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Modeling direct protein interaction networks from mass spectrometry data 

Aji Palar 

Abstract 

A complex network of molecular interactions underpins cellular physiology, with each interaction 

contributing to the cell’s overall function. In normal physiological states, these networks are tightly 

regulated, but in disease, their structure and dynamics can shift, leading to dysregulations and pathogenesis. 

Predicting the structure of disease-relevant networks has the potential to enhance therapeutic target 

identifications, improve disease prognosis predictions, and refine models of complex molecular systems. 

In the first half of this work we develop, implement, benchmark, and illustrate Integrative Network 

Modeling, an algorithm for modeling disease relevant protein interaction networks based on affinity 

purification mass spectrometry (AP-MS) data. We find AP-MS experiments contain more information about 

a protein’s direct protein interactions than previously thought. In the second half of this work, we predict 

the presence of protein interactions in the epidermal growth factor receptor (EGFR) molecular 

neighborhood using proximity labeling mass spectrometry. We apply a deep-learning model to predict the 

three-dimensional structure of EGFR binary complexes; we identify multiple proteins in complex with 

EGFR. The computational methods developed and applied in these studies are aimed at modeling complex 

molecular systems based on the integration of information from mass spectrometry and protein structure. 

Together, they are a step towards bridging the gap between structural and systems biology.  
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Chapter 1 

Introduction 

A complex network of molecular interactions underpins cellular physiology, with each interaction 

contributing to the cell’s overall function (Kuchina et al. 2022; Robinson, Sali, and Baumeister 2007). In 

normal physiological states, these networks are tightly regulated, but in disease, their structure and 

dynamics can shift, leading to dysregulations and pathogenesis. Predicting the structure of disease-relevant 

networks has the potential to enhance therapeutic target identifications, improve disease prognosis 

predictions, and refine models of complex molecular systems (Gordon, Jang, et al. 2020; Singh et al. 2024; 

Krogan et al. 2006; Jäger et al. 2011; Gordon, Watson, et al. 2020). In systems biology, determining these 

networks is crucial for describing how molecular interactions drive cellular behavior and for generating 

unbiased hypotheses for mechanistic studies and as input for other models (Raveh et al. 2021). 

1.1 Models of complex biological systems based on mass spectrometry data 

Protein interaction networks have traditionally been based on yeast two-hybrid (Y2H) (Gavin et al. 2002; 

Ito et al. 2001; Bader and Hogue 2002) or affinity purification mass spectrometry (AP-MS) data (Krogan 

et al. 2006; Ho et al. 2002). Networks based solely on Y2H experiments are “binary” in that each experiment 

only detects the presence of a single direct protein interaction through the activation of a reporter gene. In 

contrast, an AP-MS experiment can identify and quantify multiple types of proteins functionally linked to 

an affinity tagged “bait” protein. Typically, an AP-MS network is based on the integration of multiple AP-

MS experiments that include both replicate experiments (using the same bait and condition) and 

experiments using different baits (including replicates). Recent AP-MS studies map protein interaction 

networks in specific disease contexts such as HIV infection (Jäger et al. 2011; Hüttenhain et al. 2019), 

SARS-CoV-2 infection (Gordon, Jang, et al. 2020), autism spectrum disorder (Wang et al. 2024), and certain 

cancers (Swaney et al. 2021). The networks obtained from such studies represent “snapshots” of a protein 

interaction network for a certain cell type under specific experimental conditions. These networks have led 

to the identification of disease-relevant protein complexes and functional modules. Chapter 2 deals with 
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the development, implementation, and assessment of a statistical inference framework for modeling direct 

protein interaction networks from AP-MS data.  

Proximity labeling proteomics (PLP) is a method capable of detecting physically proximal proteins that 

may interact transiently. Compared to AP-MS and Y2H experiments, proximity labeling may detect proteins 

that are on average, further away (on the order of 1-10nm). Chapter 3 deals with the development of a 

photoactivatable proximity labeling strategy and an application of proximity labeling the epidermal growth 

factor receptor (EGFR) molecular neighborhood. Here, I orthogonally validate candidate EGFR neighbors 

by: (i) predicting the quaternary structure of EGFR-neighbor binary complexes, and (ii) assessment of the 

structure quality using various metrics.  

Efforts to integrate multiple types of proteomics experiments into a single “map” of protein interactions 

have been made. One standout example is the human protein complex map 2.0 (hu.MAP 2.0), which is 

based on AP-MS, proximity labeling, and other data. The confidence scores obtained for hu.MAP 2.0 are 

highly accurate for predicting the presence of protein interactions (Drew, Wallingford, and Marcotte 2021). 

More recently, proteomics data has been used in combination with imaging data to produce other 

representations of the spatial localization of protein molecules in a cell. Standout examples include the 

OpenCell project (Cho et al. 2022) and the Multi-Scale Integrated Cell (MuSIC) map (Qin et al. 2021). 

Finally, AP-MS and chemical cross-linking mass spectrometry has been used to model the macromolecular 

architecture of multi-protein complexes – a prototypical example is the integrative modeling of the yeast 

nuclear pore complex (NPC) (Alber, Dokudovskaya, Veenhoff, Zhang, Kipper, Devos, Suprapto, Karni-

Schmidt, Williams, Chait, Rout, et al. 2007; Alber, Dokudovskaya, Veenhoff, Zhang, Kipper, Devos, 

Suprapto, Karni-Schmidt, Williams, Chait, Sali, et al. 2007). 

A note on the inconsistent use of the term “protein-interaction” 

The term “protein interaction” is defined differently in different domains of science. In a structural biology 

context, “protein interaction” refers to the direct binding of two protein molecules. In systems biology, a 
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“protein interaction” may refer to the observation of one type of protein under an experiment with a 

particular “bait” protein. For AP-MS this “prey” is a member of one of the complexes the bait participates 

in. In this sense, the prey may interact directly with the bait or not. In the introduction we use the term 

“protein interaction” in the looser systems biology sense. 

1.2 Limitations of existing methods for constructing models based on mass spectrometry data 

Protein interaction networks based on AP-MS data have been critical for identifying disease-relevant 

complexes, functional modules, and for generating mechanistic hypotheses. Despite their utility, the 

methods of constructing them are limited by: (i) the physical meaning of an edge may be undefined, (ii) 

uncertainties in the input information are not properly propagated to the output model, (iii) construction of 

a network through pairwise feature calculation may limit accuracy, (iv) networks are modeled as a single 

state but may exist in multiple states, and (v) mass spectrometry data likely contain inaccuracies. 

The physical meaning of an edge may be undefined 

A network model consists of a graph where nodes represent a type of molecule. In general, a node stands 

for many copies of a protein molecule in the sample(s) used to construct the model. In some cases, an edge 

is rigorously defined by a probabilistic model. For example, in the Significance Analysis of INTeractome 

(SAINT) a weighted edge is the posterior probability a “prey” co-purifies with a “bait” under a mixture 

model (Choi et al. 2011). In chapter 2, we define an edge as the presence of at least one protein interaction 

between two molecules represented by the respective nodes. For anything to have “physical meaning" it 

must be formally defined in a theoretical framework (e.g., the physical meaning of an atom in molecular 

dynamics is different from the physical meaning of an atom in quantum mechanics). Often, an edge is the 

result of a series of information processing steps. For example, a BioGRID “physical interaction” may be 

based on AP-MS bait-prey pairs or co-crystal structures (Stark et al. 2006). As such a “physical interaction” 

is a result of the BioGRID curation process. Similar definitions exist for other databases such as STRING 

(Szklarczyk et al. 2023) and CORUM (Tsitsiridis et al. 2023). The curation efforts may not be easy to 
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understand. In the case of manual curation, they may not be reproducible. Despite these critiques, the above 

databases are often useful. For example, new experimental techniques may be assessed based on their 

enrichment of certain types of “physical interactions.” 

Uncertainties in input information are not propagated to the output model 

All methods of constructing a protein interaction network are limited by uncertainties in the input data. 

Such uncertainties should be explicitly and accurately represented when possible. It is common to represent 

uncertainty in the presence of a protein interaction with a confidence score with a value between 0 (no 

interaction) and 1 (protein interaction) (e.g., the hu.MAP 2.0 support vector machine (SVM) score and the 

SAINT score). It is less common to represent uncertainty in the entire network. This may be because: (i) 

many networks are constructed with each edge constructed independently of every other edge – thus 

representing the uncertainty of every edge independently is equivalent to representing the uncertainty of 

the network, (ii) protein interaction networks tend to be high-dimensional (thousands of nodes, hundreds 

of thousands to millions of edges, tens of millions of possible edges), analysis of such high-dimensional 

objects may be more challenging or impractical, (iii) the construction of protein interaction networks have 

not been formalized as an inference problem. 

Construction of networks by pairwise feature calculation may limit accuracy 

As mentioned above, many protein interaction networks are constructed by taking the union of pairwise 

protein interactions. For AP-MS a bait-prey pairwise interaction may be constructed based on mass 

spectrometry features  (e.g., reproducibility of prey identification across replicate experiments). Real 

protein interaction networks likely have statistical properties that may be informative when trying to 

construct new protein interaction networks – for example they may be scale-free or have an average degree 

(Krogan et al. 2006). Pairwise construction of a protein interaction network cannot accommodate the 

integration of such statistical preferences. More often, these preferences are applied during post-hoc 

analysis (e.g., degree filtering) (Shannon et al. 2003). 



 5 

Networks are represented as a single state but may exist in multiple states 

Protein interaction networks typically depict a single “state”. Real protein interaction networks likely vary 

in time, as a function of experimental perturbation, or disease. Comparison of two protein interaction 

networks (two states A and B) is common (i.e., differential network analysis), the simultaneous modeling 

of multiple network states is not. Simultaneous modeling of multiple network states could allow for more 

principled incorporation of information, for example a hierarchical Bayesian model could be used where a 

prior network informs both network states A and B.  

Mass spectrometry data likely contain inaccuracies  

Mass spectrometry will likely be inaccurate or biased towards certain proteins. For example, MS may favor 

proteins that produce many peptides, highly abundant proteins, or proteins in particular cellular 

compartments (e.g., non-membrane proteins). As such, the construction of a protein interaction network 

would ideally be based on multiple types of orthogonal information.  

To motivate the development of integrative network modeling in chapter 2 and our application of protein-

complex structure prediction in chapter 3, we next introduce modeling in two domains of science.  

1.3 Modeling in structural and systems biology contexts 

A “model” is a depiction of a system that is useful for rationalizing existing information and for making 

predictions about outcomes of future experiments (Rout and Sali 2019). Different types of models are 

characteristic of different domains of science. For example, in traditional structural biology, an archetypal 

model is a model of the three-dimensional structure of a protein molecule in a low energy conformation. In 

systems biology, an archetypal model is a protein interaction network where nodes represent types of 

proteins and edges represent some physical ‘link’ between two protein types (Ho et al. 2002; Robinson, 

Sali, and Baumeister 2007). In both domains, other model representations occur (e.g., a coarse-grained 

structure, a gene regulatory network). Modeling is the process of converting the input information about 

the system into a model of the system. A protein interaction network is a model of how different types of 
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protein molecules are “wired” together in some cell-type that is useful for identifying functional complexes 

and modules.  

1.4 Network modeling as an optimization problem 

To address some of these limitations, we were motivated to develop integrative network modeling (INM) 

– a computational method to model direct protein interaction networks based on primarily AP-MS data.  

Modeling proceeds by (i) gathering input information that informs the output network model, (ii) defining 

a network model representation where a node represents a protein type and an edge represents a direct 

physical interaction, (iii) constructing a scoring function that quantifies an agreement of a network model 

with the input information, (iv) sampling alternative network models guided by the scoring function, and 

(v) analyzing and assessing the network models.  

The advantages of INM are: (i) its explicit representation of direct protein interaction networks, (ii) the 

accuracy and extensibility of its scoring function, (iii) its data efficiency, (iv) the flexibility and 

computational efficiency of sampling, and (v) its ability to characterize new systems under specific 

experimental conditions. These advantages are discussed in detail in chapter 2. 
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Chapter 2 

Integrative modeling of direct protein interaction networks based on  

affinity purification mass spectrometry data 

2.1 Abstract 

Accurate, precise, and complete modeling of a cellular protein interaction network requires the integration 

of large amounts of information. We have therefore developed integrative network modeling (INM) – a 

statistical inference framework extensible to multiple types of data that proceeds by (i) representing a 

network where nodes represent protein types and edges represent the presence of at least one direct 

interaction between proteins of the corresponding nodes, (ii) scoring the agreement between a network and 

input information, (iii) sampling alternative configurations of network models using a Hamiltonian Monte 

Carlo scheme, and (iv) analyzing the output sample of network models. To illustrate INM, we model the 

protein interaction network of a host-pathogen system based on affinity purification mass spectrometry 

(AP-MS) experiments. We benchmark our model on direct protein interactions extracted from the Protein 

Data Bank. Modeling predicts physical interactions with an AUC accuracy of 0.82. We compare INM 

networks to networks generated by state-of-the-art methods, provide recommendations for future models 

incorporating AP-MS data, and explore additional data types that can be incorporated into the INM 

framework. We illustrate the utility of INM on the HIV-1 CRL5 host-pathogen protein interaction network.  

2.2 Introduction 

A complex network of molecular interactions underpins cellular physiology, with each interaction 

contributing to the cell’s overall function. These networks are tightly regulated in normal physiological 

states, but their structure and dynamics can shift in disease, leading to dysregulations and pathogenesis. 

Predicting the structure of disease-relevant networks might enable therapeutic target identifications, 

improve disease prognosis predictions, and refine models of complex molecular systems. In systems 
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biology, determining these networks is crucial for describing how molecular interactions drive cellular 

behavior, generating unbiased hypotheses for mechanistic studies, and as input for other models. 

One of the most successful ways to model protein interaction networks is based on Affinity-Purification 

Mass Spectrometry (AP-MS) studies (Gavin et al. 2006; Krogan et al. 2006; Ewing et al. 2007; Jeronimo 

et al. 2007; Richards, Eckhardt and Krogan 2021). In these purifications, a tagged “bait” protein is expressed 

in some cell type, and co-purifying “prey” proteins are identified by mass spectrometry (MS). Statistical 

scoring models, such as SAINT, ComPASS, or MiST (Choi et al. 2011; Jäger et al. 2011; Wenger et al. 

2011), are then applied to assign confidence scores to bait-prey interactions, distinguishing true, co-

purifying preys from non-specific background contaminants. These confidence scores are subsequently 

used to generate a "spoke" model, where each interaction is represented as an edge between the bait node 

and each prey node, but not between the prey proteins themselves. The “spoke” model simplifies the 

representation of the interaction network, assuming a direct link between the bait and its identified preys, 

which may include direct or indirect interactions. Here, we define a direct interaction as those in which the 

proteins share a physical interface. Direct interactions may occur transiently or be stable. Although the bait-

prey interactions predicted by these models do not always imply a direct protein interaction, many bait-

prey pairs physically interact (Wang et al. 2024). 

