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RESEARCH ARTICLE
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Abstract 

Background

Water, sanitation, hygiene (WSH), nutrition (N), and combined (N+WSH) interventions are 

often implemented by global health organizations, but WSH interventions may insufficiently 

reduce pathogen exposure, and nutrition interventions may be modified by environmental 

enteric dysfunction (EED), a condition of increased intestinal permeability and inflam-

mation. This study investigated the heterogeneity of these treatments’ effects based on 

individual pathogen and EED biomarker status with respect to child linear growth.

Methods

We applied cross-validated targeted maximum likelihood estimation and super learner 

ensemble machine learning to assess the conditional treatment effects in subgroups 

defined by biomarker and pathogen status. We analyzed treatment (N+WSH, WSH, N, or 

control) randomly assigned in-utero, child pathogen and EED data at 14 months of age, 

and child HAZ at 28 months of age. We estimated the difference in mean child height for 
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age Z-score (HAZ) under the treatment rule and the difference in stratified treatment effect 

(treatment effect difference) comparing children with high versus low pathogen/biomarker 

status while controlling for baseline covariates.

Results

We analyzed data from 1,522 children who had a median HAZ of −1.56. We found that 

fecal myeloperoxidase (N+WSH treatment effect difference 0.0007 HAZ, WSH treatment 

effect difference 0.1032 HAZ, N treatment effect difference 0.0037 HAZ) and Campylo-

bacter infection (N+WSH treatment effect difference 0.0011 HAZ, WSH difference 0.0119 

HAZ, N difference 0.0255 HAZ) were associated with greater effect of all interventions 

on anthropometry. In other words, children with high myeloperoxidase or Campylobacter 

infection experienced a greater impact of the interventions on anthropometry. We found 

that a treatment rule that assigned the N+WSH (HAZ difference 0.23, 95% CI (0.05, 0.41)) 

and WSH (HAZ difference 0.17, 95% CI (0.04, 0.30)) interventions based on EED biomark-

ers and pathogens increased predicted child growth compared to the randomly allocated 

intervention.

Conclusions

These findings indicate that EED biomarkers and pathogen status, particularly Campy-

lobacter and myeloperoxidase (a measure of gut inflammation), may be related to the 

impact of N+WSH, WSH, and N interventions on child linear growth.

Author summary
Water, sanitation, hygiene, and nutrition interventions are often implemented with the 
goal of improving child growth and development, but we lack information on what 
determines which children can benefit most from these interventions. Frequent infection, 
gut inflammation, and systemic inflammation may limit the effectiveness of nutrition 
interventions by preventing children from using nutrients effectively. On the other hand, 
water, sanitation, and hygiene interventions may prevent infections and thereby reduce 
inflammation. We sought to evaluate the impact of water, sanitation, hygiene, and nutri-
tion interventions on child growth if these interventions were assigned based on biolog-
ical markers of infection and inflammation. We found that children with Campylobacter 
infection and high myeloperoxidase (a measure of gut inflammation) experienced the 
greatest effect of the interventions on growth. These findings support the role of infec-
tion and inflammation in determining the effectiveness of water, sanitation, hygiene, and 
nutrition interventions in improving child growth.

Introduction
Approximately 148 million children globally experience linear growth faltering, which may 
be a consequence of early-life undernutrition [1]. Research consistently shows a positive link 
between child growth and development, leading to the use of linear growth as a proxy for 
overall development [2,3]. In adulthood, children who experienced early-life growth fal-
tering are more likely to experience low educational attainment and low income, although 
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interventions that improve child growth do not necessarily improve child development (and 
vice versa) [2–6]. Children of mothers who are stunted have an increased risk of experiencing 
stunting themselves, which can perpetuate the cycle of poverty [7].

Water, sanitation, hygiene, and nutrition
Experts in public health and international development have identified water, sanitation, 
hygiene (WSH), nutrition (N), and combined (N+WSH) programs as potentially effective 
methods to improve child growth. WSH interventions aim to reduce children’s exposure to 
pathogens, which can improve nutrient utilization by reducing malabsorption, inflammation, 
redirection of nutrients for immune response, and other symptoms associated with infection.
[8] Nutrition interventions aim to directly provide nutrient supplementation.

Several observational studies indicated a positive relationship between household WSH 
interventions and child growth [9]. In contrast to these observational findings, three recent 
randomized controlled trials in rural populations from Kenya and Bangladesh (the WASH 
Benefits study) and Zimbabwe (SHINE trial) found that household WSH interventions did 
not improve child linear growth in a randomized context [7,10–12]. The lack of impact of 
these interventions may reflect an inability of these household interventions to sufficiently 
reduce pathogen exposure and environmental enteric dysfunction [10,13,14].

The WASH Benefits study found that nutritional supplementation led to modest improve-
ments in child linear growth compared to control, which was consistent with previous studies 
[10,15,16]. The combined N+WSH intervention did not provide any additional benefit to 
child linear growth compared to the nutrition intervention alone [10]. This small and variable 
impact of nutrition interventions may be due to contextual underlying factors influencing 
participants’ ability to respond to and benefit from nutrition interventions [10,17].

Effect measure modification by EED and pathogens
The WASH Benefits study did not detect significant effect modification of interventions by 
child age, child sex, maternal education, maternal age, child parity, economic factors, or child 
hunger [10]. Although, it should be noted that lack of observed effect measure modification 
could be due to limited power or the study context [10]. Despite this lack of evidence of inter-
action, enteropathogen and environmental enteric dysfunction (EED) biomarker data may 
provide additional information on which subgroups of children, defined by pathogen infec-
tion/carriage status or biomarker levels, are amenable or resistant to intervention (Fig 1).

