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Abstract 

The substitution of digital representations for analog images provides access to methods for digital storage and 

transmission and enables the use of a variety of digital image processing techniques, including enhancement and 
computer assisted screening and diagnosis. Lossy compression can further improve the efficiency of transmission and 
storage and can facilitate subsequent image processing. Both digitization (or digital acquisition) and lossy compression 
alter an image from its traditional form, and hence it becomes important that any such alteration be shown to improve or 
at least not damage the utility of the image in a screening or diagnostic application. One approach to demonstrating in 
a quantifiable manner that a specific image mode is at least equal to another is by clinical experiment simulating ordinary 
practice and suitable statistical analysis. In this paper we describe a general protocol for performing such a verification 
and present preliminary results of a specific experiment designed to show that 12 bpp digital mammograms compressed 
in a lossy fashion to 0.015 bpp using an embedded wavelet coding scheme result in no significant differences from the 
analog or digital originals. 0 1997 Elsevier Science B.V. 

Zusammenfassung 

Die Ersetzung analoger Bilder durch digitale Darstellungen erlaubt eine digitale Speicherung und obertragung sowie 
den Einsatz einer Vielzahl von Methoden der digitalen Bildverarbeitung, z.B. zur Verbesserung der Bildqualitlt und zum 
computerunterstiitzten Screening bzw. zur computerunterstiitzten Diagnose. Eine verlustbehaftete Kompression kann 
die Effizienz der obertragung oder Speicherung weiter steigern und eine nachfolgende Bildverarbeitung erleichtern. 

Sowohl die Digitalisierung (oder digitale Aufnahme) als such die verlustbehaftete Kompression Pndern ein Bild beziiglich 
seiner urspriinglichen Form. Deswegen ist es wichtig, zu zeigen daR eine solche Veranderung die Ntitzlichkeit des 
Bildes bei Screening- oder diagnostischen Anwendungen steigert oder wenigstens nicht beeintrachtigt. Eine Moglichkeit, 
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auf quantifizierbare Weise zu zeigen, da13 eine bestimmte Bilddarstellung einer anderen zumindest lquivalent ist, ist 
ein die gewiihnliche Praxis simulierendes klinisches Experiment und eine geeignete statistische Analyse. In diesem Artikel 
beschreiben wir ein allgemeines Protokoll fiir die Durchfiihrung einer solchen Verifikation. Wir prgsentieren weiters 
vorlgufige Resultate eines spezifischen Experiments, welches zeigt, dal3 die verlustbehaftete Kompression digitaler 
Mammogramme von 12 bpp auf 0.15 bpp mittels einer eingebetteten Wavelet-Codierung zu keinen signifikanten 
Unterschieden von den analogen oder digitalen Originalen fiihrt. 0 1997 Elsevier Science B.V. 

R&sum& 

La substitution d’images analogiques par des reprCsentations numCriques donne accts g des mCthodes de stockage et 
de transmission numkriques, et permet l’utilisation d’une grande variCtC de techniques de traitement d’images, incluant le 
rehaussement, les tests de dCpistage assist6 ordinateur et le diagnostic. La compression avec pertes peut encore amCliorer 
l’efficacitk de la transmission et du stockage, et peut faciliter le traitement ultCrieur des images. La numirisation et la 
compression avec pertes alttrant toutes deux une image par rapport $ sa forme traditionnelle, il devient important de 
montrer qu’une telle alttration amkliore, ou du moins ne rtduit pas, I’utilitC de l’image dans un screening ou une 
application de diagnostic. Une approche pour dt?montrer d’une man&e quantifiable qu’un mode d’image specifique est 
au moins Cgal 5 un autre est l’exptrimentation clinique simulant la pratique ordinaire jointe $ une analyse statistique 
adapt&e. Dans cet article, nous dttcrivons un protocole g&n&al pour effectuer une telle vCrification et prtsentons les 
rCsultats prCliminaires d’une expkrience faite pour montrer que des mamogrammes numCrisis g 12 bpp et comprimts 
avec pertes $ 0.15 bpp d l’aide d’une technique de codage par ondelettes incluses ne presentent pas de diffkrences 
significatives par rapport aux versions originales analogique ou numCrique. 0 1997 Elsevier Science B.V. 

Keywords: Lossy compression; Image quality; Digital mammography 

1. Introduction 

X-ray mammography is the most sensitive tech- 
nique for detecting breast cancer [2], with a re- 
ported sensitivity of k-95% for detecting small 
lesions. Most non-invasive ductal carcinomas, or 
DCIS, are characterized by tiny non-palpable calci- 
fications detected at screening mammography 
[16,25,46]. Traditional mammography is essen- 
tially analog photography using X-rays in place of 
light and analog film for display. For a variety of 
reasons, digital technologies are likely to change 
and eventually replace most of the existing analog 
methods. The digital format is required for access 
to modern digital storage, transmission, and digital 
computer processing. Hardcopy films use valuable 
hospital space and are prone to loss and damage, 
which undermine the ability of radiologists to carry 
out comparisons with subsequent studies. Images 
in analog format are not easily distributed to mul- 
tiple sites, either in-hospital or off-site. Currently 
only 30% of women get regular mammograms, and 
the storage problems will be compounded if this 
number increases with better education or wider 
insurance coverage. Digital image processing pro- 

vides the possibilities for easy image retrieval, effi- 
cient storage, rapid image transmission for off-site 
diagnoses, and the maintenance of large banks for 
purposes of teaching and research. It allows filter- 
ing, enhancement, classification, and combining 
images obtained from different modalities, all of 
which can assist screening, diagnosis, research, and 
treatment. Retrospective studies of interval cancers 
(carcinomas detected in the time intervals between 
mammographic screenings which were interpreted 
as normal) show that observer error can comprise 
up to 10% of such cancers. That is to say, carci- 
nomas present on the screening mammograms 
were missed by the radiologist because of fatigue, 
misinterpretation, distraction, obscuration by 
a dense breast, or other reasons [lS, 24,321. To 
this end, schemes for computer-aided diagnosis 
(CAD) may assist the radiologist in the detection 
of clustered micro-calcifications and masses 
[lo, 27,28, 37, 561. Virtually all existing CAD 
schemes require images in digital format. 

To take advantage of digital technologies, either 
analog signals such as X-rays must be converted 
into a digital format, or the signals must be directly 
acquired in digital form. Digitization of an analog 
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signal causes a loss of information and hence a pos- 
sible deterioration of the signal. In addition, with 
the increasing accuracy and resolution of analog- 
to-digital converters, the quantities of digital in- 
formation produced can overwhelm available re- 
sources. A typical digitized mammogram with 
4500 x 3200 picture elements (pixels) with 50 pm 
spot size and 12 bit per pixel depth requires ap- 
proximately 38 Mbytes of data. Complete studies 
can easily require unacceptably long transmission 
times through crowded digital networks and can 
cause serious data management problems in local 
disk storage. Advances in technologies for trans- 
mission and storage do not solve the problem. In 
recent years these improvements on the Internet 
have been swamped by the growing volume of data. 
Even with an ISDN line, a single X-ray can take 
several minutes for transmission. Compression is 
desirable and often essential for efficiency of storage 
and communication. The overall goal is to repres- 
ent an image with the smallest possible number of 
bits, or to achieve the best possible fidelity for an 
available communication or storage bit rate capa- 
city. 

