
UC Berkeley
SEMM Reports Series

Title
Clarifying the representation of isotropic symmetric tensor-valued functions of two 
symmetric tensors

Permalink
https://escholarship.org/uc/item/4t55h94h

Authors
Kamrin, Ken
Govindjee, Sanjay

Publication Date
2025-03-06

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4t55h94h
https://escholarship.org
http://www.cdlib.org/


Report No. Structural Engineering
UCB/SEMM-2025/01 Mechanics and Materials

Clarifying the representation of isotropic
symmetric tensor-valued functions of two
symmetric tensors

By

Ken Kamrin and Sanjay Govindjee

March 2025 Department of Civil and Environmental Engineering
University of California, Berkeley



Clarifying the representation of isotropic symmetric tensor-valued

functions of two symmetric tensors

Ken Kamrin & Sanjay Govindjee
University of California, Berkeley

Berkeley, CA USA

March 5, 2025

Abstract

We reconsider the question of the representation of an isotropic symmetric second-order tensor-valued
function of two symmetric second-order tensors. This question goes back roughly 70 years and represents
the attempt to duplicate the stunning result possible when the function only depends on one tensor
input. Over the years there have been numerous attempts to derive a general representation theorem for
such functions and the literature is replete with conflicting statements as to the appropriate form. By
focusing on the Cayley-Hamilton theorem for three-by-three matrices we are able to arrive at a general
result applicable to isotropic functions using nine tensor-valued basis functions. With the addition of an
argument exploiting the Cayley-Hamilton theorem for two-by-two matrices we are able to show that the
complete function basis reduces to only involves eight tensor-valued basis functions. Our result clarifies
which historically advocated representations are complete and non-redundant without need for complex
qualifying cases based upon the eigen-structure of the input tensors. The arguments are straightforward
and only involve basic algebraic considerations with an intentional focus on Cayley-Hamilton-based re-
ductions.

Keywords: isotropic tensor functions, representation theorem

Dedicated to Rohan Abeyaratne on the occasion of his 70th birthday.

1 Revisiting isotropic representations

In this contribution, we reconsider the representation formulas for isotropic symmetric second-order tensor-
valued functions of two symmetric second-order tensors. The topic has been studied for over 70 years,
beginning with works by Rivlin and Ericksen [1955], Smith [1960], followed by Wang [1970], further refine-
ments by Smith [1971], and the works of Zheng [1993], among quite a few others. In the case of symmetric
tensor-valued functions of one symmetric tensor, the derivation of isotropic representations can be “cleanly”
achieved through usage of the Cayley-Hamilton theorem, which guarantees a tensor A satisfies its own char-
acteristic polynomial; see e.g. Bowen and Wang [2009, Theorem 26.1] or Gurtin et al. [2010, §2.16]. Thus,
powers of A higher than 3 can be represented as a combination of powers of A of order 2 or less. This results
in the astonishing representation of all isotropic symmetric tensor-valued functions of a single symmetric
tensor argument being expressible as

B = B̂(A) = φ0(IA)1+ φ1(IA)A+ φ2(IA)A2 , (1)

where φ0, φ1, φ2 are scalar-valued functions of the principal invariants, IA = {I1(A), I2(A), I3(A)} ≡{
tr(A), 1

2 ((tr(A))2 − tr(A2)), det(A)
}
, of A [see e.g., Gurtin, 1981, §37] – astonishing, since there is no

requirement that B be polynomial in A (see Appendix A).
For functions of two or more tensors, however, the representations obtained since the 1950’s have not relied

(solely) on implications of the Cayley-Hamilton theorem. Rather, they have been surmised using algebraic
considerations that are sometimes daunting to follow and have resulted in proposed forms that have required
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amendment over time. While it is certainly true that the necessity of a term within a representation can be
shown by example [see Pennisi and Trovato, 1987], it is rare to see discussions of span; that is to say, whether
the proposed representation can be proven to generate all isotropic functions or at least some broad subset.

In this brief note, we take up this foundational issue and first look at how general of a result one can
arrive at on the basis of applications of the three-dimensional Cayley-Hamilton theorem alone. We will see
that the best one can do is the reduction to the form:

C = Ĉ(A,B) = c001+ c10A+ c11B+ c20A
2 + c21B

2 + c22(AB+BA)

+ c32(A
2B+BA2) + c33(B

2A+AB2) + c42(A
2B2 +B2A2), (2)

where Ĉ is an isotropic symmetric second-order tensor-valued function of symmetric second-order tensors
A and B, and the coefficients cij are any functions of the joint invariants of A and B. Thus, the tensorial
function basis has nine elements, no more and no less, when only utilizing the three-dimensional Cayley-
Hamilton theorem. We will, however, show through an additional argument based on the two-dimensional
Cayley-Hamilton theorem and a lemma from Rivlin and Ericksen [1955], that the fourth-order term, the last
term in (2), is unneeded, leaving us with the final representation

C = Ĉ(A,B) = c001+ c10A+ c11B+ c20A
2 + c21B

2 + c22(AB+BA)

+ c32(A
2B+BA2) + c33(B

2A+AB2) . (3)

There can be no fewer than the number of terms in Eq. (3) as can be shown by direct example [Pennisi
and Trovato, 1987], thus no more reduction is possible and the correct dimension of the tensor function

basis is eight. This result only relies on the assumed existence of a tensorial expansion of Ĉ (see Eq (4)) in
terms of its arguments, irrespective of the eigen-structure of A and B, with coefficients that can be arbitrary
functions of the scalar invariants. Our reasoning is detailed in what follows and differs somewhat from what
is available in the current literature. Beyond adding clarity to the form of the representation, we also aim
herein to deliver a clear step-wise derivation showing how it is obtained.

