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Abstract

Single-tensor diffusion imaging (DTI) has traditionally been used to assess 

integrity of white matter. For example, we previously showed that integrity 

of limbic white matter tracts declines in healthy aging and relates to episodic

memory performance. However, multi-compartment diffusion models may be

more informative about microstructural properties of gray matter. The 

current study examined hippocampal gray matter integrity using both single-

tensor and multi-compartment (neurite orientation dispersion and density 

imaging, NODDI) diffusion imaging. Younger (20-38 years) and older (59-84 

years) adults also completed the Mnemonic Similarity Task to measure 

mnemonic discrimination performance. Results revealed age-related declines

in both single-tensor (lower fractional anisotropy, higher mean diffusivity) 

and multi-compartment (higher restricted, hindered and free diffusion) 

measures of hippocampal gray matter integrity. As expected, NODDI 

measures (hindered and free diffusion) captured more age-related variance 

than DTI measures. Moreover, mnemonic discrimination of highly similar lure

items in memory was related to hippocampal gray matter integrity in 

younger but not older adults. These findings support the notion that age-

related differences in gray matter integrity are better captured by multi-

compartment versus single-tensor diffusion models and show that the 

relationship between mnemonic discrimination and hippocampal gray matter

integrity is moderated by age. 
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Introduction 

The hippocampus, which is critical for episodic memory, is known to be

affected in healthy aging (Lister & Barnes, 2009; Scahill et al., 2003), even in

absence of dementia (Park & Reuter-Lorenz, 2009). Structural neuroimaging 

studies, for example, have shown age-related declines in hippocampal 

macrostructure, with decreased volume seen in whole hippocampus in older 

adults relative to younger adults (Doxey & Kirwan, 2015; Raz et al., 2005). In

the last decade, diffusion imaging has allowed for in vivo examinations of 

neural microstructure, with numerous studies reporting age-related 

differences in the integrity of white matter (de Lange et al., 2016; Gunning-

Dixon, Brickman, Cheng, & Alexopoulos, 2009; Madden et al., 2012), 

including white matter tracts projecting to and from the hippocampus (e.g. 

fornix, cingulum; Bennett, Huffman, & Stark, 2015; Bennett & Stark, 2016). 

However, few studies have assessed whether diffusion imaging may also be 

a promising tool for evaluating microstructural properties of hippocampal 

gray matter in aging, especially as it relates to episodic memory 

performance. 

Diffusion imaging data is traditionally modeled as a single tensor per 

voxel that summarizes the rate of molecular water diffusion along three axes

(diffusion tensor imaging, DTI; Beaulieu, 2002; Hassan et al., 2014). This 

single-tensor DTI approach yields metrics, such as the degree of restricted 

diffusion (fractional anisotropy, FA) and average rate of diffusion (mean 

diffusivity, MD), from which the integrity of underlying tissue can be inferred.
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In white matter, for example, higher FA and lower MD would be seen in 

regions with highly aligned, densely packed, and tightly myelinated axonal 

fibers. Across the lifespan, decreases in FA and increases in MD (Bennett et 

al., 2015; Gunning-Dixon et al., 2009; Madden et al., 2012) are interpreted as

declines in white matter integrity (e.g., age-related demyelination). In gray 

matter, however, the underlying tissue is relatively less organized (e.g. 

dendrites, cell bodies, glia), resulting in lower FA and higher MD than white 

matter. Owing to this microstructural complexity, the single-tensor approach 

alone may not be suited for accurately modeling diffusion in gray matter. 

A potentially more accurate way to assess microstructural properties of

gray matter is with multi-compartment diffusion approaches that separately 

model different sources (compartments or volume fractions) of the total 

diffusion signal (Fukutomi et al., 2018; Kaden, Kelm, Carson, Does, & 

Alexander, 2016; Rae et al., 2017). Neurite Orientation Dispersion and 

Density Imaging (NODDI; Zhang, Schneider, Wheeler-Kingshott, & Alexander,

2012), for example, models restricted diffusion (also known as neurite 

density index; NDI) as a set of sticks, hindered diffusion (also known as 

orientation dispersion index; ODI) as the dispersion of the sticks, and 

unrestricted diffusion (also known as isotropic fraction; fISO) as an isotropic 

sphere (Fukutomi et al., 2018; Rae et al., 2017; Zhang et al., 2012). 

Differences in these metrics may result from microstructural properties that 

affect intracellular, extracellular, and free sources of diffusion (e.g. age-

related increases in cell swelling, loss of spines or synaptic remodeling, and 
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vascular permeability; Clarke et al., 2018; Dickstein et al 2013, Szebenyi et 

al., 2005; Elahy et al., 2015, respectively). An additional advantage of this 

multi-compartment approach is that the free diffusion metric can be used to 

account for free diffusion contamination in remaining integrity metrics, which

is prevalent in the aging brain (Chad, Pasternak, Salat, & Chen, 2018; 

Metzler-Baddeley, O’Sullivan, Bells, Pasternak, & Jones, 2012; Rathi et al., 

2014). 