A digital compression system typically consists 
of a signal decomposition such as Fourier or 
wavelet, a quantization operation on the coeffi- 
cients, and finally lossless or entropy coding such as 
Huffman or arithmetic coding. Decompression re- 
verses the above process; although if quantization 
is used, the system will be lossy because quantiz- 
ation is only approximately reversible. Theory and 
experience argue that good compression can be 
designed by focusing separately on each individual 
operation, though simpler implementations may be 
obtained by combining some operations. Lossless 
coding is well understood, readily available [47], 
and typically yields compression ratios of 2: 1 to 
3: 1 on still frame greyscale medical images. This 
modest compression is often inadequate. Lossy 
coding does not permit perfect reconstruction of 
the original image but can provide excellent quality 
at a fraction of the bit rate [9,26,29,31,40]. The 
bit rate of a compression system is the average 
number of bits produced by the encoder for each 
image pixel, If the original image has 12 bits per 
pixel (bpp) and the compression algorithm has rate 
R bpp, then the compression ratio is 12: R. Com- 

pression ratios must be interpreted with care as 
they depend crucially on the image type, original 
bit rate, sampling density, how much background is 
in the image, and how much coding of the back- 
ground figures into the calculation. 

Early studies of lossy compressed medical images 
performed compression using variations on the 
standard discrete cosine transform (DCT) coding 
algorithm combined with scalar quantization and 
loseless (typically Huffmann and run-length) cod- 
ing. These are variations of the international stan- 
dard Joint Photographic Experts Group (JPEG) 
compression algorithm [36,51]. The standard per- 
mits a user-specified quantization table that de- 
scribes the uniform quantizers used to quantize the 
transform coefficients. Although the standard sug- 
gests specific values, performance can be improved 
by customizing these tables for a specific application. 
The American College of Radiology-National Elec- 
trical Manufacturers Association (ACR-NEMA) 
standard [6] has not yet firmly recommended 
a specific compression scheme, but transform cod- 
ing methods are suggested. These algorithms are 
well understood and have been tuned to provide 
good performance in many applications. 

More recent studies of efficient lossy image com- 
pression algorithms have used subband or wavelet 
decompositions combined with scalar or vector 
quantization [3,30, 38, 39,41,42,49,55]. These 
signal decompositions provide several improve- 
ments, including better concentration of energy, 
better decorrelation for a wider class of signals, 
better basis functions for images than the smoothly 
oscillating sinusoids of Fourier analysis because of 
diminished Gibbs and edge effects and better locali- 
zation in both time and frequency. Because of their 
sliding-block operation using 2-dimensional linear 
filters, they do not produce blocking artifacts (al- 
though other artifacts arise at low rates). 

Since lossy coding can degrade the quality of an 
image, making precise the notion of ‘excellent qual- 
ity’ of a compressed or processed image is a serious 
issue. Analog mammography remains the gold 
standard against which all other imaging modali- 
ties can be judged. In a medical application it does 
not suffice for an image to simply ‘look good’ or to 
have a high signal-to-noise ratio (SNR), nor should 
one necessarily require that original and processed 
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images be visually indistinguishable. Rather it must 
be convincingly demonstrated that essential in- 
formation has not been lost and that the processed 
image is at least of equal utility for diagnosis or 
screening as the original. Image quality is typically 
quantified objectively by average distortion or 
SNR, and subjectively by statistical analyses of 
viewers’ scores on quality (e.g., analysis of variance 
(ANOVA) and receiver operating characteristic 
(ROC) curves). Examples of such approaches may 
be found in [4, 7, 20, 29, 31, 40, 531. 

ROC analysis is the dominant technique for 
evaluating the suitability of radiologic techniques 
for real applications [23,33,34,48]. Its origins are 
in the theory of signal detection: a filtered version of 
signal plus Gaussian noise is sampled and com- 
pared to a threshold. If the threshold is exceeded, 
then the signal is said to be there. As the threshold 
varies, the probability of erroneously declaring 
a signal absent and the probability of erroneously 
declaring a signal there when it is not vary too, and 
in opposite directions. The plotted curve is a sum- 
mary of the tradeoff in these two quantities; more 
precisely, it is plot of true positive rate or sensitivity 
against false positive rate, the complement of speci- 
jicity. Summary statistics, such as the area under 
the curve, can be used to summarize overall quality. 
In typical implementations, radiologists or other 
users are asked to assign integer confidence ratings 
to their diagnoses, and thresholds in these ratings 
are used in computing the curves. 

We have argued in our previously cited refer- 
ences (summarized in Section 2) that traditional 
ROC analysis violates several reasonable guide- 
lines for designing experiments to measure quality 
and utility in medical images because of the use of 
artificial confidence ratings as thresholds in a bi- 
nary detection problem and because of the statist- 
ical assumptions of Gaussian or Poisson behavior. 
In addition, traditional ROC analysis is not well 
suited to the study of the accuracy of detection and 
location when a variety of abnormalities are pos- 
sible. Although extensions of ROC designed to 
handle location and multiple lesions have been 
proposed [S, 451, they inherit many of the more 
fundamental problems of the approach and are not 
widely used. Traditional ROC analysis also does 
not come equipped to distinguish among the 

various possible notions of ‘ground truth’ or ‘gold 
standard’ in clinical experiments. 

During the past decade our group at Stanford 
University has worked to develop an alternative 
approach to evaluating the diagnostic accuracy of 
lossy compressed medical images (or any digitally 
processed medical images) that mimics ordinary 
clinical practice as closely as is reasonably possible, 
does not require special training or artificial subjec- 
tive evaluations, applies naturally to the detection 
of multiple abnormalities and to measurement 
tasks, and requires no assumptions of Gaussian 
behavior of crucial data. While some departures 
from ordinary practice are necessary and some 
additional information may be gathered because it 
is of potential interest, the essential goal remains 
the imitation of ordinary practice and the drawing 
of diagnostic conclusions based only on diagnostic 
simulations. The methods are developed in detail 
for CT and MR images [12-15,351. Extensions to 
digital mammography were described in [21,22], 
and preliminary results for a pilot study are de- 
scribed in [l] (a reprint of which can be found at the 
World Wide Web site [44]). This paper expands on 
the description, discussion, and data analysis of the 
results of [l]. In particular, we here emphasize the 
lossy compression performance using both tradi- 
tional engineering methods of image quality and 
the diagnostic accuracy measurement approach. 

2. Methods 

2.1. Study design 

The general methods used are extensions to 
digital mammography and elaborations of tech- 
niques developed for CT and MR images by our 
group and reported in [12-15,351, where all de- 
tails regarding the data, compression code design, 
clinical simulation protocols, and statistical ana- 
lyses may be found. We here describe extensions 
[l, 21,221 of these methods to digital mammo- 
graphy. Further results are available in the Final 
Project Report (available at [44]) and other papers in 
progress. The design of the proposed mammogram 
evaluation study incorporates elements from both the 
CT and MR studies, as well as many new aspects. 
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The following general principles for protocol de- 

sign have evolved from our earlier work. Although 
they may appear self-evident in hindsight, they pro- 
vide a useful context for evaluating protocols for 
judging image quality in medical imaging applica- 
tions and they represent an accumulation of over 

eight years of discussion and experience among 
electrical engineers, statisticians, radiologists, and 

medical physicists. The protocol should simulate 
ordinary clinical practice as closely as possible. In 
particular, participating radiologists (judges, ob- 

servers) should perform in a manner that mimics 
their ordinary practice as closely as reasonably pos- 
sible given the constraints of good experimental 
design. The studies should require little or no 
special training of their clinical participants. The 

clinical studies include examples of images contain- 
ing the ,full range of possible findings, all but ex- 
tremely rare conditions. The findings should be 
reportable using a subset of the American College of 
Radiology (ACR) Standardized Lexicon. Any stand- 
ardized nomenclature would do. Statistical ana- 
lyses of the trial outcomes should be based on 
assumptions as to the outcomes and sources of error 
that are faithful to the clinical scenario and tasks. 
‘Gold standards’ for evaluation of equivalence or 
superiority of algorithms must be clearly defined and 
consistent with experimental hypotheses. Careful ex- 
perimental design should eliminate or minimize any 
sources of bias in the data that are due to differences 
between the experimental situation and ordinary 
clinical practice, e.g., learning effects that might 
accrue if a similar image is seen using separate 
imaging modalities. The number of patients should 
be sufficient to ensure satisfactory size and power 
for the principal statistical tests of interest. 

