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Introduction
Since its approval in the USA in 1993, interferon beta 
(IFNb) has been widely used to reduce relapse fre-
quency in patients with multiple sclerosis (MS).1–3 
Although its precise mechanism of action has not been 
fully elucidated, IFNb is thought to modulate immune 
responses by shifting the Th1/Th2 balance, inducing 
T-cell apoptosis and altering expression of cell adhe-
sion molecules.4,5 Although IFNb has demonstrated 
efficacy and an excellent long-term safety profile, a 
proportion of patients experience ongoing disease 
activity despite treatment. In particular, the presence 
of new lesions on magnetic resonance imaging (MRI) 

scans or the occurrence of clinical relapses in IFNb 
treated can be associated with long-term disability.6,7 
The identification of biomarkers predictive of thera-
peutic response would be clinically useful both for 
identifying patients who will optimally respond to 
treatment and those who are at risk for ongoing disease 
activity.

Using a data mining approach, specific transcription-
based signatures were associated with therapeutic 
response in a previous study.8 A goal of the present 
study was to determine whether these observations 
could be validated in an independent cohort. 
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Furthermore, the present study includes high- 
frequency correlations and longitudinal analyses 
aimed at determining the added value of biomarkers 
to the more established metrics of disease activity 
based solely on clinical and radiological examina-
tions. Here we tested the expression of a select group 
of transcripts and proteins in blood samples from sub-
jects participating in the IMPROVE study, a trial to 
evaluate the efficacy of a serum-free preparation 
(originally known as Rebif® New Formulation).9 
This 11-month study (18 months total follow-up 
period) enrolled 180 subjects randomized into two 
arms with monthly MRI and blood sampling and peri-
odic neurological examinations. This unique study 
design provided an opportunity to assess molecular 
correlates that were predictive of both clinical and 
radiological disease activity.

Materials and methods

Subjects and clinical parameters
Subjects participating from the IMPROVE study 
were randomized into two treatment arms and fol-
lowed for 40 weeks with monthly MRI scans and 
quarterly neurological evaluations (an extended fol-
low-up was done at 18 months) (Figure 1).9,10 A sub-
group of 155 of the 180 original IMPROVE subjects 

underwent monthly blood draws for biomarker anal-
ysis. Subjects in Arm A received placebo for the first 
16 weeks (Arm A0) and then active drug for the 
remaining period (Arm A1). Individuals in Arm B 
received active drug from baseline (BL). MRI met-
rics included the number of new T1 lesions (T1L), 
new T2 (T2L), new gadolinium-DPTA (Gd)-
enhancing (GDL), new ring-enhancing (REL), and 
combined unique (new T2 lesions and/or 
Gd-enhancing lesions) active lesions (CU), as well as 
volume changes of Gd-enhancing lesions (ΔVGDL). 
Neurological examinations included relapse and 
Expanded Disability Status Scale (EDSS) assess-
ments. Clinical characteristics of subjects in this 
study are described in Table 1.

Samples and biomarkers
Whole blood for RNA (Paxgene tubes) and anticoagu-
lated plasma were obtained from each available partici-
pant at baseline and at each of the 10 subsequent time 
points. Total RNA was obtained from each sample using 
Blood RNA kit (Qiagen) and subsequently purified with 
RNeasy columns (Qiagen) to obtain quantitative poly-
merase chain reaction (qPCR)-grade RNA. Reactions 
were performed in an ABI7900 sequence analyzer. 
Expression of protein biomarkers was determined  
by validated enzyme-linked immunosorbent assay 

Figure 1.  IMPROVE study design.
ELISA: enzyme-linked immunosorbent assay; qPCR: quantitative polymerase chain reaction.
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(ELISA) or colorimetric assays. See Supplementary 
Materials and Methods for more details.

Statistical analysis
The average expression levels of each biomarker at 
each time point after initiation of therapy was com-
pared with the average of their expression in the 
absence of treatment by means of a two-sided inde-
pendent two-sample t-test. Reported p-values are 
uncorrected unless otherwise noted.