EED is a condition characterized by increased gut permeability, gut barrier disruption, 
increased gut and systemic inflammation, and is hypothesized to be caused by chronic expo-
sure to pathogens [19,20]. Although clear diagnostic criteria for EED have not been estab-
lished, several studies have speculated that it could be a key intermediate between poverty and 
growth impairment for children in low and middle-income countries [19,20]. Observational 
data and animal models have indicated that Campylobacter infection may contribute to EED 
[21]. Among young children in Bangladesh, small intestine bacterial overgrowth was associ-
ated with both intestinal inflammation, a key component of EED, and child growth impair-
ment [22,23].

Previous analyses of the WASH Benefits Bangladesh study evaluated the impact of inter-
ventions on child pathogens and EED biomarkers. The investigators found that the nutrition 
intervention was associated with reduced fecal neopterin at 3 and 14 months of age, and all 
interventions reduced urinary lactulose and mannitol at 3 and 14 months [24]. Urinary lactu-
lose and mannitol measure gut permeability [25]. At 28 months, contrary to a-priori hypoth-
eses, WSH and nutrition interventions were associated with increased fecal myeloperoxidase 
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[24]. Although these findings at ages 3 and 14 months support N+WSH interventions’ ability to 
reduce some EED biomarkers, the counterintuitive results at 28 months highlight uncertainty 
regarding the relationship between N+WSH interventions and presumed biomarkers for EED.

Investigators of the WASH Benefits study suggested that insufficient reduction of patho-
gen exposure could explain the null effects of WSH interventions on child linear growth [10]. 
Investigation of the relationships between N+WSH interventions and enteropathogens at Year 
1 (age 14 months) in Bangladesh found that children who received WSH interventions had a 
lower prevalence and quantity of some individual viruses in their stools (norovirus, sapovirus, 
and adenovirus 40/41) compared to children in the control group, although investigators did 
not find a significant difference in bacteria, parasites, or stunting-related pathogens between 
these groups [13]. Furthermore, this study found that 99% of children at Year 1 had at least one 
enteropathogen [13]. At Year 2 (median age 28 months), investigators found that individual 
sanitation and hygiene interventions were associated with decreased Giardia infections com-
pared to control and that drinking water but nutrition interventions were not associated with a 
decrease in Giardia infections compared to control [26]. Regarding soil-transmitted helminths, 
investigators found that the drinking water intervention was associated with reduced hookworm 
infection compared to control [27]. Lastly, analysis of interventions and fecal contamination 
found that drinking water and handwashing interventions reduced contamination of water and 

Fig 1.  Hypothesized relationships between water, sanitation, hygiene, nutrition, EED, and child growth. Figure created with Biorender [18].

https://doi.org/10.1371/journal.pntd.0012881.g001

https://doi.org/10.1371/journal.pntd.0012881.g001
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food but did not reduce contamination of indirect pathways such as child hands and objects 
and that combined WSH interventions provided no additional benefit compared to individual 
interventions [28]. In the SHINE Trial, WSH interventions did not have an effect on bacterial, 
viral, or parasitic enteropathogen prevalence, although parasite concentrations were decreased 
in children’s stools in the intervention arm [14]. These cumulative findings indicate that house-
hold WSH interventions can reduce child exposure to certain pathogens, although these results 
highlight heterogeneous relationships between interventions and individual pathogens.

Using data from the WASH Benefits Bangladesh study, analysis of treatment heterogeneity 
through estimating subgroup treatment effects and optimal treatment regimens can improve 
our understanding of child growth in low- and middle-income countries. Despite the wide-
spread use of N+WSH interventions, investigators have found mixed evidence regarding 
these interventions’ impact on child anthropometry [7,10,12]. This study will apply targeted 
machine learning methods to assess the conditional treatment effect of N+WSH, WSH, and N 
interventions on child linear anthropometry (child height for age Z score (HAZ)) by pathogen 
and EED biomarker status and explore rules for the optimal allocation of N+WSH, WSH, and 
N interventions in resource-constrained settings [29].

Results
We analyzed data from 1,522 children with a median age of 28.1 months (IQR 26.8 months, 
29.2 months), and our analytic sample had a median HAZ of −1.56 at Year 2 (Table 1).

Relationships between pathogens or biomarkers and the conditional 
average treatment effect
To identify subgroups of children (based on EED biomarker and pathogen values) with the 
largest treatment effect, we analyzed the treatment effect comparing children with detection 

Table 1.  Descriptive statistics of sample population.

n (%) or median (IQR)
Child Female 748 (49%)

Anthropometry (14 months, Year 1) Length-for-age z-score −1.41 (−2.06, −0.74)
Weight-for-age z-score −1.31 (−2.01, −0.63)
Weight-for-length z-score −0.89 (−1.55, −-0.21)
Head circumference-for-age z-score −1.78 (−2.34, −1.12)

Anthropometry (28 months, Year 2) Height-for-age z-score −1.56 (−2.27, −0.94)
Weight-for-age z-score −1.58 (−2.2, −0.93)
Weight-for-height z-score −1.03 (−1.62, −0.38)
Head circumference-for-age z-score −1.81 (−2.39, −1.2)

Diarrhea (14 months, Year 1) Caregiver-reported 7-day recall 192 (13%)
Diarrhea (28 months, Year 2) Caregiver-reported 7-day recall 114 (7%)

Mother Age (years) 23 (20, 27)
Anthropometry at enrollment Height (cm) 150.28 (146.81, 154.15)
Education Schooling completed (years) 7 (4, 9)
Depression at Year 1 CESD-R score 9 (6, 16)
Depression at Year 2 CESD-R score 10 (5, 17)
Perceived stress at Year 2 Perceived Stress Scale score 14 (10, 18)
Intimate partner violence Any lifetime exposure 835 (57%)

IQR: Interquartile range; CESD-R: Center for Epidemiologic Studies Depression Revised scale.

https://doi.org/10.1371/journal.pntd.0012881.t001

https://doi.org/10.1371/journal.pntd.0012881.t001
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(for pathogens, above median for EED biomarkers) versus non-detection (for pathogens, 
below median for EED biomarkers) values of each pathogen or biomarker.

