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Today, the ever-growing data-bandwidth demand is pushing the boundaries of the tradi-

tional printed circuit board (PCB) based integration schemes. Moreover, with the apparent

saturation of semiconductor scaling, commonly called Moore’s law, system scaling warrants

a paradigm shift in packaging technologies, assembly techniques, and integration method-

ologies. In this work, a superior alternative to PCBs called the Silicon-Interconnect Fabric

(Si-IF) is investigated. The Si-IF is a silicon-based, package-less, fine-pitch, highly scal-

able, heterogeneous integration platform for wafer-scale systems. In this technology, bare

dielets are assembled on the Si-IF at small inter-dielet spacings (≤100 µm) using fine-pitch

(≤10 µm) die-to-substrate interconnects. A novel assembly process using a solder-less direct

metal-metal (gold-gold and copper-copper) thermal compression bonding was developed.

Using this process, sub-10 µm pitch interconnects with a low specific contact resistance of

≤0.7 Ω-µm2 were successfully demonstrated. Because of the tightly packed Si-IF assembly,

the communication links between the neighboring dies are short (≤500 µm) with low loss

(≤2 dB), comparable to on-chip connections. Consequently, simple buffers can transfer

data between dies using a Simple Universal Parallel intERface for chips (SuperCHIPS)

protocol at low latency (<30 ps), low energy per bit (≤0.03 pJ/b), and high data-rates

(up to 10 Gbps/link), corresponding to an aggregate bandwidth up to 8 Tbps/mm. The

benefits of the SuperCHIPS protocol were experimentally demonstrated to provide 4-23X

ii



higher data-bandwidth, 3-65X lower latency, and 5-40X lower energy per bit compared

to existing integration schemes. This dissertation addresses the assembly technology and

communication protocols of the Si-IF technology.
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CHAPTER 1

Introduction

1.1 Conventional System Integration

Today, mainstream system integration relies on the assembly of individually packaged dies

and components on a conventional printed circuit board (PCB). The package is expected

to mechanically support the die and protect it from the harsh environment. It also provides

for a stable and controlled test environment. In addition, it acts as an intermediate layer

to connect the die to the PCB. The PCB acts as a platform to attach multiple packaged

dies along with other components and interconnect them to form a system. A schematic

of a conventional assembly is shown in Fig. 1.1. This integration methodology has been

successfully implemented over the past several decades but this strategy cannot sustain the

performance demands of systems today [Iye16].

Figure 1.1: Schematic of a conventional assembly and inter-die communication.

Until recently, the demand for system performance has been met by incorporating more

and more functionality into a single die, thanks to the aggressive Moore’s law scaling of the

semiconductor technologies. But with the apparent slow-down of Moore’s law, it is no longer
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cost-efficient nor technologically feasible to scale down the devices further [RS11, Pow08].

Therefore, packaging technologies have to be scaled to ensure improvement in system per-

formance. However, traditional packages and the PCBs are made of organic substrates

that cannot use the same fabrication techniques used in semiconductor manufacturing. As

a result, in the past four decades, the packaging dimensions have only scaled by 4-5X com-

pared to the 1000X scaling in semiconductor technologies [Iye16]. In addition, the packages

and boards use solder-based interconnects such as Controlled Collapsed Chip Connection

(C4) bumps on the package at 100-150 µm pitch and Ball Grid Arrays (BGA) at 0.4-1 mm

pitch [PS13, Int]. Solder extrusion, bridging, warpage of substrate, and so on limit the

scaling of these solder-based interconnects. Consequently, the fine-pitch interconnects on

the die (few microns) must be space-transformed to match the interconnect pitch on boards

and then scaled back in the next chip leading to long links and inefficiencies in inter-dielet

communication as shown in Fig. 1.1. Also, the disparity between the silicon and package

dimensions constrains the number of input/output (I/O) connections for a die which in

turn restricts the data-bandwidth.

On the other hand, according to Rent’s rule [LFR05], as the functionality in a die in-

creases, the number of I/Os increase according to (1.1), where T is the number of I/Os,

g corresponds to the number of gates or functional blocks, and t, p are technology depen-

dent constants. Using the transistor count for g, the number of I/Os required by today’s

processors are in the order of over 10,000. Fig. 1.2 shows the trend of minimum I/O pitch

needed for processors [Conc,YW18,Qua19,Nvi18,Lea17] assuming simple peripheral I/Os,

according to [IJV19]. From the plot, we observe that today’s systems require ≤10 µm pitch

interconnects. These interconnect pitches cannot be accommodated in traditional packages

and therefore, the packages today are 5-18X larger than the dies [PPB+18]. The afore-

mentioned limitations define the inter-die communication link lengths to be at least several

millimeters with significant channel losses. Moreover, to accommodate all the I/Os and

meet the data-bandwidth requirements, serialization-deserialization circuits (SERDES) are

implemented. They have complex transceivers circuits that occupy substantial real estate
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on the die (up to 30% [Conb]) and consume significant power which can be 30-50% of the

total system power [Iye16].

T = t ∗ gp (1.1)

Figure 1.2: Trend of minimum I/O pitch required if no SERDES are used with the scaling

of technology nodes for commercial processors [Conc,YW18,Qua19,Nvi18,Lea17].

Therefore, a paradigm shift in packaging technologies is necessary as it plays a more

decisive role in determining system performance. As we move closer to data-centric com-

putational systems, packaging technologies need to accommodate the ever-increasing data-

bandwidth while simultaneously reducing latencies and communication power. It is no

longer just a way to protect the die but rather a way to efficiently interconnect them and

add value to the system.
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1.2 Advances in System Integration

Over the past several decades, there have been significant advancements in integration

methodologies to meet the growing demands of system performance. The integration

methodologies can be divided into two categories namely monolithic integration and het-

erogeneous integration. Monolithic integration refers to the integration of functional blocks

or subsystems on a single die. Heterogeneous integration refers to the integration of multi-

ple dies from different technologies on a single platform. Some of the advances in both the

monolithic and heterogeneous system integration technologies are described below.

1.2.1 Monolithic Integration

The first breakthrough in on-chip integration was the invention of monolithic integrated

circuits where previously discrete transistors were fabricated and connected on a single

chip. With the evolution of silicon (Si) fabrication techniques combined with Dennard’s

scaling theory [DGY+74], made aggressive scaling realizable to achieve a transistor density

of ≥100 million transistors/mm2 in the recent technology nodes (5-7 nm) [Cona]. Besides

the devices, the interconnect technology was also scaled to reduce delays using copper

wiring levels. With the increase in wiring levels and a wiring hierarchy of fine-pitch wires

(<100 nm) connecting neighboring nodes and larger pitch wires (few microns) connect-

ing distant nodes, more functional blocks could be incorporated in a single die. These

developments led to a proliferation of larger systems on a single die which is discussed

below.