The ROC assumptions and approach generally 
differ from clinical practice. Digitization of an ana- 
log image and lossy compression are not equivalent 
to the addition of signal-independent noise. Radi- 
ologists are not threshold detectors. Using ROC 
curves to compare computer aided diagnosis 
(CAD) schemes is appropriate because such 

schemes almost always depend on a threshold, al- 
beit in a possibly complicated way. No hard evid- 
ence exists, however, to support the contention that 
human radiologists behave in this way and, even if 
they did, that the ROC method of asking them for 

confidence ratings to interpret as thresholds in fact 
measures whatever internal threshold they might 
have. We believe this to be a fundamental flaw in 
using ROC curves to draw conclusions about qual- 
ity comparisons among radiologists or among im- 

ages read by radiologists. Because of the need for 
confidence ratings, the traditional ROC approach 
requires special training to familiarize a radiologist 

with the rating system. On the statistical side, im- 

age data are not well modeled as known signals in 
Gaussian noise, and hence methods that rely on 
Gaussian assumptions are suspect. This is parti- 
cularly true when Gaussian approximations are 
invoked to compute statistical size and power on 
a data set clearly too small to justify such approxi- 
mations. Modern computer-intensive statistical 
sample reuse techniques can help get around the 

failures of Gaussian assumptions, but this does not 
address the more fundamental issues. 

Traditional ROC methods are not location spe- 
cific, and if an actual lesion is missed, a diagnosis 
can be considered correct if an incorrect lesion is 
spotted elsewhere. Extensions of ROC have been 
extended to address this [45], but the method is 
cumbersome and inherits the remaining faults of 
ROC. For clinical studies that involve other than 

binary tasks, specificity does not make sense be- 
cause it has no natural or sensible denominator as 
it is not possible to say how many abnormalities 
are absent. This can be done for a truly binary 
diagnostic task for if the image is normal then 
exactly one abnormality is absent. Previous studies 
were able to use ROC analysis by focusing on 
detection tasks which were either truly binary or 
could be rendered binary. Extensions of ROC such 
as FROC to permit consideration of multiple ab- 
normalities have been developed [S], but these still 
require the use of confidence ratings as well as 
Gaussian or Poisson assumptions on the data In 
our view they attempt to fit the method (ROC 
analysis) to clinical practice in an artificial way, 
rather than trying to develop more natural 

methods for measuring how well radiologists per- 
form ordinary clinical functions on competing im- 
age modalities. 

Traditional ROC analysis has no natural exten- 
sion to problems of estimation or regression in- 
stead of detection. For example, measurement 
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plays an important role in some diagnostic applica- 
tions and there is no ROC analysis for measure- 
ment error. 

Lastly, traditional ROC applications have often 
been lax in clarifying the ‘gold standard’ used to 
determine when decisions are ‘correct’, when in fact 
a variety of gold standards are possible, each with 
its own uses and shortcomings. We focus on three 
definitions of diagnostic truth as a basis of com- 
parison for the diagnoses on all lossy reproductions 
of that image. These are: 

Personal: Each judge’s readings on an original 
analog image are used as the gold standard for the 
readings of that same judge on the digitized version 
of that same image, 

Independent: formed by the agreement of the 
members of an independent expert panel, and 

Separate: produced by the results of further 
imaging studies (including ultrasound, spot and 
magnification mammogram studies), surgical bi- 
opsy, and autopsy. 

The first two gold standards are usually estab- 
lished using the analog original films. As a result, 
they are extremely biased in favor of the established 
modality, i.e., the original analog film. Thus statist- 
ical analysis arguing that a new modality is equal to 
or better than the established modality will be 
conservative since the original modality is used to 
established ‘ground truth’. The personal gold stan- 
dard is in fact hopelessly biased in favor of the 
analog films. It is impossible for the personal gold 
standard to be used to show that digital images are 
better than analog ones. If there is any component 
of noise in the diagnostic decision, the digital im- 
ages cannot even be found equal to analog. The 
personal gold standard is often useful, however, for 
giving some indication of the diagnostic consist- 
ency of an individual judge. The independent gold 
standard is also biased in favor of the analog im- 
ages, but not hopelessly so, as it is at least possible 
for the readings of an individual judge on either the 
digital or analog images to differ from the analog 
gold standard provided by the independent panel. 
If the independent panel cannot agree on a film, the 
film could be removed from the study; but this 
would forfeit potentially valuable information re- 
garding difficult images. By suitable gathering of 
data, one can instead define several possible inde- 

Table 1 
Data test set: 57 studies, 4 views per study 

6 
6 
5 
6 
3 
3 
4 
4 
2 
3 

Benign mass 
Benign calcifications 
Malignant mass 
Malignant calcifications 
Malignant combination of mass and calcifications 
Benign combination of mass and calcifications 
Breast edema 
Malignant architectural distortion 
Malignant focal asymmetry 
Benign asymmetric density 

15 Normals 

pendent gold standards and report the statistics 
with respect to each. In particular, a cautious gold 
standard declares a finding if any of the panel do so. 
An alternative is that the panel designates a chair to 
make a final decision when there is disagreement. 

Whenever a believable separate gold standard is 
available, it provides a more fair gold standard 
against which both old (analog) and new (digital, 
compressed digital) images can be compared. In 
future work we plan to use histologic data and 
long-term followup to establish a separate gold 
standard. 

Our image database was generated in the De- 
partment of Radiology of the University of Virginia 
School of Medicine and is summarized in Table 1. 
The studies were digitized using a Lumisys Lumis- 
can 150 at 12 bpp with a spot size of 50 pm. Good 
quality directly acquired digital mammograms 
were not yet available when the experiment was 
begun, so digitized mammograms were used. The 
films were printed using a Kodak 2180 X-ray film 
printer, a 79 urn 12 bit greyscale printer which 
writes with a laser diode of 680 nm bandwidth. The 
57 studies included a variety of normal images and 
images containing benign and malignant objects. 
We have corroborative biopsy information on at 
least 31 of the test subjects, which will later be used 
for a separate gold standard. 