Knowing the structure of direct protein interaction networks is crucial to understanding the functional 

modules modulating biological processes. Further, these networks can serve as input for other modeling 

methods approaches, including integrative structural modeling (Webb et al. 2018) and machine learning 

models (Drew, Wallingford and Marcotte 2021; Qin et al. 2021; Cho et al. 2022), which might assist in 

identifying the functional protein complexes (Robinson, Sali and Baumeister 2007). 

One approach to identifying the components of protein complexes is through matrix models (Hart, Lee and 

Marcotte 2007; Drew et al. 2017); in this framework, all proteins identified in an AP-MS experiment are 

included, regardless of their classification as prey or bait. The matrix representation enables the 

representation of relationships between proteins in a structured format, where rows and columns correspond 
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to individual protein types, and entries indicate interactions, typically marked by values of 1 for interaction 

and 0 for no interaction (Hart, Lee and Marcotte 2007). This model corresponds to a network, where each 

node corresponds to a row-column pair, and each edge corresponds to an entry in the matrix. This method 

facilitates the visualization and analysis of complex interaction networks, enabling the identification of 

clusters and exploration of network topology (Krogan et al. 2006; Hart, Lee and Marcotte 2007). Another 

approach used to identify protein assemblies is to integrate large amounts of proteomics data of varying 

kinds using machine learning (ML) (Drew, Wallingford and Marcotte 2021). While these ‘big-data’ 

approaches are accurate in predicting certain protein interactions, they may be limited in predicting transient 

interactions or condition-specific interactions.  

Here, we develop integrative network modeling (INM), a statistical inference framework to model direct 

protein interactions that is extensible to multiple types of data. INM can predict not only bait-prey 

interactions but also prey-prey interactions. INM requires relatively few AP-MS purifications – on the order 

of tens – comparable to ‘spoke’ type models. Critically, INM requires orders of magnitude less information 

than current ML models, increasing its scope of use. The efficiency of data usage allows for studies of PPI 

networks under specific conditions, including the use of chemical perturbations such as small molecules, 

and facilitates the characterization of cell-type specific protein interaction networks.  

The  inference framework offers several key advantages. First, it can easily incorporate new types of data 

that may provide insight into the protein interaction networks. For example, it can be extended to 

incorporate data from proximity labeling MS, in situ/in vivo cross-linking MS, large-scale functional 

genetic interaction or CRISPRi/a experiments, or AI-derived pairwise protein structure predictions (Larson 

et al. 2013; Jumper et al. 2021; Braberg et al. 2022; Lin et al. 2024). Second, it can account for higher-order 

network properties  (e.g., degree, centrality, path-length), using information from known biological 

networks. Third, the framework by design includes a process  that captures the uncertainty in the input 

information, allowing us to evaluate the confidence in predicted interaction. Fourth, in some cases, it may 

be possible to obtain multiple network ‘states’ out of a computed network model; enabling us to describe 
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PPI networks under different experimental conditions or with different mutations in the components. Fifth, 

the network models can be used to prioritize virtual or experimental PPI screening. Finally, the output of 

network modes could be useful as an input for other models. For example, the predicted physical interaction 

could be incorporated into integrative structure modeling calculations or as an input feature in a deep-

learning model. 

This paper is organized as follows. First, we describe the INM modeling framework (Fig. 1) consisting of 

(i) gathering the input information, (ii) representing the network model, (iii) building an extensible scoring 

function, (iv) Monte Carlo sampling, and (v) assessing the output models. Second, we describe how the 

model was benchmarked using a PDB derived gold-standard dataset. Third, we compare our computed 

network to other state-of-the-art methods and previously computed networks. Finally, we illustrate the INM 

approach by predicting the HIV-1 CRL5 protein interaction network. 

2.3 Methods 

We aim to model a network of direct physical interactions between pairs of protein types based on AP-MS 

data; a pair of protein types interact directly when their molecules are in physical contact with each other. 

Our network modeling consists of: (i) gathering input information that informs the output network model, 

(ii) defining a network model representation where a node represents a protein type and an edge represents 

a direct physical interaction, (iii) constructing a scoring function that quantifies an agreement of a network 

model with the input information, (iv) sampling alternative network models guided by the scoring function, 

and (v) analyzing and assessing the network models. We now discuss each stage in turn. 

Integrative network modeling 

Gathering input information 

Input information for our network modeling consists of an input set of K AP-MS purifications. Each AP-

MS purification identifies the protein interactions involving a specific 'bait' protein, which captures its 

directly or indirectly interacting partners, referred to as ‘preys’. Both ‘prey’ and ‘bait’ proteins are quantified 
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by their spectral counts. If a protein is not identified in a purification, the spectral counts are set to 0. The 

input set of AP-MS purifications contains replicas obtained from multiple experiments using the same bait 

and experimental conditions as well as AP-MS purifications with different baits and/or experimental 

conditions.  

Additionally, we use the SAINT (Significance Analysis of INTeractome) confidence scores. The SAINT 

score is a probabilistic score that quantifies the confidence of each bait-prey interaction based on the spectral 

count data, adjusting for experimental noise and non-specific background interactions (Choi et al. 2011). 

Representation of network model 

The network model representation defines the variables whose values are determined by modeling. Given 

the N proteins identified in the input set of AP-MS purifications, each represented as a network node, the 

model variables include edge variables A for all pairs of nodes and additional nuisance variables !, whose 

values are computed by modeling but are generally not of primary interest when using a model (Rieping, 

Habeck and Nilges 2005). The edge variables indicate the presence (value of 1) or absence (value of 0) of 

an edge between two nodes; there are N(N-1)/2 such variables for N nodes in the network. In general, a 

node stands for many copies of a protein molecule in the sample(s) used for AP-MS. As mentioned above, 

an edge between two nodes represents a direct interaction between any pair of protein molecules represented 

by the two nodes. Hence, our network model representation includes a matrix model (Hart, Lee and 

Marcotte 2007) representation and the nuisance variables.  

As a consequence of these definitions, a set of nodes in which each node is connected to at least one other 

node does not necessarily correspond to a single physical complex of the proteins represented by the nodes 

in the set. The connected nodes could also represent a mixture of complexes. In contrast, proteins in a 

complex will always form a set of connected nodes. For instance, a protein may be present in different 

cellular environments, each with a distinct set of interacting partners. In this scenario, the network model 
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will include edges connecting the protein to both sets of partners, even if no single protein molecule interacts 

with all the partners simultaneously.  

Scoring of network models 

The purpose of a scoring function is to rank alternative network models according to their agreement with 

the input information. Our scoring function is: 

"($) = "!($) + ""($) + "#($) + "$($),    (1) 

where "!($)reflects the deviation between the edges in M and the expected edges based on the AP-MS 

data; ""($) reflects the deviation between the number of edges in M and the expected number of edges, 

which in turn depends on the number of nodes; "#($) reflects the deviation between the edges in M and 

the expected edges based on a SAINT score (Choi et al. 2011); and "$($) reflects the deviation between 

the degree of each node and its expected degree. Next, we define each score in turn. 

"!($) scores the value of each edge variable A%&, based on all AP-MS purifications. We first construct the 

AP-MS profile for each protein: the AP-MS profile of a protein, whether a bait or prey, is a vector of its 

spectral counts from all K AP-MS purifications. We noticed that protein type pairs interacting directly or 

indirectly (i.e., they co-occur in the same protein complex) tend to have a high AP-MS profile correlation, 

while protein type pairs that are not members of the same complex tend to have low profile correlations 

(Fig. 2). Thus, we quantify the observation of an edge between two nodes by calculating the Pearson 

correlation coefficient (R) of their associated AP-MS profiles. Based on these observations, we score edge 

variables as follows:  

"!($) = −∑ log[0(1%& 	|4%& − 0.5, 4%&' 	+ 	ϵ)],()*         (2) 

where N is a Gaussian distribution, 1%& is a latent representation of the edge variable A%&, R%& is the AP-MS 

profile correlation coefficient for the protein type pair identified by i and j, and ϵ is a small numerical 

constant to ensure the distribution is defined if R%& equals 0. Values of Zij less than 0.5 map to an edge 
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variable value A%& of 0 while values of 1%& equal to or greater than 0.5 map to edge variable values of A%&  

equal to 1. The mapping is performed using a logistic function. In this formulation, for node pairs with low 

AP-MS profile correlation coefficients, the density around Zij is centered near -0.5 with small variance, 

effectively restraining A%& to 0. In contrast, for node pairs with high AP-MS profile correlation coefficients, 

the density is centered near 0.5 with a wide variance, allowing A%& to take on values of either 0 or 1. "+ 

scores the value of each edge variable based on the SAINT pair score: 

"+($) = −∑ log[0(1%& 	|	p%& − 0.5, p%&' 	+ 	ϵ)]()* ,    (3) 

where the SAINT pair score p%& is the multiplication over the maximal SAINT score of each prey over all 

input purifications.  

", scores the number of edges 0, in M based on the expected number of edges: 

",($) = − log[<(0,|=, >)?(=|@, A)],    (4) 

where B is a Binomial distribution, = is the number of edges in the network relative to the total number of 

possible edges n, ? is a uniform distribution between @ and A. @ and A were manually set to 0.02 and 0.1.  

"- scores the node degree (number of edges connected to a given node) based on the expected node degree: 

"-($) = −∑ log[0(deg(D) |	E% , F%)],()*     (5) 

where N is a Gaussian distribution, deg(D)	is the degree of node i, E% is the expected degree, and F% is the 

expected standard deviation. Both E% and F% were set to 3 for all nodes. A statistical sample of direct protein 

interaction networks could be used to place more informative prior parameters E%  and F%. 

Sampling of network models 

Alternative network models were sampled using the No-U-Turn (NUTS) adaptive Hamiltonian Monte 

Carlo (HMC) sampler (Neal 2012; Mathew D Hoffman 2014). Our scoring function corresponds to the 

Hamiltonian potential energy, with auxiliary kinetic energy momentum variables represented as 
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uncorrelated multivariate Gaussians. In our definition, the edge variables are discrete while HMC requires 

them to be continuously differentiable. Therefore, we represent edge variables in a latent space Z and map 

from Z to A using a logistic function with a midpoint at 0.5 and a slope of 1000. The step size and number 

of leapfrog integrator steps are tuned by the integrator during a warmup period of 1000 steps. A random 

initial network configuration was chosen by assigning each latent variable a random value in the (-2, 2) 

range. Twenty HMC chains were run in parallel for 20,000 steps each. 

Analyzing the network models 

A model must be assessed before its interpretation. We followed an assessment protocol similar to the one 

developed for integrative structure modeling (Viswanath et al. 2017; Saltzberg et al. 2021). We began by 

assessing the convergence of sampling using two criteria as follows. First, we assessed whether the best 

model score continues to improve as more models are sampled. Random model score subsets of several 

sizes (e.g., 20, 40, 60, 80%, and the complete set) are each created several times (replicates), simulating 

increasing amounts of sampling. The best score in each subset is averaged across the replicates. Plotting 

the average best score for each model subset size shows whether the best score converges as the number of 

sampled models increases. Second, we assessed the similarity of score distributions for two unrelated model 

subsets. Specifically, we used a two-sided nonparametric Kolmogorov-Smirnov test (Siegal and Castellan 

1988) to compare the two samples of scores, estimating the odds of the two score samples originating from 

the same parent distribution; we used a P-value threshold of 0.01 and a test-statistic threshold D of 0.03 to 

assess significance (Fig. 3). 

Construction of an average network model 

We constructed an average network model by averaging the sampled edge values over all the sampled 

network models. We used this average network model to compute a receiver operator characteristic (ROC) 

curve on our benchmark dataset. We define accuracy as the area under the ROC curve (AUC). Similarly to 

our comparison of the score distributions, we constructed two average network models for the two model 
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subsets and assessed their AUC accuracy. We also assessed AUC accuracy of three randomly selected 

network models. Finally, we determined the AUC accuracy as a function of the number of network models 

N used to calculate the average network model.  

Modeling the HIV-CRL5 network 

To benchmark and illustrate INM, we modeled the HIV-1 Cullin RING-E3-ligase (HIV-CRL5) network 

based on 64 AP-MS purifications performed in Jurkat cells under 3 viral infection conditions (Hüttenhain 

et al. 2019); a wild-type infection (WT), a Vif deletion (ΔVIF), and a mock infection. The protein level 

spectral count data were obtained exactly as published. The baits are CUL5, ELOB, CBFꞵ, and LRR1. We 

selected 236 of 3,062 of the identified proteins to represent as nodes, requiring each protein to co-purify at 

a SAINT score of at least 0.5 in at least one AP-MS purification. Next, we applied INM for each of the 

three infection conditions independently and for all purifications combined. 

Extracting reference edges from the PDB for benchmarking 

To benchmark our method we compared the average edge values with direct protein interactions obtained 

from the structures of protein complexes. Sequence pairs were used to query the Protein Data Bank 

clustered at 70% sequence identity (PDB70) for matching chain pairs present in the same PDB file. The 

PDB70 was queried using all 4,686,391 pairwise combinations of sequences from the input set of 3,062 

identified proteins on 9/12/2024. A pair of chains is defined as interacting if they bury at least 500 Å2 of 

solvent-accessible surface area (SASA), according to the Shrake and Rupley algorithm (Shrake and Rupley 

1973; Kunzmann et al. 2023) with a probe size of 1.4 Å. A chain is considered matching if it shares at least 

30% sequence identity with the query sequence, is at least 88 amino acids long, and has an alignment e-

value of at least 1e-7. Sequence alignments were performed by comparing multiple sequence alignment 

profiles represented as hidden Markov models using the program HHblits (Remmert et al. 2011). This 

procedure resulted in 2,985 direct edges (i.e., corresponding to a physical interaction), and 15,666 edges 
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corresponding to chain pairs co-occurring in a  PDB file. Benchmarking was performed using all 64 AP-

MS purifications as input information. 

Comparison to other methods 

We compared INM to other methods of scoring protein interactions from AP-MS data, including SAINT 

and Mass Spectrometry interaction Prediction (MSiP, version 1.3.7) (Rahmatbakhsh 2023) using our AP-

MS data as input. Comparisons were made using an ROC framework, where the edge values of each method 

were used to classify each pair as either interacting or not over a range of threshold values. MSiP 

implements other prey-prey scoring methods including the Dice coefficient, the overlap score, the Jaccard 

coefficient, and the log hypergeometric score (Guruharsha et al. 2011). Additionally, MSiP implements a 

support vector machine (SVM) classifier using the input scores as features. We trained 2,000 classifiers 

using our reference of direct protein interactions as positive training labels and assessed the performance 

of both a representative classifier and the input scores. 

