of distributed representations.

is also connected to the sensory memory, which contains
visual images of objects and other sensory information.
This pathway allows nonlinguistic access to the semantic
memory, and provides the means for symbol grounding.
The semantic word representation contains sensory infor-
mation about the word referent, and the abstract word
meaning originating from the high-level processes (ID and
content, see [22]).

The physical and semantic memories are implemented
as feature maps (figure 2). There is one map for each
input and output modality and one for the semantic mem-
ory. The maps lay out each high-dimensional representa-
tion space on a 2-D area so that the similarities between
words become visible. Physical words with similar form,
e.g. BALL, DOLL are represented by nearby units in a phys-
ical map. In the semantic map, semantic words with sim-
ilar content, e.g. livebat, prey are mapped near each
other.

The physical maps are densely connected to the seman-
tic map with associative connections. A localized activity
pattern representing a symbol in the physical input map
will cause a localized activity pattern to form in the se-
mantic map, representing the meaning of the symbol (fig-
ure 2). Similarly, an active meaning activates a symbol in
the physical output map. The lexicon thus transforms a
physical input representation into a semantic output rep-
resentation, and vice versa, and serves as an input/output
filter for language processing. The physical and semantic
maps are organized and the associative connections be-
tween them are formed simultaneously in an unsupervised
learning process.

3 The DISLEX-1 simulation

DISLEX-1 is an Al implementation of DISLEX, designed
as the lexicon module for a distributed neural network
story understanding system [19]. DISLEX-1 contains a sin-
gle physical modality, and the same representation space
is used for both input and output. Figure 2 displays the
basic architecture of DISLEX-1. Associative connections
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Figure 2: Physical and semantic feature maps. The phys-
ical input word DOG is transformed into the semantic represen-
tation of dog. The representations are vectors of real values
between 0 and 1, shown by gray-scale coding. The size of the
unit indicates the strength of its response. Only a few strongest
associative connections are shown.

exist in both directions (the connections from semantic to
physical map are omitted from the figure), and the trans-
formation depicted in the figure can be reversed. This is a
practical design for an AI module, and illustrates the basic
principles and properties of the model.

DISLEX-1 was trained with data from a sentence pro-
cessing experiment [17; 21] (figure 3). In the remainder of
the paper, the mechanisms and properties of DISLEX are
discussed, using the DISLEX-1 simulation as an example.

4 Representations

4.1 Physical representations

A central assumption in DISLEX is that the represen-
tations in each physical modality reflect the similarities
within that modality. For example, the orthographic rep-
resentations for DOG and DOC are very similar, but less so
in the phonological domain.

The DISLEX-1 architecture concentrates on the ortho-
graphic modality. A simple encoding scheme was used to
build the distributed representations for the written words.
Each character was given a value between 0 and 1 accord-
ing to its darkness, i.e. how many pixels are black in its
bitmap representation. The darkness values of the word’s
characters were then concatenated into one representation
vector (figure 3). This simple representation adequately re-
flects the visual similarities of the orthographic word sym-

bols.

4.2 Semantic representations

The semantic representation is a distributed representa-
tion of the meaning of the word. Semantic representations
are used internally for processing in cognitive models, and
they should facilitate inferencing, expectations, generaliza-
tions etc. [15; 22]. A possible solution is to compose the
representation from an ID part, representing the sensory
referent of the word, and a content part, which encodes
the processing properties of the word in relation to other
words [22]
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Figure 3: The training data for DISLEX-1. The physical
representations code the orthographic word symbols, while the
semantic representations stand for distinct meanings. Gray-
scale boxes indicate component values within 0 and 1. The
connections depict the mapping between the symbols and their
meanings.

With the FGREP-mechanism [21] it is possible to ex-
tract the processing content of the word from examples of
its use, and code it into a distributed representation. An
FGREP-module is a three-layer backpropagation network
which automatically developes distributed representations
for its input items as it is learning a processing task.

For simplicity, and without restricting the generality of
the model, the sensory part was omitted from the train-
ing data for DISLEX-1. The semantic representations for
DISLEX-1 were formed with FGREP in the sentence case-
role assignment task. The input to the FGREP network
consisted of the syntactic constituents of the sentence and
the network was trained to assign the correct semantic case
roles to them. The sentences were generated from tem-
plates, by filling each slot in the template with a word
from a specified category (table 1). The actual sentences
and the specifics of the task are not important for this dis-
cussion (see [21]). However, the meanings embedded in the
semantic representations originate from the categorization
in table 1.