2.2. Experimental protocol 

Images were viewed on hardcopy film on an 

alternator by judges in a manner that simulates 



S.M. Perlmutter et al. / Signal Processing 59 (1997) 189-210 195 

ordinary screening and diagnostic practice as close- 
ly as possible, although patient histories and other 
image modalities were not provided. Two views 
were provided of each breast (CC and MLO), so 
four views were seen simultaneously for each pa- 
tient. Each of the judges viewed all the images in an 
appropriately randomized order over the course of 
nine sessions. Two sessions were held every other 
week, with a week off in between. A clear overly was 
provided for the judge to mark on the image with- 
out leaving a visible trace. For each image, the 
judge either indicated that the image was normal, 
or, if something was detected, had an assistant fill 
out the Observer Form (see Appendix A) using the 
American College of Radiology (ACR) Standard- 
ized Lexicon by circling the appropriate answers or 
filling in blanks as directed. The instructions for 
assistants and radiologists along with suggestions 
for prompting and a CGI web data entry form may 
be found at the project Web site [44]. The judges 
used a grease pencil to circle the detected item. The 
instructions to the judges specified that ellipses 
drawn around clusters should include all microcal- 
cifications seen, as if making a recommendation for 
surgery, and outlines drawn around masses should 
include the main tumor as if grading for clinical 
staging, without including the spicules (if any) that 
extend outward from the mass. This corresponds to 
what is done in clinical practice except for the 
requirement that the markings be made on copies. 
The judges were allowed to use a magnifying glass 
to examine the films. 

Although the judging form is not standard (there 
is no standard form for evaluating mammograms), 
the ACR Lexicon is used to report findings, and 
hence the judging requires no special training. The 
reported findings permit subsequent analysis of the 
quality of an image in the context of its true use, 
finding and describing anomalies and using them to 
assess and manage patients. 

To confirm that each radiologists identifies and 
judges a specific finding, the location of each lesion 
is confirmed both on the clear overlay and the 
judging form. Many of these lesions were judged as 
‘A’ (assessment incomplete), since it is often the 
practice of radiologists to obtain additional views 
in two distinct scenarios: (1) to confirm or exclude 
the presence of a finding, that is, a finding that may 

or may not represent a true lesion, or (2) to further 
characterize a true lesion, that is, to say a lesion 
clearly exists but is incompletely evaluated. 

The judging form allows for two meanings of the 
‘A’ code. If the judge believes that the findings is 
a possible lesion, this is indicated by answering ‘yes’ 
to the question ‘are you uncertain if the finding 
exists? Otherwise, if the lesion is definite, the judges 
should give their best management decision based 
on the standard two-view mammogram. 

The initial question requesting a subjective rat- 
ing of diagnostic utility on a scale of l-5 is intended 
for a separate evaluation of the general subjective 
opinion of the radiologists of the images. The de- 
gree of suspicion registered in the Management 
portion also provides a subjective rating, but this 
one is geared towards the strength of the opinion of 
the reader regarding the cause of the management 
decision. It is desirable that obviously malignant 
lesions in a gold standard should also be obviously 
malignant in the alternative method. 

2.3. Statistical analysis 

Although long term analysis focuses on lesion- 
by-lesion accuracy of detection, the preliminary 
results reported here focus on patient management, 
the decisions that are made based on the radi- 
ologists’ reading of the image. Management is a key 
issue in digital mammography. There is concern 
that artifacts could be introduced, leading to an 
increase in false positives and hence in unnecessary 
biopsies. The management categories we emphasize 
are the following four, given in order of increasing 
seriousness: 

RTS incidental, negative, or benign with return 
to screening, 

F/U probably benign but requiring six month 
follow-up, 

C/B call back for more information, additional 
assessment needed, 

BX Immediate biopsy. 
These categories are formed by combining catego- 
ries from the basic form of Appendix A: RTS is 
any study that had assessment = 1 or 2, F/U is 
assessment = 3, C/B is assessment = indetermi- 
nate/incomplete with best guess either unsure it 
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Table 2 
Agreement 2 x 2 table 

II/I R W 

R N(L 1) NU, 2) 

W NG 1)) NC? 2) 

exists, 2 or 3, and BX is assessment = indetermi- 
nate/incomplete with best guess either 4L, 4M, 4H 
or 5, or assessment = 4L, 4M, 4H or 5. 

We also consider the binarization of these four 
categories into two groups: normal and not normal. 
But there is controversy as to where the F/U cat- 
egory belongs, so we make its placement optional 
with either group. The point is to see if lossy com- 
pression makes any difference to the fundamental 
decision made in screening: does the patient return 
to ordinary screening as normal, or is there suspi- 
cion of a problem and hence the demand for further 
work? 

Truth is determined by agreement with a gold 
standard. The raw results are plotted as a collection 
of 2 x 2 tables, one of each category or group of 
categories of interest and for each radiologist. 
A typical table is shown in Table 2. 

The columns correspond to image modality or 
method I and the rows to II; I could be original 
analog and II original digitized, or I could be orig- 
inal digitized and II compressed digitized, ‘R’ and 
‘W’ correspond to ‘right’ (agreement with gold 
standard) and ‘wrong’ (disagreement with gold 
standard). The particular statistics could be, for 
example, the decision of ‘normal’, i.e., return to ordi- 
nary screening. Regardless of statistic, the goal is to 
quantify the degree, if any, to which differences exist. 

One way to quantify the existence of statistically 
significant differences is by an exact McNemar test, 
which is based on the following argument. If there 
are N(1,2) entries in the (1,2) place and N(2, 1) 
in the (2, 1) place, and the technologies are equal, 
then the conditional distribution of N(1,2) given 
N(1,2) + N(2, 1) is binomial with parameters 
J/(1,2) + N(2, 1) and 0.5; that is, 

P(N(1,2) = klN(1,2) + N(2, 1) = n) = ; 
0 

2-“, 

k=O,l, . . . . n. 

This is the conditional distribution under the null 
hypothesis that the two modalities are equivalent. 
The extent to which N(1,2) differs from 
(N(1,2) + N(2, 1))/2 is the extent to which the tech- 
nologies were found to be different in the quality of 
performance with their use. Let B(n, l/2) denote 
a binomial random variable with these parameters. 
Then a statistically significant difference at level 
0.05, say, will be detected if the observed k is so 
unlikely under the binomial distribution that a 
hypothesis test with size 0.05 would reject the 
null hypothesis if k were viewed. Thus if 
Pr(JB(n, l/2) - n/2( 2 IN(1,2) - n/21) < 0.05, then 
we declare a statistically significant difference has 
occurred. 

Whether and how to agglomerate the multiple 
tables is an issue. Generally speaking, we stratify 
the data so that any test statistics we apply can be 
assumed to have sampling distributions that we 
could defend in practice. It is always interesting to 
simply pool the data within a radiologist across all 
gold standard values, though it is really an analysis 
of the off-diagonal entries of such a table that is of 
primary interest. If we look at such a 4 x 4 table in 
advance of deciding upon which entry to focus, 
then we must contend with problems of multiple 
testing, which would lower the power of our vari- 
ous tests. Pooling the data within gold standard 
values but across radiologists is problematical be- 
cause our radiologists are patently different in their 
clinical performances. This is consistent with what 
we found in an earlier study of MR and the 
measurement of the sizes of vessels in the chest 
[13,35-J. Thus, even if one does agglomerate, there 
is the issue of how. 

The counts can also be used to estimate a variety 
of interesting statistics, including sensitivity, predic- 
tive value positive (PVP), and specificity with re- 
spect to the personal and independent gold stan- 
dards. An ROC-style curve can be produced by 
plotting the (sensitivity, specificity) pairs for the 
management decision for the levels of suspicion. 
Sample reuse methods (rather than common Gaus- 
sian assumptions) could be applied to provide con- 
fidence regions around the sample points [19]. 