1.2.1.1 System-on-Chip

In the System-on-Chip (SoC) approach, several different functional or intellectual property

(IP) blocks required for a system are integrated and fabricated on a single die as illustrated

in Fig. 1.3. Availability of fine-pitch wiring and short inter-block spacings on a single

chip provides opportunities for high bandwidth and energy efficiency. At first glance, it
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looks beneficial to integrate more functionality into a single chip and the recent trends of

high-performance processors confirm this. The die size has increased to near reticle limits

(≈830 mm2) even though the technology nodes have scaled to have denser transistors.

Further, the die size has been a significant factor (20%) apart from process technology

(40%) in achieving performance scaling of 2X every 2.5 years in the past decade [Su19].

However, SoCs are extremely complex in design, require IP hardening, Si validation, and

so on for every tape-out. This contributes to a high non-recurring engineering (NRE) cost

and time to market. In addition, SoCs require large die size which reduces the yield of a

die significantly, increasing the cost [SAB+16]. Further, the reticle limit and the slow-down

of Moore’s law restrict the scalability of this approach. In addition, SoCs are inherently

homogeneous in technology and cannot truly integrate different heterogeneous components

of a system. As a result, SoCs are limited by the packaging technologies to communicate

with other components such as memory.

Figure 1.3: Floorplan of Apple A13 processor (SoC) showing different functional blocks

integrated on a single monolithic die. (Picture source: [Fru19]).
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1.2.1.2 Wafer-scale integration

Wafer-scale integration (WSI) takes the SoC approach to the next level by integrating a

massive system on a single wafer. Early efforts were made in the 1980s by Gene Amdahl

[MRRS84] to fabricate a fully functional wafer that achieves high communication bandwidth

with reduced latency and power. However, technological limitations resulted in a low yield

of the system, a situation SoCs are facing today. To improve yield, many redundancy

schemes were implemented that increased the length of signal paths and consequently

reduced the system speed, making the approach impractical. However, recently a 300 mm

wafer-scale functional system for machine learning applications was demonstrated in [Sys].

Novel architectural schemes that use very tiny cores with abundant redundancies were

implemented to ensure functionality by re-routing around defective cores. In addition,

advanced fabrication and assembly techniques such as reticle stitching, novel connectors,

heat extraction solutions were developed to build the system. Although this system shows

a lot of promise, it is still a homogeneous system and probably limited by memory capacity.

Also, such an architecture may not be suitable for all applications.

1.2.2 Heterogeneous Integration

Heterogeneous integration refers to using packaging technologies to integrate heterogeneous

dies or components on a common substrate to overcome the bandwidth challenges on tra-

ditional PCBs [Soc]. Recently, there has been a lot of traction in heterogeneous integration

because of several promising substrate technologies [MSP+16,HSF+16,CHT+17,OOS+14],

and reduced design & cost overhead compared to SoCs. By dividing a large SoC into small

chiplets or dielets, the yield of individual dies is improved [PPKG20], corresponding to lower

costs. Further, since most of the SoCs have up to 80% of reused IP, the design complexity

is simplified, saving time [Gre16]. If these dies are integrated on a heterogeneous platform

hopefully with a minimal performance overhead, system scaling can be ensured. Several

works [PPT+19,PPKG20,PPB+18,SIL+15,Soc,Su19] have discussed and demonstrated the
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benefits of heterogeneous integration on different aspects of system performance, architec-

tures, and overall scaling. Some of the heterogeneous integration technologies are listed

below.

1.2.2.1 Multi-Chip Modules

Multi-chip-modules (MCMs) were initially developed in the 1980s to integrate a few dies

on ceramic-based substrates for high-performance mainframe systems. In MCMs, multiple

dies are packaged laterally on a common substrate such as laminate and integrated at finer

pitch (<100 µm) than boards [Lau17]. A schematic of the MCM structure is shown in

Fig. 1.4. Today, several commercial products are available with multiple dielets in different

technologies integrated on organic boards [ABC+17, Su19]. Using the concepts of hetero-

geneous integration and IP reuse, design and manufacturing costs are significantly reduced

(up to 41%) using MCMs [Su19]. Also, recently systems-in-package (SiP) technologies were

developed to integrate dielets and packages both laterally on a laminate and vertically us-

ing three-dimensional (3D) stacking to form a system or a subsystem. However, both these

technologies have low interconnect density and are limited to few dies on a package.

Figure 1.4: Schematic of an MCM package with two dies integrated on a common substrate.
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1.2.2.2 Interposers

Interposer technology has been presented as a high interconnect density redistribution

layer (RDL) between dielets [LLKK18,CHT+17]. An interposer adds an additional hierar-

chy level in packaging, where few dies are interconnected using on-chip like wires (≤4 µm

pitch) and the interposer assembly is packaged and assembled on PCBs. A schematic of

an interposer is shown in Fig. 1.5. Silicon is typically used as the substrate, although,

other substrates like glass and organic interposers were also proposed [HSF+16, OOS+14].

Although the wiring pitch is small in interposers, the die-to-substrate interconnect pitch

is 40-55 µm, because of the solder-capped Cu pillar interconnects, also called µ-bumps

[MSP+16, CHT+17]. However, today’s bandwidth requirements demand an interconnect

pitch of ≤10 µm as shown earlier in Fig. 1.2. Also, the size of the interposer is limited to

the reticle size (≈830 mm2) without stitching. Even though larger interposer of 1700 mm2

was demonstrated in [Shi20] using reticle stitching, the process becomes extremely compli-

cated and expensive when extended to full wafer which will be discussed in section 2.2.2.

Interposers are also thinned to <100 µm to add through-silicon vias (TSV) to connect to the

package. The thinned interposers have significant warpage of several microns [MAH+13]

limiting the scalability of both the interposer size and the µ-bump pitch. To minimize

warpage, Chip-on-Wafer-on-Substrate (CoWoS) technology [CHT+17] uses a thick silicon

substrate for assembly of dies. The interposer is back-grinded after dielet assembly which is

associated with several reliability concerns. Finally, interposers inflate the overall packaging

cost by adding an additional level in the packaging hierarchy [Iye16].

