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Abstract

Volatility tests are an alternative to regression for evaluating
the joint null hypothesis of market efficiency and risk neutrality.
A éomparison of the power of the two kinds of tests depends on what
the alternative hypothesis is taken to be. By considering tests
based on conditional wvelatility beounds, we show that if the alter-
native is that one could "beat the market™ using a linear combina-
tion of observable variables, then the regression tests are at least
as powerful as the conditional volatility tests. If the application
is to spot and forward markets for foreign exchange, then the mest
powerful conditional wvolatility test turns ocut to be equivalent to
the analogous regression test in terms of asymptotic power.
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I. Introduction

There are two ways to go about testing the joint hypothesis of efficiency
and risk neutrality in a particular financial market. First, regression tests
compute conditional first moments: they look for predictability, given some
information set. TFor example, in a forward or futures market (e.g.
commodities or foreign exchange), the deviation of the next period’s realized
spot rate from the current one-period forward rate should be uncorrelated with
variables known currently. An analogous condition holds in a longer-term
asset market (e.g. stocks or bonds): the deviation of the present discounted
value, assuming it is observable, of realized future returns (dividends or
coupon payments), from the current asset price should again be uncorrelated
with variables known currently. Second, the volatility tests introduced by
Shiller (1979) and LeRoy and Porter (1981) compute second moments; they
compare variances.l In a forward mérket this would mean comparing the
variance of the spot rate to the variance of the forward rate. The joint null
hypothesis of market efficiency and risk neutrality implies that the forward
rate is less volatile than the spot rate. In a longer term asset market it
would mean comparing the variance of the return with the variance of the asset
price. The hypothesis implies that the asset price is leszs volatile than the
return, in a specific sense.

A natural question to ask is which kind of tests, the regression tests or
the volatility tests, is more powerful, i.e. is better able to reject the
hypothesis In the event that it is false. As is often the case with questions
of power, the answer depends on what the alternative hypothesis is. In this

paper we take the altermative to be a particular failure of rational




expectations or market efficiency. The alternative hypothesis is that one
could "beat the market" on average, using a linear combination of data in a
particular Information set. We show that in all cases the regression tests
are at least as powerful against.this alternative as the volatility tests.

In the case of spot and forward rates a comparison of simple unconditional
variances tells us very little. Empirically, the unconditional sample
variance of the spot rate differs negligibly from the unconditional sample
variance of the forward rate. We argue in Section II that such considerations
suggest comparing the variances conditional on some particular information
set, which is analogous to what one does in regression tests., Thus, we
consider a class of variances bound tests that generalizes those implemented
by Mankiw, Romer, and Shapiro (1985), which entail cbmputing variance bounds
for perfect foresight prices around "naive" conditional means. The most
powerful such volatility test will compute a variance conditional on an
optimal linear combination of known variables. One might intuitively suspect
that the linear combination would be the same as the estimates one would get
from a regression on the same set of variables. It is perhaps more suprising
that this most powerful volatility test turns out to be equivalent to the
analogous regression test in terms of asymptotic power. That is, as the
number of observations becomes large, the voiatility test is no more and no
less likely to reject the variance inequality than the coefficients in the
regression test are to differ significantly from zero. We prove this central
result of the paper in Section III.

These results suggest that regression tests are often preferable to

veolatility tests. This is, however, not always the case. Three important




exceptions to our results stand out, First, our argument assumes that the
data are correctly aligned. If they are not, as Shiller (198la) points out,
regression tests can be less powerful than volatility tests. Second, like
Mankiw, Romer, and Shapiro (1985), we assume that the "perfect foresight"
price (here, the future spot exchange rate; in Mankiw, Romer, and Shapiro'’s
[1985] case, the perfect foresight stock price) is observable ex-post. Third,
volatility tests that examine the present discounted valuation relation (such
as Shillex's [1986b] and LeRoy and Porter’'s [1981] application to stock prices
and dividends) can have greater power than regression tests against certain
alternatives: for example, in the context of the term structure of interest
rates, Stock (1982) shows that volatility tests can be expected to have