Multiple diffusion imaging studies have examined the effect of aging on

gray matter integrity using either single-tensor (Bhagat and Beaulieu, 2004, 

Càmara et al., 2007; Carlesimo et al., 2010; Cherubini et al., 2009; Den 

Heijer et al., 2012; Pereira et al., 2014; Pfefferbaum et al., 2010; Rathi et al., 

2014; Salminen et al., 2016; Sasson et al., 2012) or multi-compartment

(Fukutomi et al., 2018; Kaden et al., 2016; Nazeri et al., 2017) approaches, 

but only a handful have assessed aging of hippocampal gray matter 

integrity. Using the single-tensor approach, studies have reported age-

related increases in hippocampal MD (Carlesimo et al., 2010, Pereira et al., 

2014), no change (Cherubini et al., 2009) or mixed results depending on the 

region profiled (Pfefferbaum et al. 2010, Salminen et al., 2016). After 

excluding free diffusion (e.g., using cerebrospinal fluid [CSF]-suppression 

diffusion imaging or region of interest [ROI] based segmentation), DTI 

studies have found both age-related increases in hippocampal FA (Rathi et 

al., 2014) and age-related decrease in anterior hippocampal relative 

anisotropy (Càmara et al., 2007). Using the NODDI multi-compartment 
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approach, at least one study demonstrated that hindered diffusion within 

bilateral hippocampus increased with age in adults across a lifespan sample 

(age 21-84; Nazeri et al., 2015). However, because none of these studies 

directly compared single-tensor and multi-compartment models, it remains 

unknown whether these age differences in DTI and NODDI metrics are 

capturing similar microstructural mechanisms within hippocampus. 

The functional relevance of hippocampal gray matter integrity in non-

demented older adults also remains understudied. Previous single-tensor DTI

studies have reported that hippocampal MD was associated with impaired 

episodic memory assessed by a list learning (Den Heijer et al., 2012) and 

visuospatial task (Carlesimo et al., 2010). An important component of 

successful episodic memory is mnemonic discrimination, the ability to 

discriminate between highly similar events in memory. Using a modified 

recognition task, the Mnemonic Similarity Task (MST; Stark et al., 2013, 

Kirwan & Stark, 2007), our group has previously shown that mnemonic 

discrimination declines in healthy aging (Stark, Yassa, Lacy, & Stark, 2013a) 

and that worse discrimination performance is related to lower integrity of 

white matter tracts projecting to (perforant path; Bennett & Stark, 2016; 

Yassa, Muftuler, & Stark, 2010) and emanating from (fornix; Bennett et al, 

2015) the hippocampus in adults across the lifespan. However, these effects 

have not been assessed for hippocampal gray matter integrity using either 

single-tensor or multi-compartment diffusion metrics.
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Building on this work, the current study examined hippocampal gray 

matter integrity using both single-tensor (DTI) and multi-compartment 

(NODDI) diffusion modeling of the same diffusion data in younger and older 

adults (20-38 and 59-84 years, respectively) who also completed the MST. 

Our primary aim was to assess age-related differences in hippocampal gray 

matter integrity and in particular whether the multi-compartment diffusion 

approach was more sensitive to hippocampal aging than the single-tensor 

approach. To assess whether free diffusion influences traditional integrity 

metrics (e.g., from partial volume effects with adjacent CSF), the effect of 

age on single-tensor integrity measures were examined before 

(unthresholded DTI) and after (thresholded DTI) accounting for the NODDI 

free diffusion compartment. Our secondary aim was to determine whether 

hippocampal gray matter integrity relates to mnemonic discrimination 

performance. 

Materials and Methods

Participants

Fifty-one adults were recruited from the University of California, Irvine 

and surrounding Orange County neighborhoods. One older participant was 

excluded for poor general cognition (Mini-Mental State Exam [MMSE] < 28; 

Folstein et al. 1975) and one young participant was excluded for 

neuroimaging segmentation errors. The final sample included 24 younger 

(20-38 years, 27.6 ± 5.1 years, 12 females) and 25 older (59-84 years, 69.9 

± 5.31 years, 14 females) adults. The final sample of 24 younger and 25 
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older adults were used for all analyses except the behavioral analysis as 

detailed below. 

All individuals provided informed consent prior to participation in this 

study. The University of California, Irvine Institutional Review Board (IRB) 

approved the experimental procedures and participants were compensated 

for their time. 

Neuropsychological Battery

To characterize their cognitive profiles, participants underwent a 

battery of neuropsychological tests including the MMSE to assess general 

cognition; Rey Auditory Verbal Learning Test (RAVLT) to assess recall and 

recognition (Rey 1941); Geriatric Depression Scale (GDS) and Beck 

Depression Index (BDI) to assess depression status (Yesavage et al. 1982, 

Beck, et al. 1961); Trails A and B, Stroop test and Letter Number Sequencing 

to assess executive functioning (Reitan and Wolfson 1985, Stroop 1935, and 

Wechsler 1997a); Digit Span to assess working memory (Wechsler 1997a); 

and Physical Activity Scale for the Elderly (PASE) to assess overall activity 

level (Washburn et al. 1993). These data are presented in Table 1. 