Other approaches use a hybrid of MCM and interposer technology. Intel developed

Embedded Multi-die Interconnect Bridge (EMIB) technology [MSP+16] to embed silicon

bridges with fine-pitch wires into a package substrate that connects neighboring dies. The

proposed advantage is that selective fine-pitch interconnects can be placed at required

locations and traditional coarse pitch wiring may be used for the rest of the system to reduce

cost. However, the complexity of the bonding process of the die to different interconnect

pitches on the silicon bridges and the substrate while ensuring planarity and yield remains
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Figure 1.5: Schematic of a dielet assembly on an interposer. The interposer connects

the dies at a moderate interconnect pitch (≈55 µm) but adds an additional level in the

packaging hierarchy. TSVs are used to transfer the signals to the dies.

quite high. Finally, the use of solder-based µ-bumps in interposers limits the scalability

of the interconnect pitch. There is also another proposal to integrate dies with a high

density (up to 4 µm pitch) redistribution layer using an approach called fan-out wafer-

level packaging (FOWLP) [TLWY16]. In this approach, the dies are first assembled on

a handler wafer and the redistribution layer is fabricated on top of the dies creating the

package. It is later terminated with C4 bumps for subsequent assembly on boards. Again,

the use of organic materials and molding compounds limit the scalability of this approach

for wafer-scale systems.

1.2.2.3 3D Integration

Another approach to integration is to vertically stack the dies on top of each other. This

solution offers a reduced form-factor and a wide I/O interface between dies using TSVs.

A schematic of 3D integration is shown in Fig. 1.6. 3D stacking is done either at wafer-

level using wafer-to-wafer bonding or die-level using die-to-die or die-to-wafer bonding.

Wafer-to-wafer bonding offers fine interconnect pitches of ≤10 µm. The bonded wafers are
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Figure 1.6: Schematic of a 3D stack of 4 dies. The dies are bonded using either µ-bumps

or wafer-to-wafer bonding. TSVs are used to transfer signals and power across dielets.

subsequently diced after assembly of the whole stack. But one serious disadvantage of this

approach is that a defective area of one wafer can get bonded to functional areas on the

second wafer which decreases yield. Therefore, for most applications, including memory

stacking, logic-on-memory, and logic-on-logic stacking, die-to-die or die-to-wafer bonding is

preferred. 3D stacking of several thinned dies has been successfully implemented especially

for memory dies for up to a stack of 12 dies [KAD+08, BAB+06, Loh08, Shi19b]. Intel

has demonstrated logic-on-logic stacking called Foveros [IAA+19], and several others have

explored logic-on-memory [IK15, LGBS05]. However, logic-die stacking lacks widespread

adoption primarily due to thermal and I/O considerations. At the bottom of the stack, the

heat from logic-dies cannot be efficiently extracted, limiting the thermal budget. On the

other hand, at the top of the stack, logic-dies require a large number of TSVs for I/Os. The

corresponding TSV real estate and keep out zone required for proper device functionality

inflates the overall die size. Although this technology is not scalable for large-scale systems,

it can complement other heterogeneous integration technologies to improve performance.
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1.3 Objective of this Work

As discussed earlier, systems today demand on-chip like fine-pitch interconnects (≤10 µm)

to meet the ever-growing bandwidth requirements. It has become increasingly clear that

a monolithic-style integration is not scalable and cannot sustain the increasingly complex

system architectures. Today, there is a need for paradigm shift in packaging technologies

to cater to the demands of next-generation systems. A heterogeneous integration approach

needs to adapt to provide the same performance and efficiencies supported by the SoCs.

Moreover, it must be highly scalable to integrate massive systems consisting of several

thousands of dies. In addition, it should provide simple interfaces for inter-die communica-

tion to achieve high-performance with minimal overhead. It is an added advantage if the

packaging platform is compatible with existing technologies and provides opportunities for

the development of novel energy-efficient high-performance architectures.

Considering all the above requirements, in this work, a fine-pitch, highly scalable,

package-less, heterogeneous integration platform called the Silicon-Interconnect Fabric (Si-

IF) is investigated. The fabrication and assembly processes necessary for such a fine-pitch

(≤10 µm) platform are developed. In addition, the benefits of the Si-IF style integration

for system performance are demonstrated.

1.4 Organization of this Dissertation

This thesis is organized as follows: Chapter 2 introduces the Si-IF technology and contrasts

it with existing packaging technologies. The fabrication process of the Si-IF platform

is illustrated in Chapter 3. Chapter 4 describes the fine-pitch dielet assembly process

on the Si-IF. The Simple Universal Parallel intERface for Chips (SuperCHIPS) interface

protocol is introduced in Chapter 5 along with the experimental characterization, and

circuit simulation results. The experimental demonstration of the SuperCHIPS protocol

using functional dielet assembly on the Si-IF is presented in Chapter 6. Chapter 7 discusses

the benefits of the Si-IF assembly and the SuperCHIPS protocol compared to existing
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technologies. Finally, the conclusion and future outlook of this work are given in Chapter 8.
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CHAPTER 2

Silicon-Interconnect Fabric Technology

The Silicon-Interconnect Fabric (Si-IF) is a novel heterogeneous integration technology

that is package-less, fine pitch (≤10 µm), and highly scalable. In the proposed integration

scheme, bare dielets are assembled on a silicon substrate at close proximity (≤100 µm)

and interconnected at SoC-like wiring pitches. Unlike interposers, the Si-IF technology is

developed to replace the PCB and integrate the system on a single packaging hierarchy.

Further, the Si-IF leverages the established techniques developed for the mature comple-

mentary metal-oxide-semiconductor (CMOS) technology and applies them to the realm of

packaging. In this chapter, the Si-IF technology is introduced and the benefits of integration

on the Si-IF are discussed.

2.1 Technology Description

The Si-IF consists of a silicon-based substrate with CMOS back-end-of-the-line (BEOL)

wiring levels. The number of wiring layers can be up to 4 and there is no fundamental

limitation to extend it further. These wiring levels match the top-level fat-wiring layers

on-chip. The Si-IF is terminated with ≤10 µm copper (Cu) pillars of diameter ≤5 µm

that act as interconnects between the die and the wiring levels on the Si-IF. As a result,

the interconnects seamlessly integrate heterogeneous systems to match SoC interconnect

density. Bare dies terminated with either Cu or gold (Au) pads are used for direct assembly

on the Si-IF substrate. This ensures compatibility with existing CMOS dies that have Cu

wiring levels and III-V dies that have Au pads. These bare dies are bonded to the Si-IF using

a solder-less metal-metal (Cu-Cu or Au-Au) Thermal Compression Bonding (TCB) process
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between the metal pillars on the Si-IF and the metal pads on the dies. As a consequence

of the elimination of solder, the interconnect pitch is scaled to ≤10 µm. Consequently,

due to the fine interconnect pitch, more number of I/Os can be incorporated for inter-die

communication which significantly increases the data-bandwidth (4-23X). Moreover, by

eliminating individual packages, the dies can be assembled at close proximity of ≤100 µm.