2 Brief historical recap

The literature contains a number of conflicting and difficult to follow developments by some of the seminal
figures in continuum mechanics. Without in any way attempting to be comprehensive in citation of all works,
we provide a brief road map to some of the most cited developments that took place with respect to the
special representation question addressed in this note, viz. representations for isotropic symmetric second-
order-tensor-valued functions of two symmetric second-order tensors. The developments are shown in Table
1 in chronological order. Some useful definitions and facts to understanding the papers are as follows:

• Ĉ is a polynomial isotropic tensor function if it is a sum of joint powers of A and B with scalar
coefficients. We will denote this case simply as polynomial. This does not imply that as a series
expansion in terms of A and B that the scalar coefficients are constants – a restriction that would be
too severe for practical work [Truesdell and Noll, 1965, §7].

• The ten basic invariants are IA,B =
(
trA, trA2, trA3, trB, trB2, trB3, trAB, trAB2, trBA2, trA2B2

)
.

The coefficients of the final representation are often determined or simply stated to be either rational,
polynomial, or general functions in the ten basic invariants (or at times of simply the components of
A and B).

• The methods of proof usually differ in their approach. If a paper utilizes an approach invoking Cayley-
Hamilton arguments, we denote it by CH. If a paper utilizes solvability conditions based on non-zero
determinants of linear equations, we denote it as S. If a paper utilizes a co-set invariance argument,
we denote it as Co. If the method of analysis is unclear to us, we denote it as unc.

It can be seen in the table that the A2B2 +B2A2 term in the representation appears and disappears over
the last seven decades, even over common sets of assumptions. It is interesting to note that this 4th-order
term comes and goes in papers with common authors without any comment, and similarly when the term
disappeared in the 1970s, it did so also without any explicit comments on why the prior analyses were in
error. One of our goals in this paper is to show that this term is indeed not necessary.

2



Table 1: Brief historical summary of the fourth-order term and the chronological developments.

Publication Assumptions on Ĉ
A2B2 +B2A2

included?
Coefficients Method

Rivlin and Ericksen [1955, §27,40] no no rational S
Rivlin [1955, eqn (1.7)] polynomial yes polynomial CH
Spencer and Rivlin [1959, eqn (4.4) & Thm 5] polynomial yes polynomial CH
Wang [1969, eqn (1.14)] no yes general Co
Smith [1970, eqn (2.7)] no yes general unc1

Wang [1970, p. 215] no yes general Co
Smith [1971, eqns (4.4) & (4.5)] no no general Co2

Pennisi and Trovato [1987, eqn (2.3)] no no general unc3

Zheng [1993, eqn (3.23)] no no general S+Co

3 The two tensor argument case 4

We take a moment to attempt a derivation which appears different from what we see in the existing literature,
focused on the case of symmetric tensor-valued functions of two symmetric tensors. The representation
derived below relies on reductions from Cayley-Hamilton considerations and is (i) guaranteed to span a
particular isotropic function space, and (ii) never encounters ‘corner cases’ where certain choices of A and
B make one or more coefficients in the representation indeterminate or infinite.5 Letting A and B be two
symmetric tensors, observe that any general polynomial series in A and B with symmetric output:

C = Ĉ(A,B) = c001+ c10A+ c11B+ c20A
2 + c21B

2 + c22(AB+BA) + c30A
3 + c31B

3

+ c32(A
2B+BA2) + c33(B

2A+AB2) + c34ABA+ c35BAB+ c40A
4

+ c41B
4 + c42(A

2B2 +B2A2) + c43(BABA+ABAB) + c44AB2A+ . . . (4)

is an isotropic symmetric-tensor-valued function.6 The scalars cij = ĉij(IA,B) are arbitrary scalar-valued
functions of IA,B, the joint invariants of A and B. Note the convention that the first index i represents the
order of the term cij multiplies, and j counts through all the terms of the same order.

• Our goal is to collapse this space of tensor-valued functions into a representation with the fewest terms
allowable using repeated application of Cayley-Hamilton-based reduction.

The intentionally-broad form of Eq (4) is chosen to be able to represent general isotropic tensor functions,
noting it contains infinitely more terms than any of the previously suggested representations. However, we
cannot rule out at this stage the possibility that there may exist an isotropic function that is inexpressible
via Eq (4). But we further recognize that Eq (4) is sufficiently general for most applications. As such we
restrict our attention to relations of this form.

3.1 Cayley-Hamilton reducers

First, we determine which joint powers of A and B can be expressed in terms of lower order powers using
the Cayley-Hamilton theorem. The Cayley-Hamilton theorem ensures that any (not necessarily symmetric)

1The main point of the paper is to provide counter examples to Wang [1969] for the case of more than 2 arguments; proofs
of the basic results are not given.

2Smith [1971] states that he follows the method of Wang [1970], while sharpening it, but does not provide any proofs or
details of where Wang [1970] can be sharpened; he only points out where he feels Wang [1970] is incomplete.

3Pennisi and Trovato [1987] adopt the results of Smith [1971] without proof but declare them to be correct. Pennisi and
Trovato [1987] further go on to show that the Smith [1971] results are irreducible via use of the Rouché-Capelli theorem.

4Throughout we will assume that the qualifiers of symmetric, second-order, and tensor-valued apply without, in general,
making all qualifications explicit.

