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A Minimal Neural Network Model of The Gambler’s Fallacy
Yanlong Sun (ysun@tamhsc.edu)

Hongbin Wang (hwang@tamhsc.edu)
Center for Biomedical Informatics, Texas A&M University Health Science Center

Houston, TX 77030 USA

Abstract

The gambler’s fallacy has been a notorious showcase of human
irrationality in probabilistic reasoning. Recent studies suggest
the neural basis of this fallacy might have originated from the
predictive learning by neuron populations over the latent tem-
poral structures of random sequences, particularly due to the
statistics of pattern times and the precedence odds between
patterns. Here we present a biologically-motivated minimal
neural network model with only eight neurons. Through unsu-
pervised training, the model naturally develops a bias toward
alternation patterns over repetition patterns, even when both
patterns are equally likely presented to the model. Our analyses
suggest that the way the neocortex integrates information over
time makes the neuron populations not only sensitive to the
frequency signals but also relational structures embedded over
time. Moreover, we offer an explanation for how higher-level
cognitive biases may have an early start at the level of sensory
processing.
Keywords: gambler’s fallacy; alternation bias; waiting time;
temporal integration; predictive learning.

Introduction
The gambler’s fallacy—a belief that chance is a self-correcting
process where a deviation in one direction would induce a devi-
ation in the opposite direction—has been a notorious showcase
of human irrationality in probabilistic reasoning (Tversky &
Kahneman, 1974). For decades, this fallacy is thought to have
originated from a cognitive bias called the “representativeness
heuristic”, which is attributed to the belief of the “law of small
numbers” that small samples are highly representative of the
populations from which they are drawn (Gilovich, Vallone, &
Tversky, 1985; Tversky & Kahneman, 1974).

Recent development in neuroscience and computational
models suggests that the human mind develops structured prob-
abilistic representations about the world and performs near-
optimal Bayesian inferences (Pouget, Beck, Ma, & Latham,
2013; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). For
example, representativeness has been defined with a Bayesian
belief-updating structure in which different hypotheses are
evaluated based on different sets of the input data (Gigerenzer
& Hoffrage, 1995; Griffiths & Tenenbaum, 2001). However,
it remains elusive how the structured hypothesis space has
originated in the first place, and how cognitive biases can arise
from normative probabilistic models.

On the topic of randomness perception, there has been a
growing speculation that people’s intuition about random pro-
cess, also known as the subjective randomness, is biased by
the statistical structures in the learning environment (Budescu,
1987; Falk & Konold, 1997; Hahn & Warren, 2009; Lopes &
Oden, 1987; Nickerson, 2002; Oppenheimer & Monin, 2009;
Oskarsson, Van Boven, McClelland, & Hastie, 2009; Sun,

Tweney, & Wang, 2010). Particularly, we have argued that
without a predefined hypothesis structure, biases underpinning
the gambler’s fallacy can emerge by simply capturing the tem-
poral relations between patterns as a random process unfolds
over time (Sun & Wang, 2010a, 2010b, 2012, 2015). With a
biologically realistic simple recurrent model that learns to re-
encode sequential binary data through unsupervised learning,
we show that dissociation of random patterns can naturally
emerge as the consequence of inhibitory competition between
overlapped representations (Sun et al., 2015). Our findings
indicate that cognitive biases in overt behavior can emerge
early and locally at the level of sensory processing, and neu-
rons’ sensitivity to the temporal structures in the learning
environment is the key in bridging the gap between neurons
and behavior.

In the following, we first introduce some basic normative
measures on the time of random patterns. Then, based on
the neural model we reported earlier, we present a minimal
neural network model with only eight units. We will show that
this minimal model can mostly replicate our previous findings
and provide new insights regarding the neural encodings of
sequential patterns.

Temporal Distance between Patterns
In sequences generated by a random process, there can be
fundamentally different types of statistical structures regarding
how often a pattern occurs and when a pattern is to occur. Our
previous works have been focusing on the distinction between
the mean time statistic that measures how often the pattern
occurs in a global sequence, and the waiting time statistic that
measures when a pattern will first occur since the beginning
of the observation. Here we introduce a more compact yet
more comprehensive framework that incorporates not only
both types of statistics for individual patterns but also the
statistics depicting the relational structures between different
patterns.