The representations that result from the FGREP process
reflect the use of the semantic words (figure 3). Words
belonging to the same category have a number of uses in
common, and their representations become similar. The
total usage is different for each word, and consequently,
they stand for unique meanings.
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Category Semantic words
animal prey predator livebat dog
fragileobj glass vase

breaker = gear block

hitter gear block vase

possession gear vase doll dog

object ear block vase glass food

urniture doll utensil
human animal object
hit ate broke moved

thing
verb

Table 1: Semantic categories. Each slot in the sentence
templates specifies a category, and can be filled with any seman-
tic word in that category. In other words, the categorization
determines how the words are used in the sentences.

H' 3-D input vector

| 3-D input weight vector

Image of the input vector

(maximally responding unit)
2-D neighborhood

Figure 4: A self-organizing feature map network. A
mapping is formed from a 3-dimensional input space onto a
2-dimensional network. The values of the input components,
weights and the unit output are shown by gray-scale coding.

5 Word maps

5.1 Topological feature maps

A 2-D topological feature map [13] implements a topology-
preserving mapping from a high-dimensional input space
onto a 2-D output space. The map consists of an array of
processing units, each with N weight parameters (figure 4).
The map takes an N-dimensional vector as its input, and
produces a localized pattern of activity as its output. In
other words, an input vector is mapped onto a location on
the map.

Each processing unit receives the same input vector, and
produces one output value. The response is proportional
to the similarity of the input vector and the unit’s weight
vector. The unit with the largest output value constitutes
the image of the input vector on the map. The weight
vectors are ordered in such a way that the output activity
smoothly decreases with the distance from the image unit,
forming a localized response.

The ordering of the weight vectors retains the topology
of the input space. This means roughly that nearby vectors
in the input space are mapped onto nearby units in the
map. This is a very useful property, since the complex
similarity relationships of the high-dimensional input space
become visible on the map.
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Figure 5: The physical map. Each unit in the 9 x 9 network
is represented by a box in the figure. The labels indicate the
image unit for each physical word representation. The map is
divided into major subareas according to word length.

5.2 Self-organization

The organization of the map, i.e. the assignment of the
weight vectors, is formed in an unsupervised learning pro-
cess [13]. Input items are randomly drawn from the input
distribution and presented to the network one at a time
(figure 4). The weight vector of the image unit and each
unit in its neighborhood are changed towards the input
vector, so that these units will produce an even stronger
response to the same input in the future. The parallelism
of neighboring vectors is increased at each presentation, a
process which results in a global order.

The process starts with very large neighborhoods, i.e.
weight vectors are changed in large areas. This results in
a gross ordering of the map. The size of the neighborhood
decreases with time, allowing the map to make finer and
finer distinctions between items.

There are several alternatives for implementing the sim-
ilarity metric, neighborhood selection, and weight change.
A biologically plausible process would be based on scalar
products of the weight and input vectors, lateral inhibition
and redistribution of synaptic resources [14; 20]. These
mechanisms can be abstracted and replaced with compu-
tationally more efficient ones without obscuring the process
itself. The similarity in DISLEX-1 is measured by Euclid-
ian distance, the neighborhood consists of the area around
the maximally responding unit, and the weight changes are
proportional to the Euclidian difference. More specifically,
the output n;; of unit (¢, j) is

nij = { )= H'Ex—_;% if (1, 7) € Ne(t)

0.0 otherwise
where p;; is the unit’s weight vector, z is the input vector,
N.(t) is the neighborhood around the maximally respond-
ing unit (shrinking with time), and pgmar is the weight
vector least similar to z in the neighborhood. This forms
a nice concentrated activity pattern around the maximally
responding unit. With a(t) as the gain, the weight compo-
nents are changed according to the input vector — weight

(1)
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Figure 6: The semantic map. The labels on this 7 x 7 map
indicate the maximally responding unit for each semantic word
representation. The map is organized according to the semantic
categories (table 1).

vector difference:
) a®)]ze - wije] if (i,7) € Ne(t)
Appije = { 0.0 otherwise

(2)

5.3 Physical and semantic maps

The physical and semantic maps are organized indepen-
dently, albeit simultaneously, so that associative connec-
tions between them can be developed at the same time
(see next section). The ordered maps in DISLEX-1 (fig-
ures 5 and 6) were obtained in 150 epochs, i.e. by present-
ing each physical/semantic representation pair (figure 3)
to the appropriate map 150 times in random order.