5This is a problem with some of the existing representation results found in the literature; see e.g. Rivlin and Ericksen [1955,
§26] or Zheng [1993, Case 6] as just two such instances.

6QĈ(A,B)QT = Ĉ(QAQT ,QBQT ) for all orthogonal Q.
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tensor M satisfies its own characteristic polynomial. In three dimensions, this implies

M3 = tr(M)M2 − I2(M)M+ det(M)1. (5)

Let us apply this rule to progressively higher-order polynomials in A and B. Starting with an order one
polynomial, we have, for arbitrary scalars s0 and s1,

(1+ s0A+ s1B)3 = tr(1+ s0A+ s1B) (1+ s0A+ s1B)2 − I2(1+ s0A+ s1B) (1+ s0A+ s1B)

+ det(1+ s0A+ s1B)1 . (6)

We introduce the shorthand o(i, j) to denote a well-defined ith-order tensor polynomial in A and B whose
scalar coefficients are (IA,B-dependent) jth-order or lower polynomials in the s variables. For example, the
right-hand side of Eq (6) is o(2, 3) because no tensorial monomial exceeds order 2, but the scalar coefficients
that multiply the tensorial monomials can depend on s0 and s1 up to order 3. We shall use o(i) ≡ o(i, 0) for
tensor polynomials with no dependence on s variables. Expanding the left-hand side of Eq (6) gives

(1+ s0A+ s1B)3 = s30 A
3 + s20s1(A

2B+ABA+BA2) + s0s
2
1(B

2A+BAB+AB2) + s31 B
3. (7)

Since right-hand side of Eq (6) is o(2, 3), and hence has no tensorially third-order terms, when we gather
terms with like powers of the s variables in Eq (6), after applying the expansion in Eq (7), we obtain

s30 [A
3 + o(2)] + s20s1[A

2B+ABA+BA2 + o(2)]

+ s0s
2
1[B

2A+BAB+AB2 + o(2)] + s31 [B
3 + o(2)] + o(2, 2) = 0.

The above is a polynomial in s0 and s1 equal to the zero function. Thus, each term in brackets must be 0,
yielding the following three third-order Cayley-Hamilton reductions:

A3 = o(2), A2B+ABA+BA2 = o(2), B2A+BAB+AB2 = o(2), B3 = o(2). (8)

The first and last reductions in the above are well-known from the one-input case; e.g., that A3 can be
expressed in terms of A2, A, and 1, the usual Cayley-Hamilton result for a tensor. But the middle two
arise only when considering a second input tensor. Heretofore, we use the term “n-reducer” to refer to a
polynomial comprised of only nth degree powers in A and B, which can be rewritten in terms of lower-order
powers; i.e. Eq (8) shows four 3-reducers.

The same technique can be applied to determine reductions at higher orders. For example, if we use a
second-order tensor polynomial on the left-hand side of Eq (5), we get

(1+ s0A+ s1B+ s2A
2 + s3B

2 + s4AB+ s5BA)3

= tr(1+ s0A+ s1B+ s2A
2 + s3B

2 + s4AB+ s5BA) (1+ s0A+ s1B+ s2A
2 + s3B

2 + s4AB+ s5BA)2

− I2(1+ s0A+ s1B+ s2A
2 + s3B

2 + s4AB+ s5BA) (1+ s0A+ s1B+ s2A
2 + s3B

2 + s4AB+ s5BA)

+ det(1+ s0A+ s1B+ s2A
2 + s3B

2 + s4AB+ s5BA)1. (9)

Expanding both sides of the above gives very long expressions. However, all terms of order five or higher
in A and B on the left side have no terms on the right to cancel them. With these fifth- and sixth-order
terms, as before, we can separate and match terms by their corresponding powers of the s variables. These
groupings, in turn, give rise to a set of twenty 5-reducers all equal to o(4),

2A3B2 +A2B2A+AB2A2 + 2B2A3 = o(4), ABAB2 +AB2AB+BABAB = o(4),

2A3BA+A2BA2 +ABA3 + 2BA4 = o(4), AB4 +B2AB2 +B4A = o(4),

A2BAB+ABA2B+ABABA = o(4), BABAB+BAB2A+B2ABA = o(4)

ABABA+BA2BA+BABA2 = o(4), A4B+A2BA2 +BA4 = o(4),

2A2B3 +BA2B2 +B2A2B+ 2B3A2 = o(4), 2A4B+A3BA+A2BA2 + 2ABA3 = o(4),

2AB4 +BAB3 +B2AB2 + 2B3AB = o(4), 2BAB3 +B2AB2 +B3AB+ 2B4A = o(4),
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A2BAB+A2B2A+BA3B+BA2BA+BABA2 +B2A3 = o(4),

AB2AB+AB3A+BA2B2 +BABAB+BAB2A+B2A2B = o(4),

A2B3 +ABAB2 +AB2AB+AB3A+B2A2B+B2ABA = o(4),

ABAB2 +AB3A+BA2B2 +BAB2A+B2ABA+B3A2 = o(4),

A2B2A+ABA2B+ABABA+AB2A2 +BA3B+BA2BA = o(4),

A3B2 +A2BAB+ABA2B+AB2A2 +BA3B+BABA2 = o(4),

B5 = o(4), A5 = o(4),

and a set of twenty 6-reducers also equal to o(4):