Finally, we compared the INM network to the Human Protein Complex Map 2.0 (hu.MAP 2.0, 3/7/2024) 

(Drew, Wallingford and Marcotte 2021) using the hu.MAP 2.0 SVM weights as a binary classifier of our 

benchmark protein interactions. 

Construction of a synthetic benchmark 

To benchmark our method on a reference where the ground truth is known by construction, we create a 

reference network and synthetic data. The reference network consists of 236 nodes and 55 edges selected 

at random. The synthetic data consists of AP-MS profile correlations for all edge variables. For edge 

variables equal to 0, AP-MS profile correlations were generated by randomly sampling values from the null 

distribution (Fig. 8). For the 55 edge variables equal to 1, AP-MS profile correlations were generated by 

uniformly sampling values between 0.3 and 1. The synthetic benchmark scoring function omits the SS term 

because we are unable to generate SAINT scores. 
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2.4 Results 

To assess our modeling approach, we computed the HIV-1 CRL5 protein interaction network using all input 

purifications and compared the average network model to a reference of direct protein interactions obtained 

from the PDB. Our analysis includes, (i) demonstrating that that direct protein interactions are enriched for 

high values of AP-MS profile similarities, (ii) assessing the convergence and exhaustiveness of sampling – 

a necessary step to construct an average network model, (iii) modeling the HIV-CRL5 network using 

alternative variations of the scoring function and determining that the AP-MS profile similarity term is the 

most informative, (iv) comparing INM to other state-of-the-art methods using our benchmark dataset, (v) 

comparing INM to previously published networks, and (vi) illustrating the utility of our method by 

predicting a subset of Vif-dependent interactions. 

AP-MS profile similarities are informative of protein’s physical interactions 

Proteins may be identified in one or more AP-MS purifications by their spectral counts, which provides a 

semi-quantitative measure of protein abundance (Fig. 2). The AP-MS profiles showcase how the spectral 

counts vary among conditions or replicas (Fig. 2). It seemed likely that two proteins with similar AP-MS 

profiles are physically proximal to one another in the mixture of complexes (Braberg et al. 2020). Using 

the HIV-1 CRL5 data (Hüttenhain et al. 2019) we demonstrate that the distribution of AP-MS profile 

similarities has multiple modes (Fig. 2). To confirm that the different modes represent information encoded 

in the AP-MS profiles, we shuffled the spectral counts within each AP-MS profile (without replacement) 

prior to calculating the AP-MS profile similarities (Fig. 8). The obtained distribution of AP-MS profile 

similarities has a single mode near 0 (null distribution) and total ablation of the rightmost mode. Next, we 

plotted the AP-MS profile similarities for those protein pairs known to interact in our benchmark dataset 

and compared that distribution to all other pairs of proteins. We find the interacting protein pairs are highly 

enriched towards high AP-MS profile values (Fig. 2). We also observe a population of AP-MS profiles with 

negative profile similarities that fall outside the null distribution.  
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We interpret these results as follows: (i) The rightmost peak corresponding to pairs of proteins with high 

AP-MS profile similarities may be explained by directly interacting proteins and by pairs of proteins that 

participate in one or more complexes, (ii) low values of the AP-MS profile similarity are indicative of two 

proteins not interacting directly, (iii) negative AP-MS profile correlations may correspond to pairs of 

proteins that are not simultaneously present in any AP-MS purification. They may therefore represent 

competitive binding or some other mechanism that prevents the presence of both preys in a single 

purification. These observations justify converting AP-MS profile similarities into a probabilistic scoring 

term to assess protein interactions (Eq. 2).  

Assessment of sampling and scoring 

We followed an assessment protocol similar to the one developed for integrative structure modeling 

(Viswanath et al. 2017; Saltzberg et al. 2021). The score convergence test shows that the best score does 

not continue to improve significantly with an increased number of models sampled (Fig. 3). The two score 

distributions drawn from subsets of models are similar to each other (KS P-value=0.33, D=0.004) (Fig. 3). 

We assessed the scoring function based on the AUC accuracy on a reference of 55 direct protein interactions 

obtained from the PDB. While the AUC accuracy of any individual network model is low (Fig. 3), the AUC 

of the average of N network models is increasingly higher, plateauing near 0.8 (Fig. 3). The AUCs standard 

deviation (s.d.) across independent modeling runs as a function of N is low (approximately 0.01). Compared 

to 5 references of 55 randomly chosen protein interactions, the AUC accuracy remains near 0.5 and the s.d. 

is high near 0.05 (Fig. 3).  

Next, we assessed the performance of the different terms in the scoring function by computing the AUC 

accuracy of scoring function variations. Such variations include different combinations of the scoring terms. 

We find that the AP-MS profile similarity term (SR) is the most informative of direct protein interactions 

(AUC 0.82, Fig. 4). The degree term (SD) is only informative at high threshold values, as indicated by the 

constant slope of the ROC curve for false positive rates (FPR) between 0 and 0.6. The term controlling the 
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base rate of protein interactions (SE) is weakly informative (AUC 0.58). The SAINT term (SS) has is 

accurate (AUC of 0.78) but is uninformative at low FPR values; however, it becomes more informative 

than the profile similarity term (SR) at an FPR near 0.2. These results suggest that the accuracy of the 

scoring function is driven mostly by the AP-MS profile similarity term.  

Comparison of INM to other methods 

We compared the expected edge value from INM to edge weights from other AP-MS matrix models (Fig. 

4), focusing on the MSiP software package. MSiP implements multiple methods of scoring protein 

interactions based on AP-MS data (Rahmatbakhsh 2023), as well as an SVM that provides a score between 

0 and 1 for each interaction. The performance of the SVM is a stochastic function of the training. We 

compared both the individual scores and the SVM scores to INM using ROC curves. To assess the 

performance of a representative SVM classifier we independently trained 2,000 classifiers on our 

benchmark data. The AUC accuracies of the Dice coefficient and the negative log hypergeometric score are 

lower than that of the INM method. The AUC accuracies of the SVM classifiers range from 0.4 to 0.8, with 

a mean of 0.64 (Fig. 5). 

Spoke models based on SAINT scores link prey proteins to baits, without providing information about bait-

bait and prey-prey interactions. To facilitate the comparison of the HIV-CRL5 SAINT-derived spoke model 

to our model, we constructed an all-pairs matrix that includes inferred SAINT scores for prey-prey 

interactions. These SAINT scores were obtained by multiplying the maximal SAINT score over all 

purifications of prey i and prey j. Thus, if both proteins i and j have a high SAINT score in at least one input 

purification, their SAINT pair score is high. If either protein i or j have a low maximal SAINT score, the 

corresponding pair score is low. The AUC accuracy of the maximal pairwise SAINT score is 0.78 (Fig. 4).  

We compare the average HIV-CRL5 network generated by INM to the human protein complex map 2.0 

(hu.MAP 2.0) network using our benchmark dataset (Fig. 4). The hu.MAP 2.0 network was created by 

integrating over 15,000 proteomics experiments using a ML model. This integration includes various types 
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of proteomics data,  including AP-MS, yeast-two-hybrid, and RNA hairpin. The hu.MAP 2.0 SVM scores 

have an AUC accuracy of 0.86 on our benchmark. 

Vif dependent protein interactions 

To assess whether our approach can identify condition-specific protein interactions, we modeled protein 

interaction networks under WT (containing Vif), ΔVIF, and mock conditions. By examining a subset of Vif-

dependent interactions corresponding to proteins identified in the WT condition and not the ΔVIF 

conditions, we observe several features of the average network model. DDB1-and-CUL4-associated factor 

11 (DCA11) is correctly predicted to interact with both CUL4A and CUL4B, supporting its putative role as 

a substrate adaptor (Angers et al. 2006). Similarly to CRL5, CRL4 complexes are hijacked during viral 

infection to target host machinery for proteolytic degradation (Dobransky et al. 2024). Interestingly, 

Programmed cell death 6-interacting protein (PDC6I, AIP1, ALIX) is predicted to interact with CUL4A, 

CUL4B, and DCA11, suggesting that PDC6I may engage with both CUL4A-DCA11 and a CUL4B-DCA11 

complexes. PDC6I binds to a short linear motif in the HIV-1 viral protein Gag, playing a role in viral 

budding through the ESCRT (endosomal sorting complex required for transport) pathway (Zhai et al. 2008). 

Ubiquitination of Gag is required for ESCRT-mediated HIV-1 budding (Sette et al. 2013). CRL4 may serve 

as the ubiquitin-conjugating enzyme for the ubiquitination of Gag mediated by PDC6I. We do not represent 

We did not include Gag in our network because it did not meet our SAINT score cutoff due to low spectral 

counts. 

2.5 Discussion 

We developed a statistical inference framework (INM) to model direct protein interaction networks based 

on AP-MS spectral count data and SAINT scoring. We benchmarked INM against a reference of direct 

protein interactions obtained from the PDB. We compared the networks from INM to the hu.MAP 2.0 

network and a SAINT network using our PDB reference. Here we discuss (i) the relationship between our 

method and others; (ii) the benefits of the INM modeling framework (iii) the limitations of INM arising 
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from inaccurate scoring and imperfect sampling; and (iv) the scope of adding additional information into 

INM.  

Comparison with other methods 

Recently, over 15,000 proteomics experiments were integrated into the human protein complex map 2.0 

(hu.MAP 2.0) (Drew, Wallingford and Marcotte 2021). The map spans 15,373 human protein types and 

over 17 million protein interaction scores derived from different experiments. Additionally, the SAINT 

scoring was previously applied to score thousands of bait-prey pairs identified in 64 HIV-CRL5 AP-MS 

purifications (Hüttenhain et al. 2019). We compared the networks generated from each method by binary 

classification of the PDB-derived direct protein interactions. The hu.MAP 2.0 scores are highly predictive 

of direct protein interactions, achieving an AUC accuracy of 0.86 (Fig. 4). In contrast, the AUC accuracies 

of INM and SAINT have AUC were 0.82 and 0.78, respectively. The AUC accuracy of hu.MAP 2.0 may 

be attributed to the diverse datasets (e.g., AP-MS, yeast-two-hybrid) used in network modeling, the total 

amount of input information (i.e., tens of thousands of experiments), or the inclusion of additional features 

from the  AP-MS data (e.g., MS1 intensity and spectral counts). Although hu.MAP 2.0 is accurate, it may 

not be applicable to uncharacterized systems for which multiple data types are not available. In such cases, 

methods relying primarily on AP-MS (i.e., INM,SAINT, MSiP) may be advantageous. Furthermore, there 

might be some overlap between the hu.MAP 2.0 training labels and our PDB benchmark dataset, which 

may contribute to the accuracy of hu.MAP 2.0 in the CRL5 system. Notably, the slope of the hu.MAP 2.0 

ROC curve greatly decreases for the last ~25% of reference interactions. We see similar features for 

INM,SAINT, and MSiP. INM outperforms the MSiP classifier and the MSiP scores (Jaccard, Dice, Overlap, 

negative log HGScore) on our benchmark. Since no method recovers these interactions, we conclude that 

the evidence for these interactions by mass spectrometry is weak or absent.  

Unlike hu.MAP 2.0, INM, MSiP, and SAINT rely on the same set of input purifications, yet INM achieves 

a higher AUC accuracy. This difference can be explained in part by the fact that SAINT was not designed 

to model prey-prey interactions. We view INM and SAINT as complementary. For example, predicting all 
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prey-prey interactions for the 3,062 identified proteins would require constructing an impractically large 

pairwise matrix—something beyond the scope of INM. However, SAINT scoring allowed us to select a 

subset of highly confident protein interactions. INM captures information from the AP-MS purifications 

that is predictive of direct protein interactions that INM, which SAINT does not retrieve (Fig. 5).   

The benefits of the INM modeling framework 

The advantages of INM are: (i) its explicit representation of direct protein interaction networks, (ii) the 

accuracy and extensibility of its scoring function, (iii) its data efficiency, (iv) the flexibility and 

computational efficiency of sampling, and (v) its ability to characterize new systems under specific 

experimental conditions. We now discuss each in turn. 

Bridging the gap between structural and systems biology 

Different types of models are characteristic of different domains of science. For instance, in system biology, 

an archetypal model is a molecular network where nodes represent protein types, and edges indicate direct 

or indirect interaction between some proteins of those types. In contrast, in structural biology, an archetypal 

model depicts the spatial coordinates of the individual components of the system (not their types) such that 

the proximity between them indicates a physical interaction. These representations facilitate using input 

information characteristic of the corresponding domain of science. Here, we attempt to bridge the gap 

between systems biology and structural biology by using a depiction that is intermediate to the two 

archetypal depictions. Namely, the nodes represent protein types (i.e., systems biology nodes) and the edges 

represent the presence of at least one protein interaction between molecules of the corresponding types. 

This representation facilitates using input information from both system biology and structural biology 

experiments, thus maximizing the accuracy, precision, and completeness of the model. 

The network model representation (nodes as protein types and edges as the presence of at least one protein 

interaction corresponding to the nodes) may be well suited to bridge the gap between systems and structural 

biology. The predicted edges may be used as input for spatial modeling of macromolecular complexes. 
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Likewise, the network output network models may be directly interpreted or used as input features in AI/ML 

models. Moreover, combining structural and network degrees of freedom in a single unified modeling 

approach may enable the modeling of molecular neighborhoods. 

Accuracy of the INM scoring function 

The scoring function is accurate in predicting direct protein interactions, generating an average network 

model with an AUC accuracy of 0.82. Remarkably, INM is nearly as accurate as hu.MAP 2.0, despite using 

3 orders of magnitude less data. The accuracy of the scoring function could be further improved by 

incorporating additional new scoring terms representing additional information. Ideally, the scoring 

function would adopt a fully Bayesian formulation, where each additional term represents the likelihood of 

the data given a network model.  

Sampling is both efficient and exhaustive, typically running at 1-3 seconds per Monte Carlo step. If fewer 

compute resources are available, the sampling efficiency may be tuned during the warmup phase. 

Alternatively, the amount of sampling could be decreased to obtain initial approximations of the network 

structure.  

INM is particularly advantageous for characterizing new systems that may be inaccessible to other methods, 

as it relies on a limited number of purifications collected under specific conditions. For instance, INM can 

effectively model host-pathogen interactions or human systems under specific perturbations, provided that 

corresponding AP-MS data is available. 

Limitations of the INM modeling framework 

In general, modeling can fail to produce accurate and precise models because of insufficient input 

information or inferior modeling, which in turn can be caused by either an inappropriate representation, 

inaccurate scoring function, or insufficient sampling. 
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Input information 

One concern is that incomplete input information would result in missing proteins (nodes) or protein 

interactions (edges); however, this issue can be mitigated by integrating diverse types of datasets, as it is 

unlikely that any single protein or interaction would be systematically absent across all datasets. When 

necessary, gene ontology (GO) annotations can be utilized to reduce the risk of missing protein components 

involved in larger complexes or components associated with a given biological process.   