As a result, the near chip communication links are short (50-500 µm) corresponding to

low channel losses (≤2 dB) and link latencies (≤20 ps). Therefore, simple inverters can be

used for data-transfer using a Simple Universal Parallel intERface for chips (SuperCHIPS)

protocol to reduce communication power tremendously (5-40X). This will be elaborated in

Chapter 5. A schematic of the Si-IF assembly is presented in Fig. 2.1.

Figure 2.1: Schematic of the fine-pitch assembly on the Silicon-Interconnect Fabric (Si-IF).

Moreover, the Si-IF platform is agnostic to the dielet technology including 3D-stacked

dies and passives, therefore allowing for heterogeneous integration. Also, the Si-IF sub-

strate is highly scalable and integrates dies on a silicon wafer up to a diameter of 300 mm.

Therefore, the Si-IF provides a platform to integrate a massive wafer-scale system consti-

tuting of small heterogeneous dies (2-10 mm [IJV19]). Demonstrations of the wafer-scale

assemblies of heterogeneous dies on the Si-IF are presented in Fig. 2.2. Fig. 2.2 (a) shows

the integration of 460 heterogeneous dies consisting of 113 3x3 mm2 dies, 237 3x2 mm2

dies, and 110 2x2 mm2 at ≤100 µm inter-dielet spacing on a 100 mm Si-IF corresponding

to an active area of 2900 mm2. Fig. 2.2 (b) shows the integration of 371 heterogeneous dies

of sizes 1x1 mm2, 2x2 mm2, 3x3 mm2, 4x4 mm2, and 5x5 mm2 at ≤100 µm inter-dielet

spacing on a 100 mm Si-IF, corresponding to an active area of >3100 mm2.
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(a) (b)

Figure 2.2: Wafer-scale assemblies on the Si-IF. (a) 460 heterogeneous dies (3x3 mm2,

3x2 mm2, and 2x2 mm2) at ≤100 µm inter-dielet spacing on a 100 mm Si-IF correspond-

ing to an active area of 2900 mm2. (b) 371 heterogeneous dies (1x1 mm2 to 5x5 mm2)

at ≤100 µm inter-dielet spacing on a 100 mm Si-IF, corresponding to an active area

>3100 mm2.

2.2 Comparison with Conventional Technologies

Unlike traditional PCB-based integration where individual chips or sub-systems are pack-

aged and integrated, the Si-IF technology aims to integrate an entire system on a single

platform. A schematic of conventional integration schemes and the Si-IF integration is

shown in Fig.2.3. In this section, the merits and challenges of the Si-IF technology are

discussed and contrasted with conventional technologies.

2.2.1 Merits of the Si-IF Technology

Some of the key merits of the Si-IF technology are listed below.

• Conventional integration schemes have multiple levels in the packaging hierarchy as

shown in Fig. 2.3 (a). At each hierarchy level, the interconnect pitch and wiring di-
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(a)

(b)

Figure 2.3: Schematic of a comparison of conventional assemblies with the Si-IF assembly.

(a) Conventional assembly illustrating traditional die in a package and dies including 3D-

stacks assembled on an interposer mounted on board. The schematic shows the different

packaging hierarchies. (b) Fine-pitch Si-IF assembly with single packaging hierarchy.

mensions are vastly different (10X). Also note that interposers, although interconnect

systems at moderate interconnect densities (40-55 µm), add an additional level in the

packaging hierarchy as illustrated in Fig. 2.3 (a). Contrary to these schemes, the

Si-IF technology simplifies the packaging hierarchy by integrating the entire system

in a single packaging level as shown in Fig. 2.3 (b). Therefore, Si-IF is a wafer-level
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integration solution to interconnect the entire system at fine wiring pitches (≤2 µm).

• Today, packaging technologies use many disparate materials such as Si, Cu, FR-4,

solder, molding compound, underfill, and so on. These organic and inorganic materi-

als have different thermo-mechanical properties, especially the coefficient of thermal

expansion (CTE), thermal conductivity, young’s modulus, etc. The mismatch of

these material properties impacts the device performance which may lead to failures,

commonly known as Chip-Package-Interaction (CPI) related failures. The Si-IF tech-

nology, on the other hand, uses a simple material system of Si, Cu, and silicon oxide

(SiO2) that matches the material constituents on the die. Therefore, the mismatch

between the dies and the integrating Si-IF platform is significantly low, reducing the

CPI-related failures.

• The Si-IF technology uses standard full-thick (500-770 µm) silicon wafer which is

mechanically rigid when compared to organic substrates or thinned-interposers. The

CTE of silicon is 2.6 ppm/K while that of organic laminates (FR-4) is 14-70 ppm/K.

As a result, the warpage of a die-on-wafer assembly is only a few microns while that

of a die on thinned-interposer is >33 µm and a die on organic substrate is >200 µm

[MAH+13]. The reduction in the warpage helps in reducing the interconnect pitch

and dimensions. Moreover, Si is extremely robust with a higher Young’s modulus

(140 GPa) than steel, although it is brittle.

• The silicon substrate is also an excellent heat spreader with a thermal conductivity of

149 W/mK which is just 3X lower than Cu. This is 600X higher than typical organic

substrates like FR-4 with thermal conductivity of 0.25 W/mK [AG96]. This helps in

heat sinking and spreading allowing for a higher thermal budget in designing systems

for high-performance [PPB+18].

• Using silicon as the packaging material allows us to apply the mature fabrication

techniques developed for CMOS processing to easily achieve fine wiring dimensions

of ≤2 µm. Compared to the dimensions of an organic substrate, this is 50-100X
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smaller and comparable to on-chip wiring dimensions on the top metal wiring levels.