We found that the following covariates were associated with a greater impact of N+WSH 
intervention on anthropometry under the optimal treatment rule: ETEC (correlation 0.45, 
treatment effect difference (comparing the treatment among children with ETEC detection 
to children without ETEC detection) 0.0019 HAZ), Campylobacter jejuni/coli (correlation 
0.37, treatment effect difference 0.0016 HAZ), Campylobacter spp. (correlation 0.33, treat-
ment effect difference 0.0011 HAZ), fecal REG1B (correlation 0.20, treatment effect differ-
ence 0.0005 HAZ), and fecal myeloperoxidase (correlation 0.15, treatment effect difference 
0.0007 HAZ) (Table 2). The following covariates were associated with a lower impact of 
N+WSH intervention: aEPEC (correlation −0.41, treatment effect difference −0.0018 HAZ), 
EAEC (correlation −0.39, treatment effect difference −0.0015 HAZ), fecal alpha-1-antitrypsin 
(correlation −0.38, treatment effect difference −0.0013 HAZ), and EPEC (correlation −0.22, 
treatment effect difference −0.0009 HAZ).

The following EED biomarkers and pathogens were associated with greater WSH impact 
on HAZ under the optimal treatment rule: fecal myeloperoxidase (correlation 1.00, treatment 
effect difference 0.1032 HAZ), fecal alpha-1-antitrypsin (correlation 0.26, treatment effect dif-
ference 0.0259 HAZ), fecal REG1B (correlation 0.17, treatment effect difference 0.0105 HAZ), 
Campylobacter jejuni/coli (correlation 0.15, treatment effect difference 0.0143), Campylobacter 
spp. (correlation 0.13, treatment effect difference 0.0119 HAZ), EPEC (correlation 0.11, treat-
ment effect difference 0.014 HAZ), and aEPEC (correlation 0.08, treatment effect difference 
0.0099 HAZ) (Table 3). No EED biomarkers or pathogens were associated with lower WSH 
treatment effect.

The following EED biomarkers and pathogens were associated with greater impact of N on 
HAZ under the optimal treatment rule: Campylobacter spp. (correlation 0.17, treatment effect 
difference 0.0255 HAZ), Campylobacter jejuni/coli (correlation 0.15, treatment effect differ-
ence 0.0269 HAZ), fecal myeloperoxidase (correlation 0.06, treatment effect difference 0.0037 
HAZ), and ETEC (correlation 0.05, treatment effect difference 0.0098 HAZ) (Table 4). EAEC 

Table 2.  Biomarker and Pathogen Correlation with NWSH Conditional Average Treatment Effect.

Biomarker or pathogen n Correla-
tion

Treatment effect (HAZ 
difference) at non-detection 
(pathogen) or below median 
(EED biomarker)

Treatment effect (HAZ differ-
ence) at detection (pathogen) or 
above median (EED biomarker)

Difference in Treatment 
effect (95% CI)

Any Enterotoxigenic Escherichia coli 601 0.45 −0.0006 0.0013 0.0019 (0.0018, 0.0021)
Campylobacter jejuni/coli 602 0.37 −0.0004 0.0013 0.0016 (0.0015, 0.0018)
Campylobacter spp. 603 0.33 −0.0004 0.0008 0.0011 (0.001, 0.0013)
REG 1B 614 0.20 −0.0003 0.0003 5e-04 (4e-04, 7e-04)
Myeloperoxidase 615 0.15 −0.0003 0.0004 7e-04 (5e-04, 8e-04)
Any enteropathogenic Escherichia coli 602 −0.22 0.0006 −0.0003 −-9e-04 (−0.001,−7e-04)
Alpha-1-antitrypsin 615 −0.38 0.0007 −0.0006 −0.0013 (−0.0014,−0.0011)
Enteroaggregative Escherichia coli 603 −0.39 0.0012 −0.0002 −0.0015 (−0.0016,−0.0013)
Atypical enteropathogenic Escherichia 
coli

602 −0.41 0.0006 −0.0011 −0.0018 (−0.0019,−0.0016)

HAZ: Height for age Z-score; EED: Environmental enteric dysfunction; REG 1B: regenerating gene 1β.
Example interpretation (using Row 1: Any Enterotoxigenic Escherichia coli as an example): Among children with non-detection of any enterotoxigenic Escherichia 
coli, NWSH interventions were associated with a −0.0006 HAZ difference compared to control, while for children with detection of any enterotoxigenic Escherichia 
coli, NWSH interventions were associated with a 0.0013 HAZ difference compared to control (experiencing a 0.0019 HAZ greater treatment effect than children with 
non-detection of any enterotoxigenic Escherichia coli.

https://doi.org/10.1371/journal.pntd.0012881.t002

https://doi.org/10.1371/journal.pntd.0012881.t002
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(correlation −0.07, treatment effect difference −0.0181 HAZ) was associated with a lower 
impact of N intervention.

Treatment allocation and predicted child anthropometry
When comparing the combined N+WSH (mean HAZ −1.62) and control (mean HAZ −1.54) 
arms (n = 756), an optimal treatment allocation assigned 331 children to N+WSH and 425 
children to control (Table 5). The optimal treatment rule predicted greater child HAZ than the 
observed randomized intervention (observed HAZ −1.58 vs. optimal HAZ −1.35; optimal vs. 
observed HAZ difference 0.23 HAZ, 95% CI (0.05, 0.41)).

Table 3.  Biomarker and Pathogen Correlation with Conditional Average WSH Treatment Effect.