Mnemonic Similarity Task

Mnemonic discrimination was assessed using the Mnemonic Similarity 

Task (MST; see Stark et al 2013 for additional details). In separate incidental 

study and test phases, participants viewed a series of common objects (e.g. 

rubber duck, piano) in color on a white background. During the study phase, 

participants judged whether each object belongs “indoors” or “outdoors” via 
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button press. During the test phase, participants judged whether objects 

were repeated from the study phase (target), similar to objects from the 

study phase (lure), or completely new (novel) using “old”, “similar” or “new” 

responses, respectively. Mnemonic discrimination was assessed using the 

Lure Discrimination Index (LDI), calculated as the probability of correctly 

judging lures as “similar” after accounting for any bias in using the “similar” 

response: LDI = p(“similar”|lure) – p(“similar”|novel). Additionally, 

Recognition was calculated as the probability of correctly judging targets as 

“old” after accounting for any bias in using the “old” response: Recognition 

= p(“old”|target) – p(“old”|novel). Some participants were excluded from the

MST analysis if they had a large number of omitted responses (> 80% of 

trials; 4 younger adults) or poor Recognition (> 2 SD from the overall mean; 

3 younger, 1 older adult). 

Neuroimaging Protocol

Image acquisition

Participants were scanned using a Philips Achieva 3.0 Tesla MRI system

at the University of California, Irvine using an 8-channel SENSE receive only 

head coil and fitted padding to minimize head movements.

A single T1-weighted magnetization-prepared rapid gradient echo (MP-

RAGE) scan was acquired using the following parameters: time repetition 

(TR)/time echo (TE) = 11/4.6 ms, field of view (FOV) = 240 × 231 mm, flip 

angle = 18°, 200 sagittal slices, and 0.75 mm3 spatial resolution.  
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Three diffusion-weighted scans were acquired for each of four gradient 

values (b = 500, 1000, 2000 and 2500 s/mm2). For each of the 12 scans, 

gradients were applied in 10 orthogonal directions, with one image having no

diffusion weighting (b = 0). This yielded a total of 120 diffusion-weighted and

12 non-diffusion-weighted images. The following parameters were used for 

all 12 scans: TR/TE = 2174-2734/94 ms, FOV = 128 × 128 mm, 80 axial 

slices, 1.69 mm3 spatial resolution, and the total scan time was 

approximately 50 minutes per subject.

Region of interest segmentation

The hippocampus was defined on each participant’s MP-RAGE using 

FMRIB Software Library (FSL) Integrated Registration and Segmentation Tool 

(FIRST; Patenaude, Smith, Kennedy, & Jenkinson, 2011), which automatically 

segmented bilateral hippocampus using shape/appearance models with 

default boundary correction. The 3-stage affine registration was used to 

improve segmentation compared to the default FIRST settings. In the first 

stage, the subject’s MP-RAGE image is aligned to standard space (Montreal 

Neurological Institute; MNI) using an affine transformation. In the second 

stage, this transformation is linearly aligned to a subcortical mask in MNI 

space. In the third stage, a dilated hippocampal mask is aligned to refine the 

registration. Quality control of this segmentation, which included checks for 

coverage limited to the hippocampal gray matter region and allowing no 

more than a 1-2 voxel shift of the mask into the surrounding areas, were 
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done by a trained researcher blinded to participant age and did not yield 

notable age differences. 

Diffusion data processing

For each participant, all diffusion data were pre-processed using 

Analysis of Functional NeuroImages (AFNI) to remove non-brain tissue and 

generate a whole brain mask from the first non-diffusion weighted image (b0

image), and Advanced Normalization Tools (ANTs, Avants et al. 2009) to 

correct for gross motion by aligning all diffusion images to the b0 image. This

preprocessed data from all diffusion scans (30 orthogonal directions for each 

of four gradient values) were used as input for both the single-tensor and 

NODDI analyses. Although these data were not corrected for bias field 

distortions, we replicated the age effects of interest in a separate sample 

with this correction (see Supplementary Material).

Single-tensor DTI analyses were completed using FSL dtifit. A single 

diffusion tensor was estimated at each voxel within a whole brain mask. The 

output included voxel-wise images for FA and MD.