In the self-organizing process, the physical and semantic
representations become stored in the weights of the units.
For each e.g. physical word, there is an image unit in
the physical map, and this unit’s weight vector equals the
physical representation of that word. The weight vectors of
the intermediate units represent combinations of represen-
tations. For example, an unlabeled semantic unit between
dog and predator would have features of both domestic
and carnivorous animals.

Both maps exhibit hierarchical knowledge organization.
Large areas are allocated to different categories of words,
and each area is divided into subareas with finer distinc-
tions. The physical map is mainly organized according to
the word length. There are separate, adjacent areas for
words with 3, 4, 5, 6 and 7 characters. Within these areas,
similar words are mapped near each other. For example,
BAT is mapped between BOY and HIT, DOLL is mapped next
to BALL etc.

The semantic map has three main areas: verbs, animate
objects and inanimate objects. Finer distinctions reveal
the semantic categories of table 1. For example, there are
subareas for hitters, possessions and fragile-objects, with
vase, which belongs to all these categories, in the center.
Note that the categorization was not directly accessible
to the system at any point. It was only manifest in the
sentences that were input to the FGREP-mechanism, The



categories were extracted by FGREP, coded into the repre-
sentations, and finally made visible in the semantic feature
map. The final map reflects both the syntactic and seman-
tic properties of the words.

In the self-organizing process, the distribution of the
weight vectors becomes an approximation of the input vec-
tor distribution [13]. This means that the most frequent
areas of the input space are represented to greater detail,
i.e. more units are allocated to represent these inputs. For
example, the representations for the different animals are
very similar (figure 3), yet they accommodate a large area
in the map.

The two dimensions of the map do not necessarily stand
for any recognizable features of the input space. The di-
mensions develop automatically to facilitate the best dis-
crimination between the input items. As a result, the or-
dered areas on the map are likely to have complicated and
intertwined, rather than linear shapes.

Feature maps have several useful properties for repre-
senting lexical information. (1) The classification per-
formed by a feature map is based on a large number of pa-
rameters (the weight components), making it very robust.
Incomplete or somewhat erroneous word representations
can be correctly recognized. (2) The map is continuous,
and can represent items between established categories. In
other words, words can have soft boundaries. (3) The dif-
ferences of the most frequent input items are magnified in
the mapping, i.e. the variations of the most common word
meanings or surface forms are more finely discriminated.
Finally, (4) the self-organizing process requires no super-
vision and makes no assumptions on the form or content
of the words. The properties of the representations which
provide the best discrimination are determined automati-
cally.

6 Word associations

6.1 The physical = semantic mappings

The physical words do not correspond one-to-one to se-
mantic words. Some words have multiple meanings
(homonyms), and sometimes the same meaning can be ex-
pressed with several different symbols (synonyms). The
mapping between the physical and semantic representa-
tions is many-to-many.

The training data for DISLEX-1 contained several such
ambiguities (figure 3). The physical word CHICKEN could
mean a living chicken or food. Similarly, BAT could be
a baseball bat or a living bat. There were also several
groups of synonymous words in the data. MAN, WOMAN,
BOY, GIRL all have the same meaning human, predator
could be WOLF or LION etc. In the DISLEX model, the
many-to-many mapping between the physical words and
their meanings is implemented with associative connec-
tions between the physical and semantic maps.
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6.2 Associative connections

The physical word maps are fully connected to the seman-
tic map with one-directional associative connections (fig-
ure 2). There is a connection from each unit in the physical
input map to each unit in the semantic map, and from each
unit in the semantic map to each unit in the physical out-
put map. The connection weight indicates the strength
of the association. The weights are stored as associative
output weight vectors per each unit.

The physical and semantic feature maps and the associa-
tive connections between them are organized at the same
time. The physical pattern for the word is presented to
the physical map, and ordinary feature map adaptation
takes place. At the same time, the semantic pattern for
the same word is input to the semantic map, and the fea-
ture map weight vectors in this map are adapted. At this
point, both maps display concentrated patterns of activ-
ity. DISLEX learns to associate the physical word with its
meaning through Hebbian learning. The weights between
active units are increased proportional to their activity:

®3)

where aij k1 is the weight between the physical unit (3, j)
and the semantic unit (k,[), and 7;; and 7 indicate the
activities of these units. The associative weight vectors are
then normalized, which in effect decreases the weights on
all nonactive output connections of the same unit. This
corresponds to redistribution of synaptic resources, where
the synaptic efficacy is proportional to the square root of
the resource [20]. Initially the activity patterns are large,
and associative weights are changed in large areas. As the
two maps become ordered, the associations become more
focused.