Biomarker or pathogen n Correla-
tion

Treatment effect (HAZ difference) 
at non-detection (pathogen) or 
below median (EED biomarker)

Treatment effect (HAZ differ-
ence) at detection (pathogen) or 
above median (EED biomarker)

Difference in Treat-
ment effect (95% CI)

Myeloperoxidase 628 1.00 −0.1973 −0.0941 0.1032 (0.0988, 0.1075)
Alpha-1-antitrypsin 629 0.26 −0.1586 −0.1328 0.0259 (0.0215, 0.0302)
REG 1B 629 0.17 −0.151 −0.1405 0.0105 (0.0062, 0.0149)
Campylobacter jejuni/coli 616 0.15 −0.1486 −0.1343 0.0143 (0.0099, 0.0186)
Campylobacter spp. 618 0.13 −0.1494 −0.1375 0.0119 (0.0076, 0.0163)
Any Enteropathogenic 
Escherichia coli

618 0.11 −0.1535 −0.1395 0.014 (0.0097, 0.0183)

Atypical enteropathogenic 
Escherichia coli

618 0.08 −0.1483 −0.1384 0.0099 (0.0056, 0.0142)

Enteroaggregative Escherichia coli 618 0.04 −0.1522 −0.1434 0.0088 (0.0045, 0.0132)
Any Enterotoxigenic Escherichia 
coli

616 0.03 −0.1452 −0.1445 7e-04 (−0.0036, 0.005)

HAZ: Height for age Z-score; EED: Environmental enteric dysfunction; REG 1B: regenerating gene 1β.
Example interpretation (using Row 1: myeloperoxidase as an example): Among children with below median concentration of myeloperoxidase, WSH interventions 
were associated with a −0.1973 HAZ difference compared to control, while for children with above median concentration of myeloperoxidase, WSH interventions were 
associated with a −0.0941 HAZ difference compared to control (experiencing a 0.1032 HAZ greater treatment effect than children with below median concentration of 
myeloperoxidase).

https://doi.org/10.1371/journal.pntd.0012881.t003

Table 4.  Biomarker and Pathogen Correlation with Nutrition Conditional Average Treatment Effect.

Biomarker or pathogen n Correlation Treatment effect (HAZ difference) 
at non-detection (pathogen) or 
below median (EED biomarker)

Treatment effect (HAZ differ-
ence) at detection (pathogen) or 
above median (EED biomarker)

Difference in Treatment 
effect (95% CI)

Campylobacter spp. 591 0.17 −0.008 0.0175 0.0255 (0.0195, 0.0314)
Campylobacter jejuni/coli 590 0.15 −0.0049 0.0221 0.0269 (0.021, 0.0329)
Myeloperoxidase 601 0.06 0.0038 0.0075 0.0037 (−0.0023, 0.0096)
Any enterotoxigenic Escherichia coli 589 0.05 −0.0015 0.0083 0.0098 (0.0039, 0.0158)
REG 1B 600 0.04 −0.0046 0.016 0.0207 (0.0147, 0.0266)
Atypical enteropathogenic Escherichia coli 591 −0.01 0.001 0.0026 0.0017 (−0.0043, 0.0076)
Any enteropathogenic Escherichia coli 591 −0.01 0.0053 −0.0008 −0.006 (−0.0119, −1e-04)
Alpha-1-antitrypsin 601 −0.05 0.0102 0.0007 −0.0095 (−0.0155, −0.0036)
Enteroaggregative Escherichia coli 591 −0.07 0.0157 −0.0024 −0.0181 (−0.024, −0.0122)
HAZ: Height for age Z-score; EED: Environmental enteric dysfunction; REG 1B: regenerating gene 1β.
Example interpretation (using Row 1: Campylobacter spp. as an example): Among children with non-detection of Campylobacter spp., the Nutrition intervention was 
associated with a −0.008 HAZ difference compared to control, while for children with detection of Campylobacter spp., the Nutrition intervention was associated with a 
0.0175 HAZ difference compared to control (experiencing a 0.0255 HAZ greater treatment effect than children with non-detection of Campylobacter spp.).

https://doi.org/10.1371/journal.pntd.0012881.t004

https://doi.org/10.1371/journal.pntd.0012881.t003
https://doi.org/10.1371/journal.pntd.0012881.t004
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In the contrast of WSH (mean HAZ −1.69) and control (mean HAZ −1.54) arms (n = 
752), the optimal treatment rule assigned 9 children to receive WSH interventions and 743 
children to receive control. The optimal treatment rule had greater predicted child HAZ than 
the observed randomized, static intervention (observed HAZ −1.62 vs. optimal HAZ −1.45; 
optimal vs. observed HAZ difference 0.17 HAZ, 95% CI (0.04, 0.3)).

After comparing the nutrition (mean HAZ −1.53) and control (mean HAZ −1.54) arms 
(n = 726), the optimal treatment rule assigned 317 children to receive the intervention and 
409 children to be in the control group. The optimal treatment rule did not have significantly 
greater child HAZ compared to the observed randomized intervention (observed HAZ −1.53 
vs. optimal HAZ −1.47; optimal vs. observed HAZ difference 0.07 HAZ, 95% CI (−0.09, 0.22).

Post-hoc analysis
Campylobacter spp. and fecal myeloperoxidase were associated with a greater treatment effect 
across all three interventions (S1–S6 Figs). To improve interpretability, we dichotomized 
Campylobacter based on detection (non-zero value) vs. non-detection (zero value), while we 
dichotomized myeloperoxidase as high concentration (above median value) vs. low con-
centration (below median value). We conducted an exploratory evaluation of the combined 
impact of Campylobacter infection detection and high concentration of fecal myeloperoxidase 
on the conditional treatment effect under the optimal treatment rule (Table 6). The differ-
ence in treatment effect, comparing those with both Campylobacter spp. infection and high 
fecal myeloperoxidase to those with no Campylobacter spp. detection and below median fecal 
myeloperoxidase was 0.039 HAZ for N+WSH, 0.106 HAZ for WSH, and 0.022 HAZ for N.

As child diarrhea may be associated with child EED biomarker or pathogen status, we 
conducted a sensitivity analysis, excluding children with diarrhea at Year 1. In this sensitivity 
analysis, we found similar results to our main analysis (S1 Table).