• Because of all the reasons mentioned above, dies can be assembled on the Si-IF at

≤10 µm interconnect pitch using direct metal-metal TCB. As a result, the I/O pad

real estate on the die is significantly reduced by 37X and 240X compared to interposer

and PCBs respectively, which is discussed in detail in chapter 7. Scanning electron

microscope (SEM) images of the Si-IF Cu-pillar interconnects, and µ-bumps and C4-

bumps on a die on the same scale are presented in Fig. 2.4. One can observe the

difference in the dimensions and pitch between the different interconnects. Moreover,

the Si-IF Cu pillars are 5 µm thick with only 1.5-2 µm protruding above the sur-

rounding dielectric. In contrast, µ-bumps are typically 20-30 µm tall with 10-20 µm

solder cap and C-4 bumps have >50 µm thick solder balls. In addition, the Si-IF

has Cu pillars on the substrate instead of the die which simplifies the die processing,

warpage, and improves die yield.

(a) (b)

Figure 2.4: Comparison of the Cu-pillar interconnects on the Si-IF with the µ-bumps and

C4-bumps on a die depicted to scale. (a) Si-IF with 475 Cu pillar interconnects at 10 µm

pitch. (b) Intel Stratix die with 44 solder-capped Cu pillar µ-bumps, and 10 C4-bumps for

assembly on the EMIB package (Picture source: [MSP+16]).
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• Direct Cu-Cu and Au-Au TCB allow for the integration of almost all dielet technolo-

gies such as Si and III-V dies with almost no change in the die manufacturing process.

III-V dies typically use Au pads and can directly be assembled on the Si-IF using

Au-Au TCB. Si-dies use Cu wiring levels but are terminated with aluminum (Al)

pads for solder bumping. Instead, Si-die processing can be stopped at the last Cu

wiring level before the Al layer and assembled on the Si-IF using direct Cu-Cu TCB.

Moreover, Si-IF technology eliminates the need for under bump metallurgy (UBM),

reducing fabrication overhead and costs [BL07].

• The Si-IF technology is also legacy compatible with traditional solder-based dies and

surface mount components. Fig. 2.5 shows a system of conventional dies and passive

components with solder pads assembled on the Si-IF. This was achieved using a thin

solder capping layer of 150 nm nickel (Ni) and 350 nm tin (Sn) on the Cu pillars.

Note that although this assembly achieves better performance than PCB integration,

it cannot exploit all the performance benefits offered by the Si-IF technology due to

pitch limitations on the die.

Figure 2.5: Micrograph of an assembly of two test chips with solder termination and discrete

surface mount capacitors on the Si-IF.

• The Si-IF uses a minimum wiring pitch of 2-4 µm which is considered coarse for any

mature Si technology such as 90 nm, or 65 nm. Therefore, the yield of the Si-IF
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is very high ≥90% [PPT+19]. To estimate the yield, consider the yield formula in

(2.1) [ITR07].

Y ield = (1 +
D0 ∗ Fcrit ∗ A

α
)−α (2.1)

where D0 is the defect density, Fcrit is the fraction of the critical area, A is the total

area, and α is the defect clustering factor.

The D0 for mature CMOS technologies is 2x10-3 cm-2 [ITR07] which includes all

the different layers. The individual layer defect density may be estimated by di-

viding the D0 with the number of layers. Moreover, the vast majority of these

defects occur in the transistor layer or the first few metal layers with fine pitch

wiring (<200 nm). Therefore, the coarse pitch on the Si-IF should be accounted

for by reducing the defect density in an appropriate proportion of minimum dimen-

sions as given in [SXSL17]. Therefore, a conservative estimate of the defect density

per layer in Si-IF is ≈1x10-5 mm-2. Further, because the critical interconnects are

between tightly spaced dies, the Fcrit is very small, typically 1%-10%. The value

of α is typically between 1 and 3 [ITR07]. So assuming an α of 2, and an effec-

tive area of 50,000 mm2 for 300 mm wafer and 5000 mm2 for a 100 mm wafer, the

yield of the Si-IF is estimated and presented in Table.2.1. The yield drops dramat-

ically if active devices are fabricated on the silicon for the case of wafer-scale SoC

integration [KJL15]. Apart from fabrication yield, assembly yield is more impor-

tant. Fine-pitch die-to-substrate assemblies have been demonstrated with high yield

(>99.99%) [MSP+16,CHT+17,Shi19b] and the Cu-pillar bonding is also expected to

be >99% with the limited data from the experiments in this work. With the use

of pre-tested known-good-dies (KGD) [Lau10], the overall system yield is improved

compared to monolithic SoCs. In addition, simple redundancy strategies can be im-

plemented to ensure functionality for the entire wafer-scale system on Si-IF.

• The concept of using Si as a substrate appears costly at first. However, one should

note that the majority of the cost comes from the processing of devices and fine fea-

tures on the Si rather than the substrate itself. For a passive Si substrate with coarse
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Si-IF

diameter

Critical Area Yield per

layer

Yield for 4

layers

(mm) (%) (%) (%)

100
1 99.95 99.80

10 99.5 98.02

300
1 99.5 98.02

10 95.18 82.07

Table 2.1: Estimated yield of passive Si-IF wafers.

pitch wiring, the costs are significantly low. Typical passive interposers cost $500-

$650 per 300 mm wafer of which only 22% comes from damascene processing [Cad07].

Therefore, 300 mm Si-IF should cost <$250 per wafer. This is also considerably

lower compared to the high-performance PCBs which typically cost a few hundred

to thousands of dollars for much smaller systems [BL07]. In addition, integrating

smaller dies with SoC-like wiring on the Si-IF will tremendously improve yield with

little or no penalty on performance. Some of the cost-benefit arguments presented

in [SXSL17, SAB+16] for chiplet based designs compared to SoCs are also valid for

systems on the Si-IF. However, the assembly cost of the Si-IF can be a considerable

amount because of the fine-pitch bonding. Although the fine-pitch bonding process

described in chapter 4 has a low bonding cycle time of ≤30 s, it is relatively high

(>10X) compared to coarse-pitch solder-based assembly processes. But eliminating

the package, UBM, and other processes in the Si-IF technology reduces the cost of

many processors by 30-50% [BL07]. Therefore, the impact of Si-IF technology on

cost is more pronounced for high-performance wafer-scale assemblies and is arguably

competitive even for low-performance or low-cost systems.
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2.2.2 Limitations and Challenges

Every technology comes with several challenges and certain limitations. Some of the major

challenges and limitations of the Si-IF technology are listed below. Although this list is

not exhaustive, it presents an overview of the different types of challenges and strategies to

solve them. A conceptual model of the overall system on the Si-IF is illustrated in Fig. 2.6.

The figure shows some of the key enablers in realizing a wafer-scale assembly on the Si-IF.