Aaij i = a(t)nijne

For example, DISLEX-1 was trained by simultaneously
presenting pairs of physical words and their semantic coun-
terparts from figure 3. The final associative connections
form a continuous many-to-many mapping between the
two maps. Unambiguous words have focused connections
(figures 7a and 8b). If a physical word has several mean-
ings, or one meaning can be expressed with several syn-
onyms, there are several groups of strong connections (fig-
ures 7b and 8a). Units located between image units tend
to combine the connectivity patterns of nearby words (fig-
ure 8a).

7 DISLEX in action

7.1 Transforming representations

A physical word is transformed to its semantic counter-
part (and vice versa) through the associative connections.
For example in figure 2, the physical representation of DOG
is input to the physical map, which forms a concentrated
activity pattern around the unit labeled DOG. The activity
propagates through the associative connections (figure 7a)
to the semantic map, where a localized activity pattern
forms around the unit labeled dog. The semantic repre-
sentation for dog is now output through the weight vector
of this unit. In a similar fashion, a semantic representa-
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Figure 7: Sample physical — semantic a(sb;ociative con-
nections. The darkness of the box indicates the strength of
the connection from the physical unit DOG (a) or CHICKEN (b)
to the semantic unit. The strongest connections concentrate
around the semantic image units. CHICKEN has two possible
interpretations, food and prey.

tion can be transformed to its physical counterpart. The
associative connections are different in the two directions,
but the same feature map weight vectors are used for both
input and output.

The behaviour of the system is very robust. Even if the
input pattern is noisy or incomplete, it is usually mapped
on the correct unit. Even if this does not happen, the
associative connections of the intermediate units provide a
mapping that is close enough, so that the correct meaning
or symbol can be retrieved with top-down priming.

7.2 Priming

When an ambiguous physical or semantic representation
is input to the lexicon, all possible meanings (or symbols)
are activated at the same time (figures 7b and 8a). A top-
down priming mechanism is employed to select the correct
representation. In addition to the associative activity, the
map receives priming activation through its input connec-
tions. The activities add up, selecting one of the possible
interpretations. If the priming arrives after a short de-
lay, all alternatives are briefly active before one of them
is selected. This complies with experimental results [24],
which indicate that all meanings of ambiguous words are
activated upon reading the word.

The expectations generated by the FGREP mechanism
provide a possible source for semantic priming. After read-
ing The wolf ate the, the FGREP network generates a
strong expectation for prey [22]. When the physical sym-
bol CHICKEN is read in, both the food and prey units are
initially equally active in the semantic map (figure 7b).
The expectation pattern, which is close to the representa-
tion for prey, is input to the semantic map and summed up
with the activity propagated through the associative con-
nections. As a result, the prey unit receives the strongest
activity and becomes selected.

The weights on the associative connections represent sta-
tistical likelihoods of the associations. A very frequently
active connection is much stronger than a rare connection.
For example, if most of the occurrences of CRICKEN in train-
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Figure 8: Sample semantic — physical associative con-

nections. In (a), the connections from the intermediate unit
between dog, livebat, predator and prey are shown. Possi-
ble output symbols include all animal names CHICKEN, SHEEP,
WOLF, LION, BAT and DOG. In (b), weak connections from doll
to nearby units might cause BALL to be output instead of DOLL
in noisy conditions.

ing DISLEX-1 would have been paired up with prey, the
CHICKEN unit would tend to activate the prey unit much
more than the food unit. By default, the prey meaning
would be selected, and stronger priming for food would be
required to override it.

DISLEX-1 simply selects and outputs the representation
stored at the maximally responding unit. The selection
could also be implemented with lateral inhibition, where
the map settles into a localized response around the maxi-
mally responding unit [20]. The settling times would most
likely correspond to the reaction times observed in humans
[23]. High-frequency words would have shorter reaction
times, and these times could be changed with priming.
With several equally likely interpretations, settling would
take longer.