During benchmarking, we observed that all models are weakly informative or uninformative of roughly a 

quarter of the benchmark protein-protein interactions, as indicated by the low slope of the ROC curve in 

the FPR range 0.6-1.0 (Fig. 4), in contrast to the steep slope in the 0.0-0.2 range. This effect is present both 

for hu.MAP 2.0 and INM. One explanation is that the proteomics data may not support a subset of the 

benchmark interactions. Alternatively, it is possible that none of the methods accurately model these 

interactions, even though the information is present. In a benchmark using synthetic data where the ground 

truth is known by construction, INM recovers interactions with high accuracy (Fig. 5) The difference in 

accuracy between the real and synthetic case cannot be explained by insufficient sampling as sampling is 

exhaustive in both cases. Of the two explanations, we find the first more plausible. 

Model representation 

In INM, the network model representation is implemented as an all-pairs dense matrix model, which limits 

scalability to several hundred to a few thousand nodes due to the quadratic increase in memory usage. While 

sparse data structures would alleviate this limitation, the data-to-parameter ratio would still decrease 

linearly with increasing network sizes – potentially requiring additional regularizing priors to prevent 

overfitting. Additionally, the current network representation has limitations in capturing certain types of 

protein interactions, such as protein interactions occurring in homomers. 
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Scoring 

The accuracy of the scoring function could be increased by adding additional likelihoods for orthogonal 

types of data such as functional genomics screens or proximity labeling MS. A more accurate prior could 

be constructed from a sample of network models derived from the PDB. Finally, a fully Bayesian data 

likelihood for AP-MS could replace both the SR and SS terms. 

Sampling 

For the HIV-CRL5 system sampling has converged and is exhaustive, additional network modeling studies 

on diverse systems are required to determine the amount of sampling required on each system.  

Analysis 

Currently we construct our average network model by taking an average over all edge values. Real 

biological protein interaction networks may exist in multiple states. With accurate scoring and sufficient 

sampling, INM can in principle recover such states by clustering network models rather than taking an 

average.  

Opportunities for adding additional information to INM 

The scope of adding additional information to the scoring function is large as many types of experiments 

or other approaches may be informative of direct protein interaction. It is of particular interest to develop 

scoring terms based on data that may inform indirect or transient protein interactions such as proximity 

labeling MS, in situ/in vivo cross-linking MS, large-scale functional genetic interaction or CRISPRi/a 

experiments, or AI-derived pairwise protein structure predictions (Larson et al. 2013; Jumper et al. 2021; 

Braberg et al. 2022; Lin et al. 2024). 

Recently, AP-MS data have been integrated with imaging data to produce models of protein localization 

(Qin et al. 2021; Cho et al. 2022). Critically, the AP-MS data is represented as the output of a spoke-type 

model – a list of differentially abundant proteins. While powerful, this approach may underfit the AP-MS 
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data. The difference in accuracy between SAINT scores and AP-MS profile similarities suggests that using 

mass spectrometry features (such as spectral count or MS1 intensity) directly as input to a machine-learning 

model encodes more information about protein interactions than downstream representations of the data 

(e.g., bait-prey networks).  

We have developed and benchmarked integrative network modeling (INM), a statistical inference method 

to infer the network of all-pairs of direct protein interactions, based on AP-MS data, which may be extended 

to other types of information. Our method may be used to model protein interaction networks under specific 

experimental conditions (e.g., mutation or viral infection). 

2.6 Availability of software and data 

All software and data are freely accessible. Integrative Network Modeling is implemented as a module of 

our open-source Integrative Modeling Platform (IMP) software (https://integrativemodeling.org) (Webb et 

al. 2018).  
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2.8 Figures 

 

Figure 1. The flowchart of integrative network modeling (INM). 

The five stages of Integrative Network Modeling (INM): (i) the input information are spectral counts 
Significance Analysis of INTeractome (SAINT) scores from K affinity purification mass spectrometry (AP-
MS) purifications, (ii) the network model is represented as an undirected unweighted graph of N nodes and 
an edge variable for all N(N-1)/2 possible node pairs; edge variables values may be 0 or 1 representing the 
absence or presence of an edge, (iii) the agreement between any network model (set of edges for a set of 
nodes) and the input information is scored using a scoring function. The scoring function is a sum of terms, 
each one scores the agreement between the model and a particular type of input information (e.g., AP-MS 
profiles, SAINT scores). (iv) alternative network models are sampled using a Monte Carlo scheme. A Monte 
Carlo move is accepted using the Metropolis criteria. Moves are proposed using Hamiltonian dynamics. 
The output is a set of t network models distributed according to e-S(M), (v) for the output set of network 
models, the exhaustiveness and convergence is assessed, an average network model is constructed by taking 
the average value of the edges over the t sampled network models. The average network model is compared 
to networks generated by other methods using a Protein Data Bank (PBD) derived benchmark of direct 
protein interactions. 
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Figure 2. AP-MS proteomic profiles inform direct protein interactions. 

A) AP-MS purifications are performed with one or more bait over multiple conditions. The identified prey 
may be in a single complex or a mixture of complexes. B) The spectral counts of each identified protein 
(prey) in each condition are compared to one another using Pearson correlation. C) a correlation matrix is 
constructed for such comparisons. D) The distribution of correlation coefficients is multimodal. The 
distribution of AP-MS profile correlation coefficients corresponding to direct interactions is skewed 
towards high-profile similarities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 33 

 

Figure 3. Convergence and exhaustiveness of sampling.  

A) The best scoring model per modeling run converges as the number of sampled Monte Carlo steps 
increases. The average (dots) and standard deviation (bars) are plotted over for one modeling run. B) Two 
random subsets of scores from 20 independent network modeling runs are identically distributed. C) the 
ROC curves of the two random subsets of network models (A & B) are identical to the ROC curve of their 
union (AB). Individual network models are not accurate (n1, n2, n3). D) The AUC accuracy of the average 
model is plotted as a function of increasing N, where N is the number of models used to compute the 
average. Uncertainty is estimated by bootstrapping three times (blue). The network models are not accurate 
when compared to five random reference networks (orange).  
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Figure 4. Accuracy of scoring function terms 

We assessed four variations of the scoring function using 55 direct protein interactions obtained from the 
Protein Data Bank (PDB) as a reference. The scoring function variations are: (i) SE, the number of edges 
term, (ii) SE + SD, the addition of the degree term, (iii) SE + SS, the addition of the SAINT term, (iv) SE 
+ SR, the addition of the AP-MS profile similarity term. 
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Figure 5. Comparison to other methods and networks 

The AUC accuracy of each method is compared to the PDB-derived reference of 49 direct protein 
interactions. A) INM is compared to state-of-the-art methods implemented in the MSiP software. B) INM 
is compared to the hu.MAP 2.0 network and an all-pairs network derived from SAINT bait-prey scores.  
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Figure 6. Illustration of INM on the HIV-1 CRL5 system 

A) The average network model corresponding to proteins identified only in the WT condition and not in 
the ΔVif condition. Labels are UniProt entry prefixes.  DDB1-and-CUL4-associated factor 11 (DCA11) 
is correctly predicted to interact with both CUL4A and CUL4B, consistent with its putative role as a 
substrate adaptor. CUL4 and CUL4 are not predicted to interact with each other, consistent with their 
respective roles as catalytic units in CRL ubiquitin ligases. Programmed cell death 6-interacting protein 
(PDC6I) is predicted to interact with CUL4A, CUL4B, and DCA11. PDC6I has a known role in HIV viral 
budding. B) The predicted interactions are non-obvious from observation of the spectral count data. These 
predictions occur even though DCA11 has higher overall spectral counts than either CUL4A, CUL4B, or 
PDC6I. 
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Figure 7. Benchmark for synthetic data 

A) The best scoring model per modeling run converges as the number of sampled Monte Carlo steps 
increases. The average (dots) and standard deviation (bars) are plotted over for one modeling run. B) Two 
random subsets of scores from 20 independent network modeling runs are identically distributed. C) the 
ROC curves of the two random subsets of network models (A & B) are identical to the ROC curve of their 
union (AB). Individual network models are not accurate (n1, n2, n3). D) The AUC accuracy of the average 
model is plotted as a function of increasing N, where N is the number of models used to compute the 
average. Uncertainty is estimated by bootstrapping three times (blue). The network models are not accurate 
when compared to five random reference networks (orange). Normalization and degree reweighting were 
applied to the INM probability, this scheme ranks solutions identically.  
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Figure 8. Shuffling of spectral counts ablates the rightmost mode 

A) The observed distribution of affinity purification mass spectrometry (AP-MS) profile correlations 
(Pearson R). The distribution has two modes. B) The distribution of AP-MS profile correlations after 
shuffling the spectral counts within each proteomic profile without replacement (i.e., null distribution). The 
distribution is asymmetric with a single peak near 0. 
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Chapter 3 

Multi-scale photocatalytic proximity labeling reveals cell surface neighbors on and between cells 

3.1 Abstract 

The cell membrane proteome is the primary biohub for cell communication, yet we are only beginning to 

understand the dynamic protein neighborhoods that form on the cell surface and between cells. Proximity 

labeling proteomics (PLP) strategies using chemically reactive probes are powerful approaches to yield 

snapshots of protein neighborhoods but are currently limited to one single resolution based on the probe 

labeling radius. Here, we describe a multi-scale PLP method with tunable resolution using a commercially 

available histological dye, Eosin Y, which upon visible light illumination, activates three different photo-

probes with labeling radii ranging from ~100 to 3000 Å. We applied this platform to profile neighborhoods 

of the oncogenic epidermal growth factor receptor (EGFR) and orthogonally validated >20 neighbors using 

immuno-assays and AlphaFold-Multimer prediction that generated plausible binary interaction models. We 

further profiled the protein neighborhoods of cell-cell synapses induced by bi-specific T-cell engagers 

(BiTEs) and chimeric antigen receptor (CAR)T cells at longer length scales. This integrated multi-scale 

PLP platform maps local and distal protein networks on cell surfaces and between cells. We believe this 

information will aid in the systematic construction of the cell surface interactome and reveal new 

opportunities for immunotherapeutics. 

3.2 Introduction 

Cell surface proteins are critical mediators of information, nutrients, and functions on cells and between 

them. The extracellular proteome, both secreted and membrane-bound, is encoded by more than 25% of the 

human genome (1, 2). Proteomics methods have made great strides in characterizing the composition of the 

surface proteome in health and disease models (3, 4). However, we know much less about the protein-

protein interactions formed on the cell membrane, especially transient interactions that regulate cell 

signaling networks. 
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Proximity labeling proteomics (PLP) methods have enabled the identification of protein interactomes in 

complex cellular environments (5, 6). These methods typically generate a single reactive intermediate 

locally to label and profile nearby proteins using imaging or proteomics. The first generation of PLP 

methods used genetically encoded enzymes such as APEX (7), BioID (8) or TurboID (9, 10) to produce 

phenoxyl radicals or activated AMP that have long reactive half- lives (t1/2>100 μsec). These methods are 

well-suited for characterizing cell-cell and organelle- specific interactomes given their long labeling range 

up to 3000 Å by labeling electron-rich amino acids (11). Singlet oxygen generators (SOG) triggers selective 

labeling on His (12) at a shorter range given the shorter half-life of singlet oxygen in water (~2-4 μs) (13). 

However, proteins are estimated to be separated by only 60-70 Å on the crowded cell surface (14), thus 

making it challenging to identify the most proximal protein neighbors using long-range PLP approaches. 

Most recently, PLP methods of very short range have emerged, enabling higher resolution mapping 

including μMap (15-17). These designs employ transition-metal or other photocatalysts attached to 

antibodies to trigger reactive intermediate with shorter half-lives such as carbenes or nitrenes (t1/2 ~2 and 

10 ns, respectively) (11, 18). Activation of these probes enables labeling proteins at a significantly shorter 

range of ~100-700 Å as well as broader amino acid coverage (11, 19), thus making it much more appropriate 

for nearest neighborhood analysis (20-23). Collectively, the suite of PLP methods can cover a broad length 

scale for labeling protein neighborhoods and synapses but require multiple photocatalysts for adjustable 

resolution. 

Here, we report a multi-scale photocatalytic PLP technology, termed MultiMap (Fig. 1) that allows short-, 

intermediate-, and long-range labeling from a single photocatalyst, Eosin Y (EY). We discovered that EY, 

a fluorescent dye commonly used in food chemistry and biological staining (21) can efficiently trigger the 

generation of carbene, nitrene, singlet oxygen and phenoxyl radicals from photo-probes with bio-

compatible blue or green light. We applied MultiMap to profile high-resolution neighborhoods of the 

oncogenic epidermal growth factor receptor (EGFR) in different cellular contexts. We identified >20 

neighbors and further validated their interactions via immunoprecipitation and in silico prediction models 
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using AlphaFold-Multimer (24). We demonstrated that MultiMap can capture long-range intercellular 

engagements between cancer cells and T lymphocytes induced by bi-specific T-cell engagers (BiTEs) and 

engineered chimeric antigen receptors (CARs). Our data show that MultiMap is an effective multi-scale 

PLP technology that can characterize local and distal cellular interactomes from a single photocatalyst. We 

believe that with artificial intelligence-assisted structural prediction methods integrated, the MultiMap 

workflow will be an important approach in the broad quest to define the spatial organization of the cell 

surface proteome and to reveal new drug discovery opportunities. 

3.3 Results 

Eosin Y (EY) activates a panel of photo-probes for protein labeling. 

We explored Eosin Y (EY) for PLP (Fig. 1) based on its photocatalytic ability broadly used in polymer 

synthesis (25) and easy commercial access (26). In contrast, the current transition- metal photocatalysts 

used in μMap, such as {Ir[dF(CF3)ppy]2(dtbbpy)}PF6, requires lengthy synthetic routes (15, 27). We first 

compared EY to the Ir-catalyst for photo-induced hydrolysis of the diazirine via LC-MS and observed 100% 

quantitative hydrolysis with 10 min blue LED illumination (l=450 nm, Fig. S1). The absorption peak for 

EY (lmax=517 nm, Fig. S1) is significantly red-shifted compared with the Ir-catalyst (lmax=420 nm) (15), 

which could make EY more bio-compatible (28). Indeed, green LED illumination (l=525 nm) of EY 

induced 100% diazirine hydrolysis, whereas the iridium catalyst did not induce any detectable conversion 

(Fig. S1). Erythrosin B (lmax=535 nm), a dye structurally similar to EY, photo-catalyzed 31% hydrolysis 

of the diazirine with blue LED illumination and 100% with green LED illumination, indicating that the EY 

scaffold can be modified for specific photochemical properties. We next tested the ability of EY to label 

bovine serum albumin (BSA) using a diazirine-biotin probe in the presence of light (Fig. 1). We observed 

time- and light-dependent accumulation of biotinylated BSA via Western blot (WB) analysis; labeling 

plateaued within 6 min of blue LED illumination (Fig. 1). A pulse-light experiment (Fig. 1) demonstrated 

that the catalytic function of EY is light-dependent. 
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EY is structurally similar to other photocatalysts that can trigger aryl-azide and phenol probes (26, 29, 30). 