greater power than regression tests when individuals prefer smooth consumption

streams,

II. YVolatility Bounds for Spot and Forward Rates
The rational expectations/efficient markets hypothesis is commonly stated

as

(1) S = F + ¢

t+1 t t+1? E

téerr = O

where Et(-) = E(-|It) is the expectation conditional on the information set
I_. This implies a simple variance inequality:

t

- -
(2) var St+1 var Ft + var ¢ + cov F_¢ var Ft

t+1 t e+l T




since cov F e,  ; = 0 under the null hypothesis.

One might be tempted to test this bound. However, a casual glance at the
sample variance for selected exchange rates (Table 1) indicates that the
sample variances corresponding to (2) are almost equal; although no formal
test is performed, it seems very unlikely that the inequality (2) would be
rejected.2 This finding will not be suprising to anyone who has ever seen a
plot of the spot and forward rate over time. The two fluctuate enormously,
but in tandem. There may be a finite component of the one-period change in
the spot rate that is correctly foreseen by the forward rate; but if so it is
dwarfed by the magnitude of the total change in the spot rate, and the very
similar magnitude of the change in the forward rate,

This observation suggests pursuing the course discussed in the
introduction, that is, developing a more powerful volatility test of market
efficiency. A reasonable class of tests to consider, which generalizes that
based on (2), looks at deviations around a mean conditional on an available
information set. This is analogous to regression tests, in which we compute
means conditional on particular information sets; the larger the information
set, the more powerful the test.3 Specifically, if Zt is in I_, then

t"

var($S ) = var(Ft-Zt+e

t+1" zt t+1)

- var(Ft-Zt), + var(et+l) + 2cov(Ft-Zt,et+1).

Under the null hypothesis (1), cov(Zt,et+l) = 0, This results in the bound:

(2") var(Ft-Zt) = var(St+1-Zt).




Table 1
Variances Around the Sample Mean

June 1973 - April 1982

gurrency ' Spot Rate Forward Rate
Canadian dollar .00566866 .00561098
French franc .00046331 . 00047980
German mark .00406331 .00431700
Japanese yen .00000036 .00000038

Pound sterling .0637202 .0632473




Table 2

Variances Around the Lagged Spot Rate

Spot Rate 2 Forward Rate 2
gurrency Mean (St+1 - St-l) Mean (Ft - St-l)
Canadian dollar .00028153 .00015118
French franc .00008562 .00004632
German mark .00046910 .00039569
Japanese yen 4.40 x 1078 2.20 x 1078

Pound sterling .00811008 .00376687




For the tests considered in the paper, we take this notion of examining
deviations about a nonconstant variable Z, one step further. TFrom the
familiar decomposition that mean square error is variance plus the square of
the bias, a reasonable generalization of (2') is to consider a mean square
error bound; that is, to consider a bound based on moments that in general

could be noncentral, rather than the simple central moments examined so far.

We now consider noncentral moments. Since St+1'zt - Ft'zt+et+l and EtFtet+1 =
2 2 2 2
Etztet+1 = (), we have Et(St+1-Zt) - Et(Ft—Zt+et+1) - Et(Ft-Zt) + Etet+l'

Thus under the null hypothesis,

(3) E(F,-Z)% = E(S,,;-2,)°
This inequality provides a basis for developing more exacting volatility tests
of (1), since it explicitly employs the assumption that Zt is in It.
Furthermore, the lnequality (2) is a special case of (3) in which

Zt = E(St+1) - E(Ft) is constant.