7.3 Errors

The DISLEX architecture is well suited into modeling
dyslexic performance errors. If the system performance
is degraded e.g. by adding noise to the connections, two
types of input errors and two types of production errors
are observed.

In the input, a physical representation may be mapped
incorrectly on a nearby unit in the physical map. This cor-
responds to reading or hearing the word incorrectly. For
example, DOLL may be input as BALL (figure 5). The ac-
tivity in the physical map may also propagate incorrectly
to a nearby unit in the semantic map, in which case e.g.
CHICKEN would be understood semantically as livebat
(figure 7b).

Analogously in production, a semantic input representa-
tion can be classified incorrectly, and a word with a similar
but incorrect meaning is produced. For example, if the se-
mantic pattern for block is accidentally mapped on vase
(figure 6), the output reads VASE instead of, say, PAPERWT.
Or, the activity in the semantic map may be propagated
incorrectly to the physical map, and a word with a similar
surface form but different meaning is output. This means
generating BALL instead of DOLL (figure 8b).



Errors of this kind occur in noisy, stressful or overload
situations in normal human performance. They are also
documented in patients with deep dyslexia [4; 3]. 'The
observed visual and semantic paralexic errors can be ex-
plained by above mechanisms, giving strong support to the
physical/semantic feature map architecture.

If priming is used in the model, there is also a possibility
for another type of error, the Freudian slip. This occurs
when very strong semantic priming interferes with the out-
put function. For example, if do11 is input to the semantic
map, together with simultaneous priming for gear, the ac-
tivity is propagated through the associative connections
of both. As a result, the physical BALL might receive the
strongest activation, and would be output instead of DOLL.
The output symbols are similar, but the meaning of BALL
reveals the semantic priming.

8 Modeling aphasia

The DISLEX architecture is in good agreement with the
current theories of the human lexical system [3; 27; 26).
Many observed lexical deficits in acquired aphasia have
straightforward explanations in the model.

A common feature of the aphasic deficits is category
specificity. The patient may have difficulties only with
words belonging to a specific syntactic or semantic cate-
gory. In certain patients the lexical access to e.g. function
words is selectively impaired, in other cases the patient has
trouble with verbs [3; 4]. More specific impairments seem
to occur in semantic hierarchies. Some patients have trou-
ble with e.g. concrete words, or inanimate objects [28], or

even as specific classes as names of fruits and vegetables
[10].

Deficits of this kind can be explained by the topological
organization of the semantic memory. The semantic map
in DISLEX is hierarchically organized, and reflects both
the syntactic and semantic properties of the words. Local-
ized lesions to the map produce selective impairments, like
the above.

In some cases the impairments cover all modalities,
sometimes they are limited only to verbal input or out-
put, or even only to orthographic or phonological domain.
This suggests that the semantic memory, visual input, and
verbal input/output modalities are represented in separate
structures, strongly supporting the distributed DISLEX
architecture.

For example, some patients were unable to access the
specific meanings from verbally as well as visually (with
pictures) presented cues [26; 28]. This implies that the
semantic memory itself, i.e. the map, had been damaged.
Another patient could not give definitions for aurally pre-
sented names of living things such as “dolphin”, although
he was able to describe other objects. But when shown a
picture of a dolphin, he could name it and give an accurate
verbal description of it [16]. This suggests that the visual
pathway to the semantic memory, the semantic memory it-
self, and the verbal output were preserved, but the verbal
access to the semantic memory had been damaged. In an-
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other case, the patient was unable to name fruits and veg-
etables, although he was able to match their names with
pictures, and classify them correctly when their names
were presented aurally [10]. In other words, his semantic
memory and verbal input were preserved, and the verbal
output function was selectively impaired.

The impairment of semantic categories which is re-
stricted to a single input or output modality can be ex-
plained in DISLEX by severed pathways between physical
and semantic maps. The pathways are not single axons,
but consist of interneurons, which also exhibit map-like or-
ganization. Close to the semantic map, the organization is
semantic, close to the physical map it parallels the physical
map. If the pathway is severed close to the semantic map,
semantic impairment within this modality results.

The dissociation of the orthographic and phonological
modalities is also well-documented. Some patients have
deficits only in one of the input or output channels, or
different deficits in different channels [2]. For example,
a patient may have spelling difficulties exclusively in the
orthographic output domain [9; 18]. The types of errors
in visual and phonological dyslexia (section 7.3) further
indicate that the channels are organized according to the
physical forms of the words. The DISLEX model predicts
that it would be possible to lose access to specific types
of physical symbols, as a result of localized damage to a
physical map.