EY fully converted the aryl-azide probe to the aniline upon blue LED illumination (Fig. S1). We then tested 

the photocatalytic labeling on BSA by WB analysis and found that EY efficiently catalyzed biotin labeling 

in the presence of either aryl-azide-biotin or phenol-biotin (Fig. 1). Additionally, we evaluated the ability 

of EY to induce singlet-oxygen-based labeling using biocytin-hydrazide (12) and observed efficient light- 

dependent labeling. The extents of labeling of BSA among the four biotin-containing reactive probes, which 

we refer to as photo-probes, ranged in the following order: aryl-azide-biotin (>95%), biocytin-hydrazide 

(~80%), phenol-biotin (~15%) and diazirine-biotin (~2%) (Fig. S1). Under blue light illumination, the Ir 

catalyst could trigger labeling of BSA by the aryl-azide-biotin but not the phenol-biotin (Fig. S1). EY also 

efficiently catalyzed labeling of BSA with green LED while the Ir catalyst showed no labeling (Fig. S1). 

More than 80% labeling of BSA was achieved upon 3 min green LED exposure of EY with all four photo-

probes. We also found that EY maintains its photocatalytic function above its pKa (pH=3.5) (Fig. S1) (26) 

and thus is compatible with labeling across a wide range of physiologic pH conditions. 

Conjugation of EY onto proteins 

We evaluated different conjugation methods for EY first onto BSA and then to antibodies (Fig. 2 and Fig. 

S2). After synthesizing DBCO-PEG4-EY via an amine-isothiocyanate reaction (Scheme 1), we explored 

the conjugation efficiency and stoichiometry for attaching a click- compatible azido functionality 

specifically to Lys, Met or Cys using N-hydroxy succinimide (NHS) ester, oxaziridine, or 

maleimide/iodoacetamide warheads, respectively (Fig. S2). EY- conjugation via NHS-azide ligation 

produced the most efficient conjugation; conjugated EY also efficiently catalyzed BSA self-biotinylation 

with diazirine-biotin, aryl-azide-biotin and phenol- biotin (Fig. S2). 

Next, we conjugated EY to cetuximab (Ctx), an FDA-approved antibody that selectively binds EGFR and 

competes for epidermal growth factor (EGF) binding, thus turning-off EGFR signaling and cell 

proliferation in cancer (Fig. 2B) (31, 32). Ctx does not have Lys, Met or Cys residues in the CDRs or in the 

contact epitope with the EGFR ectodomain (ECD, aa 1-645, PDB:1YY9) (31), suggesting all 
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bioconjugation methods are viable without impairing binding. We tested the same panel of bioconjugation 

warheads on Ctx, generating similar levels of conjugation as seen for BSA (Fig. S2). Quantification of the 

levels of conjugation by WB analysis or EY absorption indicated that a stoichiometry of eight and two EY 

catalysts were installed per Ctx-NHS-EY and Ctx-Ox-EY, respectively (Fig. S2). 

We then tested the intra- and inter-molecular labeling of the Ctx-EY conjugates with equimolar amounts of 

recombinant human EGFR ectodomain (ECD, aa 1-645) and in competition with EGF (Fig. 2). 1 μM Ctx-

NHS-EY or Ctx-Ox-EY was mixed with 1 μM EGFR-ECD with or without pre-incubation with 1 μM EGF. 

100 μM diazirine-biotin was added and the mixture was illuminated with blue LED for 10 minutes. Proteins 

were purified via acetone precipitation and immunoblotted to evaluate the labeling efficiency (Fig. 2). Both 

Ctx-NHS-EY and Ctx-Ox- EY conjugates demonstrated self-labeling in a light-dependent manner. Not 

surprisingly, there was a higher degree of biotinylation with Ctx-NHS-EY which contains ~4-fold more 

conjugated EY than Ctx-Ox-EY (Fig. S2). Intermolecular EGFR labeling with both EY-conjugated 

constructs occurred in a light-dependent manner (Fig. 2), indicating that the conjugation of EY did not 

interfere with Ctx binding to EGFR as expected. Pre-incubation of EGF prevented labeling, demonstrating 

that direct binding is necessary for target labeling (Fig. 2). To explore the generality of the workflow, we 

performed the same NHS and oxaziridine bioconjugation and labeling using a trastuzumab (Trz) Fab that 

binds the extracellular domain of the HER2 receptor (Fig. S3). Similar intermolecular labeling of HER2 

was observed with Trz-NHS-EY or Trz-Ox- EY in a light-dependent manner. The demonstration of EGFR 

and HER2 labeling in vitro supports the broad applicability of the bioconjugation strategy and photo-probe 

labeling workflow. 

We chose to focus on the NHS-azide conjugate (abbreviated to Ctx-EY) given its higher bioconjugation 

and photo-probe labeling efficiency. We evaluated the EGFR labeling efficiencies with diazirine-, aryl-

azide-, and phenol-biotin photo-probes in parallel (Fig. 2). All three probes labeled the EGFR ECD to 

increasing levels: aryl-azide-biotin> phenol-biotin> diazirine-biotin. The differing yields likely result from 

the combined effects of the reactive radical intermediates: half-lives (phenol>>aryl-azide>diazirine), yield 
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of reaction with protein (phenol>aryl- azide>diazirine), and broad amino-acid preference observed 

(diazirine~aryl-azide>>phenol) (Fig. S3) (33-35). 

We analyzed the specific sites of biotinylation for self-labeling of BSA and binary complex labeling of Ctx 

and EGFR with different photo-probes using MS analysis (Table S1-8 and Fig. S3). For diazirine-biotin, 

we found 17 biotinylated sites on BSA (Table S1), and 30 sites on the Ctx-EGFR complex (Table S5), with 

good coverage of modified peptides over the light and heavy chains of Ctx, as well as EGFR ECD (Fig. 2 

and Fig. S3). We further characterized the modification sites on BSA and Ctx-EGFR systems for the other 

probes (Table S1-8 and Fig. S3). As expected, phenol-biotin mostly labeled Tyr/Trp, while labeling with 

biocytin-hydrazide was found exclusively on His. Diazirine-biotin and aryl-azide-biotin showed very broad 

amino acid preference, consistent with previous reports (19, 34). 

Ctx-EY catalyzes targeted labeling of EGFR on cells. 

We next evaluated the ability of Ctx-EY to bind EGFR and label live cells (Fig. 3). First, 

we incubated the Ctx-EY conjugate with an epithelial skin cancer cell line, A431 cells, that endogenously 

expresses very high levels of wild-type EGFR (nTPM =2978) (36). On-cell binding for the Ctx-conjugates, 

both Ctx-EY and Ctx-Ir, was confirmed via flow cytometry showing that the conjugation of EY or the Ir-

catalyst did not affect binding (Fig 3). Detailed titration from 1 nM to 10 μM of Ctx and Ctx-EY analyzed 

via flow cytometry further confirmed conjugation did not detectably affect cell binding (Fig. 3 and Fig. 

S4). We also tested A549 cells with more typical levels of EGFR (37) (nTPM=59.7, Fig. S4) as well as 

NCI-H441 cells with very low EGFR expression (nTPM=29.8, Fig. S4), both of which showed 

proportionally reduced binding of Ctx-EY and was similar to Ctx. 

We next performed on-cell proximity labeling with diazirine-, aryl-azide- and phenol- biotin photo-probes 

upon blue LED illumination (Fig. 3 and Fig S5). We tested a range of Ctx-EY concentrations and observed 

efficient biotinylation on cells at 100 nM (Fig. 3 and Fig. S5). The diazirine-biotin, aryl-azide biotin, and 

phenol-biotin labeling caused a major shift of biotinylation in the flow cytometry profile of 64%, 98%, and 
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94%, respectively. This is consistent with the order of labeling efficiencies observed in vitro. The Ctx-Ir 

only activated cell biotinylation with diazirine-biotin and aryl-azide-biotin and not phenol-biotin (Fig. S5). 

We further visualized cell biotinylation induced by Ctx-EY via confocal microscopy (Fig. 3 and Fig. S5). 

The labeled A431, A549 and NCI-H441 cells were co-stained with both anti- human IgG-AlexFluor488 

and streptavidin-AlexaFluor647 to visualize Ctx and biotinylation, respectively. We confirmed that the Ctx-

EY conjugate was located on the cell membrane. Biotinylation using the diazirine- and aryl-azide-biotin 

photo-probes were observed mainly on the cell membrane, whereas the phenol-biotin labeling was more 

diffuse, consistent with the longer half-life and labeling range of the phenoxyl radical. 

We next developed a proteomics workflow to label the EGFR neighborhood (Fig. 4), focusing first on A431 

cells with highest levels of EGFR and using the most reactive diazirine- biotin photo-probe. We incubated 

A431 cells with or without EGF competition first and then performed the on-cell biotinylation workflow 

using Ctx-EY, followed by biotin enrichment using neutravidin beads. WB analysis confirmed selective 

biotinylation of EGFR which was ablated in the presence of EGF (Fig. 4). We also observed dose-dependent 

EGFR labeling over a wide range of Ctx-EY concentrations of 1-1000 nM, which was competed off by 

either EGF or unlabeled Ctx (Fig. S6). 

Cells were treated with Ctx-EY in the presence or absence of EGF competition and biotinylated proteins 

were captured on neutravidin beads and digested on-bead with trypsin. Samples were prepared in biological 

triplicate for MS analysis using label-free quantitation (volcano plot shown in Fig. 4, heatmap shown in 

Fig. S6). We identified a total of 536 proteins with 41 proteins enriched by more than two-fold with Ctx-

EY relative to EGF competition (log2(ratio)≥1, p-value<0.05, unique peptide≥2; Table S9 and Fig. S6). 

EGFR was among the highly enriched as expected. Gene Ontology (GO) analysis showed a significant 

representation of biological processes that include regulation of phosphatase activity as well as molecular 

function entities such as phosphatase activator activity (Fig. S6). These features are consistent with the 

functional roles of EGFR signaling and suggest that the enriched EGFR interactors are accurately 

represented. 
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We orthogonally confirmed that six top hits were biotinylated by biotin-IP, where streptavidin pull-down 

samples were analyzed by WB using specific antibodies following proximity labeling (Fig. 4). Among 

them, five were observed to co-IP with EGFR (Fig. 4). All six proteins are known to either functionally 

interact with EGFR or found in immunoprecipitation experiments (38-40). These include ITB1, which is 

critical for stable maintenance for EGFR on the cell membrane (41, 42), as well as macrophage migration 

inhibitory factor (MIF), an immunostimulatory cytokine regulated by matrix metalloproteinase 13 

(MMP13) known to be inhibitory for EGFR activation (43). Others include substrates of EGFR such as 

glutathione S- transferase P1 GSTP1 (44) and tight junction protein ZO1 (45), both of which are known to 

be activated upon phosphorylation by EGFR. One target membrane-associated progesterone receptor 

component 1, PGRC1, was not observed in EGFR co-IP experiment, and we would expect that some 

interactions may not be strong enough to survive the co-IP workup in these cells. 

Multi-scale EGFR interactome profiled via MultiMap 

Having demonstrated the proteomic workflow of Ctx-EY triggered biotinylation on cells expressing high 

levels of EGFR, we expanded to cells expressing modest levels of EGFR. Lung cancer cell line, A549, for 

example, express lower amounts of EGFR (nTPM=59.7), which is more typical of native membrane 

proteins (37). We applied all photo-probes and showed EGFR was selectively biotinylated with each probe 

(Fig. S7). Applying the proteomics workflow, we then identified EGFR neighbors enriched with diazirine-

biotin, aryl-azide-biotin and phenol-biotin by comparing labeling with Ctx-EY in the absence and presence 

of EGF (Fig. 5). We found that EGFR is one of the most enriched proteins from all three datasets (Table 

S10-12). Enriched proteins were identified with the same statistical thresholds [log2(ratio)≥1, p-

value<0.05, unique peptide≥2], allowing us to compare protein identities across reactions with different 

photo-probes. We identified 72 proteins using diazirine-biotin, 188 using aryl-azide-biotin, and 188 using 

phenol-biotin (Tables S10-12 and Fig. S7). 

As represented in a Venn diagram (Fig. 5), there were a total of 322 unique proteins enriched over the 

controls in at least one of the three photo-probes. As represented in a Venn diagram (Fig. 5), there were a 
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total of 322 unique proteins enriched over the controls in at least one of the three photo-probes. The aryl-

azide-biotin and phenol-biotin labeled more proteins than diazirine-biotin reflecting their higher yields and 

their relatively long labeling radii. We found that >80% of the enriched proteins were annotated as plasma 

membrane proteins in UniProt (plasma membrane, GO:0005886) for all three photo- probes. GO 

enrichment analysis suggested molecular functions such as EGFR activity and EGF binding were highly 

enriched (Fig. S7). 

Sixteen candidate neighbors were identified in all three datasets of MultiMap (Fig. 5). While no direct 

structural evidence has been reported for EGFR with any of these, CD44 and Galectin-3 have been 

functionally associated with EGFR: CD44 regulates EGFR functions in the presence of CD147 and 

hyaluronan (46, 47); Galectin-3 regulates EGFR localization and its interactions suggested through genetic 

studies in pancreatic cancers (48). Both targets were further validated by biotin-IP and EGFR co-IP (Fig. 

5), supporting that they are proximal neighbors of EGFR. 

We next expanded our list to the 29 proteins that were in common for diazirine-biotin and aryl-azide-biotin, 

the photo-probes with high labeling resolutions (Fig. 5). Among them, we found a paraoxonase, PON2, as 

well as two proteins associated with RTK phosphorylation and activation: beta-adducin ADDB and MAP 

kinase pathway member BRAF (49, 50). Both PON2 and ADDB were detected by biotin-IP and EGFR co-

IP. Interestingly, BRAF, a cytosolic protein was enriched by biotin-IP but not EGFR co-IP suggesting it is 

close but may not be in physical contact (Fig. 5 and Fig. S7). Between the diazirine and aryl-azide datasets, 

we identified the known EGFR functional interactors such as Tid1 (51) and ITB1 also found in the A431 

cell experiments (33, 34), as well as previously unreported interaction partners including CKAP4 and RAC1 

(Fig. S7). 

The aryl-azide-biotin and phenol-biotin experiments contributed more proteins (293 in total). Among the 

top hits were the tyrosine-protein phosphatase receptor, PTPRF, glutathione transferase GSTP1, small 

GTPase Rab11a, Rho-related GTP binding protein RHOC and ESCRT protein PDC6I (Fig. 5 and Fig. S7). 
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Remarkably, all were detected by biotin-IP with ten out of eleven of these proteins co-IPed with EGFR, 

suggesting that they form relatively stable complexes. 