Multi-compartment NODDI analyses were completed using the default 

settings in the NODDI matlab toolbox (http://mig.cs.ucl.ac.uk/index.php?

n=Tutorial.NODDImatlab)  .   The diffusion signal for each voxel was separated 

into restricted, hindered, and free diffusion compartments using a two-stage 

approach (Tariq, Schneider, Alexander, Gandini Wheeler-Kingshott, & Zhang, 

2016, Zhang et al., 2012). In the first stage, the total signal is separated into 

non-free and free diffusion sources of diffusion, with the latter being modeled

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab)
http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab)
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as an isotropic sphere (also known as fISO). In the second stage, the 

remaining signal is then separated into restricted and hindered source of 

diffusion, modeled as a set of sticks (also known as NDI) and the dispersion 

of the sticks (also known as ODI), respectively. Restricted (or Gaussian) 

diffusion occurs when the movement of water molecules is constrained by 

the presence of impermeable barriers, whereas hindered (or non-Gaussian) 

diffusion occurs when their movement is constrained by the presence of 

partially permeable barriers (Martin, 2013; Morozov et al., 2020; Raja, 

Rosenberg, & Caprihan, 2019). Thus, modeling restricted diffusion as a set of

sticks is intended to capture restricted diffusion within neurons and glia (i.e., 

intracellular diffusion). Modeling hindered diffusion as dispersion of those 

sticks is intended to capture hindered diffusion around those structures (i.e., 

extracellular diffusion).  The output included voxel-wise images for restricted,

hindered, and free diffusion. The scale of all NODDI measures range from 0-

1.

To extract hippocampal gray matter integrity metrics for each 

participant, their MP-RAGE was linearly aligned to their b0 image using FSL’s 

flirt command. This transformation was then applied to align the FIRST 

segmented bilateral hippocampus to diffusion space. Quality control of this 

co-registration was completed as outlined above and did not yield notable 

age group differences. The aligned segmentations were binarized, creating a 

bilateral hippocampus mask. Unthresholded FA and MD metrics were 

obtained by multiplying the bilateral hippocampus mask by the 
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corresponding voxel-wise DTI image and then taking the average across 

voxels. Free diffusion was obtained by multiplying the bilateral hippocampus 

mask by the corresponding voxel-wise NODDI image and then taking the 

average across voxels. Remaining diffusion metrics were limited to voxels 

with sufficient cellular fraction (>10%) by excluding voxels with free diffusion

> 0.9 from the bilateral hippocampus mask. Measures of restricted and 

hindered diffusion were obtained by multiplying this thresholded bilateral 

hippocampus mask by the corresponding voxel-wise NODDI images and then

taking the average across voxels. Finally, to assess the effect of free water 

on DTI measures, thresholded FA and MD were obtained by multiplying the 

thresholded hippocampus mask by the corresponding voxel-wise DTI image 

and then taking the average across voxels. 

Statistical Analyses 

All statistical analyses were run using Prism (Version 7.0d; GraphPad 

Software, La Jolla California USA), except for the logistic regression run using 

SPSS (Version 24.0; IBM, Armonk, NY, USA). For all analyses, the significance 

threshold was set to p < 0.05.

Age group differences in single-tensor DTI (FA, MD) and multi-

compartment NODDI (restricted, hindered, free diffusion) metrics were 

assessed using separate independent sample t-tests. The effect of free 

diffusion on each DTI metric was assessed using an Age Group (younger, 

older) × Thresholding (thresholded, unthresholded) ANOVA, with Age Group 

as a between-subject variable, and Thresholding as a within-subject variable.
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The ability of single-tensor and multi-compartment diffusion approaches to 

capture age-related variance were compared using a forward selection 

likelihood ratio (LR) logistic regression. The dependent variable was 

dichotomized age groups and independent variables were the unthresholded

DTI and NODDI metrics. Variables were entered using the Forward Selection 

(LR) option in SPSS in which variables are entered in a stepwise manner 

based on the significance of the score statistic. 

The moderating effect of age group on these relationships were 

assessed using separate linear regressions for each integrity metric (see 

Baron & Kenny, 1986). Relationships between hippocampal integrity and 

MST performance were assessed separately in each age group using linear 

regressions.

Results

Neuropsychological Test Performance

Age group differences in cognition were assessed using separate 

independent sample t-tests for each neuropsychological test (see Table 1). 

Results followed the expected pattern for healthy aging, with older adults 

performing worse than younger adults on measures of episodic memory 

(RAVLT, t(47) = -3.26, p < 0.002) and executive function (Trails B, t(47) = 

3.49, p < 0.001; Stroop, t(47) = -3.29, p < 0.002), but not general cognition 

(MMSE). Although we screened for neurological conditions including Mild 

Cognitive Impairment (MCI) and excluded participants with low general 
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cognitions (MMSE < 28), we acknowledge that some older adults with 

preclinical dementia may be present in the sample.

Age Group Differences for Unthresholded Single-Tensor Metrics

Age group differences in hippocampal gray matter integrity were first 

assessed for traditional single-tensor DTI measures (unthresholded FA, 

unthresholded MD). Across separate independent sample t-tests, significant 

age group differences were observed, with older adults (0.17 ± 0.02) 

showing lower unthresholded FA than younger adults (0.18 ± 0.02), t(47) = 

3.64, p < 0.001, d = 0.5. Effects were also significant for unthresholded MD 

(younger: 0.0007 ± 0.00002, older: 0.0007 ± 0.00003), t(47) = 2.44, p < 

0.02, d = 0.0 (see Figure 1).