In the aphasic impairments, the high-frequency words
are often better preserved than rare words. This is also
predicted by the feature map organization. The most often
occurring words occupy larger areas in the map, making
them more robust against damage.

9 Discussion

The DISLEX model can be locally lesioned, and it displays
deficits similar to human patients. This suggests that the
model successfully represents some of the physical struc-
ture underlying the lexical system in the brain. The archi-
tecture is based on word maps, where different units are
selectively sensitive to different words in the data. Several
low-level sensory maps are known to exist in the central
nervous system, e.g. retinotopic maps, tonotopic maps,
and also tactile and motor maps. Recently it was found
that neurons in the hippocampus respond selectively to vi-
sually presented words [11]. These response characteristic
could be explained by a map-like structure.

DISLEX still finesses much of the fine neural structure,
and the mapping to the neuron level is nontrivial. The
units and connections in the model do not necessarily cor-
respond one-to-one to neurons and synapses, but rather,
to connected groups of neurons. For example, the weight
vectors in the maps are used both for input and output,
which is not a plausible model of the synaptic efficacies.
However, these two-way connections could be implemented
with tightly interconnected (or phase-locking) groups of
neurons in the brain.

The associative connections between two feature maps



learn a many-to-many mapping from one distributed repre-
sentation space to another, which is hard to do with other
neural network mechanisms such as backpropagation. In
the maps, several representations can be active at the same
time, whereas e.g. in an assembly-based representation all
the different alternatives would be combined into a single
average representation pattern [22].

DISLEX is primarily a model of single word process-
ing. It does not have special mechanisms for represent-
ing and processing phrasal structures and morphology.
There are two possible ways of doing this, and it seems
that both of them are involved. Common morphologi-
cal forms and phrases, such as nationalism or The Big
Apple could be represented like words, as single entries in
the physical and semantic maps. More complex phrases
and unusual, constructive forms, e.g. kick the bucket
or non-preemptive could be represented in the lexicon by
their constituents, and parsed/generated by a higher-level
language processing module.

10 Conclusion

The DISLEX architecture models the human lexical sys-
tem at the level of physical structures. The architecture
accounts for many observed dyslexic performance errors
and lexical deficits in acquired aphasia. DISLEX-1, the
Al implementation of the model, can be used as an in-
put/output filter for a natural language processing system,
which communicates with the external world with physical
symbol representations, but internally processes semantic
representations.

References

[1] Yigal Arens. CLUSTER: An Approach to Conteztual Lan-
guage Understanding. PhD thesis, Computer Science Di-
vision, University of California, Berkeley, 1986.

[2] A. Basso, A. Taborelli, and L. A. Vignolo. Dissociated dis-
orders of speaking and writing in aphasia. Journal of Neu-
rology, Neurosurgery and Psychiatry, 41:526-556, 1978.

[3] Alfonso Caramazza. Some aspects of language processing
revealed through the analysis of acquired aphasia: The
lexical system. Annual Reviews in Neuroscience, 11:395-
421, 1988.

[4] Max Coltheart, Karalyn Patterson, and John C. Marshall,
editors. Deep Dysleria. International Library of Psychol-
ogy, Routledge and Kegan Paul, 1980.

[5] Garrison W. Cottrell and Steven L. Small. A connectionist
scheme for modelling word sense disambiguation. Cogni-
tion and Brain Theory, 6(1):89-120, 1983.

[6] Michael G. Dyer. In-Depth Understanding: A Computer
Model of Integrated Processing for Narrative Comprehen-
sion. MIT Press, Cambridge, MA, 1983.

[7] Michael Gasser. A Connectionist Model of Sentence Gen-
eration tn a First and Second Language. PhD thesis, Com-
puter Science Department, UCLA, 1988.

[8] Helen Gigley. Process synchronization, lexical ambiguity
resolution and aphasia. In Steven L. Small, Garrison W.
Cottrell, and Michael K. Tanenhaus, editors, Lerical Am-
biguity Resolution, Morgan Kaufmann Publishers, Los Al-
tos, CA, 1988.

[9] R. A. Goodman and Alfonso Caramazza. Aspects of the
spelling process: Evidence from a case of acquired dys-
graphia. Language and Cognitive Processes, 1(4):263-296,
1986.