To provide a structural level of analysis, we turned to AlphaFold-Multimer, an exciting extension of 

AlphaFold developed over the last few years that uses artificial intelligence to generate plausible models of 

binary protein complexes (24, 52, 53). This community has developed scoring metrics such a predicted 

DockQ score (pDockQ), where a threshold of >0.23 retrieves 51% of true-positive interacting proteins with 

a false-positive rate of ~1% in large test set models (54). Additional criteria can be applied including buried 

solvent accessible surface area (BSASA)≥500Å2 (55, 56), predicted local distance difference test 

(pLDDT)>50 for the interface residues and minimum predicted alignment error (PAE)<15 Å as described 

previously (52). As a true positive example, we derived an AlphaFold-Multimer model of the EGF:EGFR 

complex (Fig. S8 and Table S13) that closely overlaid that of the known structure of EGF:EGFR (PDB: 

1IVO, RMSD between 469 atom pairs is 0.924 Å) (57). 

We applied AlphaFold-Multimer to candidate neighbors validated by biotin-IP and/or EGFR co-IP in A431 

and A549 cells and generated a total of 29 models. As shown in waterfall plots, the average pDockQ score 

(0.298) and BSASA (1466Å2) for the 29 EGFR-protein pairs were both above the established criteria 

suggesting direct interactions (Fig. S8B and Table S13). We next applied AlphaFold-Multimer to compute 

models of all potential heterodimeric complexes from Fig. 4 and Fig. 5 (Table S13). To increase the 

accuracy of the models for transmembrane proteins (58), we calculated separately the ECD (aa 1-646) and 

intracellular domain (ICD, aa 695- 1022) of EGFR and paired them with the corresponding ECDs or ICDs 

of transmembrane protein targets. As previously described, we retained only high-confidence AlphaFold-

Multimer models [average pLDDT>50, minimum predicted Alignment Error (PAE)<15Å] (52) and 

performed further filtering using the aforementioned criteria [pDockQ score≥0.23, BSASA≥500 Å2]. The 

final list of validated complexes included the binary complexes of EGFR ECD with CD44 ECD (aa 1-153, 

pDockQ=0.375), PON2 (pDockQ=0.372) and MIF (aa 1-115, pDockQ=0.375) (Fig. 5 and Fig. S8). In 

addition, the ICD of EGFR is predicted to bind Rab11a (pDockQ=0.264), GSTP1 (pDockQ=0.535) and 
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RAC1 (pDockQ=0.387) (Fig. 5 and Fig. S9). Most interestingly, one of the AlphaFold-Multimer complexes 

predicted with the highest confidence is a cell-surface phosphatase PTPRF, where PTPRF ECD binds EGFR 

ECD (pDockQ=0.429) and likewise, the PTPRF ICD binds the EGFR ICD (pDockQ=0.476) (Fig. 5 down). 

MultiMap can capture distal synaptic protein networks 

Extracellular protein-protein interactions occur not only in cis on the cell membrane but also in trans 

between cell-cell junctions. To explore PLP of cell synapses using MultiMap at different labeling radii, we 

assembled a co-culture system where the cell-cell interaction was induced by a bispecific T cell engager 

(BiTE) (Fig. 6). This BiTE contained the Ctx Fab genetically fused to an α-CD3 scFv (OKT3) (59). Two 

different cells were utilized in the co-culture system: a HEK293T cell was engineered in house to 

overexpress a Flag-tagged-EGFR (HEK-Flag- EGFR) and well-established Jurkat cells expressing a NFAT-

GFP reporter (60). In this design, the Flag tag served as an orthogonal ecto-epitope for an EY-conjugated 

α-Flag nanobody (α-Flag-EY), thus allowing selectively recognition of Flag-tagged EGFR. In order to 

separately characterize the labeling on HEK-Flag-EGFR and Jurkat NFAT-GFP cells, we used α-CD3-PE 

signal to allow facile separation of CD3+ Jurkat cells from CD3- HEK-Flag-EGFR. Levels of cis- and trans- 

labeling from α-Flag-EY were determined by flow cytometry. Proteins labeled with different photo-probes 

were enriched using streptavidin beads and analyzed by WB (Fig. 6). 

We first monitored BiTE engagement between HEK-Flag-EGFR and Jurkat NFAT-GFP cells using the 

standard GFP reporter gene readout. As expected, we observed dose-dependent BiTE activation of cell-cell 

engagement, with the GFP signal shifted to 80.3% in the presence of 8 nM EGFR BiTE and 92.3% with 50 

nM BiTE (Fig. S10). The GFP signal shift was not affected by the presence of α-Flag-EY, indicating that 

the Flag tag recognition did not interfere with the cell synapse engagement. We then performed the 

MultiMap workflow using four photo-probes of increasing labeling range: diazirine-biotin, aryl-azide-

biotin, biocytin-hydrazide and phenol-biotin. We monitored biotinylation in cis for HEK-Flag-EGFR and 

in trans for Jurkat NFAT-GFP using a streptavidin-AlexaFluor647 signal (Fig. 6 and Fig. S10). Cis-labeling 

of HEK-Flag-EGFR cells occurred for >60% of cells for the diazirin-biotin, aryl-azide-biotin and phenol-
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biotin with ~29% for the biocytin hydrazide (Fig. S10). In sharp contrast, minimal shift (~3-4%) was 

observed on control HEK-EGFR cells without the Flag tag, suggesting that α-Flag-EY is selectively 

recognizing the Flag tag. Interestingly, the trans-labeling of the Jurkat cells using the shorter-range 

diazirine-biotin, aryl-azide-biotin was limited to 3-4% (Fig. S10), while the intermediate-range biocytin-

hydrazide and long-range phenol-biotin labeled 9% and 22%, respectively) (Fig. 6 and Fig. S10). This is 

consistent with the cell-cell synapse distance based on the length of the Fab-ScFv BiTE (61), plus the size 

of the EGFR ECD and the CD3 complex. By further analysis via WB, the cis-target EGFR was observed 

enriched by biotin-IP in the presence of the three photo-probes, whereas trans-target CD3 was only 

significantly enriched in the phenol-biotin sample, with moderate amount observed in the aryl-azide-biotin-

labeled sample (Fig. 6). Thus, longer-range photo-probes are more efficient for trans-labeling. 

To further expand the generality of MultiMap for cell-cell synapses, we tested the BiTE system to two other 

cancer targets, HER2 and CDCP1 (Fig. 6 and Fig. S11). We fused α- HER2 Fab sequence (Trz Fab, Fig. 

S10) and a previously generated α-CDCP1 Fab (4A06) (Fig. 6 and Fig. S11) (59) onto the CD3 scFv 

scaffold. Again, we observed dose-dependent cell-cell engagement in the presence of the engineered BiTEs 

and antigen-expressing cells (Fig. S11 and Fig. S11). On-cell biotinylation results were similar to the EGFR 

BiTE system; cis- labeling was found with all three photo-probes and trans-labeling activated primarily 

with phenol- biotin (Fig. S10 and Fig. S11). In particular, by separating HEK293T-CDCP1 and Jurkat-

NFAT- GFP cells, we confirmed selective biotinylation of CDCP1 with all three photo-probes, and CD3 

only with phenol-biotin (Fig. 6). We quantitatively profiled the proteins captured at the cell synapse of 

HEK-Flag-CDCP1 and Jurkat NFAT-GFP in biological triplicate (Fig. 6, Table S14). We discovered that 

CDCP1 was enriched in the cis-labeled samples. Proteins from the CD3 complex including CD3d and CD3e 

were highly enriched in the trans-labeled samples. This observation indicates that interactome in the cell-

cell synapse can be captured by the MultiMap workflow. 

Lastly, we evaluated MultiMap labeling at a (CAR)T cell-cell synapse (Fig. 6 and Fig. S11). Jurkat cells 

expressing a Myc-tagged CAR construct (Jurkat-CAR) that targets CD19 were mixed with K562 cancer 
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cells expressing CD19 ectodomain (K562-CD19). With an EY- conjugated α-myc antibody (α-myc-EY), 

we performed our workflow by introducing cis-labeling on K562-CD19 and trans-labeling on Jurkat-CAR 

cells. We confirmed cell engagement by monitoring the CAR activation with or without K562 cells (Fig. 

S11). We observed cis-labeling on interacting CAR cells with all photo-probes (Fig. S11). On the other 

hand, both aryl-azide- biotin and phenol-biotin achieved trans-labeling, with much lower level of 

biotinylation using the short-range diazirine-biotin (Fig. 6). The same results were confirmed by WB 

analysis (Fig. 6). These results are in line with the estimate of cell-cell distance between CAR-induced 

synapse at ~120 Å according to AlphaFold prediction (62), which is shorter than BiTE-induced synapse. 

We finally sorted each cell type for proteomics analysis and found both CD19 and CD3 component enriched 

for trans-labeling and cis-labeling (Fig. 6 and Tables S15). Taken together, our data suggests that MultiMap 

can label cells at the cell-cell synapses and map the proteins in proximity via PLP. Only minimal alternation 

to the existing workflow is needed for labeling in different cell- cell engagement scenarios. Looking 

forward, we anticipate that this platform will be a useful technology to identify key proteins in different 

synaptic environments. 

3.4 Discussion 

Here we demonstrate a multi-scale PLP technology, MultiMap, that enables proximity labeling and 

interactome profiling with adjustable resolution depending on the half-life of the photo-probe using a single 

photocatalyst EY. EY is a unique photocatalyst in its ability to trigger a broad range of photo-probes. It is 

commercially available, bio-compatible, and shown to be readily conjugated to seven different proteins and 

antibodies by commonly accessible methods. Simple targeting by EY-conjugated antibodies obviates the 

need for cell engineering. EY-mediated labeling is rapid and light-dependent, which potentially allows 

kinetic control of the labeling. Future structure-activity relationship studies on EY, as done for rhodamine- 

or fluorescein-based scaffolds (63), could enhance our understanding of the photochemical mechanisms of 

EY, as well as improve its spectral properties, activation efficiency, and use in tissues (20, 27). 
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Coupled with standard biochemical validation and the recently developed AlphaFold- Multimer algorithm 

for structural prediction (24), the MultiMap proximity labeling proteomics workflow provides three 

orthogonal and integrated pillars for high-resolution profiling of protein neighborhoods. In addition to 

identification of new potential neighbors, we detected many proteins known to functionally interact with 

EGFR that are reported to stabilize, modulate, or act as substrates for EGFR. One of the most striking 

targets identified was the phosphatase, PTPRF, which could be a functional off-switch for EGFR. 

Interestingly, AlphaFold-Multimer predicts the ECD of PTPRF binds the back side of the EGFR ECD away 

from the dimer interface, and that the ICD of the phosphatase binds to the intracellular kinase domain of 

EGFR. Despite the fact that EY-antibodies recognize extracellular targets, we found that some of the high-

confidence hits were intracellular proteins. Some are known to functionally associate with EGFR, for which 

high- confidence AlphaFold-Multimer binary models were constructed. It is not impossible that the labeling 

is caused by cell penetrance of the activated photo-probe when triggered by EY. We believe future work 

could fine-tune the properties of photo-probes such as charge and hydrophobicity to achieve extracellular-

only or organelle-specific labeling. 

It is unlikely that all these identified neighbors bind simultaneously to EGFR. In fact, some proteins are 

predicted to bind over the same sites. These data suggest EGFR can be in multiple neighborhoods which 

are dynamic and may have multiple functions yet to be revealed. It is also important to note that the binder 

we used in this study, Ctx, is an inhibitor of EGFR function. Thus, candidates identified in our studies are 

specifically from the EGFR off-state neighborhood. We envision that MultiMap will be useful to study on-

state, drug-bound, and resistance mutant neighborhoods, which will give a comprehensive map of the EGFR 

interactomes. 

MultiMap was also effective for long-range labeling of cell-cell synapses. As shown for the ones activated 

by BiTE or (CAR)T, we found that spatial variability among synaptic junctions can be addressed by using 

photo-probes with different labeling radii. The unique advantage of MultiMap allowing multi-scale 

labeling, potentiates its application for interactome profiling of additional intercellular interaction networks. 
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In cases where antibodies are not available, one can use a genetically encoded tag on the target ECD, similar 

to the Flag and myc ecto-tags we introduced in our study. We can also envision proteome-wide interactome 

profiling for membrane proteins using these ecto-tags on par with the scale for the intracellular OpenCell 

system (64). 

Lastly, we recognize that despite the confidence and accelerated process in target identification via 

MultiMap, information on candidate neighborhoods warrants further confirmation via more in-depth 

structural, mutational, and functional studies. Nonetheless, we believe that MultiMap proximity labeling 

proteomics integrated with in silico prediction can begin to provide plausible models for binary protein 

interactions with high structural precision. This would be crucial step forward to begin to construct a 

structural map of the protein-protein interactome on the cell surface. In addition, understanding how the 

surfaceome functions in concert with the external environment communication may suggest new neo-

complexes to target for both small molecules and biologics. 

3.5 Acknowledgements 

We thank Jie Zhou, Kevin Leung, Thomas Bartholow, Johnathan Maza, Kaan Kumru, Corleone Delaveris, 

Paul Burroughs and James Byrnes for insightful discussions. We also thank Susanna Elledge for the Her2 

Fab expression plasmids, Jhoely Duque-Jimenez and Xin Zhou from Harvard Medical School for CAR-T 

and K562-CD19 cells as well as Juntao Yu from Harvard Medical School for guidance in conducting the 

AlphaFold-Multimer analysis. 

Funding: We are grateful to generous support from NIH (1R01CA248323-01). K.S. is a Merck fellow of 

the Helen Hay Whitney Foundation. Z.Y. is supported by an NIH National Institute of General Medical 

Sciences F32 grant (1F32GM149084-01). A.S. is supported by NIH (P41GM109824 and R01GM083960). 

A.P. is supported by NIH (U19AI135990). The HDFCC LCA for cell sorting is funded by NIH 

(P30CA082103). 

 



 57 

3.6 Declaration of interests 

The authors declare the following competing financial interest: J.A.W and Z.L filed a provisional patent on 

the multi-scale interactome profiling of membrane proteins using photocatalytic proximity labeling. 