A Wilcoxon signed rank test [43] can be em- 
ployed to assess whether the subjective scores given 
to the analog originals, the uncompressed digitals, 
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and the compressed images differ significantly from 
each other. With the Wilcoxon signed rank test, the 
significance of the difference between the bit rates is 
obtained by comparing a standardized value of the 
Wilcoxon statistic to two-tailed standard Gaussian 
probabilities. (The distribution of this standardiz- 
ation Wilcoxon is nearly Gaussian if the null hy- 
pothesis is true for samples as small as 20.) Our 
previous criticism of Gaussian assumptions are not 
relevant when they are applied to statistics for 
which the Central Limit Theorem is applicable. 

Several other approaches are planned, including 
estimating sensitivity, PVP, and, when appropriate, 
specificity of detection and management statistics, 
estimated by counts with bootstrapped confidence 
regions for each modality [S, 111. Simple means 
and variances for the management statistics are 
presented in Section 3. 

2.4. Learning &Cects 

The radiologists saw each study at least 5 times 
during the course of the entire experiment. These 
5 versions were the analog originals, the digitized 
versions, and the 3 wavelet compressed versions. 
Some images would be seen more than 5 times, as 
there were JPEG compressed images, and there 
were also some repeated images, included in order 
to be able to directly measure intra-observer 
variability. We therefore needed to ascertain 
whether learning effects were significant. Learning 
and fatigue are both processes that might change 
the score of an image depending upon when it was 
seen. 

In this work, we looked for whether learning 
effects were present in the management outcomes 
using what is known in statistics as a ‘runs’ test 
[17]. We illustrate the method with an example. 
Suppose a study was seen exactly five times. The 
management outcomes take on four possible values 
(RTS, F/U, C/B, BX). Suppose that for a particular 
study and radiologist, the observed outcomes were 
BX three times and C/B two times. If there were no 
learning. then all possible “words” of length five 
with three BX’s and two C/B’s should be equally 
likely. There are 10 possible words that have three 
BX’s and two C/B’s These words have the out- 

comes ordered by increasing session number; that 
is, in the chronological order in which they were 
produced. For these 10 words, we can count the 
number of times that a management outcome made 
on one version of a study differs from that made on 
the immediately previous version of the study. The 
number ranges from one (e.g., BX BX BX C/B C/B) 
to four (BX C/B BX C/B BX). The expected number 
of changes in management decision is 2.4, and the 
variance is 0.84. If the radiologists had learned 
from previous films, one would expect that there 
would be fewer changes of management prescrip- 
tion than would be seen by chance. This is a condi- 
tional runs test, which is to say that we are studying 
the conditional permutation distribution of the 
runs. 

We assume that these ‘sequence data’ are inde- 
pendent across studies for the fixed radiologist, 
since examining films for one patient probably does 
not help in evaluating a different patient. So we can 
pool the studies by summing over studies the ob- 
served values of the number of changes, subtracting 
the summed (conditional) expected value, and 
dividing this by the square root of the sum of the 
(conditional variances). The attained significance 
level (p-value) of the resultant 2 value is the prob- 
ability that a standard Gaussian is dZ. 

Those studies for which the management advice 
never changes have an observed number of changes 
0. Such studies are not informative with regard to 
learning, since it is impossible to say whether un- 
wavering management advice is the result of perfect 
learning that occurs with the very first version seen. 
or whether it is the result of the obvious alternative, 
that the study in question was clearly and indepen- 
dently the same each time, and the radiologist sim- 
ply interpreted it the same way each time. Such 
studies, then, do not contribute in any way to the 
computation of the statistic. The JPEG versions 
and the repeated images, which are ignored in this 
analysis, are believed to make this analysis and 
p-values actually conservative. If no learning had 
occurred, then the additional versions make no 
difference. However, if learning did occur, then the 
additional versions (and additional learning) 
should mean that there would be even fewer man- 
agement changes among the 5 versions that figure 
in this analysis. 
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2.5. Compression algorithms 

We use a compression algorithm of the sub- 
band/pyramid/wavelet coding class. These codes 
typically decompose the image using an octave 
subband, critically sample pyramid, or complete 
wavelet transformation, and then code the resulting 
transform coefficients in an efficient way. The de- 
composition is typically produced by an analysis 
filter bank followed by downsampling. Any or all of 
the resulting subbands can be further input to an 
analysis filter bank and downsampling operation, 
for as many stages as desired. 

The most efficient wavelet coding techniques ex- 
ploit both the spatial and frequency localization of 
wavelets. The idea is to group coefficients of com- 
parable significance across scales by spatial loca- 
tion in bands oriented in the same direction. The 
early approach of Lewis and Knowles [30] was 
extended by Shapiro in his landmark paper on 
embedded zerotree wavelet coding [42] and the 
best performing schemes are descendents or vari- 
ations on this theme. The approach provides codes 
with excellent rate-distortion tradeoffs, modest im- 
plementation complexity, and an embedded bit 
stream, which makes the codes useful for applica- 
tions where scalability or progressive coding are 
important. Scalability implies there is a ‘successive 
approximation’ property in the bit stream. As the 
decoder gets more bits from the encoder, the de- 
coder can decode a progressively better reconstruc- 
tion of the image. This feature is particularly at- 
tractive for a number of applications, especially 
those where one wishes to view an image as soon as 
bits begin to arrive, and where the image improves 
as further bits accumulate. With scalable coding, 
a single encoder can provide a variety of rates to 
customers with different channels or display capa- 
bilities. Since images can be reconstructed to in- 
creasing quality as additional bits arrive, it pro- 
vides a natural means of adjusting to changing 
channel capacities and a more effective means of 
using a relatively slow channel. 

After experimenting with a variety of algorithms, 
we chose Said and Pearlman’s variation [39] of 
Shapiro’s EZW algorithm because of its good per- 
formance and the availability of working software 
for 12 bpp originals. We use the default filters (the 

9-7 biorthogonal filters) in the software compres- 
sion package of Said and Pearlman [39]. These 
filters are considered, for example, in Antonini [3] 
and Villasenor et al. [SO]. A description and dis- 
cussion of the algorithm along with access to the 
software may be found at the World Wide Web site 
[38]. The algorithm applies a succession of thre- 
sholds to each coefficient, each half the size of the 
preceding. Coefficients with magnitude smaller 
than the threshold are deemed insignificant and 
are effectively quantized to zero. Bits are sent 
only to indicate the location of pixels that fall 
above the thresholds, and they are sent in an order 
determined by a subset partitioning algorithm that 
takes advantage of the correlation across scales 
of significance according to spatial location and 
orientation. Once a pixel is deemed significant, 
further bits sent regarding that pixel are devoted 
to refining the accuracy of the actual location by 
bit plane transmission. The bits are sent so as to 
first describe the largest coefficients, which con- 
tribute the most to the reconstruction accuracy. 
In this way the bit stream can be stopped at any 
point with a good reproduction for the given num- 
ber of bits. The system incorporates the adaptive 
arithmetic coding algorithm considered in Witten 
et al. [54]. 

For our experiment additional compression was 
achieved by a simple segmentation of the image 
using a thresholding rule. This segmented the im- 
age into a rectangular portion containing the breast 
- the region of interest or ROI - and a background 
portion containing the dark area and any alpha- 
numeric data. The background/label portion of the 
image was coded using the same algorithm, but at 
only 0.07 bpp, resulting in higher distortion there. 
We here report SNRs and bit rates for both the full 
image and for the ROI. 