A4B2 +A2B2A2 +B2A4 = o(4), A5B+ A3BA2 +ABA4 = o(4),

A4BA+A2BA3 + BA5 = o(4), A2B4 +B2A2B2 +B4A2 = o(4),

A3BAB+ABA3B+ABABA2 = o(4), A2BABA+BA3BA+BABA3 = o(4),

BABAB2 +BAB3A+B3ABA = o(4), ABABAB = o(4),

ABAB2A+AB2A2B+BA2BAB = o(4), AB2ABA+BA2B2A+BABA2B = o(4),

BABABA = o(4) AB5 +B2AB3 +B4AB = o(4),

BAB4 +B3AB2 +B5A = o(4), ABAB3 +AB3AB+B2ABAB = o(4),

A3B2A+A2BA2B+ABA2BA+ AB2A3 +BA4B+BA2BA2 = o(4),

AB2AB2 +AB4A+BA2B3 +BAB2AB+ B2AB2A+B3A2B = o(4),

A3B3 +A2B2AB+ABA2B2 +AB3A2 + B2A3B+B2ABA2 = o(4),

A2BAB2 + A2B3A+BA3B2 +BAB2A2 +B2A2BA+ B3A3 = o(4),

B6 = o(4), A6 = o(4).

It is clear that some of these reductions could have been inferred from the 3-reducers in Eq (8). For example,
A6 clearly reduces down since we known A3 does. However, many of the above reductions are independent
of the ones derived previously at third order, such as the 6-reducer ABABAB. Our goal at the moment
is to be exhaustive rather than concise, to make sure we include every reducible grouping that follows from
three-dimensional Cayley-Hamilton, even if there is some duplication.

With a careful eye, it can be seen that Eq (9) also discloses a set of 4-reducers. The left and right sides
of Eq (9) each produce tensorially fourth order terms. While many of these cancel each other, some do not.
For example, fourth-order terms multiplying s20s5 will exist on the left side but not the right. The surviving
fourth-order terms generate a set of 4-reducers, listed below:

A3B+A2BA+ABA2 = o(3) A2BA+ABA2 +BA3 = o(3)

A2B2 +AB2A+B2A2 = o(3) 2A3B+A2BA+ABA2 + 2BA3 = o(3)

A2B2 + 2ABAB+AB2A+BA2B+BABA = o(3) 2AB3 +BAB2 +B2AB+ 2B3A = o(3)

ABAB+AB2A+BA2B+ 2BABA+B2A2 = o(3) A2B2 +BA2B+B2A2 = o(3)

AB3 +BAB2 +B2AB = o(3) BAB2 +B2AB+B3A = o(3)

3B4 = o(3) 3A4 = o(3).

Aside from the primary reductions listed so far, reductions of a secondary nature must also be considered.
That is to say, any reduction shown on one of the above lists can be multiplied on the left or right by A or
B to produce a reduction at the next order higher. For example, the 3-reducer A2B+ABA+BA2 implies
A2B2 +ABAB+BA2B is a 4-reducer. By repeatedly multiplying all the Cayley-Hamilton reductions on
the left/right by A or B, we can construct all secondary reductions up to some desired order — for reasons
that will become apparent, one need only do this up to order six in order to obtain the final result. We

5



neglect writing these all down for brevity and obviousness! The accumulated set of all primary and secondary
n-reducers is denoted R(n).

With R(n) in hand up to n = 6, we can begin to remove terms from Eq (4). Since our ultimate goal
is to represent symmetric-tensor-valued outputs, we first symmetrize by adding each element of R(n) to its
transpose to produce the set of symmetric-valued n-reducers, S(n). We can then compute the dimension,
DS(n), of the polynomial space spanned by S(n). For example, a brute-force computer calculation7 of the
dimension of the polynomial space spanned by S(3) can be done by writing each element of S(3) as a vector in
terms of monomial basis elements, and computing the rank of the set, which gives DS(3) = 4. We also define
DTot(n), which is the dimension of the space of all symmetric-valued combinations of nth-degree powers of
A and B; this is also equal to the total number of nth degree terms showing up in Eq (4). A simple counting
problem reveals that DTot(n) = (2n − 2⌈n/2⌉)/2 + 2⌈n/2⌉, where ⌈x⌉ is the ceiling function of x, the smallest
integer greater than x. For example, this formula gives DTot(3) = 6 and indeed, from Eq (4), it can be seen
that there are 6 independent third-order terms, i.e. A3,B3,B2A + AB2,A2B + BA2,ABA, and BAB.
Altogether, we obtain DTot(3) −DS(3) = 2, so exactly two ‘irreducible’ third order terms from Eq (4) will
remain in our final representation.

The same method for determining the number of irreducible terms can be used at progressively higher
orders without affecting results from previous orders. We find the number of irreducible terms at fourth-,
fifth-, and sixth-order are, respectively, DTot(4)−DS(4) = 1, DTot(5)−DS(5) = 0, and DTot(6)−DS(6) = 0.
Moreover, another calculation reveals that when n reaches 6, the space of R(6) — the space generated by all
not-necessarily-symmetric n-reducers — has dimension DR(6) = 26. This is precisely the dimension of the
entire space generated by sixth-order monomials. Likewise, all sixth-order polynomial terms are reducible.
Since any seventh-order monomial can be constructed by multiplying a sixth-order monomial on the left
or right by A or B, it follows that secondary reductions from R(6) are sufficient to span the entire space
of seventh-order polynomial terms. By continuing the same construction order-by-order, we conclude that
all polynomial terms of order n ≥ 7 must be reducible and can be eliminated from the representation.
Altogether, we find any function of the form of Eq (4) can be truncated after fourth-order. Note
that generating higher-order Cayley-Hamilton reductions beyond those from Eqs (6) and (9) is unnecessary
since these additional results would only affect orders > 6, which have already been shown to be fully
reducible.