To compute the temporal distances between different pat-
terns with different initial states, we use the first-order de-
pendent Markov chains parameterized by the probability of
alternation (pA) between consecutive trials and the correspond-
ing generating functions (Figure 1). 1 Define E[Tj|i] as the
expected number of transitions from the initial state i until the

1The method of generating functions by Markov chains also ap-
plies to independent Bernoulli trials parameterized the probabilities
of single elements (e.g., the probability of heads or tails), and it
also generates higher-moment statistics such as variance (e.g., Sun
& Wang, 2015). Here we only present the main results and the exact
generating functions are omitted.
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Figure 1: Markov chains for generating the waiting times
E[THH|∅] and E[THT|∅] given the initial empty state ∅ (Fig-
ure A), and the additional times E[THH|H], E[THT|H], and E[TT|H],
given the same initial state H (Figure B). In each chain, states
S j|i represent all possible sequences that start from the pattern
i (i = ∅ means starting anew) and end with the first arrival
of the pattern j. States Mk represent all possible sequences
that end with the pattern k but do not contain the expected
pattern j. Transitions between nonempty states are labeled
as either repetition (R) or alternation (A). Figure C: Pairwise
precedence odds between patterns when the probability of
alternation pA = 1/2, for example, the odds are 3 to 1 that one
is to first encounter TH than to first encounter HH.

first arrival of the pattern j. When the initial state is empty
i = ∅ (i.e., the counting process starts anew), E[Tj|∅] is re-
ferred to as the waiting time of pattern j. For example, from
Figure 1A, the waiting times for the patterns HH and HT are
respectively,

E[THH|∅] = 1+
1

2pA
+

2
1− pA

,

E[THT|∅] = 1+
1

2pA
+

1
pA

.

(1)

When pA = 1/2 (namely, independent Bernoulli trials with a
fair coin where repetitions and alternations are equally likely),
we have E[THH|∅] = 6 and E[THT|∅] = 4.

When the initial state is not empty, E[Tj|i] is referred to as
the additional time for pattern j given the initial state i. For
example, from Figure 1B, we have

E[THH|H] =
2

1− pA
, E[THT|H] = E[TT|H] =

1
pA

. (2)

At pA = 1/2, we have E[THH|H] = 4 and E[THT|H] = E[TT|H] = 2.

When the initial state i is exactly the desired pattern j,
E[Tj|i] denotes the expected number of transitions between any
two consecutive occurrences of the pattern j, and is referred
to as the mean time of pattern j. Since the first-order Markov
chain is memoryless between consecutive transitions, we have
relations such as E[THH|HH] =E[THH|H], and E[THT|HT] =E[THT|T].
Therefore, the mean times for the patterns HH and HT are
respectively,

E[THH|H] =
2

1− pA
, E[THT|T] =

2
pA

. (3)

At pA = 1/2, we have E[THH|H] = E[THT|T] = 4. The inverse of
mean time is frequency. For example, E[THH|H] = 4 means that
we expect to see the pattern HH once in every 4 tosses of an
fair coin.

Among these different measures, the most striking distinc-
tion is that at pA = 1/2, we have E[THH|H] = 4 but E[THT|H] = 2,
in spite of the fact that given an H, the next digit is equally
likely to be either an H or a T. This is because a reoccurrence
of the pattern HH can “reuse” the ending elements from its
previous occurrence, but a reoccurrence of the pattern HT must
always start anew. This statistical property of faster transition
times when starting anew is known as new better than used
(NBU) (Ross, 2007). Essentially, the NBU property is due to
the overlap between a pattern and a shifted copy of itself or be-
tween different patterns. For example, as shown in Figure 1B,
pattern HH overlaps with its shifted copy by one element H,
but pattern HT does not. Then, towards the destination state
SHH|H, anytime things go astray (i.e., the process ends in state
MT), the waiting for HH has to start all over. In contrast, the
waiting for HT is always on average two flip away from the
state MH. As a result, the transition to SHH|H is “delayed” than
the transition to SHT|H. This overlap also explains the pairwise
precedence relation shown in Figure 1C. For example, in the
competition between the patterns HH and TH, the former reuses
the last element of the latter but the latter starts anew. As a
result, if we toss a fair coin repeatedly (i.e., pA = 1/2), the odds
are 3 to 1 that we first encounter TH than first encounter HH.