[10] John Hart, Rita Sloan Berndt, and Alfonso Caramazza.
Category-specific naming deficit following cerebral infarc-
tion. Nature, 316(1):439-440, August 1985.

[11] Gary Heit, Michael E. Smith, and Eric Halgren. Neural
encoding of individual words and faces by the human hip-
pocampus and amygdala. Nature, (333):773-775, 1989.

[12] Alan H. Kawamoto. Distributed representations of am-
biguous words and their resolution in a connectionist net-
work. In Steven L. Small, Garrison W. Cottrell, and
Michael K. Tanenhaus, editors, Lerical Ambiguity Reso-
lution, Morgan Kaufmann Publishers, 1988.

[13] Teuvo Kohonen. Self-Organization and Associative Mem-
ory, chapter 5. Springer-Verlag, Berlin; New York, 1984.

[14] Teuvo Kohonen. Self-organized formation of topologically
correct feature maps. Biological Cybernetics, (43):59-69,

1982.
[15] Geunbae Lee, Margot Flowers, and Michael G. Dyer.

Learning distributed representations of conceptual knowl-
edge ang their application to script-based story processing.
Connection Science, 1990. (In press).

[16] Rosaleen A. McCarthy and Elizabeth K. Warrington. Ev-
idence for modality-specific meaning systems in the brain.
Nature, 334(4):428-430, August 1988.

(17] James L. McClelland and Alan H. Kawamoto. Mech-
anisms of sentence processing: Assigning roles to con-

stituents. In James L. McClelland and David E. Rumel-
hart, editors, Parallel Distributed Processing: Ezplorations

in the Microstructure of Cognition. Volume II: Psycholog-
ical and Biological Models, MIT Press, 1986.

(18] G. Miceli, M. C. Silveri, and Alfonso Caramazza. Cog-
nitive analysis of a case of pure dysgraphia. Brain and
Language, 25:187-212, 1985.

[19] Risto Miikkulainen. A Neural Network Model of Script
Processing and Memory. Technical Report UCLA-AI-90-
03, Artificial Intelligence Laboratory, Computer Science
Department, University of California, Los Angeles, 1990.

[20] Risto Miikkulainen. Self-Organizing Process Based on Lat-
eral Inhibition and Weight Redistribution. Technical Re-
port UCLA-AI-87-16, Artificial Intelligence Laboratory,
Computer Science Department, UCLA, 1987.

(21] Risto Miikkulainen and Michael G. Dyer. Encoding in-
put/output representations in connectionist cognitive sys-
tems. In David S. Touretzky, Geoffrey E. Hinton, and
Terrence J. Sejnowski, editors, Proceedings of the 1988
Connectionist Models Summer School, Morgan Kaufmann
Publishers, 1989.

[22] Risto Miikkulainen and Michael G. Dyer. Natural lan-
guage processing with modular neural networks and dis-
tributed lexicon. 1989. Submitted to Cognitive Science.

[23] Greg B. Simpson and Curt Burgess. Activation and se-
lection processes in the recognition of ambiguous words.
Journal of Ezperimental Psychology: Human Perception
and Performance, 11(1):28-39, 1985.

[24] D. A. Swinney. Lexical access during sentence compre-
hension: (Re)consideration of context effects. Journal of
Verbal Learning and Verbal Behavior, 18:645-659, 1979.

[25) David L. Waltz and Jordan B. Pollack. Massively parallel
parsing: A strongly interactive model of natural language
interpretation. Cognitive Science, (9):51-74, 1985.

[26] Elizabeth K. Warrington. The selective impairment of se-
mantic memory. Quarterly Journal of Ezperimental Psy-
chology, 27:635-65T7, 1975.

[27] Elizabeth K. Warrington and Rosaleen A. McCarthy. Cat-
egories of knowledge: Further fractionations and an at-
tempted integration. Brain, 110:1273-1296, 1987.

[28] Elizabeth K. Warrington and T. Shallice. Category spe-
cific semantic impairments. Brain, 107:829-854, 1984.

[29] Uri Zernik. Strategies of Language Acquisition: Learning
Phrases from Ezamples in Contezt. PhD thesis, Computer
Science Department, University of California, Los Angeles,
1987. Technical Report UCLA-AI-87-1.

454



	cogsci_1990_447-454