Discussion
Across all three interventions, fecal myeloperoxidase, an EED biomarker of gut inflammation, 
and Campylobacter were associated with a greater treatment effect [30,31]. In other words, 
children with Campylobacter infection and higher myeloperoxidase experienced the great-
est benefit from the interventions, although the magnitude of these differences in treatment 
effects was typically small and not clinically significant. There was a greater N+WSH and 
WSH treatment effect among those with both Campylobacter infection and high fecal myelop-
eroxidase than those with either factor alone. The correlation of both Campylobacter and 

Table 5.  Average child anthropometry given optimized vs randomized treatment.

Study arms n Observed HAZ in 
treatment arm

Observed HAZ in 
control arm

Optimal allocation ratio
(treatment: control)

Overall observed 
child HAZ

Optimized child HAZ Predicted HAZ 
difference

N+WSH vs. control 756 −1.62 −1.54 (331:425) −1.58 −1.35 (−1.53, −1.17) 0.23 (0.05, 0.41)
WSH vs. control 752 −1.69 −1.54 (9:743) −1.62 −1.45 (−1.58, −1.32) 0.17 (0.04, 0.3)
Nutrition vs. control 726 −1.53 −1.54 (317:409) −1.53 −1.47 (−1.62, −1.31) 0.07 (−0.09, 

0.22)
HAZ: Height for age Z-score; N+WSH: Combined nutrition, water, sanitation, and hygiene intervention; WSH: Water, sanitation, and hygiene intervention.
This table describes child anthropometry in each treatment arm, as well as predicted values under the optimal treatment rule (optimal treatment allocation ratio, child 
HAZ under optimal treatment rule, and difference between observed growth and optimized growth). Example interpretation (using Row 1: N+WSH vs. control as an 
example): From a sample of 756 children, we observed an average child HAZ of −1.62 in the N+WSH arm and −1.54 in the control arm (−1.58 HAZ overall). The opti-
mal treatment rule would assign 331 children to treatment and 425 to control. Under this optimal treatment rule, the average child anthropometry (including treatment 
and control) would be −1.35 HAZ, which is 0.23 HAZ higher than the observed child growth.

https://doi.org/10.1371/journal.pntd.0012881.t005

https://doi.org/10.1371/journal.pntd.0012881.t005
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myeloperoxidase biomarkers with the treatment effect indicates that these factors, implicated 
as a cause (Campylobacter) and a marker (myeloperoxidase) of EED, support that EED may 
play a role in the interventions’ impact on growth [32]. More specifically, these findings 
support the importance of the gastrointestinal system (as Campylobacter is a leading cause of 
gastrointestinal illness and myeloperoxidase is a measure of gastrointestinal inflammation) 
as a key factor in determining the impact of these interventions on child anthropometry.[33] 
These results are consistent with previous findings that young children with Campylobacter 
infection may face an increased risk of growth impairment and are, therefore, a high-need 
group for intervention. A multi-site birth cohort study (MAL-ED) found that Campylobacter 
infection was highly prevalent and was associated with decreased child anthropometry in the 
first two years of life [34,35]. Campylobacter infections are endemic in settings where poultry 
is raised near the household (which is common in low and middle-income countries), and 
even asymptomatic infection is negatively associated with child growth [35–37]. Campylo-
bacter alters the gut microbiota composition, disrupts the intestinal barrier, and can elicit 
chronic intestinal inflammation [38–43]. Across eight study sites in low-resource settings, 
MAL-ED found that breastfeeding, lack of access to WSH, and targeted antibiotic treatment 
were associated with Campylobacter infection, which in turn was associated with higher 
myeloperoxidase, higher α-1-antitrypsin, and lower fecal neopterin, which are key biomarkers 
of EED [35].

We found that myeloperoxidase, an EED marker of gut inflammation, was associated with 
a greater impact of N+WSH, WSH, and N interventions on child anthropometry. That is to 
say, children with higher intestinal inflammation were most protected by the interventions. 
This likely indicates children whose household environments were the most contaminated 
and interventions reduced but did not eliminate environmental exposures, as gut inflamma-
tion remained high despite continued intervention delivery. Previous meta-analyses have 
found that inflammation and WSH conditions modify the effects of nutrient supplementation 
on micronutrient status and anemia [15,44]. Regarding WSH, our findings were consistent 
with MAL-ED’s findings that EED and inflammation likely mediated the relationship between 
infection and growth faltering [32]. In addition, MAL-ED investigators found that myeloper-
oxidase was associated with pathogen infection, and more specifically, that Campylobacter and 
myeloperoxidase were positively associated across all eight study sites [45].

There was a large disparity between the individual biomarker treatment effect differences 
(very small) and the overall shift in anthropometry under the optimal treatment regime (mod-
erate). The optimal treatment regime takes all of the factors into account, while the treatment 
effect difference only looks at biomarkers and pathogens one at a time. Next, the treat-
ment effect difference dichotomizes all of the biomarkers and pathogens, while the optimal 

Table 6.  Conditional average treatment effect given levels of both Campylobacter and myeloperoxidase at 14 
months.

Treatment 
arm

Treatment effect (HAZ dif-
ference) given Campylobacter 
non-detection and below median 
myeloperoxidase

Treatment effect (HAZ dif-
ference) given Campylo-
bacter detection and above 
median myeloperoxidase

Difference in treat-
ment effect (HAZ 
difference)

Difference 
95% CI

N+WSH −0.0007 0.0011 0.0018 0.0017, 0.002
WSH −0.1981 −0.0917 0.1064 0.1021, 0.1107
Nutrition −0.0029 0.0187 0.0216 0.0157, 0.0276

N+WSH: Combined nutrition, water, sanitation, and hygiene intervention; WSH: Water, sanitation, and hygiene 
intervention; HAZ: for age Z-score.

https://doi.org/10.1371/journal.pntd.0012881.t006

https://doi.org/10.1371/journal.pntd.0012881.t006
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treatment regime incorporates their continuous values in whatever way is most informative 
to the optimal treatment regime. The disparity between these values highlights how a flexible 
nonparametric approach such as Targeted Machine Learning can outperform parametric 
specification of subgroups. These findings highlight the potential for targeted learning meth-
ods to identify and explore treatment heterogeneity within a study and for optimal treatment 
regime analysis to estimate the effects of targeting treatments to children who would benefit 
the most when resource constraints prevent intervening on all children.