A Neural Model of Temporal Integration
The NBU property of pattern times has fundamental impli-
cations in neural encoding of pattern events. As shown in
Figure 1, different measures of waiting time, additional time,
mean time and pairwise precedence odds are all due to the
overlap between temporal patterns. Recent developments in
neuroscience and computational models suggest that neural
encodings of events and values are always overlapped, and it is
the encoding of neural populations that give rise to higher-level
and more abstract representations (Adolphs, 2015; Dehaene &
Brannon, 2010; Pouget et al., 2013). In the domain of temporal
integration, probabilistic encoding must consider the overlap
between representations at different times, namely, recurrent
processing (Elman, 1990). Then, we would immediately con-
jecture that via merely encoding the random sequences that un-
fold over time, populations of neurons would naturally capture
the temporal structures depicted by the pattern times statistics.
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Figure 2: A neural network model of temporal integration
(figures adopted from Sun et al., 2015). Figure A: A two-unit
input layer scans a sequence of binary digits one digit at a time
(“online” input at time t), while its temporal context represen-
tation keeps a copy of the previous input (“context” at time
t−1). A 100-unit internal prediction layer attempts to predict
the next input, while its temporal context representation keeps
a copy of the model’s prediction at time t−1. Figure B: Af-
ter unsupervised training, the model shows fewer repetition
detectors than alternation detectors (R : A ratio < 1) when the
actual probability of alternation is greater than 3/7.

We have recently reported a biologically-motivated neural
model that behaves consistently in accord with the pattern time
statistics (Sun et al., 2015). The architecture of the model and
the main result are shown in Figure 2. The model employs a
recently developed neural algorithm for temporal integration
(O’Reilly, Wyatte, & Rohrlich, 2014). At the sensory level, a
2-unit input layer scans non-overlapping signals of heads (H)
versus tails (T) one digit at a time from sequences generated
by the first-order dependent Markov trials. Then, a 100-unit
internal prediction layer attempts to predict the next input,
with the benefit of a prior temporal context representation.
The bidirectional activation dynamics between the input layer
and the internal prediction layer allow us to use a single input
layer for both providing inputs and receiving predictions.

Through unsupervised learning, the model was trained with
binary sequences generated at various levels of probability of
alternation (pA). After training, the model was tested with a
sequence generated at the same pA level. By activation-based
receptive field analysis, we decoded the representations on
the internal prediction layer and classified its units as either
repetition detectors (whose activations are significantly cor-
related with the input pattern either HH or TT), or alternation
detectors (activations correlated with either HT or TH). We then
counted the numbers of detectors and used the R/A ratio (rep-
etition over alternation) to measure the model’s performance
(Figure 2B).

Most interestingly, at pA = 1/2 (i.e., flipping a fair coin
independently), despite the same training frequency of the
patterns (i.e., the same mean time, see, Equation 3), the model
consistently produced fewer repetition detectors than alterna-
tion detectors at a ratio of R/A≈ .70. We then used this R/A
ratio to compute the subjective probability of alternation, p′A,

as the model’s internal representation of its experienced pA,

p′A =
A

R+A
=

1
1+R/A

≈ 0.59.

This p′A value was consistent with the value from empirical
findings. From a comprehensive review of previous studies
(Falk & Konold, 1997), a unanimous finding was that people
perceived or generated random sequences with a p′A value
around 0.58 ∼ 0.63. Moreover, we found that this p′A value
directly produces the besting-fitting bias-gain parameter in an
existing Bayesian model for subjective randomness of longer
patterns (Goodfellow, 1938; Griffiths & Tenenbaum, 2001).

A Minimal Neural Network Model
The model presented in Figure 2 has a prediction layer of 100
units, and its temporal context representation is equivalent
to another 100 units as in a recurrent neural network. Then,
an immediate question is, how many neurons are required to
produce the minimal effect of the alternation bias? Apparently,
to differentiate repetition versus alternation patterns, we need
at least two types of detectors. However, we also notice that
if patterns are aggregated too “early”, namely, combining HH
with TT and combining HT with TH before counting each of the
four detectors, the alternation bias would be “washed out” (see
the supplementary material by Sun et al., 2015). In addition,
the pairwise precedence odds shown in Figure 1C indicates
that to differentiate all patterns of length two, we need at least
four detector neurons.