3.2 Greatest reduction via strictly 3D Cayley-Hamilton-based arguments

A particular representation can be found upon identifying two third-order terms and one fourth-order term,
which, when included within the sets S(3) and S(4), respectively increase the dimension of the spaces spanned
by those sets to DTot(3) and DTot(4). Multiple options exist. Below is one such solution:

C = Ĉ(A,B) = c001+ c10A+ c11B+ c20A
2 + c21B

2 + c22(AB+BA)

+ c32(A
2B+BA2) + c33(B

2A+AB2) + c42(A
2B2 +B2A2). (10)

This final result, which includes the fourth-order term, is identical to that of (e.g.) Rivlin [1955], Spencer
and Rivlin [1959], Wang [1969], Smith [1970], Wang [1970] but differs from (e.g.) Rivlin and Ericksen [1955],
Smith [1971], Pennisi and Trovato [1987], Zheng [1993] whose representations are the same except without
the fourth-order term. Any representation without the fourth-order term as we have derived, would require
reductive algebra beyond 3D Cayley-Hamilton considerations.

4 Showing the A2B2 +B2A2 term is unnecessary

The previous argument concluded that the representation for Ĉ needs no more than the nine terms in
equation (10). We shall now show through a different kind of argument that the A2B2 + B2A2 term can
always be expressed as a linear combination of the other 8 terms regardless of the choice of A and B. Thus,
it can always be removed from the representation.

7The Matlab code for this and all ensuing computer-assisted linear algebra is in the Supplemental Materials.
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First, Rivlin and Ericksen [1955] (in §27) showed that the set of tensors

K ≡ {1,A,B,A2,B2,AB+BA,A2B+BA2,B2A+AB2}

is a basis for the space of all 3×3 symmetric tensors in the special case that (i) A and B do not both have
repeated eigenvalues, and (ii) A and B share no common eigenvectors.8 These conditions exemplify the
special cases one sees frequently in the existing literature on this topic. However, the result can be shown
in a rather straightforward fashion by writing each element of K as a six-dimensional vector using Voigt
notation in the eigenbasis of A, and showing that the matrix of these vectors has non-zero determinant
when the aforementioned conditions are met. Consequently, for any A and B fulfilling these conditions,
A2B2 + B2A2 can be expressed as a linear combination of the members of elements of K and thus the
function Ĉ can be written without the A2B2 +B2A2 term.

To show that the A2B2 + B2A2 term is in fact never needed, we must show that A2B2 + B2A2 is a
linear combination of elements of K even when condition (i) or (ii) is not met.

Condition (i) not met — Repeated eigenvalues. We will prove the stronger result that A2B2 + B2A2 can
be expressed as a linear combination of the members of K if A or B has a repeated eigenvalue. Suppose,
without loss of generality, that A has a repeated eigenvalue. Let its (unordered) eigenvalues be {a1, a1, a3}.
In this case, it always follows that

A2B2 +B2A2 = (a1 + a3)(AB2 +B2A)− 2a1a3B
2 (11)

and thus A2B2 +B2A2 is a linear combination of elements of K. One way to obtain this result is to utilize
the principal basis of A, in which we can write

[A] =

a1 0 0
0 a1 0
0 0 a3

 .

The repeated eigenvalue means that A satisfies the analogous 2D Cayley-Hamilton theorem, i.e.

A2 = (a1 + a3)A− a1a31

where a1+a3 is the analogous trace and a1a3 the analogous determinant. Equation (11) thus follows directly
upon multiplying this result on either side by B2 and adding the two results together.

Condition (i) not met — Common eigenvector. Suppose A and B share a common eigenvector. In the
principal basis of A, the matrices of A and B can be expressed as

[A] =

a1 0 0
0 a2 0
0 0 a3

 , [B] =

b1 0 0
0 b22 b23
0 b23 b33

 .

Here, we obtain the result

A2B2 +B2A2 = (a2 + a3)(AB2 +B2A)− 2a2a3B
2 + 2b21

(
A2 − (a2 + a3)A+ a2a31

)
(12)

which shows, again, A2B2 + B2A2 is a linear combination of elements of K. This result can be verified
through direct calculation, and can be most easily deduced by appealing to the 2D Cayley-Hamilton theorem.

Since we have now shown that A2B2 +B2A2 is always representable as a linear combination of elements of
K for all choices of A and B, we have thus proven that

C = Ĉ(A,B) = c001+ c10A+ c11B+ c20A
2 + c21B

2 + c22(AB+BA)

+ c32(A
2B+BA2) + c33(B

2A+AB2) . (13)

Since, as shown by counterexample in Pennisi and Trovato [1987], the representation for Ĉ cannot be reduced
further than the terms included in Eq (13), we conclude Eq (13) is the minimal representation needed to

represent any series-expandable (as in Eq (4)) isotropic function Ĉ.