Figure 2.6: Schematic representing an overview of the Si-IF technology. Some of the key

enablers are highlighted including wafer-scale assembly, heterogeneous dies (III-V) on Si-IF

[SVJ+19], global communication network on Si-IF (NoIF) [VBI18], power delivery and heat

extraction using PowerTherm [AMV+19, SMA+19], external connectors [IJV19, DAJI20],

through wafer vias (TWVs) [LVH+19], and integrated passives [TI20].

• A wafer-scale system requires the underlying routing layers on the Si-IF to accom-

modate any design across the wafer. This is not possible by using a step-and-repeat

of reticle masks done today for 300 mm wafers. Stitching of different adjacent ret-

icle masks has been successfully implemented [Shi20], however, it cannot be scaled

to a wafer-scale because of the sheer number of masks required. Recently, mask-

less lithography techniques using a laser with digital micromirror device (DMD) are
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gaining traction for fabricating coarse features of >1 µm line/space [ZLW09]. These

techniques provide adaptable routing at wafer-scale which is required for Si-IF tech-

nology.

• The assembly process on the Si-IF requires a cleanroom environment which will be

elaborated in Chapter 4. This is not a typical requirement for package assemblies,

though increasingly common. In addition, the dielet and substrate handling must be

carefully monitored and pre-cleaning may be implemented to ensure good assembly

yield. Other challenges of fine-pitch dielet assembly will be discussed in section 4.5.4.

Moreover, unlike solder-based interconnects, direct metal-metal TCB interconnects

are not reworkable. If one dielet fails either during assembly or during runtime, it

cannot be physically replaced. This severely limits the repairability and serviceabil-

ity of the Si-IF system. It also tightens the assembly yield requirements to ensure

functionality. Therefore, redundancy schemes are essential that can re-route not only

around faulty links but also around faulty dies. Note that this limitation also exists

in interposer and 3D integration technologies that use solder-cap µ-bumps.

• Testing and probing of the ≤10 µm pitch die pads, to isolate the KGD, is challenging

because of both the pad dimensions (≤7x7 µm2) and the damage of pad morphology

[KAB+05]. Dedicated larger sacrificial pads may be used on the die for probing to test

limited functionality. Moreover, testing of the system after assembly is also difficult

because of the enormous number of interconnects. Therefore, novel built-in-self-test

(BIST) strategies must be implemented to significantly reduce the testing time.

• Assembly of conventional passive components on the Si-IF cuts into the compute area

as shown in Fig. 2.5, reducing the compute density. Integrated passives on the Si-

IF [TI20] will minimize if not eliminate the need for passive components. In addition,

these passive components should be also incorporated in supporting platforms instead

of just the Si-IF wafer.

• Apart from assembly and near-chip communication, long-reach communication, and
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communication with external systems are required for any technology. The use of a

lossy silicon substrate presents several challenges to long-reach communication that

will be discussed in chapter 7. Authors in [VBI18] discuss some of the novel protocols

and integration strategies that need to be adopted for global communication on the

Si-IF. Methodologies and processes for radio frequency (RF) communication compat-

ibility on the Si-IF were discussed in [DAJI20]. In addition, an external connector

interface to the Si-IF systems must be developed that is compatible with conventional

I/O connectors. These connectors should not only serve as electrical links but also

sustain thermo-mechanical stresses when interfacing with the silicon substrate.

• Power delivery and heat extraction are arguably one of the major challenges of wafer-

scale systems. With the increase in compute density, the power density also in-

creases to >1 W/mm2, reaching total power values exceeding 50 kW for a 300 mm

wafer [AMV+19,SMA+19]. This amount of power cannot be delivered by just periph-

erical pads due to high voltage (IR) drop and the corresponding I2R losses. There-

fore, power must be delivered from the backside using through-wafer-vias (TWVs)

as demonstrated in [LVH+19]. Unlike TSVs that are used for both signal and power

transfer, TWVs are primarily used for power delivery. Accordingly, they are at much

coarser pitch (100 µm diameter and 200 µm pitch) and traverse full wafer thick-

ness (500-700 µm) [LVH+19]. Moreover, novel power delivery structures, similar

to [AMV+19], need to be developed to deliver such large amounts of power. In tradi-

tional packages, a large heat sink is installed on the chip that helps in spreading the

heat and reducing the heat flux density. However, for a compact system on the Si-IF,

the heat flux densities are much higher and conventional forced-air or liquid-based

cooling techniques are insufficient. As a result, novel heat extraction strategies, such

as two-phase cooling in [SMA+19] must be implemented to extract such enormous

heat flux densities.

• Since the dies are package-less, and no underfill or molding compounds are used dur-

ing assembly, a system-level passivation scheme is vital. This passivation should not
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only protect the dies and the Si-IF, but also passivate the fine-pitch metal-metal inter-

connects. Some of these passivation techniques were discussed in [SHI19a, SSYI20].

In addition, several other reliability concerns, particularly at the transition of the

Si-IF to other structures, must be studied carefully. Further, although the silicon

substrate has high yield strength, it is brittle and requires mechanical support for

practical use. Some of the above-mentioned structures could also serve as mechanical

support for the assembly.

2.3 Scope of this Work

As mentioned earlier, there are several key enablers for successful wafer-scale assembly of a

high-performance system on the Si-IF including the substrate technology, assembly process,

power delivery, heat extraction, near-chip communication on the Si-IF, long reach commu-

nication strategies on the Si-IF, and novel wafer-scale systems and architectures. Each

of these enablers has its unique solutions and challenges. Addressing all the issues would

require considerable human resources, facilities, and time which is beyond the scope of this

dissertation. Therefore, this dissertation focuses on certain aspects of the Si-IF technology

that are considered fundamental. These include developing the fabrication techniques for

the Si-IF substrate, developing the die-to-substrate assembly process, characterization of

near-chip communication i.e. the SuperCHIPS protocol, and finally, demonstration of a

functional system on the Si-IF platform integrated using the SuperCHIPS interface. This

work is a first step in demonstrating the technological viability and the performance ad-

vantages of the Si-IF technology.
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CHAPTER 3

Si-IF Fabrication

The fundamental requirement for an advanced packaging technology is the availability of

a highly interconnected fine-pitch substrate. In this chapter, the fabrication process of the

Si-IF substrate is described and the results of the fabricated Si-IF samples are presented.

3.1 Fabrication Process Flow

The Si-IF substrate fabrication adopts the already established CMOS BEOL fabrication

techniques with Cu wiring levels in SiO2 dielectric layers. The wiring levels are fabricated

using a dual damascene process [Gup09]. The wiring levels on the Si-IF are comparable to

the fat-wiring levels on the die that have relatively larger features for CMOS processing.