These findings support the hypothesis that pathogen exposure and EED biomarkers are 
associated with HAZ faltering. Within rural Bangladesh, these effects were small, but they 
provide support for a biological mechanism.

Strengths
The rich data source of the WASH Benefits Bangladesh EED substudy is a major strength of 
this analysis. This data source included in utero randomized interventions that were contin-
ued for two years after birth and robust collection of enrollment covariates, EED biomarkers, 
pathogens, and anthropometry outcomes across multiple timepoints. Furthermore, the statis-
tical methods applied here allow us to flexibly assess relationships between multiple covari-
ates, exposures, and outcomes while making minimal parametric assumptions.

The analysis methods are a second major strength of this study. We used targeted maxi-
mum likelihood estimation, which is maximally efficient in finite samples and doubly-robust 
[46,47]. Assessment of optimal individualized treatment effects allows us to evaluate the 
relationships between pathogen exposure, EED, and intervention effects without making para-
metric assumptions [48–54]. Given the complex relationships between these biomarker and 
pathogen data, these targeted learning methods allow flexible modeling of complex relation-
ships without requiring parametric assumptions regarding relationships between interven-
tions, biomarkers, pathogens, and child anthropometry that would inevitably be violated.

Limitations
One limitation of this study arises from using post-intervention biomarkers and pathogens, as 
no baseline EED biomarkers or pathogens were measured because infants were in utero at the 
time of randomization. Conditioning on these post-intervention nodes potentially introduces 
confounding and bias. We accounted for this possible confounding by adjusting for addi-
tional baseline covariate information related to family health and socioeconomic status and by 
excluding pathogens and EED biomarkers that were associated with the interventions in previ-
ous analyses of this sample (i.e., potential mediators or colliders), although residual confound-
ing or bias may be present. Using growth velocity evaluated after biomarker assessment, rather 
than HAZ, as an outcome of interest may alleviate these concerns in some settings, but it would 
have considerable drawbacks in our study context. As our interventions were delivered at birth, 
we do not have pre-intervention anthropometric assessments, which would be required to 
assess the full impact of the interventions on growth velocity. Furthermore, as we randomized 
in-utero, we can infer that anthropometric characteristics were balanced at baseline. While it 
would be feasible to calculate growth velocity as the change in growth between Year 1 and Year 
2, this presents additional inferential challenges, as children with early life growth faltering may 
experience subsequent “catchup growth” due to regression to the mean (convergence towards 
average trajectory) and/or due to post-birth biological recovery [55,56]. Therefore, given the 
effective randomization of this study, we selected HAZ as our outcome of interest.

In the future, we hope to analyze biological samples that were collected from these children 
at a younger age (4–8 months) to further evaluate these relationships. Furthermore, future 



PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012881  February 18, 2025 11 / 20

PLOS Neglected Tropical Diseases Treatment heterogeneity of WASH and nutrition interventions on child growth

studies should evaluate these relationships by assessing biomarker and pathogen status before 
randomization. The external validity of these findings is also limited due to the trial context, 
in which participating households received extensive follow-up and monitoring and may not 
reflect the experience of these interventions in the target population’s context.

The small or null overall effects of the study interventions are another limitation. In the 
presence of a null overall effect, to detect subpopulations with a significant effect, there must 
be equivalent populations with a deleterious effect or much larger populations with a null 
effect. In contrast, optimal treatment regime analysis in a population with a greater treat-
ment effect will have much greater power to detect subpopulations of interest. While the trial 
reported that N and N+WSH interventions led to a modest improvement in HAZ [10], these 
effects were not seen for this subsample. This may be why more than half of the children were 
assigned to control rather than the interventions in the optimal treatment regime, which 
should be taken as a finite sample limitation of a trial with null effects on children within 
the small substudy. Follow up evaluation of these relationships in a separate population may 
provide insight on the replicability of these findings. The greater magnitude of the treatment 
effect difference given Campylobacter detection and above median fecal myeloperoxidase 
versus Campylobacter non-detection and below median myeloperoxidase for WSH, compared 
to N+WSH, may be attributable to finite sample bias, in which the observed HAZ in the WSH 
arm was lower than the other three treatment arms. This large treatment effect difference for 
WSH vs. control may be attributable to the wide variation in anthropometry observed in the 
WSH arm compared to other treatment arms, which makes this group amenable to an opti-
mized intervention.

Future directions
These findings support the application and evaluation of interventions that aim to reduce 
exposure to and infection by pathogens, such as Campylobacter, as well as interventions that 
seek to reduce intestinal inflammation. Evaluations of these interventions should evaluate 
their direct impacts on these biomarkers and pathogens as well as their indirect impacts on 
child anthropometry.

We found that the interventions had the greatest effect in children with a high burden of 
pathogens and EED biomarkers. Future evaluations that consistently identify biomarkers 
and pathogens associated with lower treatment effect (i.e., resistance to treatment) could 
indicate the need for co-interventions. For example, certain types of persistent bacterial 
infection (e.g., Mycobacterium tuberculosis or Salmonella typhi) may not be responsive to 
WSH interventions, and may require additional medical intervention [57–59]. In these cases, 
co-interventions, such as antibiotic treatment, may supplement interventions in order to ame-
liorate these conditions and improve N+WSH, WSH, or N intervention effectiveness [57].