8Rivlin and Ericksen [1955] proved only the forward statement written here, but one can show the converse is also true.
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5 Summary

In this paper we have revisited the topic of isotropic representations of tensor-valued functions of multiple
tensors, a topic with a long and somewhat daunting literature of development over the last 70 years or so.
Our emphasis here was twofold. Our first goal was to help resolve the question of how many terms the
representation needs in the case of two symmetric inputs and one symmetric output. This case carries prime
relevance in mechanics where one might want, for example, a function for stress in terms of a symmetric
deformation variable (e.g., strain or strain-rate) and a symmetric tensorial variable representing the structural
state of the material. The second goal of this paper was to carry out the derivation in a clear fashion relying
primarily on consequences of the Cayley-Hamilton theorem in three dimensions and then in two dimensions.

o The derivation described herein takes the following route to obtain the final result. First, we consider
the broad class of functions in Eq (4). We then apply the three-dimensional Cayley-Hamilton theorem to
first- and second-order combinations of monomials of A and B to obtain a set of Cayley-Hamilton-based
reductions — i.e. polynomial expressions in A and B that are identical to lower-order polynomials. Second,
we use computer-assisted linear algebra9 to determine the dimensionality of the order-by-order space of
tensorial monomials that can be built from the Cayley-Hamilton reducers (including secondary reductions)
and hence removed from inclusion in the representation. This wipes away all terms in the function expansion
above fourth order, and many lower-order terms as well, leaving a nine-term expression that includes the
disputed fourth-order term A2B2+B2A2. We then appeal to a theorem in Rivlin and Ericksen [1955] whose
proof is straightforward from algebra, which we can assert to see that there are only two conditions in which
the fourth-order term might not be expressible in terms of the other eight. In each of those two cases, using
the two-dimensional Cayley-Hamilton theorem, we find explicit formulas for the fourth-order term in terms
of the other eight thereby finalizing the proof. The only explicit limitation of the proof offered here is the
initial assumption that the tensor-valued function can be expanded into a non-constant coefficient tensorial
power series, which is an assumption that need not be made in the classical and far-simpler one-input case
shown in Eq (1); see Appendix A for such a proof.
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A Aside: Proving the one-input case without assuming a series

The proof shown in the prior section presumes at the outset that the isotropic function at hand is expressible
as an expansion per Eq (4). For most physically relevant situations, this is hardly a restriction, since one
mostly deals with analytic functions. Notwithstanding, a more general proof would remove this assumption
and such proofs are well known in the literature. For completeness and it may be instructive to consider the
following proof of the one-input tensor case, which is able to arrive at Eq (1) without assuming at the outset

that B̂(A) is expressible as a tensorial power series.
First a lemma:

• Lemma: If B = B̂(A) is an isotropic function, the eigenvectors of A must be the same as the eigen-
vectors of B.

This lemma can be proven by considering a rotation tensor Qe which rotates by π radians about e where e
is one of the eigenvectors of A. Observe for this particular rotation, we have that QeAQT

e = A. Thus, by
isotropy, we can write

QeBQT
e = QeB̂(A)QT

e = B̂(QeAQT
e ) = B̂(A) = B

But since QeBQT
e = B, it follows that e is also an eigenvector of B. Therefore, every eigenvector of A is

also an eigenvector of B, and thus we have that the two tensors are necessarily coaxial. □

Now, for each A, let Q be a rotation tensor that diagonalizes A and hence, by the lemma, also diagonalizes
B. Then we have diagonal tensors defined by Diag(A1, A2, A3) = QAQT and Diag(B1, B2, B3) = QBQT ,
where (A1, A2, A3) and (B1, B2, B3) are the (possibly unordered) eigenvalues of A and B, respectively. With
this choice of Q, isotropy gives that

Diag(B1, B2, B3) = QBQT = B̂(QAQT ) = B̂(Diag(A1, A2, A3)) .

This implies the following formula for B1,

B1 = B̂11(Diag(A1, A2, A3)) ≡ f̂(A1, A2, A3) .

But notice that there are six ways to choose Q that diagonalize the A and B tensors, corresponding to the
six permutations of the eigenvalues. Going through each such Q and writing the resulting 11-component of
the B̂ function gives the following set of formulas

Bi = f̂(Ai, Aj , Ak) = f̂(Ai, Ak, Aj) for distinct i, j, k . (14)

Likewise, f̂ is the only function one needs to determine each eigenvalue of B from the eigenvalues of A.
Our task is now to determine a general representation for this function f̂ , which could be any function

that commutes in its last two inputs, i.e. f̂(Ai, Aj , Ak) = f̂(Ai, Ak, Aj).
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• Lemma: If f̂(Ai, Aj , Ak) = f̂(Ai, Ak, Aj) for all (Ai, Ak, Aj), then there exist three functions ϕ1, ϕ2, ϕ3

such that
f̂(Ai, Aj , Ak) = ϕ1(IA) + ϕ2(IA)Ai + ϕ2(IA)A2

i (15)

where IA = {A1+A2+A3, A1A2+A2A3+A1A3, A1A2A3} is a complete set of permutation invariants
of (A1, A2, A3).

In the most general case where the three eigenvalues of A are distinct, the functions ϕi can be uniquely
determined by solving f̂(A1, A2, A3)

f̂(A2, A1, A3)

f̂(A3, A2, A1)

 =

1 A1 A2
1

1 A2 A2
2

1 A3 A2
3

ϕ1

ϕ2

ϕ3


which has a unique solution because the Vandermonde matrix above is known to be invertible when A1, A2,
and A3 are distinct. Upon solving the linear system for the ϕi, one can observe the solutions are invariant
to permutations of {A1, A2, A3} and thus the ϕi must be expressible in terms of the permutation invariants.
One can also see this fact without directly computing the solution. Simply notice that for any i and j,
permuting Ai and Aj in the equation system above is equivalent to permuting the ith and jth equations of

the system (recalling the last two inputs to f̂ necessarily commute). As a result, we can infer ϕ1, ϕ2 and ϕ3

are unchanged by permutations of A1, A2, and A3 and thus they must be functions only of the permutation
invariants. Now, if any two of the Ai are equal, the above system does not have a unique solution; rather
it has infinitely many. This can be seen by observing that two equations will become the same and thus
the system has more unknowns than equations. The same logic holds if all of the Ai are equal. Thus, in all
cases, there exist functions of the form ϕ1(IA), ϕ2(IA), and ϕ3(IA) that solve Eq (15). □