It is interesting to note that (3) can alsc be arrived at by an altogether
different line of reasoning than the motivation of increasing the power of the
test. An important cause for concern related to any statistical
implementation of the bound (23 falls under the general rubric of
nonstationarity. Nonstationarity comes in many flavors; two of the most
popular among econometricians are the existence of a time-dependent mean and

the nonstationarity associlated with a process having unit roots, so that the

variance of the process is infinite. These two variants of nonstationarity




seem particularly applicable to the foreign exchange data at hand. In the
first case, the strong trends exhibited by exchange rates of the 1970s could
be modeled as deterministic, although they may logically stem from
nondeterministic factors such as inflation. In the second case Meese and
Rogoff (1983) demonstrate that spot exchange rates cannot be modeled better
than by a random walk. Even if the spot rate process in reality has finite
variance -- which we formally assume -- this supggests difficulty in estimating
variances of the process in any finite sample. Both of these concerns suggest
deriving bounds with conditional means and computing sample moments around
means that vary over the sample period; in other words, the bound (3) can be
seen as a simple way to defend against the perils of nonstationarity.4

As an example of a volatility bound implied by (3} which also seems to be a
reasonable correction for this possible nonstationarity, let Z_ be the lagged
spot rate. Thus, assuming lagged spot rates are in the informatiomn set, (1)

implies that

(%) E(F-S, )% S E(S4p-5,.)°
The samﬁle variances assoclated with this bound are presented in Table 2. For
this data, the bound is satisfied in all cases considered, so no formal test
of significance is necessary to see that market efficiency as embodied in (4)
cannot be rejected.

Can we devise a still more exacting volatility test of market efficiency

than (4)? Indeed we can. If we define the test statistic




R(Z) = 1 - E(St+1-2t)2/E(Ft—Zt)2,
then (3) can be rewritten as
(3" R(Z) = 0.

A value of the test statistic significantly above zero would constitute a
rejection of the null hypothesis: forward rates would be too volatile relative
to spot rates. Given the nature of the null hypothesis, a reasonable choice

for Z, {(which plays the role of the conditional mean of S__,) is that

t+l
Zt - Ft + ﬂXt, where Xt is a mean-zero, nonconstant, univariate series assumed

to belong to I Since the bound (3') holds for all scalar B, we should

£
select the value of B for which a test based on (3') is as likely as possible

to reject the null hypothesis. Letting

R(Z) = 1 - $(S.,q-202/0(F 207

this suggests testing (3’) using the statistic based on the solution to

(3) max R{F+g8X).
B

* ) o .
Letting A8 be the value of B which solves (5), a somewhat surprising result
* - . . .

obtains: B is the estimated coefficient in a regression of X against the

N *
prediction error and R(F+8 X) is the regression R2, That is,




(6) R(z) = 52,

where ﬁxe - thet+1/(zxi25§+l)1/2 is the sample correlation coefficient.>
The proof of (6) is easy: since R(F#AX) = 1 - T(e_,,-BK)°/B°TK2, to

solve (5) it is merely necessary to solve:

min Z(ﬂ'let+l-Xt)2

B

%

which has the solution 8 . Ye, 1% /262 . Substituting this statistic
t+17t T+l

into the definition of R(F+8X) yields the result. It thus appears that the
most discerning volatility test based on a statistic of the form R(F+8X) is
equivalent to the correlation coefficient, which arises from considering
regression tests! Of course, this argument is not based on formal power
considerations. However, as is shown in the next section, among this class of
volatility tests the "most discerning” test is in fact asymptotically most

powerful against the (local) alternative that X, and ¢ are correlated.

t+l
Intuitively, the question whether the correlation cocefficient is significantly
different from zero is the same as the question whether the regression

coefficient is significantly different from zero.6
III. Formal Statement of the Result

In this section we examine the power of the volatility tests of the

previous section against the alternative that ¢ and X, are correlated. The

t+1

proof uses asymptotic statistical arguments. Specifically, it compares

-10-




asymptotie approximations to the power functions of test statistics based on
R(F+8X), where 3 is permitted to be any function of data as long as B-l,
when standardized, has a limiting distribution with all its mass on the real
line. Since the power of a test based on the statistic (6) will go to one

when the covariance between X and ¢ is bounded away from zero, we adopt

t+l
the conventional asymptotic approach of comsidering a local alternative under
which this covariance tends towards zero as the sample size tends towards
infinity.