Age Group Differences for Thresholded Single-Tensor Metrics 

Age group differences in hippocampal gray matter integrity were next 

assessed for single-tensor DTI measures that were thresholded to exclude 

voxels with excessively high NODDI free diffusion (thresholded FA, 

thresholded MD). Across separate independent sample t-tests, significant 

age group differences were observed, with older adults (0.17 ± 0.02) 

showing lower FA than younger adults (0.19 ± 0.02), t(47) = 3.32, p < 0.002,

d = 1.00. The difference for thresholded MD was not significant, t(47) = 1.40,

p < 0.167, d = 0.0 (see Figure 1). 

Effect of Thresholding Single-Tensor Metrics

To assess whether accounting for free diffusion by thresholding the DTI

metrics had an effect on the aforementioned age group differences in 
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hippocampal gray matter integrity, separate Age Group (younger, older) × 

Thresholding (thresholded, unthresholded) ANOVAs were conducted for each 

metric. As expected, results revealed significant main effects of Age Group 

for FA, F(1, 47) = 12.11, p < 0.002, but not MD, p > 0.05. Significant main 

effects of Thresholding were seen for both FA, F(1, 47) = 31.92, p < 0.0001, 

and MD, F(1, 47) = 60.68, p < 0.0001. Most importantly, significant age 

group ×thresholding interactions for FA, F(1, 47) = 7.18, p < 0.02, and MD,  

F(1, 47) = 14.96, p < 0.001, revealed that age group differences were larger 

for unthresholded versus thresholded DTI metrics. 

Age Group Differences for Multi-Compartment Metrics

Finally, age group differences in hippocampal gray matter integrity 

were assessed for multi-compartment NODDI measures (restricted, hindered,

and free diffusion). Across separate independent sample t-tests, significant 

age group differences were observed, with older adults showing higher 

restricted (0.49 ± 0.03), t(47) = 2.26, p < 0.03, d = 0.39, hindered (0.46 ± 

0.02), t(47) = 4.14, p < 0.001, d = 1.00, and free (0.34 ± 0.06), t(47) = 3.24,

p < 0.003, d = 1.27 diffusion compared to younger adults (0.48 ± 0.02 

restricted, 0.44 ± 0.02 hindered, 0.27 ± 0.05 free diffusion; see Figure 2). 

Multi-Compartment Integrity Metrics Account for More Age-Related 

Variance than Single-Tensor Metrics

To determine whether multi-compartment integrity measures account 

for more age-related variance in hippocampal gray matter integrity than 

traditional single-tensor measures, DTI (unthresholded FA and MD) and 
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NODDI (restricted, hindered, free diffusion) integrity measures were entered 

into a forward (LR) logistic regression. Results revealed that the single best 

predictor of age group was hindered diffusion, Nagelkerke r2 = 0.366, p 

<0.003. At the second step, adding free diffusion significantly increased the 

total explained variance, Nagelkerke r2 = 0.643, p <0.002. Adding a third 

predictor did not lead to a significant increase in variance explained by the 

model. Thus, traditional DTI measures (FA, MD) were not included in the best

model.  These age effects were replicated in a separate dataset of younger 

and older adults (see Supplemental Materials). 

Age Effects for Mnemonic Discrimination 

Age group differences in MST performance were assessed using 

separate independent sample t-tests for the LDI and recognition measures. 

Consistent with previous work (Stark, Yassa, Lacy, & Stark, 2013b), results 

revealed that LDI was significantly reduced in older (0.28 ± 0.05) compared 

to younger (0.43 ± 0.04) adults, t(39) = -2.58, p < 0.015, d = 3.31, whereas 

recognition did not significantly differ between age groups (younger: 0.81 ± 

0.07, older: 0.79 ± 0.11, ),  t(39) = -0.51, p > 0.60, d = 0.22 (see Figure 3). 

Mnemonic Discrimination-Hippocampal Gray Matter Integrity 

Relationships

Regression analysis assessed whether age group was a moderator of 

the relationship between mnemonic discrimination and hippocampal 

integrity. Analyses were limited to the NODDI measures of hippocampal 

integrity that were most sensitive to age in the stepwise logistic regression 
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analyses (hindered, free diffusion). Age group, diffusion, and the age group 

diffusion interaction were used as predictor variables and LDI as the outcome

variable (see Baron & Kenny, 1986). Results revealed that the interaction 

term was significant for hindered diffusion ( = 13.2, p < 0.002) indicating 

that this relationship was significantly stronger for younger compared to 

older adults. Follow-up regression analyses in each age group revealed that 

LDI was significantly related to hippocampal hindered diffusion in younger 

adults, such that lower hindered diffusion was correlated with better 

mnemonic discrimination performance, r2 = 0.41, p < 0.006 (see Figure 4). In

older adults, the relationship between hindered diffusion and mnemonic 

discrimination performance did not reach significance, r2 = 0.12, p < 0.09 

(see Figure 4). Relationships between recognition and hippocampal integrity 

also did not approach significance, ps > 0.3. 

