UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Can audio-visual integration, adaptive learning, and explicit feedback improve theperception of noisy speech?

Permalink

https://escholarship.org/uc/item/4t93s442

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors

deschamps, Stephanie Zhang, Hanna Armstrong, Blair

Publication Date

2020

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Can audio-visual integration, adaptive learning, and explicit feedback improve the perception of noisy speech?

stephanie deschamps

McGill University, Montreal, Quebec, Canada

Hanna Zhang

University of Toronto, Toronto, Ontario, Canada

Blair Armstrong

University of Toronto, Toronto, Ontario, Canada

Abstract

The perception of degraded speech input is essential in everyday life and is a major challenge in a variety of clinical settings, including for cochlear implant users. We investigated English speakers perception of noisy speech via an audiovisual lexical decision paradigm that modulated cross-modal integration, adaptive modulation of task difficulty, and explicit feedback on response accuracy. We then tested whether proficiency with this task transferred to the perception of noisy audio stimuli in a post test. Although we observed a processing advantage for bimodal stimuli during training, particularly in the adaptive training condition, we did not observe any benefit from these conditions in the post test, nor a benefit associated with providing explicit feedback. These results are discussed in relation to other studies of audio-visual integration and learning to perceive noisy speech, which may have observed different results due to more extensive training and different baseline proficiency levels.