This simplifies the fabrication process of the Si-IF. Also, the Si-IF is completely passive

with no transistors, significantly reducing the fabrication steps. The fabrication process

flow of the wiring levels in Si-IF is shown in Fig. 3.1. The fabrication process of the wiring

levels is described below.

Step 1: The silicon substrate is deposited with a 500 nm of SiO2 using thermal oxidation

in a furnace.

Step 2: SiO2 of thickness 2.5 µm is deposited using a plasma-enhanced chemical vapor

deposition (PECVD) process. Subsequently, a 250 nm silicon nitride (Si3N4) is de-

posited on top that acts as a polish stop layer for consequent steps.

Step 3: The Si-IF is lithographically patterned with the mask of the wiring level using a

photoresist. Later the SiO2 dielectric layer is etched (2 µm) using a dry etch process

26



Figure 3.1: BEOL fabrication process flow of wiring layers on the Si-IF.

to form trenches for the wiring level. Consequently, the photoresist is stripped. For

the subsequent wiring levels after the first layer, vias should also be etched following

the trench (dual damascene process). The vias are similarly patterned and etched

through the trenches to reach the metal layer below.

Step 4: A blanket titanium/copper (Ti/Cu: 50 nm/250 nm) layer is sputtered to act as a

seed for electroplating. A barrier layer such as tantalum nitride or titanium nitride

may also be added to reduce Cu diffusion into the dielectric.
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Step 5: Cu metal is deposited using electroplating to fill the trenches.

Step 6: The plated Cu metal is polished using a chemical mechanical polishing (CMP)

process to remove the excess metal and planarize the surface. The density of the

wiring pattern influences the planarity, dishing, and erosion of the CMP process.

Step 7: A thin (40 nm) layer of Si3N4 is deposited on top to protect the Cu wires from

oxidation in subsequent steps.

Step 8: A SiO2 dielectric layer of 4 µm is deposited using PECVD for the next wiring

level. The dielectric layer can be planarized using CMP to minimize the variations

introduced by the wiring layer below. Finally, similar to step 2, a 250 nm Si3N4 polish

stop layer is deposited.

Step 9: The process can be repeated for subsequent metal layers for up to the maximum

number of layers that the technology allows. In the work, a maximum of two wiring

levels were demonstrated.

3.1.1 Pillar Fabrication

The top-most metal layer is terminated with Cu pillars that act as interconnects for bonding

to dies. The planarity of the Cu pillars is extremely crucial for the TCB process which will

be elaborated in chapter 4. However, since the pillars connect to the I/O and power pads

on dies which are spatially sporadic, the pillars do not conform to the density requirements

of a typical CMP process. This results in significant non-uniformity and dishing that leads

to some pillars not contacting the pads during bonding. Ideally for the CMP process, if the

pillars are uniformly populated across the wafer, the best planarity is achieved. Therefore,

the traditional damascene process [Gup09] was modified to include “dummy pillars“ that

do not contact the metal layer below. The process flow for pillar fabrication is shown in

Fig. 3.2 and described below.

Step 1: A 5 µm thick SiO2 and 250 nm Si3N4 layer is deposited on the top of last wiring
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Figure 3.2: Fabrication process flow of fine-pitch Cu-pillars on the Si-IF.
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layer.

Step 2: The dielectric is lithographically patterned using photoresist with the mask of the

pillars that need to connect the die to the wiring layer below, called “real pillars”.

Step 3: The dielectric layer is etched to reach the wiring below and the photoresist is

stripped.

Step 4: Photoresist is again spin-coated on top of the Si-IF and it is lithographically pat-

terned with the mask of “dummy pillars”.

Step 5: Subsequently, the dielectric layer is etched only half-way, i.e. 2.5 µm in order

to prevent contacting the wiring layer below. Therefore, the dummy pillars do not

connect electrically to wiring layer below. Consequently, the photoresist is stripped.

Step 6: A blanket Ti/Cu (50 nm/250 nm) layer is sputtered to act as a seed for electro-

plating.

Step 7: Cu metal is deposited using electroplating to fill the trenches and form the pillars.

Step 8: The plated Cu metal is polished using the CMP process to remove the excess metal

and planarize the surface. In this step, the density requirements for CMP are satisfied

because of the dummy pillars.

Step 9: At this point, there is an option to remove the dummy pillars. Sometimes, the

dummy pillars can cause unwanted shorts on the dies if not designed appropriately.

Moreover, the dummy pillars contribute to the effective bonding area of the die on

the Si-IF which in turn restricts the appliable bonding pressure. Therefore, a block

mask is used to block the “real pillars” using photoresist, and the dummy pillars are

removed using an ammonium per sulfate-based Cu etchant. Later, the photoresist is

stripped to expose the “real pillars”.

Step 10: The dielectric layer is then recessed by 1.5 µm using a dry etch process to raise

the Cu pillars above the Si-IF surface. This helps in bonding and accommodates
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for any non-uniformity, and warpage of the dies. Moreover, the recess is tapered as

shown in Fig. 3.3 & Fig. 4.9 to ensure that the Cu pillar is enclosed with a dielectric

layer for passivation.

Figure 3.3: Schematic of the Cu-pillars exposed using a tapered recess of the surrounding

dielectric and capped with a Ti/Au layer.

Step 11: Further, at this step, there is an option to passivate or cap the Cu pillars with

Ti/Au (20 nm/200 nm) layer. This is achieved with a lift-off process using the same

mask used for the “real pillars”. During exposure, bias is added to ensure that the

Ti/Au pattern is larger than the Cu pillar diameter for overlay compensation as seen

in Fig. 3.3 & Fig. 4.9. The Ti/Au layer is essential for direct Au-Au bonding, which

will be elaborated in chapter 4, particularly for assembling III-V dies on the Si-IF.

Step 12: Also, the previous step can be replaced with Ni/Sn (150 nm/350 nm) layer for

compatibility with legacy dies and surface mount passives with solder bumps.

3.2 Results

Each of the fabrication steps mentioned above has been carefully optimized and the pro-

cesses were controlled to ensure repeatability and robustness. The entire Si-IF fabrication

has been developed at UCLA using the cleanroom research facilities and all the Si-IF

samples presented in this dissertation were fabricated at UCLA. The micrographs of a fab-
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ricated test site on the Si-IF is shown in Fig. 3.4 (a). Fig. 3.4 (b), (c) show the fabricated

1st Si-IF wiring layer, and the Cu pillar layer respectively. Also, the Cu pillars capped with

Ti/Au are shown in Fig. 3.4 (c). In addition, alignment marks are required to precisely

align the dies to the Si-IF which will be elaborated in chapter 4. The fabricated alignment

marks are shown in Fig. 3.4 (d).