For comparison, analyses were also run to assess whether age group 

was a moderator of the relationship between mnemonic discrimination and 

hippocampal integrity for unthresholded DTI measures (FA, MD). Age group, 

diffusion, and the age group  diffusion interaction were used as predictor 

variables and LDI as the outcome variable. Results revealed that the 

interaction term was significant for FA ( = -4.1, p < 0.02) indicating that this

relationship was significantly stronger for younger compared to older adults. 

The interaction term for MD and free diffusion did not approach significance 

(p > 0.41). Follow-up regression analyses in each age group revealed that 

LDI was significantly related to hippocampal FA in younger adults, such that 
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higher FA was correlated with better mnemonic discrimination performance, 

r2 = 0.28, p < 0.03 (see Figure 5). In older adults, the relationship between 

FA and mnemonic discrimination performance did not reach significance, r2 =

0.03, p < 0.40 (see Figure 5). Relationships between MD and LDI also did not

approach significance ps > 0.28.

To compare whether NODDI (hindered diffusion) or DTI (FA) measures 

better captured mnemonic discrimination performance within younger 

adults, Steiger’s Z test (Steiger, 1980) was used to compare the previously 

mentioned significant relationships. Results revealed that the relationship 

between hippocampal hindered diffusion and LDI was significantly stronger 

than the relationship between hippocampal FA and LDI, Z = -2.92 , p < 

0.004. 

Discussion

The current study aimed to directly compare the sensitivity of single-

tensor (DTI) and multi-compartment (NODDI) diffusion measures as they 

relate to age within hippocampal gray matter and to assess whether these 

measures predict episodic memory performance. Results revealed several 

major findings, each of which will be discussed in more detail below. First, we

demonstrated that thresholding DTI metrics (FA, MD) to account for free 

diffusion significantly attenuates the effect of age on hippocampal gray 

matter integrity. Second, we showed that NODDI metrics (hindered and free 

diffusion) account for more age-related variance in hippocampal gray matter 

integrity than DTI metrics. These findings were replicated in a separate 
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dataset (see Supplementary Material), highlighting the robustness of these 

age effects in light of different diffusion acquisition parameters and 

preprocessing steps. Third, we found a moderating effect of age group on the

relationship between hippocampal gray matter integrity and mnemonic 

discrimination, such that lower hindered diffusion was related to better 

discrimination performance in younger but not older adults. 

Traditional, single-tensor DTI was sensitive to age-related differences 

in hippocampal gray matter integrity. Older adults had significantly lower 

unthresholded FA and higher unthresholded MD than younger adults in 

bilateral hippocampus, consistent with an earlier report of similar effects for 

MD, albeit within an older sample (age 55-90; Den Heijer et al., 2012). 

Whereas age-related increases in MD are consistently reported for white 

matter (Head et al., 2004, Hugenschmidt et al., 2008, Salat et al., 2005), the 

findings are more mixed for gray matter. That is, some gray matter studies 

find age-related increase in MD (Carlesimo et al., 2010, Pereira et al., 2014, 

Den Heijer et al., 2012), others find no age difference (Cherubini et al., 

2009), and yet other find mixed results depending on the region 

(Pfefferbaum et al. 2010, Salminen et al., 2016). Inferences that can be 

drawn about the neural substrates underlying differences in these scalar 

measures are limited (for example, see Wheeler-Kingshott & Cercignani, 

2009). As in white matter, age-related decreases in hippocampal gray matter

FA may result from degradation of the underlying tissue (e.g., loss of 

dendrites), reorganization of tissue (e.g., differences in dendritic layout), or 
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some combination of the two; whereas age-related increases in hippocampal

gray matter MD may indicate a loss of underlying tissue or an expansion of 

non-tissue space. Relative to the largely aligned microstructure in white 

matter (e.g. axons, neurofilaments), the organization of gray matter 

microstructure (e.g. dendrites, cell bodies, glia) is less coherent. We argue 

that, although both FA and MD were sensitive to age effects, the 

microstructural complexity of gray matter is not adequately captured by 

single-tensor diffusion models.

Our results further revealed that age-related differences in 

hippocampal gray matter integrity measured using single-tensor DTI were 

attenuated after accounting for free diffusion. Consistent with an earlier 

report using relative anisotropy (Càmara et al., 2007), older adults showed 

significantly lower hippocampal FA than younger adults after accounting for 

the CSF fraction. We observed no significant difference in thresholded MD, in 

bilateral hippocampus. Importantly, age group differences for our 

thresholded DTI measures were significantly smaller than for the 

unthresholded measures. By directly comparing age effects for the 

unthresholded and thresholded measures, our study revealed that single-

tensor DTI measures are significantly influenced by the presence of free 

diffusion, which may originate from partial volume effects with cerebrospinal 

fluid in nearby ventricles (Chad et al., 2018; Jeon et al., 2012; Metzler-

Baddeley et al., 2012; Tohka, 2014) or cellular shrinkage or 

neurodegeneration (Ofori et al., 2015; Albi et al., 2016). Thus, rather than 



23

solely capturing the integrity of underlying gray matter tissue, MD in 

particular may be more sensitive to differences in free diffusion as evidenced

by the lack of significant age-group differences after thresholding for free 

water. 