The response of each subject to treatment was classi-
fied as being either “disease activity free on therapy” 
(DAF) or sub-optimal responders (SOR) according to 
presence of clinical and/or radiographic disease activ-
ity criteria. Because anti-IFNb neutralizing antibodies 
(NAbs) abrogate IFN-induced gene transcripts and 
inhibit the impact of IFNb on MS relapsing activity, 
subjects who tested positive for NAbs at baseline 
(n=3) were excluded from analysis.11 Two samples 
failed quality control. In total, 49 samples from Arm 
A and 101 from Arm B were subjected to further 
analysis.

Normalized expression data at baseline was used to 
compute random forests with the MLInterfaces pack-
age within the R statistical software. Induction ratios 
between baseline (average of W4-W16 in Arm A) and 
4 weeks after initiation of treatment were also com-
puted and used to predict response in a similar fash-
ion. Random forests are a type of recursive partitioning 
method particularly well-suited to small n large p 
problems.12 Furthermore, the results of an ensemble 
of classification/regression trees have been shown to 
produce better predictions than the results of one clas-
sification tree on its own.12

See Supplementary Materials and Methods for more 
details.

Correlation of biomarker expression with MRI 
activity, relapse rate and EDSS
This analysis aimed at identifying biomarkers that cor-
related with any of the six MRI parameters measured 

in the absence of IFNb treatment. Only samples from 
subjects in Arm A collected at baseline (ABL) and 
through the placebo stage (A0) (i.e. ABL + A0) were 
considered for this analysis. For each biomarker, the 
expression level was correlated to the profiles of all 
MRI and clinical parameters measured during the 
same time period.

For every patient the correlation coefficient (R) 
between biomarker expression and each MRI or clini-
cal parameter (expressed as vectors of values over 
time points) was computed. The distribution of R 
obtained over all patients was compared to zero (null 
hypothesis of no correlation) by means of a two-sided 
one-sample t-Test. Reported p-values are uncorrected 
unless otherwise noted.

Results
Blood samples from 155 subjects who participated in 
IMPROVE were available to test correlations between 
select protein and RNA biomarkers and MRI metrics 
and clinical parameters over time (Figure 1). Three 
subjects with NAbs present at baseline and samples 
from two subjects who failed quality control were 
excluded from the remainder of the study. In total, 46 
subjects (17 in Arm A and 29 in Arm B) met DAF on 
therapy criteria, and 104 subjects were defined as 
SOR (32 in Arm A and 72 in Arm B). Of the DAF 
group, 26 individuals (seven in Arm A and 19 in Arm 
B) did not show evidence of disease activity at base-
line or at subsequent examinations. It is possible that 
these subjects had either an optimal therapeutic 
response or mild disease.

The expression of 32 transcripts, six proteins, and 
nitric oxide (NO) was tested in all available subjects 
after quality control (n=49 from Arm A and n=101 
from Arm B) at baseline and at each of the following 
10 months. Transcripts for analysis were selected 
based on a previous study8 and included those coding 
for components of the canonical type-I IFN signaling 
pathway, cell cycle control, apoptosis, and cytokines 
and receptors in lymphocyte differentiation pathways. 
The housekeeping gene GAPDH was used as a con-
trol to normalize all other transcripts.

Table 1.  Clinical characteristics of subjects in study.

Parameter Value

Female:male ratio (n) 2.6 (112:43)

Mean age at entry into IMPROVE (SD) 33.8 (8.97)
Median EDSS at baseline (range) 2.5 (0–5.5)

EDSS: Expanded Disability Status Scale.
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Normalized levels of each biomarker (24 transcripts, 
six proteins and NO) at all time points were organized 
(by patient) and visualized in heatmaps, in which 
genes (or proteins) were clustered by similarity across 
samples (Figure 2). Transcription profiles for MXA, 
TRAIL and BAFF were closely correlated and showed 
the highest expression, an expected finding given that 
these are IFNb-responsive genes whose expression 
increases within hours following IFNb administra-
tion.13–19 Protein levels of sVCAM were similarly up-
regulated by IFNb.20–24 These expected changes in 
response to IFNb administration were reassuring and 
served as useful controls of sample handling, process-
ing, and overall data quality.