The image test set was compressed in this man- 
ner to three bit rates: 1.75,0.4 and 0.15 bpp, where 
the bit rates refer to rates in the ROI. The average 
bit rates for the full image thus depended on the size 
of the ROI. An example of the Said-Pearlman 
algorithm with a 12 bpp original and 0.15 bpp re- 
production is given in Fig. 1. For comparison 
purposes we also compressed a few images using 
a perceptually optimized JPEG [52], however 
those results are not included in this paper. 
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Fig. 1. Original image (left) and compressed image at 0.15 bpp in the ROI (right). 

3. Results and discussion Table 3 
Average SNR: ROI, wavelet coding 

The clinical experiment took place at Stanford 
University Hospital during spring 1996. The gold 
standard was established by E. Sickles, M.D., Pro- 
fessor of Radiology, University of California at San 
Francisco, and Chief of Radiology, Mt. Zion Hos- 
pital, and D. Ikeda, Assistant Professor and Chief, 
Breast Imaging Section, Department of Radiology, 
Stanford University, an independent panel of ex- 
pert radiogists, who evaluated the test cases and 
then collaborated to reach agreement. The majority 
of the detected items were seen by both radiologists. 
Any findings seen by only one radiologist were 
included. The other type of discrepancy resolved 
was the class of the detected lesions. Since the same 
abnormality may be classified differently, the two 
radiologists were asked to agree on a class. 

3. I. SNR versus bit rate 

The SNRs are summarized in Tables 3 and 4. 
The SNR definition is 10 log,, E/MSE, where 
MSE denotes the average squared error and E de- 
notes the energy of the digital original pixels. The 

SNR 

View 

0.15 bpp 0.4 bpp 1.75 bpp 

ROI ROI ROI 

Left CC 45.93 dB 47.55 dB 55.30 dB 
Right CC 45.93 dB 47.47 dB 55.40 dB 
Left ML0 46.65 dB 48.49 dB 56.53 dB 
Right ML0 46.61 dB 48.35 dB 56.46 dB 
Left side (ML0 and CC) 46.29 dB 48.02 dB 55.92 dB 
Right side (ML0 and CC) 46.27 dB 47.91 dB 55.93 dB 
Overall 46.28 dB 47.97 dB 55.92 dB 

overall averages are reported as well as the aver- 
ages for the specific image types or views (left and 
right breast, CC and ML0 view). This demon- 
strates the variability among various image types as 
well as the overall performance. Two sets of SNRs 
and bit rates are reported: ROI only and full image. 
For the ROI SNR the rates are identical and cor- 
respond to the nominal rate of the code used in the 
ROT. For the full images the rates vary since the 
ROI code is used in one portion of the image and 
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Table 4 
Average SNR: full image, wavelet coding 

SNR, bit rate 

View 0.15 bpp ROI 0.4 bpp ROI 1.75 bpp ROI 

Left CC 
Right CC 
Left ML0 
Right ML0 
Left side (ML0 and CC) 
Right side (ML0 and CC) 
Overall 

44.30 dB, 0.11 bpp 45.03 dB, 0.24 bpp 46.44 dB, 0.91 bpp 
44.53 dB, 0.11 bpp 45.21 dB, 0.22 bpp 46.88 dB, 0.85 bpp 
44.91 dB, 0.11 bpp 45.13 dB, 0.25 bpp 47.28 dB, 1.00 bpp 
45.22 dB, 0.11 bpp 46.06 dB, 0.25 bpp 41.96 dB, 0.96 bpp 
44.60 dB, 0.11 bpp 45.38 dB, 0.24 bpp 46.89 dB, 0.96 bpp 
44.88 dB, 0.11 bpp 45.63 dB, 0.24 bpp 47.41 dB, 0.92 bpp 
44.74 dB, 0.11 bpp 45.51 dB, 0.24 bpp 41.14 dB, 0.93 bpp 

&,_ ,...,__..: . . . . . . . . . . . _.........; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._.... . . . . . . . . . . . ?_ 
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rate in bpp 

Fig. 2. Scatter plot of ROI SNR: wavelet coding. 

much lower rate code is used in the remaining 
background and the average depends on the size of 
the ROI, which varies among the images. A scatter 
plot of the ROI SNRs is presented in Fig. 2. 

It should be emphasized that this is the SNR 
comparing the digital original with the lossy com- 
pressed versions. 

3.2. Management dlyerences 

The focus of the statistical analysis of this paper 
is the screening and management of patients 
and how it is affected by analog versus digital 
and lossy compressed digital. We also consider 
the less important, but still informative, issue of 
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Table 5 

Agreement 2 x 2 tables for radiologist A 

II,‘1 R W II/I R W II,‘1 R W II/l R W 

R 7 2 R 0 0 R 6 4 R 14 2 

W I 2 w 0 1 w 3 5 W 2 8 

RTS F/U C/B BX 

(A) Analog versus digital original 

II/I R W 

R 6 3 

w 1 2 
RTS 

II/I R W 

R 6 3 

w 0 3 

RTS 

II/I R W II/I R W 

R 0 0 R 8 2 

w 0 1 w 2 6 

F/U C/B 

(B) Analog versus digital lossy compressed: 1.75 bpp 

II/I R W II/I R W 

R 0 0 R 6 4 

w 0 1 w 2 6 

F/U C/B 

(C) Analog versus digital lossy compressed: 0.4 bpp 

II,‘1 R W 

R 14 2 

W I 9 

BX 

- 

II;1 R W 

R 12 3 

W 4 6 

BX 

II/I R W 

R 4 4 

W 0 3 

RTS 

II/I R W II/I R W 

R 0 0 R 3 7 

w 0 1 w 4 4 

F/U CiB 

(D) Analog versus digital lossy compressed: 0.15 bpp 

II/I R W 

R II 4 

W 4 6 

BX 

subjective perceived quality as a function of bit 
rate. 

In all, there were 57 studies that figure in what we 
report. According to the gold standard, the respect- 
ive numbers of studies of each of the four types 
management types RTS, F/U, C/B and BX were 
13,1,18 and 25, respectively. For each of the four 
possible outcomes, the analog original is compared 
to each of four technologies: digitized from analog 
original, and wavelet compressed to three different 
levels of compression (1.75, 0.4 and 0.15 bpp). 
So the McNemar 2 x 2 statistics based on the 
generic table of Table 2 for assessing differences 
between technologies were computed 48 times, 
16 per radiologist, for each competing image 
modality (original digital and the three lossy 
compressed bit rates). For example, the 2 x 2 tables 

for a single radiologist (A) comparing analog to 
each of the other four modalities are shown in 
Table 5. For none of these tables for any radiologist 
was the exact binomial attained significant level 
(p-value) 0.05 or less. For our study and for this 
analysis, there is nothing to choose in terms of 
being ‘better’ among the analog original, its 
digitized version, and three levels of compression, 
one rather extreme. We admit freely that this lim- 
ited study had insufficient power to permit us to 
detect small differences in management. The larger 
the putative difference, the better our power to have 
detected it. 