HT TH

HH TT

T H T H
Context
(t−1)

Online
(t)

Detectors

Detectors 0.7
0.3

T H T H

Context Online

H T
(t−1)

HH
(t)

TData Stream

Input units

Figure 3: An eight-unit neural network model of temporal
integration. A two-unit input layer scans a sequence of binary
digits one digit at a time (“online” input at time t), while its
temporal context representation keeps a copy of the previous
input (“context” at time t−1). The prediction layer has four
units for detecting each of the four binary patterns of length
two. The status of each detector is determined by the projec-
tion weights from the input units. For example, detectors HH
and HT receive the same projection weights from the context
input units, but detector HH receives a stronger weight from
the online input unit H, and detector HT receives a stronger
weight from the online input unit T.

Figure 3 shows the structure of an eight-unit model for tem-
poral integration. The model is called “minimal” as it uses
the least number of neurons to produce the minimal effect of
the alternation bias in the gambler’s fallacy. Its input layer is
identical to the bigger model in Figure 2, with two units for
scanning the “online” input at time t and two units for keep-
ing a copy of the “context” input at time t−1. However, its
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prediction layer has only four units without explicit temporal
context representation. Also different from the bigger model
where the initial status of detectors was set by random weights,
the detectors in the eight-unit model are initially set by dis-
tinctive projection weights from the input units. For example,
detectors HH and HT receive the same projection weights from
the context input units, but detector HH receives a stronger
weight from the online input unit H, and detector HT receives a
stronger weight from the online input unit T. In other words,
given the same initial state H, detector HH tends to predict a
repetition and detector HT tends to predict an alternation.

Crucially, the controlled weights allow a more precisely con-
trolled experiment by eliminating variations produced by ran-
dom weights. In the bigger model, different detectors would
“naturally” emerge by a random initialization of weights. How-
ever, this may produce a disparity in the number of detec-
tor types at the initial stage (e.g., more HT detectors than HH
detectors), and such a disparity has to be accounted for by
averaging multiple simulations with different random initial-
izations. This disparity is eliminated in the eight-unit model,
such that the model as a whole is initially unbiased toward any
of the four patterns. (We have implemented different sets of
controlled weights, e.g., 0.2 versus 0.8, or 0.4 versus 0.6, and
find that they all produce the same results.)
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Figure 4: Pattern dissociation at different levels of the proba-
bility of alternation pA after training. The repetition detectors
HH and TT only showed higher activations when the model
was trained with sequences generated by pA < 1/3. Box plots
represent distribution quantile.

The eight-unit model was trained and tested in the same way
as the bigger model, and the only difference is the analyses of
the test results. Instead of counting the number of detectors,
we directly measure the activations of each detector given dif-
ferent input patterns. Figure 4 shows the main result. We first
notice that after being trained with truly random sequences
(i.e., pA = 1/2 in independent fair coin tossing), the aver-

aged activations of detectors were significantly lower when
the current inputs were repetition patterns (HH or TT) than al-
ternation patterns (HT or TH). That is, in spite of the initially
unbiased representations of all patterns and the equal training
frequency (i.e., the mean time is the same for all patterns at
pA = 1/2), repetition patterns eventually were significantly
under-represented than alternation patterns.
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Figure 5: The updating trajectories of projection weights from
context input units to detector units HH and TH during the train-
ing phase. The initial weight values are marked by the circles
at the first trial. For example, at pA = 1/2, the unit initially
designated as the HH detector became an TH detector after ap-
proximately 200 trials, as all its weight values from the context
units switched to the opposite side of 0.5, whereas the unit
initially designated as the TH detector remained stable. The
same trend was also observed between TT and HT detectors.
The projection weights from the online input units remained
about the same thus are not plotted here.

To locate the source of the alternation bias, we found that
during the training phase, the projection weights from the
context input units to each detector underwent a dramatic
remapping (Figure 5), whereas the projection weights from
the online input units remained about the same.

Specifically, at pA = 1/2, the detector unit HH initially re-
ceived a weight of 0.7 from the context input unit H and a
weight of 0.3 from the context input unit T (hence its initially
designated detecting status). After about 200 trials, these
two weights switched to the opposite sides of 0.5, effectively
“switching” the HH detector into a TH detector (but not a HT
detector). Similarly, the TT detector switched to an HT detec-
tor (but not a TH detector). The directions of these switches
corresponded exactly to the pairwise precedence relationship
depicted in Figure 1C. At pA = 2/3, the switch was even more
obvious. At pA = 1/6, it was the alternation detectors’ turn to
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be under-represented and switched to the repetition detectors.
Finally at pA = 1/3, all projection weights from the context
units approached then stabilized around 0.5, so that the model
eventually learned to be indifferent to the contextual informa-
tion, resulting in unbiased activations for all patterns as shown
in Figure 4.