The associations between biomarker expression and 
treatment in all individuals from Arm B (n=101) were 
tested next. Specifically, the difference in expression 
between baseline and the average of all time points 
after drug administration was computed. Notably, the 
expression of 19/24 transcripts showed a statistically 
significant association with treatment (two-sided 
t-test, p<0.05) (Figure 3(b)). Of these, 13 were sig-
nificantly increased (up to four-fold) while only six 
were decreased (by at least 1.5-fold). Similarly, five 
proteins were significantly regulated by treatment 
(sICAM, sVCAM, TIM-1 and TRAIL were up-regu-
lated whereas MMP-9 was down-regulated). Similar 
results were observed for individuals from Arm A 
(n=53) by computing the difference between the 

average of all time points before and after treatment 
(Figure 3(a)). Consistent with prior studies, the two 
transcripts that were most significantly induced by 
treatment were MxA (>16-fold, p<10-25)14,18,25,26 and 
TRAIL (> 16–fold, p < 10-21, Figure 3(a)).26,27 The 
correlation between transcript and protein levels of 
TRAIL was moderately high (R2=0.632) and was 
within the reported range of global concordance 
between RNA and protein levels.28,29 The individual 
patient data for TRAIL levels before and after treat-
ment is visualized in Figure 3(c), where a clear sepa-
ration between baseline (red) and treatment (blue) 
samples was seen.

To determine whether these gene transcripts and pro-
teins could predict therapeutic response we employed 
a machine learning approach (random forest classifi-
cation algorithm, see methods) to identify combina-
tions of biomarkers that, when measured at baseline, 
correlate with therapeutic response measured over the 
course of the study. In a previous report that defined 
therapeutic response by the absence of clinical relapses 
or neurological worsening over 2 years of follow-up, 
nine gene triplets with a predictive accuracy of at least 
80% (range 80–87%) were identified.8 The predictive 
accuracy of the same triplets in this cohort ranged 
from 59–68%) and the area under the receiver operat-
ing characteristic curve (AUC) was up to 63% (Table 
2). It is worth noticing, however, that in the previous 
study, response was defined using only clinical (not 

Figure 2.  Heatmap of gene and protein expression in 1705 samples from IFNb-treated MS patients. Each row 
corresponds to a biomarker (A: transcripts, B: proteins) and each column represents a sample. For each patient, samples 
are sorted by time point (baseline through week 40). The color of each cell represents the normalized expression 
(blue=low, red=high).
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imaging) information. When only clinical criteria 
were used to define DAF and SOR in the present 
study, the predictive accuracy of those same triplets 
was 76–78% (Table 2). Sub-clinical brain MRI lesions 
will occur more frequently than clinical measures of 
disease activity. Thus when MRI information is incor-
porated, fewer patients will meet the DAF criteria than 
when only clinical measures are used.

A recent report suggested that measuring biomarker 
induction ratios after IFNb administration provides a 
more sensitive predictor of long-term response than 
baseline measurements alone.30 We used induction 
ratios computed from baseline and week 4 (the next 
available time point) to predict response and observed 
an improvement in the predictive accuracy for the 
same biomarkers (up to 72%). However, the AUC 
remained unchanged at 62% (Table 3).

We next explored the performance of additional com-
binations using the same set of biomarkers in all sub-
jects for whom all transcripts could be reliably 
measured (n≥59). Several gene triplets were identi-
fied whose predictive accuracy and AUC performed 
numerically better than the gene combinations listed 
in Tables 2 and 3. The top-scoring classifier was 
CASP2/IL-10/IL12Rb1, yielding a predictive accu-
racy of 82% and AUC of 0.80. Of these individual 
transcripts, only the expression of CASP2 resulted in 

a significant difference between the DAF and SOR 
groups. The expression of IL10 was borderline and 
that of IL12Rb1 was not significant (Figure 4(a)). 
Correspondingly, the individual AUC were 0.71, 0.68 
and 0.54 (Figure 4(b)). This example highlights the 
power of gene combinations over single gene predic-
tors. Seven other combinations resulted in AUC ≥75% 
(Table 4), and yet another set of 54 triplets yielded a 
predictive accuracy ≥80% (Supplementary Table 1).