Finally, using Eqs (14) and (15), we can write

B = QT Diag(B1, B2, B3)Q

= QT Diag
(
f̂(A1, A2, A3), f̂(A2, A1, A3), f̂(A3, A2, A1)

)
Q

= QT
(
ϕ1(IA)1+ ϕ2(IA)Diag(A1, A2, A3) + ϕ3(IA)Diag(A2

1, A
2
2, A

2
3)
)
Q

= ϕ1(IA)1+ ϕ2(IA)A+ ϕ3(IA)A2 .

This concludes the proof of Eq (1).

B Code for computing additional basis elements at order 3 and 4

import numpy as np
# Code to compute the order reducers in K. Kamrin and S. Govindjee
# "Clarifying the representation of isotropic symmetric tensor−valued
# functions of two symmetric tensors", Mathematics and Mechanics of Solids
# (2025), in submission.

# The code builds a row vector representation of each n−reducer in the
# general tensor basis from the use of the Cayley−Hamilton construction
# from the manuscript. The list of all n−reducers is collected into a
# matrix mb[n][,]. These include secondary reducers generated from (n−1)−reducers
# and primary reducers that are deduced from the Cayley−Hamilton arguments
# in the manuscript. The code then constructs a representation of all monomial
# permutations at a given order, symmetrizes them, and appends them as rows
# to the matrix of n−reducer representations one−by−one. If doing so
# changes the rank, the term just added is outputted as a survivor in the
# representation.

# Helper functions
# Convert AB strings to binary
def abtb(s):

s=s.replace(’A’,’0’)
s=s.replace(’B’,’1’)
return s

# Convert 01 strings to AB
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def btab(s):
s=s.replace(’0’,’A’)
s=s.replace(’1’,’B’)
return s

# Convert polynomial/monomial AB string to basis string for given degree
def convab(s,deg):

basis_string = np.zeros (2** deg) # initialize basis_string
monom = s.split(’+’) # split individual monomials
for i in range(len(monom )):

fact = monom[i]. split(’*’) # pull out multipliers from monomials
b = abtb(fact [-1]) # convert monomial to binary
c = 1 # default multiplier
if len(fact) > 1:

c = int(fact [0]) # set multiplier if present
loc = int(b,2) # compute decimal location
basis_string[loc] = c # set component value

return basis_string

# Convert basis string to AB string
def convbs(bs):

deg = int(np.log2(len(bs))) # Extract degree of the basis_string
out = ’’
for i in range(len(bs)):

if bs[i] != 0: # Find non−zero entries
b = format(i,’0{}b’.format(deg)) # determine monomial in binary form
term = ’+’+btab(b) # setup term
if bs[i] != 1:

term = ’+{}*’.format(bs[i])+ btab(b) # mult by factor if not unity
out = out + term

if out [0]== ’+’:
out = out [1:] # strip leading + if present

return out

# Symmetrize a basis string
def symbasis(basis_string ):

deg = int(np.log2(len(basis_string ))) # Extract degree of the basis_string
sym_basis = np.zeros (2** deg) # Initialize symmetrized string
for i in range(len(basis_string )):

if basis_string[i] != 0: # Find non−zero entries
b = format(i,’0{}b’.format(deg)) # determine monomial in binary form
symb = b[:: -1] # transpose the monomial
symi = int(symb ,2) # Compute integer location
sym_basis[i] = basis_string[i]+ basis_string[symi] # Set the symmetrized values
sym_basis[symi] = sym_basis[i] # (without div by 2)

return sym_basis

# Dimension of space of all symmetric−values combinations of nth degree monomials of A and B
def D_Tot(deg):

return (2** deg - 2**np.ceil(deg /2))/2 + 2**np.ceil(deg/2)

# Initialize list to hold coefficients in the different monomial bases
# and the results for the irreducible monomials
mb = list ([[] ,[] ,[] ,[] ,[] ,[] ,[]])
surviving_basis_dimension = list ([0,0,0,0,0,0,0])

# Base case deg=3
# Set up 3−reducers in the monomial basis use Cayley−Hamilton results from the manuscript
deg = 3
mb[deg] = np.zeros ((1 ,2** deg)) # Initialize for stacking
mb[deg] = np.vstack ((mb[deg],convab(’AAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’BBB’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AAB+ABA+BAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’BAB+BBA+ABB’,deg)))
mb[deg] = mb[deg ][1: ,:] # Remove leading row of zeros

# Compute surviving basis dimension, the size of the irreducible set of monomials
surviving_basis_dimension[deg] = D_Tot(deg) - np.linalg.matrix_rank(mb[deg])