Multi-compartment NODDI was also sensitive to age-related differences

in hippocampal gray matter integrity, outperforming the ability of single-

tensor DTI measures to capture these age effects. Older adults had 

significantly higher restricted, hindered and free diffusion in bilateral 

hippocampus relative to younger adults. Of note, these effects survived after

controlling for volume (data not shown). A similar finding was previously 

reported for hindered diffusion using a lifespan sample (Nazeri et al., 2015). 

However, free diffusion was not assessed in that study, or controlled for in 

the other diffusion compartments, as was done here. Although speculative, 

potential mechanisms for these age-related increases in hindered and free 

diffusion are neurodegeneration (e.g. age-related loss of apical dendrites,

Dickstein, Weaver, Luebke, & Hof, 2013), loss of support cells like microglia

(Robillard, Lee, Chiu, & MacLean, 2016), and increases in blood-brain barrier 

permeability (Elahy et al., 2015; Oakley & Tharakan, 2014). Younger adult 

brains are less likely to be affected by neurodegeneration but may be 

impacted by other cellular mechanisms (e.g. remodeling of synapses;

Szebenyi et al., 2005, astrocyte activity; Hansson & Rönnbäck, 1995) which 

may also impact measures of hindered and free diffusion. The lack of an age-

related decline in restricted diffusion however is consistent with evidence 
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that normal aging is not accompanied by a loss of hippocampal neurons

(Freeman et al., 2008). Importantly, when single-tensor DTI and multi-

compartment NODDI measures were included in the same regression model, 

hindered diffusion was the strongest predictor of age followed by free 

diffusion, whereas no DTI measures survived in the model. This direct 

comparison supports the notion that NODDI and DTI are capturing different 

properties of hippocampal aging, and that these complex gray matter 

microstructures are best modeled using multiple NODDI diffusion 

compartments. Hippocampal NODDI metrics used here may serve as 

important biomarkers for normal brain aging and cognitive aging. In 

particular, future studies could build on this work to parse out if specific 

NODDI measures are sensitive to pathological aging such as MCI and 

Alzheimer’s Disease.

The functional relevance of multi-compartment NODDI was further 

supported by finding that age moderated the relationship between 

hippocampal gray matter integrity and mnemonic discrimination 

performance. Results revealed that decreased hindered diffusion within 

bilateral hippocampus was a significant predictor of better mnemonic 

discrimination in younger adults, but not older adults. This relationship was 

significantly stronger for hindered diffusion than FA, suggesting NODDI 

measures may be more informative for tracking cognition across a lifespan. 

However, these results were not replicated in a separate dataset that used a 

slightly different version of the MST, a younger sample that had a very 
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restricted age range, and differences in imaging acquisition and analysis (see

Supplementary Material), suggesting that additional research is needed to 

explore these age-brain-behavior relationships. Nonetheless, one 

interpretation of the age moderation is that, as a result of age-related 

degradation of the hippocampus, older adults may be relying less on this 

brain region, or on different brain regions, to perform the task relative to 

younger adult (Madden et al., 2004; Reuter-Lorenz, 2002). Support for this 

view will require longitudinal studies, which have not yet shown how brain-

behavior relationships evolve over the lifespan. However, they do find that 

cognition and integrity later in life is predicted by early life cognition (Deary 

et al., 2006; Valdés Hernández et al., 2013; Wardlaw et al., 2011), indicating 

that the significant relationship between hippocampus integrity and 

mnemonic discrimination in young adults may inform the absence of this 

relationship in aging. 

It is worth noting that some limitations to this study may contribute to 

the current findings. Most importantly, some model parameters for NODDI 

may be better suited for modeling diffusion in white matter compared to 

gray matter. For example, if the intrinsic diffusivity measure used to 

estimate diffusion within neurites and extracellular space is assumed to be 

lower than the true value in gray matter, this could weaken age-group 

differences in hindered diffusion (for more discussion see Guerrero et al., 

2019). However, other parameters of the NODDI model were specifically 

designed to model hindered and restricted diffusion in gray matter (e.g., 



26

mean orientation of Watson distribution (μ¿, and the axon diameter 

parameter, (α);  Jespersen et al., 2007, Zhang et al., 2012). These measures 

may vary across brain regions and within individuals, which may affect 

estimates of diffusion reported here. Other limitations include having 

acquired these diffusion data in a single-phase encoding direction and only 

correcting for gross motion (not eddy current distortions). However, it is 

unlikely that these methodological approaches significantly impacted the 

current findings because we replicated all age effects in a separate dataset 

acquired in opposing phase encoding directions that allowed us to correct for

bias distortions and preprocessed using more advanced eddy current 

corrections (see Supplementary Material). 