To further evaluate that the overall performance of 
these classifiers was greater than would occur by 
chance association, we generated 100 datasets using 
the same expression values, but in which the DAF and 
SOR groups were randomly assigned (permuted). We 
then compared the AUC and predictive accuracy of 
the real dataset against the average of the randomly 
generated datasets (Supplementary Figure 1). Both 
AUCs and predictive accuracies of the original data-
set were greater than those obtained with the per-
muted data, indicating that the identified classifiers 
held predictive power. This is a remarkable result 
given the small number of genes tested in this inde-
pendent cohort.

The longitudinal nature of IMPROVE enabled the eval-
uation of correlations between biomarker expression 
and clinical and imaging parameters. The expression of 
four transcripts (Caspase -3, -7 and-10, and IL12Rb1) 

Figure 3.  Correlation between biomarker expression and treatment. For each Table the p-value and t-statistic is provided. 
The t-statistic provides an indication of whether the biomarker is increased (positive) or decreased (negative) with 
treatment. A, Arm A; B, Arm B; C. correlation between qPCR and ELISA. Red: untreated; blue: treated.
ELISA: enzyme-linked immunosorbent assay; qPCR: quantitative polymerase chain reaction.
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Figure 4.  Performance of top classifier. A. box plots of the expression of each transcript in the classifier in disease 
activity free on therapy (DAF) vs. sub-optimal responders (SOR). B. Receiver operating characteristic curves showing 
the individual predictive power of each transcript. C. A tree-dimensional plot showing the expression values for all three 
transcripts of the CASP-2, IL-10, IL12Rb1 triplet. DAF (red); SOR (black).
AUC: area under the curve.

was negatively correlated with clinical attacks 
(p>0.001). Another five transcripts (BAFF, JNK2, 
MAP3K1, MXA and TRAIL) also showed negative 
correlation albeit at a lower level of significance 
(p<0.05). Only MMP-9 was positively correlated with 
relapses (p<0.05) (Table 5). At the protein level, TIMP-1 
(p<0.001) and NO and S100B (p<0.05) were negatively 
correlated with the presence of relapses (data not 
shown). None of the tested biomarkers correlated with 
sustained EDSS increase or six MRI metrics (T1L, 
T2L, GDL, REL, NCU, and ΔVGDL) measured at each 
of the 11 time points. This is likely due to the narrow list 
of markers tested, which was originally designed around 
the biological effects of IFNb.

Discussion
The modest size of analyzed cohorts as well as hetero-
geneous criteria used to define therapeutic response 
thus far have limited identification of validated bio-
markers that are predictive of therapeutic response in 
MS.31,32 In the present study, we analyzed samples from 
155 subjects from the IMPROVE study, constituting the 
largest and most rigorously characterized MS cohort for 
biomarker discovery to date. We reasoned that using a 
strict definition of therapeutic response would be of 
greatest clinical relevance and thus performed our study 
using the DAF criteria. The DAF criteria are emerging 
as an increasingly important metric in recent clinical tri-
als because they incorporate both radiographic and 
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Table 5.  Transcripts correlated with relapses.

Gene symbol p-value t-statistic

BAFF 0.03 −2.24

CASP10 0.005 −2.98

CASP3 0.005 −2.97

CASP7 7.43E-05 −4.40

IL12Rb1 0.002 −3.26

JNK2 0.04 −2.08

MAP3K1 0.01 −2.69

MMP9 0.04   2.09

MxA 0.01 −2.69

TRAIL 0.005 −2.93
VLA-4 0.0002 −3.99

clinical measures of disease activity and are thought to 
possibly represent disease remission.33,34

Particular combinations of transcripts that are predic-
tive of IFNb response when measured before initia-
tion of therapy were previously reported.8 In that 
earlier report, the top classifier (CASP2, CASP10 and 
FLIP) achieved 87% predictive accuracy. Here, we 
report validation of this triplet and other predictors in 
an independent cohort with predictive accuracy up to 
68%. The numerically lower predictive accuracy is in 
part because here we use a more sensitive indicator of 
SOR that incorporated monthly MRI scans. When 
only clinical measures of disease activity were used to 
define DAF and SOR then the predictive accuracy of 
the previously identified triplets increased up to 78%.