The proof itself has two parts. First, the class of random variables B'l
that need to be considered is narrowed down to those which tend to zero in
probability under the local alternétive. Second, it is possible-to appeal to
the results of the previous section to show that, of the wvariables with this
property, the solution to the maximization problem (4) does indeed yield the
asymptotically most powerful test.

For the statement of the result, it is convenient to reparameterize the
problem. Let the local alternative be aéf) - T1/26, where T is the number
of observations and § is some nonzero, finite fixed number, Let ¢ = B-l.

Let & be the set of all random variables ¢ which are functions of the data
(possibly degenerate -- that is, possibly a constant) and are such that
Tl/2($-¢) has a limiting distribution on the real line. In making this
assumption we are assuming that both X, ad S, are stationary in the sense of
not having a unit root in their autoregressive representations. Also, let ¢*
be that slement of & such that the one-sided test of the restriction (3) has

the greatest local asymptotic power of all the tests of level « based on

ﬁ(F+$-1X). let ¥ = (¢’'e¢/T ¢'X/T X'X/T)' and let u = (og aX? ai)', where

-11-




¢' denotes the transpose of the column vector formed from the observations of
€1, €9, ey Ep_q- Also, assume that Tl/z(Y-p) has a limiting normal

distribution with positive definite covariance matrix =. We now have:

Proposition.
. *-
The level a test based on R(F+¢ lX) is asymptotically equivalent to the
level « test based on the t-statistic of the slope coefficient in the OLS

*
regression of ¢ on Xt. Furthermore, ¢ = X'e/fec’¢.

t+1
Proof
First we use the "delta method" to find the limiting distribution of the

standardized random variable based on ﬁ(F+¢'1

X). Let ¢ = plim ¢ and let
a=0R/0Y|y_, 3.4 Also, let r(4)=plim(R(F+$ 'X)), which will exist by the
assumption that Y when standardized will have a limiting distribution and

because R(+) is continuous in Z. Then
(7) /2 R-1) 3 N0, 7 ($)?)

where r(é)z-a’Ea and ¢=plim é. Since a is continuous in ¢, 12(¢) is
continuous in ¢.

Since the null hypothesis is that B<0, we wish to find the statistic of the
form (7) that has the greatest chance of R exceeding zero under the local
alternative. One approach to this problem is to compute r(¢)2 directly for
many statistics ¢, and to compare the limiting behavior under the local

alternative. However, this would be difficult, since the candidates & must

-12-




be specified in advance.
‘This problem can be sidestepped by noting that a necessary condition for a
test of the form (7) to have nonnegligible power ig that r = 0; otherwise

P(R>0)-0 as T+ by definition of convergence in probability, Thus we can

restrict our attention to those ¢ which result in Tl/zﬁ having a limit which

is bounded in probability away from -e=.

It is easy to see that in fact Tl/zﬁ must be bounded in probability (be

Op(l)). By definition,

1/2

(8) T/28 = 1121 (%6t e-25 X4 X) /X' X)

o 12
B e'X/T .. €e'e/T
.23 — (5 — .
X'X/T X'%/T

By assumption ¢ B ¢, X'X/T B ai and ¢'¢/T B az. Also, under the local

alternative, ts'X/Tl/2 has 2 limiting law on the line. Thus, by Slutsky’s

1/2

Theorem, T/ “R is bounded above in probability for all ¢, so r < 0. Thus we

a

can restrict attention to ¢ such that r = 0, i.e. such that Tl/zR = Op(l).