We focused our interpretation on Campylobacter and myeloperoxidase, which demon-
strated consistent correlations (in terms of direction) with the conditional average treatment 
effect (CATE) across interventions. Our analysis of individual biomarkers’ and pathogens’ 
correlations with the conditional treatment effect provided some evidence of effect hetero-
geneity being associated with factors beyond Campylobacter and fecal myeloperoxidase, 
although the lack of consistency of these observations across similar interventions (e.g., 
N+WSH versus WSH) led us to believe that these relationships may be spurious. On the 
other hand, it is plausible that these unique correlations across similar biomarkers and 
pathogens point to unique actions of related covariates or unique mechanisms of combined 
versus individual interventions, respectively. Future studies could incorporate cluster anal-
ysis methods to assess the combined role of related biomarkers and pathogens on treatment 
effectiveness.
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Conclusion
The cumulative results here indicate that EED and pathogens may be related to N+WSH, 
WSH, and N interventions’ impact on child anthropometry. In particular, we found that 
Campylobacter infection and high myeloperoxidase were associated with a greater effect of 
N+WSH (treatment effect difference 0.039 HAZ), WSH (treatment effect difference 0.106 
HAZ), and N (treatment effect difference 0.022 HAZ) interventions on child HAZ at 28 
months. These findings are consistent with the observational results of the MAL-ED study 
[32,35,60]. This information regarding the relationships between pathogens, EED biomarkers, 
and treatment effectiveness highlights biological mechanisms that may indicate an individual’s 
ability to respond to N+WSH, WSH, and N interventions. These results may help distinguish 
what defines a responsive versus nonresponsive individual to these interventions and should 
motivate future etiological research that seeks to estimate the causal impact of EED and 
pathogen burden on intervention effectiveness.

Methods

Ethics
The primary caregiver of each child provided written informed consent prior to enrollment. 
Human subjects protection committees at International Centre for Diarrhoeal Disease 
Research, Bangladesh (icddr,b), the University of California, Berkeley, and Stanford Uni-
versity approved the study protocols. The parent trial was registered at ClinicalTrials.gov 
(NCT01590095) and a safety monitoring committee convened by icddr,b oversaw the study.

Study design, participants, and interventions
This analysis involves data from a substudy of the WASH Benefits Bangladesh randomized 
controlled trial. The trial randomized pregnant mothers and their children to receive one 
of six interventions – water treatment, sanitation, handwashing, nutrition (N), combined 
water treatment, sanitation and handwashing (WSH), and combined nutrition plus WSH 
(N+WSH), or control (see enrollment flowchart in S7 Fig and study timeline in S8 Fig) [10]. 
In a substudy focused on the evaluation of EED, investigators assessed additional biomarker 
data in a subset of children in four of the study arms – N, WSH, N+WSH, and control (with 
an allocation ratio of 1:1:1:1) [24]. The behavioral components of these interventions included 
treating drinking water for index households, which included children less than 3 years of age 
(water), using latrines and child potty in addition to removing animal feces from the com-
pound (sanitation), washing hands with soap before preparing food and after defecating or 
contacting child feces (hygiene), and practicing age-appropriate nutrition practices from preg-
nancy up until two years of age and using small-quantity lipid-based nutrient supplements 
for children six months to two years of age (nutrition) [61]. Promoters were instructed to 
visit study compounds at least once per week for the first six months and then once every two 
weeks for the following 1.5 years (until child age 24 months). The intervention hardware and 
consumables were provided free of charge and replenished by promoters as needed through-
out the study period (additional details on interventions can be found in S1 Text).

Investigators followed the cohort of children for approximately 2.5 years after birth. Due 
to logistical challenges regarding specimen collection and transportation, it was not feasible 
to retain the geographic matching of the parent trial in this subset. The trial was conducted in 
contiguous rural subdistricts in Gazipur, Mymensingh, Tangail, and Kishoreganj districts of 
Bangladesh. The trial enrolled women in their first or second trimester of pregnancy (addi-
tional information on recruitment and eligibility can be found in S2 Text) [61].
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Covariates.  Although randomization of participants led to a balanced distribution of 
covariates between study arms, this analysis conditioned on post-randomization biomarker 
values, leading to the possibility of collider stratification bias. In addition to the biomarkers 
and pathogens included in the treatment rule, our analyses adjusted for child sex, birth 
order, number of children under 18 years of age in the household, number of individuals in 
the compound (group of nearby houses), household wall material, household wealth (first 
principal component of a principal components analysis incorporating household assets), 
maternal age and height, age in days at urine and stool assessments, month of urine and 
stool assessments, and age at anthropometry assessment. We considered and tested potential 
confounders using super learner and cross-validated targeted maximum likelihood estimation. 
The full list of baseline and time-varying covariates can be found in S3 Text.

Biomarkers and pathogens.  EED biomarkers: The EED measures included in this study 
were fecal alpha-1-antitrypsin, myeloperoxidase, and REG1B, which we measured at median 
ages 3 months and 14 months. These measures are markers of intestinal permeability (alpha-
1-antitrypsin), inflammation (myeloperoxidase), and intestinal repair (REG1B) [30]. We 
excluded EED biomarkers (fecal neopterin and urinary lactulose and mannitol) that were 
associated with the interventions of interest in a previous analysis of this sample and therefore 
were potential mediators of the exposure-outcome relationship [24].

To reduce inter-laboratory variation, all fecal samples were assayed by the same research 
team member at the International Centre for Diarrhoeal Disease Research, Bangladesh (icd-
dr,b) laboratory. Laboratory methods are included in S4 Text and were published previously 
[13,24].

Pathogens: We included six pathogens in our final analysis: Campylobacter jejuni/coli, 
enteroaggregative Escherichia coli (EAEC), any enterotoxigenic E. coli (ETEC), atypical 
enteropathogenic E. coli (aEPEC), any enteropathogenic E. coli (EPEC, including both typical 
or atypical), and Campylobacter spp. (which includes C. jejuni, C. coli, and other Campy-
lobacter species). Relative concentrations of pathogens were assessed at 14 months in feces 
using quantitative polymerase chain reaction (qPCR) via TaqMan array card [13,62,63]. We 
excluded three pathogens (norovirus, sapovirus, and adenovirus 40/41) that were reduced by 
the interventions of interest in a previous analysis of this sample and therefore were potential 
mediators of the exposure-outcome relationship [13]. We excluded an additional 25 patho-
gens due to high missingness or near-zero variance. We quantified pathogens using quantifi-
cation cycle, where one unit corresponded to twice the pathogen quantity. The analytical limit 
of detection was quantification cycle 35, values above this were considered non-detects [64]. 
We standardized these measures using the efficiency of per-sample extraction/amplification. 
The full list of pathogens is included in S2 Table.