Based on a prior report30 in which an exaggerated 
response to IFNb was associated with sub-optimal 
response, we tested the performance of predictors 
computed from 1-month induction ratios rather than 
baseline expression. In this analysis, the use of induc-
tion ratios on the previously reported triplet CASP2/
IRF4/IRF6 (Table 2) resulted in a predictive accuracy 
of 72%, a modest improvement over the accuracy 
obtained using baseline values alone, mostly due to an 
increase in sensitivity. One difference between the 
present study and that of Rudick et al.30 is the way in 
which induction ratios were computed. In that study, 
samples were obtained at baseline and 12 h after the 
first administration of IFNb, while samples in the pre-
sent study were collected at 4-week intervals. 
However, in order to measure the stability of induc-
tion ratios, Rudick et al. also performed similar meas-
urements at 6 and 24 months showing that the 
induction ratios were largely independent of the time 
from first injection. We thus inferred that computing 
induction ratios at 4 weeks was a valid strategy.
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When a search for new combinations of gene triplets 
was performed using the 1-month transcript induction 
ratio, the triplet CASP2/IL10/IL12Rb1 achieved a 
predictive accuracy of 82% with an AUC of 0.80. 
This observation suggests that the addition of IL10 to 
the gene expression profile could further improve the 
predictive value of this assay. However, the IL10 tran-
script is usually expressed at very low levels and thus 
was reliably observed in only a subset of the overall 
cohort. Technical improvements in the IL10 transcrip-
tion assay might allow verification of the utility of 
this biomarker in a more representative sample of this 
dataset.

Subjects without baseline activity (n=22), or no 
activity during treatment (n=26), were included in 
the DAF group. However, these subjects could either 
be optimally responsive to treatment or might simply 
have very mild MS. Unfortunately, due to the short 
follow-up period, this study cannot distinguish 
between those two groups. It is possible that bio-
markers of therapeutic response could be different 
from those associated with quiescent disease, and 
therefore the inclusion of patients with spontane-
ously quiescent MS would reduce the predictive 
accuracy of markers associated with true therapeutic 
response. However, the baseline transcription pro-
files of the 20 DAF subjects (10 in Arm A and 10 in 
Arm B) who had baseline Gd-enhancing lesions was 
not substantially different from that of the 26 patients 
who had no disease activity at any time during the 
course of the study (data not shown), suggesting 
these two groups of subjects might share similar 
underlying biology.

Another limitation of the present study is that the 
DAF criteria resulted in a disproportion between DAF 
and SOR patients. Because MRI disease activity 
occurs more frequently than either clinical relapses or 
disability progression, for a partially effective therapy 
the number of SOR patients would be expected to be 
greater than that of DAF patients. Indeed, only 46 of 
the 150 evaluable study subjects met DAF criteria in 
this study. This unbalanced partition has direct conse-
quences on the performance of the predictors. 
Specifically, if a classifier is trained with more SOR 
than DAF, the error rate in predicting SOR will be 
lower than DAF as can be seen in Tables 2–4. 
Although it may be clinically desirable to identify the 
subgroup of optimal therapeutic responders, to do so 
will require a larger number of study subjects. 
Nevertheless, the biomarkers employed in the present 
study do have potential clinical utility in identifying 
SOR. Such patients may be at risk for disease pro-
gression and could be monitored more closely for dis-
ease activity.6

In summary, here we use a well-powered and character-
ized patient cohort to test previously reported prognos-
tic biomarkers of IFNb-treated MS patients. Several of 
the original biomarker combinations achieved accepta-
ble predictive accuracy in this independent study. 
However, new combinations of these transcripts that 
showed increased predictive accuracy were discovered. 
These gene expression signatures are more robust at 
predicting patients who will experience disease activity 
despite treatment with IFNb than the group of patients 
who will be free from disease activity on treatment. 
Although larger studies are warranted, these biomarkers 
have the potential to be clinically useful.
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