In sum, the current study demonstrated that multi-compartment 

NODDI is more sensitive to age-related differences in hippocampal gray 

matter integrity than single-tensor DTI, likely due to its ability to more 

accurately model complex gray matter microstructure while accounting for 

free diffusion. Gray matter integrity as measured with NODDI hindered 

diffusion was also sensitive to mnemonic discrimination performance, 

particularly in younger adults. Taken together, our results suggest that 

caution should be taken when using DTI integrity measures to assess gray 

matter integrity as these measures are highly impacted by free diffusion. 

Instead, multi-compartment NODDI appears to be a more sensitive tool for 

assessing age-related decline of hippocampal gray matter integrity and 

episodic memory performance across the lifespan. Although we focus on the 
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hippocampus in this study, based on its involvement in mnemonic 

discrimination, future studies are needed to determine whether these 

findings also extend to other gray matter regions (e.g. cortex, basal ganglia).
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Table 1. 

Demographic and neuropsychological data
           

 
Younger  Older

Group 
Comparisons 
            [t (p)]

Demographics 
  N  24    25    
  Mean Age  27.6 ± 5.1  70.4 ± 5.9
  Education  16.3 ± 2.3  17.4 ± 1.7

     
Neuropsychologi
cal Tests
  MMSE   29.6 ± 0.7   29.5 ± 0.7 -0.34 (0.736)
  RAVLT Total   62.0 ± 6.4   55.3 ± 7.9 -3.26 (0.002)
  RAVLT 
Immediate

  13.8 ± 1.4   12.3 ± 2.4 -2.76 (0.008)

  RAVLT Delay   13.9 ± 1.2   12.1 ± 2.6 -3.12 (0.003)
  GDS     2.0 ± 1.9     0.5 ± 1.0 -3.45 (0.001)
  BDI     3.7 ± 3.9     2.4 ± 2.4 -1.34 (0.185)
  Trails A   17.7 ± 5.1   25.0 ± 8.0 3.81 (0.001)
  Trails B   48.8 ± 13.0   66.9 ± 22.1 3.49 (0.001)
  Stroop Raw 112.8 ± 12.8   98.1 ± 18.1 -3.29 (0.002)
  Digit Span Total   20.4 ± 4.4   18.4 ± 3.7 -1.73 (0.091)
  PASE 180.9 ± 57.2 138.8 ± 48.4 -2.78 (0.008)

Note. Neuropsychological test scores (mean ± standard deviation) are 

presented separately for younger and older adults. Significant between-

group differences (Bonferroni corrected for 11 comparisons, p < 0.005 are 

indicated in bolded text. MMSE = Mini-Mental State Examination, RAVLT = 

Ray Auditory Verbal Learning Task, GDS= Geriatric Depression Scale, 

BDI=Beck Depression Inventory, PASE= physical activity scale for the 

elderly. 
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Figure 1.
Age group differences in single-tensor DTI measures of hippocampal gray 
matter integrity shown separately for unthresholded (top row) and 
thresholded (bottom row) measures of fractional anisotropy and mean 
diffusivity. Group differences were significant for FA, thresholded FA and MD. 
Thresholded MD did not show significant differences.
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Figure 2. 
Age group differences in multi-compartment NODDI measures of 
hippocampal gray matter integrity shown separately for restricted (top), 
hindered (middle) and free diffusion (bottom). Group differences were 
significant for restricted, hindered and free diffusion

0.35

0.40

0.45

0.50

0.55

0.60

R
es

tr
ic

te
d 

D
iff

us
io

n
 

p = 0.03

Young Older 

0.0

0.1

0.2

0.3

0.4

F
re

e 
D

iff
us

io
n

p = 0.0003

0.35

0.40

0.45

0.50

0.55

H
in

de
re

d 
D

iff
us

io
n

  

p = 0.0001



32

Table 2. 
Performance of single-tensor and multi-compartment integrity measures to 
account for age-related variance were compared using forward likelihood 
ratio logistic regression. Hindered and free diffusion measures captured the 
most age-related variance. All other predictors were excluded from the 
model. 

             

Model
Variable B S.E. Wald Sig.

Negelkerke R
Square

1 Hindered
61.79

9
20.07 9.481 0.002 0.366

2 Free Diffusion
37.10

1
12.51

1
8.794 0.003

0.643
  Hindered

78.04
6

24.06
3

10.51
9

0.001

Predicted Variable: Age, dichotomized. B = Intercept, S.E.= Standard Error, 
Wald = Wald chi-square test, Sig.= Significance
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Figure 3. 
Age group differences in Mnemonic Similarity Task performance shown 
separately for mnemonic discrimination (left) and recognition memory 
(right). Group differences were significant for mnemonic discrimination 
performance but not recognition. 
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Figure 4. 
Relationships between mnemonic discrimination performance and NODDI 
hindered diffusion in hippocampus are shown separately for younger (left) 
and older (right) adults. For younger adults, hindered diffusion was 
significantly related to mnemonic discrimination (two-tailed). 



35

Figure 5. 
Relationships between mnemonic discrimination performance and DTI 
measures in hippocampus are shown separately for younger (left) and older 
(right) adults. For younger adults, FA, the relationship integrity and 
mnemonic discrimination approached significance (two-tailed). 
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