3.7 Data and materials availability 

 All data are available in the main text or the supplementary materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58 

3.8 Figures 

 

Fig. 1. MultiMap captures high-resolution snapshots of biological networks across a wide range of 
length scales. (A) A schematic of the MultiMap workflow. EY is conjugated to an antibody that binds the 
target of interest (e.g., Fab arm of Ctx bound to the EGFR extracellular domain). Upon illumination, 
proteins are biotinylated, captured and digested for MS analysis. Proteomics hits are further examined by 
immunoprecipitation and predictive structural analysis via AlphaFold-Multimer. MultiMap is a useful 
platform for profiling local membrane protein interactomes both on live cells and between cell-cell 
synapses. (B) WB showing EY-mediated photocatalytic biotinylation of BSA by a diazirine-biotin probe 
upon blue LED illumination. Biotinylation can be controlled temporally by pulsed light. (C) EY triggers 
labeling of BSA with all three photo-probes (diazirine-biotin, aryl-azide-biotin and phenol-biotin), but Ir 
only activates the first two. All immunoblot images are representative of at least two biological replicates. 
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Fig. 2. Targeted labeling using antibody-EY conjugates in vitro. (A) Synthetic scheme of Ctx- EY via a 
two-step bioconjugation workflow. An azido functionality was first introduced onto either Lys or Met 
residues using NHS or oxaziridine chemistry, respectively, followed by bio- orthogonal click reaction to 
couple EY. (B) Schematic design to test intra- and inter-biotinylation of Ctx-EY and EGFR with or without 
EGF competition. (C) Targeted EGFR biotinylation with the diazirine-biotin photo-probe when triggered 
by either Ctx-NHS-EY (Ctx-EY) or Ctx-Ox-EY in vitro. Both conjugates selectively label EGFR in a light-
dependent fashion, which is competed off by exogenous EGF. (D) EGFR is biotinylated by all three photo-
probes: diazirine-biotin, aryl- azide-biotin or phenol-biotin using Ctx-EY. (E) Biotinylation sites of 
diazirine-biotin (yellow), aryl-azide-biotin (cyan), phenol-biotin (maroon) and biocytin-hydrazide (purple) 
highlighted on the crystal structure of the EGFR ECD (grey) in complex with Ctx Fab (blue) (PDB: 1YY9, 
data taken from Table S5-8). All immunoblot images are representative of at least two biological replicates. 
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Fig. 3. Ctx-EY enables EGFR-dependent labeling on cells with different photo-probes. (A) 

General on-cell labeling workflow using Ctx-EY conjugate and detection of biotin labeling using 
fluorescent streptavidin-AF647. (B) Cellular binding assay of 100 nM Ctx, Ctx-EY or Ctx-Ir conjugates on 
A431 cells via flow cytometry analysis shows similar on-cell binding. (C, D) Quantitative on-cell binding 
(C) and on-cell labeling (D) with diazirine-, aryl-azide- and phenol- biotin triggered by 100 nM Ctx-EY on 
A431 cells via flow cytometry analysis. (E) Confocal microscopy imaging of antibody binding and on-cell 
biotinylation of Ctx-EY on A431 cells shows labeling mostly confined to cell surface. Scale bar=20 μm. 
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Fig. 4. High-resolution profiling of the EGFR neighborhood using MultiMap. (A) General proteomics 
workflow of interactome profiling using Ctx-EY conjugate with or without EGF competition. (B) WB 
showing biotinylation using the diazirine-biotin photo-probe on A431 cells using Ctx-EY in the absence 
and presence of EGF competition. (C) Volcano plot of Ctx-EY- mediated labeling of EGFR with or without 
EGF on A431 cells using diazirine-biotin. 41 significantly enriched proteins (log2(ratio)≥1, p-value<0.05, 
unique peptide≥2, n=3) are highlighted in red and listed in Table S9. (D) Enrichment ratios for six top 
protein hits are displayed. Full heatmap is presented in Fig. S6 and Table S9. All six proteins were 
confirmed to be biotinylated using biotin-IP blots, and five were selectively enriched in a separate EGFR 
co-IP experiment. All immunoblot images are representative of at least two biological replicates. 
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Fig. 5. MultiMap reveals a multi-scale EGFR interactome network. (A) Volcano plots of Ctx- EY 
mediated EGFR interactome profiling on A549 cells using three different photo-probes (biotin- diazirine, 
aryl-azide-biotin, or phenol-biotin, respectively, n=3). Significantly enriched proteins (log2(ratio)≥1, p-
value<0.05, unique peptide≥2) are highlighted in red and listed in Table S10-12. (B) Venn diagram of 
EGFR interactome enriched from A431 cells using different photo-probes. (C) Enrichment ratios and 
validation of protein hits using all three photo-probes. (D) Enrichment ratios and validation of protein hits 
from only the diazirine-biotin dataset. (E) Enrichment ratios and validation of protein hits from both aryl-
azide-biotin and/or phenol-biotin datasets. (F) AlphaFold-Multimer predictions of EGFR complexes 
confirmed the direct interactions of EGFR with interactors found via MultiMap. EGFR ECD or ICD (blue) 
is shown in complex with the corresponding interactor protein (yellow or orange-yellow for the ones 
interacting with EGFR ECD, green for the ones interacting with EGFR ICD) along with the pDockQ scores 
and BSASA. All immunoblot images are representative of at least two biological replicates. 
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Fig. 6. MultiMap enables targeted snapshots of local cell-cell synapses. (A) On-cell labeling of the T-
cell synapse using a bispecific T cell engager (BiTE) that recognizes EGFR. Jurkat NFAT- GFP and 
HEK293T-Flag-EGFR were co-cultured in the presence of the BiTE before MultiMap was performed using 
an EY-conjugated α-Flag nanobody (α-Flag-EY). Cell-cell engagement was monitored by NFAT-GFP 
reporter gene activation. Photocatalytic labeling was characterized by flow cytometry before biotin-
enriched proteins were analyzed by WB. (B) Target biotinylation of CDCP1 and CD3 at the T cell synapse 
using a bispecific T cell engager (BiTE) (Figure caption continued on next page) 
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(Figure caption continued from previous page) that recognizes CDCP1. Longer labeling radius using 
phenol-biotin was necessary for trans-labeling on Jurkat NFAT-GFP. (C) Volcano plot of proteins 
biotinylated on HEK-Flag-CDCP1 (cis-labeling) and Jurkat NFAT-GFP (trans-labeling) using phenol-biotin 
(n=3). Significantly enriched proteins from HEK-Flag-CDCP1 (log2(ratio)≤-1, p-value<0.05, unique 
peptide≥2) or Jurkat NFAT-GFP (log2(ratio)≥1, p-value<0.05, unique peptide≥2) are highlighted in blue 
and red, respectively. Full protein lists were shown in Table S14. (D) Scheme of on-cell labeling of anti-
CD19 chimeric antigen receptor (CAR)T cell system. (E) (CAR)T cell-mediated trans-labeling of K562 
cancer cells using all photo-probes. (F) Target biotinylation of CD3 and CD19 at the CAR-T synapses using 
WB and MS analysis. Cells were sorted to differentiate cis- and trans-labeling before biotinylated proteins 
were enriched for analysis. Both phenol-biotin and aryl-azide-biotin enabled trans-labeling. Volcano plot 
of proteins biotinylated on Jurkat-CAR (cis-labeling) and K562-CD19 (trans-labeling) using phenol-biotin 
(n=3). Significantly enriched proteins from Jurkat-CAR (log2(ratio)≤-1, p-value<0.05, unique peptide≥2) 
or K562-CD19 (log2(ratio)≥1, p-value<0.05, unique peptide≥2) are highlighted in blue and red, 
respectively. Full protein lists were shown in Table S15. All immunoblot images are representative of at 
least two biological replicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 65 

 

 

Fig. S1. Eosin Y (EY) as an organic photocatalyst that triggers the activation of photo-probes. (A) 
Chemical structures of photocatalysts used in this study. (B) Chemical structures of all photo- probes used 
in this study. (C) EY triggers the biotinylation of bovine serum albumin (BSA) using diazirine-biotin in a 
time-dependent manner. Significant amount of biotinylation was observed with both EY and Ir than the 
background labeling. (D) EY triggers biotinylation of BSA with all four photo-probes, diazirine-biotin, aryl-
azide-biotin, biocytin-hydrazide and phenol-biotin upon blue LED illumination. Quantification of 
biotinylation is shown in Fig. 1C. (E) Absorption peaks of the photoreactive warheads (diazirine, aryl-azide 
and phenol, shown in colored boxes) and EY. Photoreactive warheads cannot be activated by blue or green 
LED and thus require EY for activation.  
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Fig. S2. EY triggers protein labeling in a light-dependent manner. (A) Time-dependent biotinylation on 
BSA demonstrated the rapid kinetics for labeling using EY with blue LED activation. Biotinylation levels 
of BSA in were tracked over time and quantified, indicating that EY can trigger >90% conversion with 3 
min illumination with blue LED. (B) Time-dependent biotinylation on BSA demonstrated the rapid kinetics 
for labeling using EY with green LED activation. Biotinylation levels of BSA were tracked via WB analysis 
and quantified. (Figure caption continued on next page)  
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(Figure caption continued from previous page) (C) EY- induced biotinylation using diazirine-biotin is dose-
dependent. (D) Photocatalytic ability of EY was not affected in basic condition (pH=11), but was 
significantly inhibited in acidic condition (pH=3).  
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Fig. S3. Conjugation chemistry of EY onto BSA and Ctx for targeted protein biotinylation. (A) Lys-
specific conjugation of EY using DBCO-PEG4-EY. (B) Screening of conjugation methods on BSA using 
different covalent warheads: NHS, oxaziridine, maleimide and iodoacetamide. The NHS-based amine 
coupling (highlighted in green) produced the highest extent of conjugation owed to presence of available 
Lys residues. (C) Evaluation of self-biotinylation using different EY-conjugated BSA constructs. Three 
photo-probes (diazirine-, aryl-azide- and phenol-biotin) were tested. (D) Screening of conjugation methods 
on Ctx with different residue-specific labeling methods mirrors results seen with BSA in Panel (B). (E) 
Overlayed absorption spectra of Ctx, Ctx- EY and EY. Conjugation of EY onto Ctx has minimal effect on 
the EY’s absorption spectrum. (F) Calculation of conjugated EY stoichiometry using the photochemical 
property of EY as a dye. An example of Ctx-EY is shown, demonstrating that an average of eight EY 
molecules was conjugated per Ctx.  
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Fig. S4. Identification of specific sites and residues labeled with different biotin-photoprobes using 
EY-conjugated antibodies. (A) Selective labeling of the ecto-domain of HER2 using EY- conjugated Trz. 
A Trz Fab mutant (G68M) was conjugated using covalent warheads of NHS or oxaziridine, enabling 
targeted labeling of the purified HER2 ectodomain (amino acids 23 to 652) in vitro. (B) Statistics of amino 
acid labeling preference with four photo-probes from combined datasets of observed biotinylated peptides 
on BSA (45 peptides in total), Ctx and EGFR ECD (88 peptides in total). Spectrum assignments were shown 
in Table S1-8. (C) Identification of the EGFR ectodomain residues that were modified with different photo-
probes. Amino acids labeled with diazirine-biotin (+ 616.25Da), aryl-azide-biotin (+ 620.23Da), phenol-
biotin (+ 361.15Da) or biocytin-hydrazide (+ 384.50Da) are mapped on the sequence of EGFR or the crystal 
structure of EGFR ectodomain (PDB: 1YY9) shown in Fig. 2E. Spectrum assignments were shown in 
Table S5-8.  
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Fig. S5. Flow cytometry experiments with cells containing different levels of EGFR shows Ctx-EY 
binds to cells similarly to unconjugated Ctx. (A) Quantitative on-cell binding assay of Ctx and Ctx-EY 
on A431 cells with high EGFR expression levels (EGFR nTPM: 2978). (B) Quantitative on-cell binding 
assay of Ctx and Ctx-EY on A549 cells with low (Figure caption continued on next page)  
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(Figure caption continued from previous page) EGFR expression levels (EGFR nTPM: 59.7). (C) 
Quantitative on-cell binding assay of Ctx and Ctx-EY on NCI- H441 cells with very low EGFR expression 
levels (EGFR nTPM: 29.8).  
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Fig. S6. Ctx-EY can activate cell-surface biotinylation on A431, A549 and NCI-H441 cells using 
different photo-probes. (A) On-cell biotinylation of A431 cells with diazirine-biotin from Fig. 3D 
confirmed by WB analysis. Dose-dependent labeling using Ctx-EY or Ctx-Ir are shown after 10 min blue 
LED illumination in the presence of 100 μM diazirine-biotin. (B) On-cell biotinylation with Ctx-EY on 
A549 cells expressing lower endogenous level of EGFR than A431 cells. (C) On-cell biotinylation with 
Ctx-EY on NCI-H441 cells expressing very low endogenous level of EGFR than either A549 or A431 cells. 
(D) Summary of Ctx-EY-mediated labeling and biotinylation results in cell lines with different expression 
level of EGFR. (E) Flow cytometry analysis of on-cell biotinylation of A431 cells using Ctx-Ir confirmed 
that the iridium catalyst can activate biotin-diazirine and aryl-azide-biotin, but not phenol-biotin. (F) 
Confocal microscopy imaging of cellular biotinylation and antibody binding with Ctx-EY on A549 cells 
expressing low endogenous level of EGFR. (G) Confocal microscopy imaging of cellular biotinylation with 
Ctx- EY on NCI-H441 cells expressing very low endogenous level of EGFR shows strong cell-surface 
labeling. Scale bar, 20 μm.  
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Fig. S7. Specific labeling of EGFR labeling on A431 cells by Ctx-EY. (A) Dose-dependent biotinylation 
of EGFR (shown by the wedges under each condition) in the presence of Ctx-EY, along with competition 
control conditions with either EGF or the unconjugated Ctx. Biotinylated proteins were enriched for each 
condition and analyzed by WB. Enrichment of EGFR is also dependent on the diazirine-biotin 
concentration. (B) Heatmap of the proteins identified in Fig. 4C by comparing enriched proteins using Ctx-
EY versus Ctx-EY plus EGF competition. Significantly enriched proteins (log2(ratio)≥1, p<0.05, unique 
peptide≥2) are highlighted in red and listed in Table S9. (C) Cellular localization of protein hits discovered 
in Fig. 4C. All annotations were exported from UniProt. PM=plasma membrane, GO:0005886 (total protein 
number=5485, UniProt); CSP=cell surface proteome previously annotated (total protein number=8212), 
SURFY=predicted surfaceome in silico as previously described (total protein number=2886). (D) Gene 
Ontology (GO) analysis performed on the EGFR-interacting candidates in Fig. 4C. Candidates were 
compared to a custom dataset containing UniProt-reviewed human proteome file with gene ontology 
localized at the plasma membrane (downloaded from UniProt database). Top 5 most significant biological 
process terms and molecular function terms were annotated with log10(p-value).  
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Fig. S8. EGFR interactome profiling using Ctx-EY on live A549 cells. (A) Full panel of WB analysis 
showing biotinylation of A549 cells using Ctx-EY showing it can activate biotinylation of A549 cells using 
biotin-diazirine, (Figure caption continued on next page) 