Table 6 summarizes the performance of each 
radiologist on the analog versus uncompressed 
digital and lossy compressed digital. In all cases, 
columns are ‘digital’ and rows ‘analog’. Table 6(A) 
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Table 6 
Radiologist agreement tables 

SM. Perlmutter et al. / Signal Processing 59 (1997) 189-210 

RTS F/U C/B BX RTS F/U C/B BX RTS F/U C/B BX 

RTS 11 0 5 1 RTS 4 0 0 0 RTS 8 0 6 1 
F/U 0 0 0 0 F/U 0 0 0 1 F/U 0 0 0 0 
C/B 3 0 11 7 C/B 3 0 3 3 C/B 1 0 10 1 
BX 2 0 2 15 BX 1 0 7 35 BX 0 0 7 23 

A: Analog versus digital 

RTS F/U C/B BX RTS F/U C/B BX RTS F/U C/B BX 

RTS 11 0 6 0 RTS 2 1 0 1 RTS 11 0 4 0 
F/U 0 0 0 0 F/U 0 1 0 0 F/U 0 0 0 0 
C/B 2 0 15 4 C/B 3 1 3 2 C/B 1 1 8 2 
BX 1 0 2 16 BX 1 0 4 37 BX 1 0 5 24 

B: Analog versus lossy compressed digital: 1.75 bpp 

RTS F/U C/B BX RTS F/U C/B BX RTS F/U C/B BX 

RTS 9 0 6 2 RTS 1 0 2 1 RTS 7 0 7 1 
F/U 0 0 0 0 F/U 0 0 0 1 F/U 0 0 0 0 
C/B 1 0 10 10 C/B 2 0 2 5 C/B 2 0 8 2 
BX 1 0 2 15 BX 2 0 5 36 BX 1 0 4 25 

C: Analog versus lossy compressed digital: 0.4 bpp 

RTS F/U C/B BX RTS F/U C/B BX RTS F/U C/B BX 

RTS 8 0 7 1 RTS 3 1 0 0 RTS 7 0 7 0 
F/U 0 0 0 0 F/U 0 0 0 1 F/U 0 0 0 0 
C/B 3 1 9 8 C/B 3 0 3 2 C/B 0 0 9 3 
BX 1 0 6 11 BX 1 1 5 35 BX 0 0 9 20 

D: Analog versus lossy compressed digital: 0.15 bpp 

Radiologist A Radiologist B Radiologist C 

treats analog versus original digital and Tables 
6(B)-(D) treat analog versus lossy compressed 
digital at bit rates of 1.75,0.4 and 0.15 bpp, respec- 
tively. Statements which follow are with respect to 
the independent gold standard regarding which 
some information is implicit in Table 5. Consider as 
an example the analog versus digital comparison of 
radiologist A. Radiologist A made 20 ‘mistakes’ of 
57 studies from analog, and 24 from original digital 
studies. The most frequent mistake, eight for analog 
and seven for digital, was classifying a gold stan- 
dard ‘biopsy’ as ‘additional assessment’. Radi- 
ologist B made 28 ‘mistakes’ from analog studies, 

and 24 from digital. In both cases, the most fre- 
quent mistake was to ‘biopsy’ what should, by the 
gold standard, have been ‘additional assessment’. 
There were 15 such mistakes with analog and 13 
with digital. Radiologist C made 20 ‘mistakes’ from 
analog studies and 17 from digital. With the former, 
the most frequent mistake occurred eight times 
when ‘biopsy’ was judged when ‘additional assess- 
ment’ was correct. With digital, the most frequent 
mistake occurred six times when ‘additional assess- 
ment’ was judged when ‘biopsy’ was correct. On 
this basis, we cannot say that analog and digital are 
different beyond chance. 
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Both Tables 5 and 6 suggest that radiologists 
differ substantially from each other. However, com- 
paring radiologists is not a goal of this study; we are 
interested in what happens when a particular radi- 
ologist views the same image under different 
modalities. The difference among radiologists mere- 
ly make it more difficult to evaluate the difference 
among analog, digital, and lossy compressed images, 
since extreme care must be taken when doing any 
pooling or averaging of results across radiologists. 

The runs test for learning did not find any learn- 
ing effect at the 5% significance level for these 
management outcomes. For each of the 3 judges, 
approximately half of the studies were not included 
in the computation of the statistic, since the man- 
agement decision was unchanging. For the 
3 judges, the numbers of studies retained in the 
computation were 28, 28 and 27. The Z values 
obtained were -0.12, -0.86 and -0.22, with 
corresponding p-value of 0.452, 0.195 and 0.413. 
Further testing for learning will include an analysis 
of the detected findings. 

3.3. Management sensitivity and specijcity 

The means and variances of the sensitivity 
and specificity and the mean of the PVP of 

Table 7 

Sensitivity, specificity and PVP 

the management decisions with respect to the 
independent gold standard are summarized in 
Table 7. 

Level 1 refers to the analog images, level 2 to 
the uncompressed digital, and levels 3,4 and 5 refer 
to those images where the breast section was 
compressed to 0.15, 0.4 and 1.75 bpp, respectively 
(and where the label was compressed to 0.07 bpp). 
In this table, sensitivity, specificity and PVP are 
defined relative to the independent gold standard. 
The table does not show any obvious trends for 
these parameters as a function of bit rate. Sensitiv- 
ity is the ratio of the number of cases a judge 
calls ‘positive’ to the number of cases actually 
‘positive’ according to the independent gold stan- 
dard. Here ‘positive’ is defined as the union of 
categories F/U, C/B and BX. A ‘negative’ study is 
RTS. Sensitivity and specificity can be thought of as 
binomial issues, and so if the sensitivity is p, then 
the variance associated with that sensitivity is 
~(1 - p). The standard deviation calculation for 
PVP is somewhat more complicated and is not 
included here; because PVP is the ratio of two 
random quantities (even given the gold standard), 
the variance calculation requires approximate stat- 
istical methods as in analyses by ‘propagation of 
errors’. 

Level Judge 

Sensitivity 

mean stdev 

Specificity 

mean stdev PVP mean 

2 

2 
2 

3 

3 
3 
4 
4 
4 
5 
5 
5 

A 0.826 0.379 0.692 0.462 0.905 

B 1 .ooo 0.000 0.308 0.462 0.836 

C 0.913 0.282 0.846 0.361 0.955 

A 0.886 0.317 0.769 0.42 1 0.929 

B 0.955 0.208 0.385 0.487 0.840 

c 0.932 0.252 0.462 0.499 0.854 

A 0.814 0.389 0.333 0.471 0.814 

B 0.953 0.211 0.417 0.493 0.854 

C 0.977 0.151 0.500 0.500 0.875 

A 0.860 0.347 0.615 0.487 0.881 

B 0.955 0.208 0.154 0.361 0.792 

c 0.977 0.149 0.615 0.487 0.896 

A 0.841 0.366 0.538 0.499 0.860 

B 0.953 0.211 0.23 1 0.42 1 0.804 

C 0.932 0.252 0.769 0.421 0.932 
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Table 8 

Subjective scores 

Level 

1 

1 

1 

2 

2 

2 

3 

3 

3 

4 

4 

4 

5 

5 

5 

1 

2 
3 
4 

5 

Judge Mean Stdev 

A 3.90 0.97 

B 4.52 0.75 

C 4.59 0.79 

A 3.91 0.41 

B 3.85 0.53 

C 3.67 0.65 

A 3.82 0.39 

B 4.27 0.93 

C 3.49 0.64 

A 3.91 0.39 

B 3.93 0.55 

C 3.82 0.50 

A 3.92 0.42 

B 3.66 0.57 

C 3.82 0.55 

Judges pooled 

pooled 4.33 0.89 

pooled 3.81 0.55 
pooled 3.86 0.76 
pooled 3.88 0.49 

pooled 3.80 0.57 

3.4. Subjective ratings versus bit rate 

In the previous sections, objective measure of 
the quality of the compressed images were analysed 
via the SNR values and patient management deci- 
sions on the digitally compressed images. It is 
also informative to examine the effects of com- 
pression on subjective opinions. Table 8 provides 
the means and standard deviations for the 
subjective scores for each radiologist separately 
and for the radiologists pooled. The distribu- 
tion of these subjective scores are displayed in 
Figs. 3-5. 