2~

But, by (8), this will occur only if T/2} = 0,(1) which in turn implies that

$ = 0,

The result follows from this requirement, since it implies that, for all
yielding nonnegligible power against the local alternative,
Tl/zﬁ ! N(O,T(O)z) under the null hypothesis. Furthermore, since r{¢) is
continuous, the variance of the limiting distribution of Tl/2§ under the

local alternative will be r(O)2 for all contenders . Thus the problem

-13-




reduces to finding the function ¢ such that R is maximal for all §
satisfying Tl/25 - Op(l). Since ¢ = ¢'X/e'¢ was shown to solve this problem
among all functions of the data, and since under the local alternative

7172

¢'%/c’e = 0 (1), ve have ¢ = 'R/,

The asymptotic equivalence to the regression test follows from noting that,
under the null hypothesis, the t-statistic for the slope coefficient of the
OLS regression Qatisfies T-lt2 - (e'X)z/(X’X)(u’u), where u = e-%X, with
¥ = e’X/X'X. However, under the local alternative,(e’'¢-u’'u)/T converges
to zero in probability. Thus T'lt2 is asymptotically equivalent to
2. = R(rgIn)

IV. Conclusion

In this paper we examined a second moment bound based on the fact that the
variance of a conditional expectation {(the forward rate) is no more than the
unconditional variance of the random wvariable (the spot rate). We find that
volatility tests of this bound will do no. better than conventional regression
tests of market efficiency. At best, when the volatility test is appropriately

modified to be conditional on available information, it does as well as

regression tests with the same set of information.

-14-




FOOTNOTES

1. Other papers on volatility tests include Flavin (1982), Grossman and
Shiller (1981), LeRoy and LaCivita (1981), Michener (1982), Shiller (1981a,
1981b), and Singleton (1980). Geweke (1980) also examines the behavior of
volatility tests against an alternative of this type. He demonstrates that
there are regions of the parameter space in which regression tests will reject
but wolatility tests will not. Our results differ from his in two ways.
First, we consider an expanded class of wvolatility bounds (3). Second, we
demonstrate that there is a conditional wvelatility test with the same
asymptotic power as the corresponding regression test against this particular
alternative, In fact, his conclusion that regression tests dominate
unconditional velatility tests is implied by the Proposition in Section III.

2. Our forward rates are 30-day forward. Both spot and forward rates are bid
rates, 10 a.m., last day of the month, in dollars per national currency,
obtained originally from D.R.I. Flood (1981, p. 220) comments on the "striking
fact™ that spot and forward exchange rates "have about the same degree of
volatility." However, his computations use a measure of the conditional
variance somewhat different from ours.

3. In the terminology of Fama (1970), the larger the information set, the
"stronger form" is the test. For one of many such regression studies of the
forward exchange market, and for references to others, see Frankel (1980).

4. Meese and Singleton (1980) point out the perils of performing naive
comparisons of unconditional sample variances of exchange rates when the
theoretical variances may be iInfinite.

5. The regression R? is, of course, a measure of the variability of the
dependent variable which is explained by the right-hand variables in the
regression. In this sense, a test of the joint significance of the
explanatory variables in a regression in a "volatility test". This
interpretation of regression tests as indications of excess variability (or as
variability of a predictable risk premium) is noted by Startz (1982). This
paper makes precise the link between the class of volatility tests based on
(3') on the one hand, and the particular "volatility tests" implemented by
linear regressions on the other.

6. The results of this paper hold for the case that X_ is one-dimensional.

If instead X  is k-dimensional and § is a k-vector, then a result analogous tec
that of this section holds: letting 8 be the vector which maximizes R(F+X3),
it can be shown that R(F+X8) = R?, where R? is the ratio of the explained to
the total sum of squares from the ordinary least squares regression of ¢
X,.. Thus our results generalize in a straightforward way to the multi-
dimensional case. However, for simplicity, we limit the discussion in the
paper to the one-dimensional case.

e+1 O
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