 75 

(Figure caption continued from previous page) biotin-aryl-azide, biocytin-hydrazide and biotin-phenol. (B) 
Heatmap of the EGFR-interacting candidates identified in Fig. 5A. Significantly enriched proteins 
(log2(ratio)≥1, p<0.05, unique peptide≥2) are highlighted in red and listed in Table S10-12. (C) 
Categorized localization of protein hits discovered in Fig. 5A and direct comparison with published datasets 
using a tandem secondary antibody strategy. Analysis was performed as described in fig. S7C. (D) Gene 
Ontology (GO) analysis performed on the EGFR-interacting candidates in Fig. 5A. Analysis was performed 
as described in fig. S7D. Top 10 most significant biological process terms and molecular function terms 
were annotated with p-value. (E) Enrichment ratios and validation of protein hits from the diazirine-biotin, 
aryl-azide-biotin or phenol-biotin datasets.  
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Fig. S9. AlphaFold-Multimer predictions of EGFR binary complexes with EGFR interactors from 
MultiMap datasets. (A) Predicted model of EGF bound to EGFR ECD via AlphaFold- Multimer compared 
with the crystal structure of (Figure caption continued on next page) 
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(Figure caption continued from previous page) EGF-bound EGFR (PDB: 1IVO, middle) and colored with 
pLDDT value (right). It is noteworthy that most residues were observed with high confidence (pLDDT>70). 
(B) Analysis of a selection of MultiMap hits using AlphaFold-Multimer and biochemical validation. An 
average pDockQ score of 0.298 and 1466Å2 BSASA were observed for the 29 EGFR-protein pairs in the 
waterfall plots, both passing the criteria for highly confident heterodimeric AlphaFold-Multimer structures. 
(C) Predicted model of CD44 ECD bound to EGFR ECD via AlphaFold-Multimer shown in Fig. 5F. The 
predicted model was compared with the crystal structure of CD44 hyaluronan-binding domain in its ECD 
(PDB: 4PZ3, left) and colored with pLDDT value (right). (D) Predicted model of PON2 bound to EGFR 
ECD via AlphaFold-Multimer shown in Fig. 5F. Given that no crystal structures were available, the 
predicted structure was compared to the AlphaFold monomer prediction (AF-Q15165-F1, left) and colored 
with pLDDT value (right). (E) Predicted structure of MIF bound to the EGFR ECD via AlphaFold-
Multimer. The predicted structure was compared with the crystal structure of MIF (PDB: 4GUM, middle) 
and colored with pLDDT value (right). (F) Predicted models of PTPRF ECD bound to EGFR ECD (left) 
and the PTPRF intracellular domain bound to the EGFR intracellular domain (right) via AlphaFold-
Multimer shown in Fig. 5F. Predicted binding surface of PTPRF ECD (amino acids 319 to 512) was 
highlighted in orange-yellow and compared with the crystal structure of PTPRF ECD at the fibronectin 
type-III domain (PDB:6TPV). Both full PTPRF ECD and highlighted binding surface of PTPRF were 
colored with pLDDT value. Similarly, the predicted structure of the PTPRF intracellular domain bound to 
the EGFR intracellular domain was compared with the crystal structures of EGFR intracellular domain 
(PDB: 1M14) and PTPRF intracellular phosphatase domain (PDB: 1LAR), and colored with pLDDT value.  
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Fig. S10. Additional predicted binary complexes of EGFR interactors with EGFR. (A)  

Predicted model of Rab11a bound to the EGFR intracellular domain via AlphaFold-Multimer. The predicted 
structure was compared with the crystal structure of Rab11a (PDB: 1OIV, left), the crystal structure of the 
EGFR intracellular tyrosine kinase domain (PDB: 1M14, middle), and colored with pLDDT value (right). 
(D) Predicted model of GSTP1 bound to the EGFR intracellular domain via AlphaFold-Multimer shown in 
Fig. 5F. The predicted structure was compared with the crystal structure of GSTP1 (PDB: 19GS, left), the 
crystal structure of the EGFR intracellular domain (PDB: 1M14, middle), and colored with pLDDT value 
(right). (C) Predicted models of RAC1, RAC2 and RAC3 separately bound to the EGFR intracellular 
domain via AlphaFold- Multimer. Bound structures of the EGFR intracellular domain with RAC1 (top), 
RAC2 (middle), RAC3 (bottom) were compared with the crystal structures of RAC1 (PBD: 1E96), RAC2 
(PDB: 1DS6), and RAC3 (PDB: 2C2H), and colored with pLDDT values. While sequence alignment 
showed high similarity (>88%) among three proteins, AlphaFold-Multimer provided distinct binding 
structures with the EGFR intracellular domain, which may explain why RAC1 was biotinylated with 
diazirine- and aryl-azide-biotin while RAC2 and RAC3 were only biotinylated with diazirine-biotin.  
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Fig. S11. Targeted labeling of BiTE-induced synapses between Jurkat NFAT-GFP and HEK- Flag-
EGFR using α-Flag-EY. (A) Cell-cell engagement between Jurkat NFAT-GFP and HEK- Flag-EGFR 
induced by a bispecific T cell engager (BiTE) in a dose-dependent manner in Fig. 6A. Cell synapse 
formation was monitored by NFAT-GFP activation in Jurkat cells. Percentage of Jurkat cells engaging 
HEK293T-EGFR reached >90% and was not affected by the addition of EY- conjugated M1 α-Flag 
antibody (α-Flag-EY). (B) Cis-labeling of HEK-Flag-EGFR using α-Flag- EY and four different photo-
probes. HEK293T cells transfected with untagged EGFR (HEK- EGFR) and Flag-tagged EGFR (HEK-
Flag-EGFR) were compared in parallel. Significant labeling with all four photo-probes in HEK-Flag-
EGFR. (C) Trans-labeling of Jurkat cells using α-Flag- EY and four different photo-probes. CD3+ Jurkat 
cells were gated for GFP+ cells before the biotinylation levels were quantified. Only biotin-phenol provided 
significant trans-labeling shift as shown in Fig. 6A.  
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Fig. S12. Extended applications of targeted BiTE-induced cell synapse labeling. (A) Scheme of on-cell 
labeling of Jurkat NFAT-GFP and SKBR3 induced by a BiTE that recognizes HER2. (B) Cell-cell 
engagement between Jurkat NFAT-GFP and SKBR3 cells was monitored by NFAT- GFP activation. 
Percentage of Jurkat cells engaging SKBR3 reached >90% and the synapse was not affected by the addition 
of the EY-conjugated Trz (Trz-EY). (C) Cis- and trans-labeling SKBR3 and Jurkat NFAT-GFP between a 
BiTE-induced synapse using α-HER2-EY and three different photo-probes.  
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Fig. S13. Targeted labeling of BiTE-induced synapses between Jurkat NFAT-GFP and HEK- Flag-
CDCP1 using α-Flag-EY and BiTE-EY. (A) Cell-cell engagement between HEK-Flag- CDCP1 and Jurkat 
NFAT-GFP monitored by NFAT-GFP activation. (B) Cis- and trans-labeling of HEK-Flag-CDCP1 and 
Jurkat NFAT-GFP between a BiTE-induced synapse using α-Flag-EY. (C) Confocal microscopy imaging 
of BiTE-EY-mediated biotinylation confirmed that phenol- biotin photo-probe labeling was primarily 
confined to cell-cell synapses. Scale bar, 10 μm. (D) Proteins biotinylated on unsorted HEK-Flag-CDCP1 
(cis-labeling) and Jurkat NFAT-GFP (trans- labeling) using phenol-biotin compared with isotype and 
epitope-free controls (n=3). Significantly enriched proteins (log2(ratio)≥1, p<0.05, unique peptide≥2) are 
shaded in red. CDCP1 from HEK- Flag-CDCP1, CD3 components from Jurkat NFAT-GFP and their 
associated proteins from STRING analysis are highlighted in red and blue, respectively. Full protein lists 
are shown in Table S15-S16.  
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Fig. S14. Targeted labeling of CAR-induced synapses between Jurkat-CAR and K562-CD19 using α-
Myc-EY. (A) Cell-cell engagement between Jurkat-CAR with K562-CD19 monitored by NFAT-GFP 
activation. (B) Cis-labeling of Jurkat-CAR with K562-CD19 shown in Fig. 6D. (C) Proteins biotinylated 
at the synapses of Jurkat-CAR (cis-labeling) and K562-CD19 (trans-labeling) using phenol-biotin 
compared with isotype and epitope-free controls (n=3). Significantly enriched proteins (log2(ratio)≥1, 
p<0.05, unique peptide≥2) are shaded in red. CD19 from K562-CD19, CAR components from Jurkat-CAR 
and their associated proteins from STRING analysis are highlighted in red and blue, respectively. Full 
protein lists are shown in Table S18-19.  
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Chapter 4 

Conclusion 

This dissertation deals with the development and application of mass spectrometry data in combination 

with protein structure to model complex systems of interacting protein molecules. In chapter 2 we develop 

a statistical inference framework for modeling direct protein interaction networks. In chapter 3 we apply 

AlphaFold-Multimer virtual screening to orthogonally validate candidate epidermal growth factor receptor 

(EGFR) molecular neighbors. Now, I make suggestions for improving the INM method developed in 

chapter 2 with an emphasis on the types of data used in chapter 3. 

4.1 Improvements to integrative network modeling 

Recommendations for the development of an AlphaFold-Multimer term 

Large scale virtual screening of protein interactions is now common-place using models such as AlphaFold-

Multimer, ColabFold, and RoseTTAFold2 (Evans et al. 2021; Mirdita et al. 2022; Baek et al. 2023). 

Bacterial, yeast, and more recently human, proteomes have been screened for protein-protein interactions 

(Humphreys et al. 2021; Zhang et al. 2024; Humphreys et al. 2024). Such methods rely on co-evolutionary 

signatures obtained from the genomic sequences of many organisms. They may additionally rely on 

structural information obtained from the Protein Data Bank. As such, the predicted  protein-protein 

interactions (PPI) may not be representative of the interactions under specific experimental conditions or 

disease contexts. Nonetheless, such information will likely be highly informative for network modeling. A 

straightforward approach to adding this information into the INM model (chapter 2) is to, (i) calculate a 

PPI score (e.g., pDOCKQ) – many such scores have been assessed (Akdel et al. 2022; Bryant, Pozzati, and 

Elofsson 2022), (ii) use the PPI score as input information for modeling, (iii) restrain the value of each edge 

variable using a distribution based on the PPI score (e.g., a normal distribution with mean equal to the PPI 

score), (iv) use the variance parameter of the distribution to encode some uncertainty in the interpretation 

of the confidence score. 
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Recommendations for the development of a proximity-labeling term 

In chapter 3 we use proximity labeling proteomics (PLP) in combination with AlphaFold-Multimer virtual 

PPI screening to validate an EGFR molecular neighborhood. It would be useful to include proximity 

labeling information in the INM method developed in chapter 2. In general, PLP strategies may label more 

distant pairs of molecules in the 1-10nm range – a much larger range than chemical cross-linking or virtual 

PPI screening. As such, the interactors may be either direct or indirect (participates in the same complex 

but does not interact directly). One way to include such information would be to restrain a higher-order 

network feature based on the PLP data. One such feature could be the shortest-path-length between nodes 

i and j. We began to explore this direction by using a variation of the Floyd-Warshall algorithm to calculate 

shortest paths (Floyd 1962; Warshall 1962). A challenge for developing restraints based on higher order 

network features (e.g., degree, shortest path) is the construction of reference networks. A reference network 

of direct-protein interactions could be obtained from the PDB in roughly the following steps: (i) obtain all 

PDB structures, (ii) calculate pairwise contacts between chains, (iii) cluster sequence similar chains and 

assign nodes to each cluster, (iv) draw an edge between two nodes if a contact occurs between any 

corresponding chain pair, (v) bootstrap the network by selecting M random subgraphs consisting of all 

edges between N random nodes for the same N. This process would produce a statistical sample of direct 

networks from which restraints could be developed. A caveat to this approach is uncertainty in the reference. 

In general, many protein interactions may be missing. Such missing interactions may be reduced by adding 

interactions from sources such as AF-M screening. Nonetheless, these missing interactions will 

systematically bias the higher order features used for the restraints. In some cases, this problem may be 

avoided using an appropriate upper or lower bound. For example, if a proximity-labels are enriched at 

shorter path lengths - the maximal value of the shortest-path-length could be restrained. This is because the 

addition of missing protein interactions can only shorten the path-length and cannot make it longer. 

Conversely, if a labeled proteins are enriched at high-degree nodes, a lower bound can be placed on the 

degree of a node. This is because the true degree of the node can only increase with the addition of missing 
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edges. Such an analysis depends on the main source of inaccuracy being missing edges and not false edges. 

This is likely true for high-quality protein interaction datasets (e.g., PDB-bind, PDB) but may not be true 

for more broadly defined interaction datasets (e.g., STRING).  

Recommendations for the development of a CRISPRi/a term 

The addition of functional genomic information to INM is appealing because it is entirely orthogonal to 

proteomic approaches. The challenges with genomic information are (i) they cannot be applied to essential 

proteins, (ii) functional relationships may exist even if the protein molecules are physically distant, and (iii) 

functional relationships may exist through other, non-protein mediated mechanisms (e.g., RNA-mediated 

transcriptional control) (Henninger et al. 2021). These features make it generally more challenging to 

interpret genomic information in terms of direct protein interactions. An approach to this problem would 

be to (i) gather a large amount of CRISPRi/a data, (ii) obtain a reference of direct protein interactions (see 

above), (iii) calculate some pairwise score based on the CRISPRi/a data, (iv) obtain an empirical 

distribution for the likelihood of the score given a feature of the reference. This distribution is informative 

regardless of the non-protein mediated mechanisms. As a hypothetical example, the likelihood of a 

CRISPRi/a positive genetic interaction (GI) score may increase for pairs of nodes with a shortest-path-

length of at least 2. Critically, a lower GI score does not imply that the path-length is longer – it is simply 

the lack of evidence. 

4.2 Bridging the gap between structural and systems biology 

Integrative modeling methods allow for the modeling of increasingly complex and dynamic systems (Rout 

and Sali 2019; Raveh et al. 2024; Latham et al. 2024). The advent of AlphaFold-Multimer (Evans et al. 

2021; Bryant, Pozzati, and Elofsson 2022; Akdel et al. 2022) virtual PPI screening allows for structural 

information at proteome-wide scales for both bacterial and eukaryotic proteomes. Modeling methods that 

integrate this information are critical to answer questions relevant for understanding the fundamental 

workings of cells, engineering organisms, and developing therapeutic strategies Here, we develop INM 
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where a node represents many copies of protein molecules, and an edge represents the presence of at least 

one protein interaction between a pair of molecules corresponding to the two nodes. A model representation 

with “systems” biology type nodes and “structural” biology type edges may help bridge the gap between 

systems and structural biology. 
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