Fig. 3 displays the frequency for each of the 
subjective scores obtained with the analog 
images. Fig. 4 displays the frequency for each 
of the subjective scores obtained with the un- 
compressed digital images (judges pooled), and 
Fig. 5 displays the frequency for each of the subjec- 
tive scores obtained with the digital images at 
Level 3. 

Using the Wilcoxon signed rank test, the results 
were as follows: 

160- 

140- 

120- 

1 

3 3.5 
subjective score 

Fig. 3. Subjective scores: analog images. 
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Fig. 4. Subjective scores: original digital images. 

Judge A: All levels were significantly different 
from each other except the digital to 0.04 bpp, 
digital to 1.75 bpp, and 0.4 to 1.75 bpp. 

Judge B: The only differences that were signifi- 
cant were 0.15 bpp to 0.4 bpp and 0.15 bpp to 
digital. 

Judge C: All differences significant. 
All judges pooled: All differences were significant 

except digital to 0.15 bpp, digital to 1.75 bpp, 
0.15 to 0.4 bpp, and 0.15 to 1.75 bpp. 

Comparing differences from the independent gold 
standard, for Judge A all were significant except 
digital uncompressed, for Judge B all were signifi- 
cant, and for Judge C all were significant except 
1.75 bpp. When the judges were pooled, all differ- 
ences were significant. 

There were many statistically significant differ- 
ences in subjective ratings between the analog and 
the various digital modalities, but some of these 
may have been a result of the different printing 

processes used to create the original analog films 
and the films printed from digital files. The films 
were clearly different in size and in background 
intensity. The judges in particular expressed dis- 
satifaction with the fact that the background in the 
digitally produced films was not as dark as that of 
the photographic films, even though this ideally 
had nothing to do with their diagnostic and man- 
agement decisions. 

4. Comments 

The goal of this project was to demonstrate 
a protocol for evaluating quality in various image 
modalities. The particular example was to show that 
digital mammograms and lossy compressed digital 
mammograms using an embedded wavelet code at 
0.15 bpp yields image quality with no statistically 
significant differences from the analog original, as 
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Fig. 5. Subjective scores: lossy compressed digital images at 0.15 bpp. 

measured by an appropriate clinical experiment 
and statistical analyses that are germane to the 
question. We have argued that perceived subjective 
quality does differ significantly, but our suspicion is 
that much of this difference is based on portions of 
the image that are not important to screening or 
diagnosis and that this problem can be corrected 
with better background coding and film printing. 
All of the differences due to digitization and lossy 
compression were small with respect to the differ- 
ences among individual radiologists, which sug- 
gests that great care must be taken with any statist- 
ical analysis which attempts to draw conclusions 
based on the pooling of radiologists. 

To our knowledge, this is the largest data-gather- 
ing experiment of this kind conducted, and the only 
experiment of this kind to be analyzed by exact 
methods without Gaussian assumptions or artifi- 
cial confidence ratings. The study can only be con- 
sidered a pilot study, however, as the number of 
patients is too small to provide good statistical site 

and power for the tests considered We have con- 
sidered elsewhere the issue of the number of pa- 
tients required for a definitive demonstration of the 
essential equivalence of lossy compressed digital 
mammograms and analog originals in screening 
applications [l, 211, but even this issue must await 
the gathering of larger data sets to be resolved. Our 
current estimates are that a test set of 520 patient 
studies and 12 radiologists, each radiologist read- 
ing half the studies, would suffice. 
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Appendix A 

ID number ~ Session number ~ Case number _ 

Reader initials __- 
Mammograms were of (Left Right Both) breast(s). 
.._..._.............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Subjective rating for diagnostic quality: 

(bad) 1-5 (good): 
Left CC Left ML0 Right CC Right ML0 

If any rating is <4 the problem is: 
(1) sharpness (2) contrast (3) position (4) breast compression 
(5) noise (6) artifact (7) penetration 

Recommend repeat? Yes No 

Breast Density: Left 1 2 3 4 Right 1 2 3 4 

(1) almost entirely fat (2) scattered fibroglandular densities 
(3) heterogeneously dense (4) extremely dense 

Findings: Yes No 
Note: If there are NO findings, the assessment is: (1) (N) negative-return to screening 

Findings(detection): Dominant Incidential, focal Incidential, diffuse 

Individual finding side: Left Right Both/Bilateral Finding # of -.-_- 

Finding type: (possible, definite) 

(1) mass 
(2) clustered calcifications 
(3) mass containing calcifications 
(4) mass with surrounding talcs 
(5) spiculated mass 
(6) ill defined mass 

(7) architectural distortion 
(8) solitary dilated duct 
(9) asymmetric breast tissue 

(10) focal asymmetric density 
(11) breast edema 

(12) multiple scattered and occasionally (20) fibroadenoma 

clustered benign appearing talcs (21) calcified fibroadenoma 

(13) occasional scattered benign appearing talcs (22) bascular talcs 
(14) multiple benign appearing masses (23) dermakin talcs 

(15) skin lesion (24) post biopsy scar 

(16) milk of calcium (25) reduction mammoplasty 

(17) plasa cell mastitis/secretory talcs (26) implants 

(18) oil cysts (27) benign mass 

(19) lymph node 
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(28) other 

Location: 
(1) UOQ (5) 12:00 (9) outer/lateral (13) whole breast (17) both breasts/bilateral 

(2) UIQ (6) 3:00 (10) inner/medial (14) central 

(3) LOQ (7) 6: 00 (11) upper/cranial (15) axillary tail 
(4) LIQ (8) 9:00 (12) lower/inferior (16) retroareolar 

View(s) in which finding is seen: CC ML0 CC and ML0 

Associated findings include: (p = possible, d = definite) 
(1) breast edema (P, d) (8) architectural distortion 
(2) skin retraction (P, d) (9) talcs associated with mass 
(3) nipple retraction (P, 4 (10) multiple similar masses 
(4) skin thickening (P, d) (11) dilated veins 

(5) lymphadenopathy (P, d) (12) asymmetric density 

(6) trabecnlar thickening (p, d) (13) none 

(7) scar (P, d) 

(P, 4 
(P, d) 
(P, d) 
(P, d) 
(P, d) 
(P, d) 

Assessment: The finding is 
(A) indeterminate/incomplete, additional assessment needed 

What? (1) spot mag (2) extra views (3) U/S (4) old films (5) mag 
What is your best guess as to the finding’s l-5 assessment? or are you uncertain if the finding 
exists? Y 

(1) (N) negative - return to screening 
(2) (B) benign (also negative but with benign findings) - return to screening 
(3) (P) probably benign finding requiring 6-month follownp 
(4L) (S) suspicion of maliganancy (low), biopsy 
(4M) (S) suspicion of maliganancy (moderate), biopsy 
(4H) (S) suspicion of malignancy (high), biopsy 
(5) radiographic maliganancy, biopsy 

Comments: 

Measurements: 

CC View Size: cm long axis by ~ cm short axis 
Distance from center of finding to: nipple ~ cm left edge 

cm, top edge ___ cm 

ML0 View Size: ~ cm long axis by ~ cm short axis 
Distance from center of finding to: nipple ~ cm 
left edge ___ cm, top edge ~ cm 
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