A single infection event is unlikely to elicit HAZ impairment in itself, but repeated expo-
sure to pathogens and chronic disruptions such as EED are associated with delayed growth 
[32,35,65]. This analysis assumes that the detection of pathogens and EED biomarkers at 14 
months is a proxy for chronic exposure to these factors throughout early childhood.

Outcomes.  The anthropometry outcome was height for age Z-score (HAZ) assessed at 
Year 2 (median age 28 months). Following standard protocols for anthropometric outcomes 
measurement [66,67], pairs of trained anthropometrists measured child anthropometry 
(accurate to 0.1 cm) in triplicate to calculate median HAZ using 2006 WHO child growth 
standards [10]. We measured recumbent length when child was age < 24 months, and we 
measured standing height when child was age > 24 months.

Analyses.  These analyses assessed the conditional average treatment effect (CATE) and 
mean under the optimal individualized treatment regime using a targeted learning approach 
[48]. A static treatment approach as used in the WASH Benefits primary analysis, in which 
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treatment is randomly assigned, aims to assess the average effect of the interventions in the 
entire study population (i.e., interventions are not targeted based on individual covariate 
information) [10,48]. In contrast, an optimal treatment regime analysis assesses the impact 
of the intervention given (or, conditional on) individual covariate status [10,48]. In these 
analyses, the individual covariate information was child pathogen and EED biomarker status.

We used cross-validated targeted maximum likelihood estimation, which we fit using Super 
Learner ensemble machine learning in order to estimate the optimal individualized treatment 
regime and the outcome as the mean under the optimal individualized treatment [68]. First, 
we estimated the outcome regression function and propensity score (treatment mechanism) 
using Super Learner. Super Learner is an ensemble machine learning approach that creates a 
convex combination of candidate algorithms in order to maximize model fit [69,70]. Super 
Learner is grounded in statistical optimality theory, and guarantees that it will perform at least 
as well as the best candidate algorithm with a sufficiently large sample size. In our learner list 
for the treatment mechanism, we included the least absolute shrinkage and selection operator 
(LASSO) penalized regressions, random forests, the simple mean, and generalized linear mod-
els, and we used non-negative least squares to construct the final ensemble (the meta-learner) 
[48].

Next, we used the doubly-robust augmented inverse probability weighting to transform 
the outcome to a random variable that has the CATE (i.e., the treatment effect specific to each 
individual’s set of covariates) as its mean and regressed this transformed outcome to assess 
treatment heterogeneity using targeted maximum likelihood estimation via the R package 
“tmle3mopttx” [71]. Targeted maximum likelihood estimation reduces bias and yields an 
interpretable measure of association (in this case, the average treatment effect) [48,72–75]. 
Specifically, we estimated the function of the individualized outcome by regressing this con-
trast on biomarker status using Super Learner with a non-negative least squares loss function 
based on the Lawson-Hanson algorithm. As these analyses assess the impact of the random-
ized intervention (the treatment mechanism), the doubly-robust nature of this estimator will 
ensure asymptotically consistent estimation of the CATE even if the outcome regression is not 
consistently estimated [48].

Finally, we use the estimate of the CATE function to derive an optimal individualized treat-
ment rule where we would treat a maximum of 50% of individuals with the greatest CATE. 
Though providing optimal treatment to all children is desirable, in a resource constrained 
setting, one might also be interested to limit the intervention to the children most likely to 
benefit from the intervention (i.e., have the greatest CATE). In order to assess the impact of 
the individualized treatment regime in resource-constrained settings (i.e., preventing all chil-
dren from being allocated to intervention), we restricted the maximum allocation to treatment 
in each binary (treatment to control) contrast to be no more than 50%, which is approxi-
mately equivalent to the original trial’s allocation ratio (1:1:1:1). If less than 50% of individuals 
in a single binary (treatment to control) contrast have a positive CATE (beneficial effect of 
treatment), then the optimal treatment rule will assign all individuals with a positive CATE 
to intervention. If more than 50% of individuals in a single contrast have a positive CATE, 
the optimal treatment rule will only assign the 50% of individuals with the greatest CATE to 
intervention.

To assess the role of each biomarker or pathogen in the optimal treatment rule, we evalu-
ated Pearson’s correlation between each of these covariates and the CATE. To contextualize 
the magnitude of these relationships, we estimated the difference in subgroup treatment 
effect between children with detection (for pathogens, above median for EED biomarkers) 
versus non-detection (for pathogens, below median for EED biomarkers) pathogen and 
EED biomarker status. While the optimal treatment rule flexibly incorporated continuous 
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values of these biomarkers, we used binary transformations of these values to assess variable 
importance in order to improve interpretability. Furthermore, while the optimal treatment 
rule assessed the combined role of these biomarkers, our assessments of variable importance 
assessed each biomarker individually to improve interpretability. The difference between these 
two subgroup effects is hereafter referred to as “treatment effect difference.”

Covariate screening: We screened all covariates for missingness, excluding all covariates 
with missingness greater than 30% and median-imputing all other missing covariate data. We 
only included observations for which the primary outcome, HAZ at 28 months, was observed. 
We also excluded variables with near zero variance, which we defined as covariates with a fre-
quency ratio (ratio of most frequent value to second most frequent value) greater than 2 and a 
percent of unique values less than 20%, using the R package “caret” (version 6.0–92) [76]. The 
analysis plan was publicly pre-registered on Open Science Framework, and all data and anal-
ysis scripts are publicly available (https://osf.io/cg8dv/). EED markers assessed at 3 months 
were excluded due to high missingness (>30%). The full list of excluded covariates and reasons 
for exclusion are defined in S2 Table.
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