# Iterate of the other orders
for deg in [4,5,6]:

# Take each row of mb[deg−1] and construct deg−reducers by pre− and post−multiplication by A and B
mb[deg] = np.zeros ((1 ,2** deg)) # Initialize for stacking
for r in range(mb[deg -1]. shape [0]):

row = mb[deg -1][r,:]
newrows = np.zeros ((4 ,2** deg)) # Initialize 4 new rows
for c in range(len(row )):

if row[c]!=0: # Find non−zero columns and generate 4 new row entries
m1 = ’0’+format(c,’0{}b’.format(deg -1)) # pre−mult by A
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m2 = format(c,’0{}b’.format(deg -1))+’0’ # post−mult by A
m3 = ’1’+format(c,’0{}b’.format(deg -1)) # pre−mult by B
m4 = format(c,’0{}b’.format(deg -1))+’1’ # post−mult by B
newrows [0][ int(m1 ,2)] += row[c] # Assemble new terms into new rows
newrows [1][ int(m2 ,2)] += row[c]
newrows [2][ int(m3 ,2)] += row[c]
newrows [3][ int(m4 ,2)] += row[c]

mb[deg]=np.vstack ((mb[deg],newrows )) # Add in secondary reducers generated from deg−1
mb[deg]=mb[deg ][1: ,:] # Remove leading row of zeros

# Adding 4−reducers of o(3) from Cayley−Hamilton result in paper
if deg == 4:

mb[deg] = np.vstack ((mb[deg],convab(’AAAB+AABA+ABAA’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’AABA+ABAA+BAAA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AABB+ABBA+BBAA’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’2*AAAB+AABA+ABAA +2* BAAA’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’AABB +2* ABAB+ABBA+BAAB+BABA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABAB+ABBA+BAAB +2* BABA+BBAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’2*ABBB+BABB+BBAB +2* BBBA’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’AABB+BAAB+BBAA’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’ABBB+BABB+BBAB’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’BABB+BBAB+BBBA’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’3*BBBB’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’3*AAAA’,deg)))

# Adding 5−reducers of o(4) from Cayley−Hamilton result in paper
if deg == 5:

mb[deg] = np.vstack ((mb[deg],convab(’3*AAAAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’2*AAAAB+AAABA+AABAA +2* ABAAA ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’2*AAABA+AABAA+ABAAA +2* BAAAA ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’2*AAABB+AABBA+ABBAA +2* BBAAA ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’AABAB+ABAAB+ABABA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AABBA+ABAAB+ABABA+ABBAA+BAAAB+BAABA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AABBB+ABABB+ABBAB+ABBBA+BBAAB+BBABA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABABA+BAABA+BABAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABABB+ABBBA+BAABB+BABBA+BBABA+BBBAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABBBB+BBABB+BBBBA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AAAAB+AABAA+BAAAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AAABB+AABAB+ABAAB+ABBAA+BAAAB+BABAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AABAB+AABBA+BAAAB+BAABA+BABAA+BBAAA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’2*AABBB+BAABB+BBAAB +2* BBBAA ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’ABABB+ABBAB+BABAB’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABBAB+ABBBA+BAABB+BABAB+BABBA+BBAAB’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’2*ABBBB+BABBB+BBABB +2* BBBAB ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’BABAB+BABBA+BBABA’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’2*BABBB+BBABB+BBBAB +2* BBBBA ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’3*BBBBB’,deg)))

# Adding 6−reducers of o(5) from Cayley−Hamilton result in paper
if deg == 6:

mb[deg] = np.vstack ((mb[deg],convab(’AAAAAA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AAAAAB+AAABAA+ABAAAA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AAAABA+AABAAA+BAAAAA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AAAABB+AABBAA+BBAAAA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AAABAB+ABAAAB+ABABAA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AAABBA+AABAAB+ABAABA+ABBAAA+BAAAAB+BAABAA ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’AAABBB+AABBAB+ABAABB+ABBBAA+BBAAAB+BBABAA ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’AABABA+BAAABA+BABAAA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’AABABB+AABBBA+BAAABB+BABBAA+BBAABA+BBBAAA ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’AABBBB+BBAABB+BBBBAA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABABAB ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABABBA+ABBAAB+BAABAB ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABABBB+ABBBAB+BBABAB ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABBABA+BAABBA+BABAAB ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’ABBABB+ABBBBA+BAABBB+BABBAB+BBABBA+BBBAAB ’,deg )))
mb[deg] = np.vstack ((mb[deg],convab(’ABBBBB+BBABBB+BBBBAB ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’BABABA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’BABABB+BABBBA+BBBABA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’BABBBB+BBBABB+BBBBBA ’,deg)))
mb[deg] = np.vstack ((mb[deg],convab(’BBBBBB ’,deg)))

# Symmetrize the reducers
for r in range(mb[deg]. shape [0]):

mb[deg][r,:] = symbasis(mb[deg][r,:])

# Compute size of surviving reducers
surviving_basis_dimension[deg] = D_Tot(deg) - np.linalg.matrix_rank(mb[deg])

# Generate the irreducible basis elements
for deg in [3,4,5,6]:

allm = np.eye (2** deg) # representation of all monomials

12



# Symmetrize the monomials
for r in range (2** deg):

allm[r,:] = symbasis(allm[r,:])

# Init counters and rank of the symmetrized reducers at deg
found_red = 0
cur_rank = np.linalg.matrix_rank(mb[deg])
row = 0

# Scan for rows in the symmetrized monomials that when added to the matrix of reducers changes the rank
# and hence identifies a non−reducible term, i.e. is a surviver, continue until surviving_basis_dimension[deg]
# elements are found
while found_red < surviving_basis_dimension[deg]:

new_rank = np.linalg.matrix_rank(np.vstack ((mb[deg],allm[row ,:]))) # Add row from allm, get rank
if new_rank > cur_rank: # if rank goes up, keep

print(’Degree {} survivor {}’.format(deg ,convbs(allm[row ,:]))) # print found reducer
cur_rank = new_rank
found_red += 1
mb[deg] = np.vstack ((mb[deg],allm[row ,:])) # append to reducers

row += 1
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