Moreover, we also tested models with only a subset of
particular detectors (e.g., HH versus TH only). When pA = 1/2,
regardless of the initial pattern preference set by the projection
weights, the model would eventually react indifferently to all
patterns. This result indicates that in order to capture different
pattern time statistics or the pairwise precedence odds between
patterns of length two (Figure 1), the inhibitory competition
between at least four types of detectors is required. When we
tested models with only online input units, the model showed
the same indifference at pA = 1/2. This indicates that predictive
learning, namely, predicting what will happen next based on
the historical context, is critical in producing the alternation
bias. Together, these observations confirmed our hypothesis
that this eight-unit model is a minimal model to produce the
alternation bias in the gambler’s fallacy.

In comparison, the alternation bias exhibited by the minimal
eight-unit model in Figure 3 is in the same direction as that
exhibited by the bigger model in Figure 2. However, the equi-
librium point (the pA level where the model was indifferent to
all patterns) was different (compare Figure 2 with Figure 4).
Specifically, the equilibrium point was pA = 1/3 for the eight-
unit model but pA = 3/7 for the bigger model. This indicates
that the minimal model was more sensitive to the waiting time
(delay) than to the mean time (frequency) of pattern occur-
rences, because by Equations 1 and 3, all patterns have the
same waiting time but different mean times at pA = 1/3,

E[THH|∅] = E[THT|∅] = 11/2, E[THH|H] = 3, E[THT|T] = 6.

In contrast, the bigger model was more “balanced” toward
both statistics, because at pA = 3/7,

E[THH|∅]+E[THH|H] = E[THT|∅]+E[THT|T] = 55/6.

One particular reason for such difference is that the competi-
tion would be stronger among fewer detectors due to the home-
ostatic mechanism implemented in the network. This mecha-
nism keeps individual neurons from firing too much or too lit-
tle over time, which is essentially a normalization mechanism
in self-organizing learning at long time scales (Bienenstock,
Cooper, & Munro, 1982; Cooper, 2000; Hebb, 1949; O’Reilly,
Munakata, Frank, Hazy, & Contributors, 2012). As a conse-
quence, the bigger model with more neurons would be more
likely to maintain diversity in the specialization of neurons
thus its equilibrium point could be determined by both waiting
time and mean time statistics.

Conclusion
Overall, our results from both models suggest that pattern dis-
sociation can naturally emerge from temporal reconstructions
of the input data. Particularly with the minimal eight-neuron

model, detector neurons “reoriented attention” to the past in-
formation (i.e., remapping the projection weights from the
context units), and the driving force behind such reorientation
was more of the waiting time rather than of the mean time of
patterns. As for the model with more neurons we reported
earlier, the specialization of neurons would be more diversi-
fied thus would enable the model to develop sensitivity to both
types of pattern time statistics.

The observation that both models exhibited the alternation
bias is consistent with the representativeness bias underpinning
the gambler’s fallacy (Gilovich et al., 1985; Tversky & Kah-
neman, 1974). For example, Figure 4 show that at pA = 1/2,
the model had higher activations for alternation patterns than
repetition patterns, in spite of the sequential independence of
events. Critically, such bias emerged through unsupervised
training without any pre-defined hypothesis structures, since
both models were initially symmetrically structured, and were
not provided with any prior knowledge on how different pA
levels would affect the occurrences of different patterns.

Given the simplicity of our models, one far-reaching impli-
cation is that cognitive biases and structured abstractions can
emerge early and locally at the level of sensory processing.
Nevertheless, it should be noted that our models only address
purely bottom-up learning mechanisms without implementing
any top-down learning or higher-level representations such as
beliefs or goals. For the early and locally developed biases
to be maintained and utilized in later and global processes,
higher-level representations and top-down structures must also
be involved through a hierarchical structure of abstractions
(Munakata et al., 2011; Tenenbaum et al., 2011).

Lastly, probabilistic thinking has to consider the conse-
quence of time (Buchanan, 2013; Hawkins & Blakeslee, 2004).
Our findings suggest that rich semantics in the learning envi-
ronment can be extracted by neuron populations in predictive
learning through temporal integration. This learning over time
would lead to the structured hypothesis spaces such as those
required by Bayesian inference thus provide essential building
blocks in bridging the gap between neural computations and
overt behavior.
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