The maximum number of layers demonstrated was two wiring layers and a pillar layer.

The minimum dimensions achieved within the limitations of UCLA facilities were a wire

width of 1.5 µm and a spacing of 1.5 µm. The pillars are 4-5 µm in diameter at 10 µm

pitch. The surface roughness of the Cu pillars, which is a critical parameter for the TCB

assembly, was measured using an atomic force microscope (AFM). The average root mean

square (RMS) roughness of the Cu surface was 3.0 nm (±1.9 nm) [BJP+17].

3.2.1 Design Manual

A design manual for the Si-IF technology was developed with various metallization options.

It describes the physical design information and the necessary design layers for the Si-

IF fabrication. It contains the physical design rules for different metal layers that are

manufacturable using the UCLA fabrication facilities. Also, it includes the recommended

alignment marks for both the dies and the Si-IF. The key features of the design manual

include six options of metallization, availability of two metal thicknesses, diagonal routing

on all the layers, and compatibility with traditional CMOS technologies like 65-90 nm nodes.

The important specifications in the design manual include minimum wire width of 1.5 µm,

a wire spacing of 1.5 µm, maximum wire width of 24 µm, via dimension of 2x2 µm2,

and overlay tolerance of <0.5 µm. A couple of metallization options are illustrated in

Fig. 3.5 (a) & (b) showing four wiring levels with 2 µm thickness, and two wiring levels

with 4 µm thickness respectively. Further, the design manual also includes the electrical

characteristics of the wiring levels based on both simulated and experimentally measured

data. A corresponding Design Rule Check (DRC) deck was developed for the verification

of the design layout.
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(a) (b)

(c) (d)

Figure 3.4: Micrographs of fabricated test sites on the Si-IF. (a) Micrograph of a fabricated

test site on the Si-IF wafer with 2 wiring levels and a pillar layer. (b) Fabricated 1st wiring

level showing minimum wiring line/space of 1.5 µm. (c) Micrograph of 10 µm pitch Cu-

pillars (top), and Cu-pillars terminated with Ti/Au passivation (bottom). The dummy

pillars were etched and removed. (d) Complementary alignment marks.
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(a) (b)

Figure 3.5: Schematics of metallization options on the Si-IF. (a) Four 2 µm thick wiring

levels and a pillar level. (b) Two 4 µm thick wiring levels and a pillar level.

A dielet termination standard is also proposed for compatibility with the Si-IF inte-

gration. The pads on the dielets must be planar (flat) with the top surface of the dielet

and they must be either Au or Cu terminated as shown in Fig. 3.6 (a). In the case of Cu

termination, the pads must be passivated with a Si3N4 thin film (50-200 nm). Note that the

wiring metal stack in CMOS dies is made of Cu and is typically terminated with aluminum

(Al) pads. The Al pad layer is used for traditional wire-bonding or solder bumping but

is not a fundamental necessity. Therefore, the CMOS dies can easily be terminated with

the last Cu wiring layer instead of the Al layer without changing the process flow. Dies

and passives with solder bumps can also be integrated on the Si-IF but require more than

10 µm interconnect pitch. Therefore, the solder bumps are bonded to multiple fine-pitch

Cu-pillars on the Si-IF. The dies should also include alignment marks for precise assembly

on the Si-IF. The alignment schemes are illustrated in Fig. 3.6 (b), where complementary

alignment marks are placed on the diagonally opposite corners of the die and the corre-

sponding marks are designed on the Si-IF. These alignment marks are used during assembly

to precisely align the die to the substrate within ≤1 µm accuracy.
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(a)

(b)

Figure 3.6: (a) Schematics of the dielet termination standards. The dies may be terminated

with Cu or Au pads. (b) Die alignment scheme for the assembly on Si-IF.
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CHAPTER 4

Fine-pitch (≤10 µm) Assembly

The need for a fine-pitch assembly was introduced in chapter 1. In this chapter, we will

take a closer look at the challenges of achieving ≤10 µm pitch interconnects in traditional

packaging using solder-based interconnects. Further, the solder-less direct metal-metal

TCB processes developed in this work are presented and sub-10 µm interconnect pitch

assemblies are demonstrated.

4.1 Challenges of Fine-pitch Assembly

Over the past decade, there has been a lot of progress in reducing the die-to-substrate

interconnect pitch. Today, conventional packages use C4 bumps at 130 µm pitch [MSP+16]

to attach a die and boards use BGA bumps at 400-1000 µm pitch [Int] for package assembly.

The major limitation in reducing this pitch is due to the use of solder. Reducing the pitch

corresponds to a reduction of the solder volume. This results in the complete consumption

of solder by the UBM which leads to intermetallic compounds (IMCs) [KSB13]. These IMCs

are extremely brittle and cause major reliability concerns. On the contrary, if the solder

volume is left unchanged, reducing the pitch leads to shorting of adjacent bumps [KSB13].

Moreover, the organic laminate warpage can be several tens of microns which is also a major

limitation in reducing the solder volume and consequently, the bump pitch [MAH+13].

Rigid silicon interposer technology was able to reduce the bump pitch to 40-55 µm by

using solder-capped Cu pillars [LLKK18, CHT+17]. The Cu pillar is tall (≥20 µm) and

acts as the UBM to limit solder consumption.

In addition, different assembly techniques were developed to achieve fine-pitch bonding.
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Solid Liquid Inter-Diffusion (SLID) process between metal (Cu) and solder (Sn) has been

proposed in [HHK+14]. However, as mentioned earlier, IMCs are formed in this process.

During cyclic loading, these joints are subjected to high thermo-mechanical stresses, which

cause joint failures due to fatigue cracking. TCB of solder-capped Cu pillars has been widely

adopted to bond the die to a substrate coated with non-conductive paste (NCP) [GBO+11].

Temperature and pressure are applied on the die which breaks the NCP and forms the bonds

with the pads on the substrate. However, this process is hard to control, because, if the

bonding pressure is low, no contact is established, while high bonding pressure leads to

shorts [GBO+11]. Using these techniques, the interconnect can be reduced to sub-40 µm,

however, as argued in chapter 1, systems today require on-chip like interconnect pitch (1-

10 µm) which is extremely hard to achieve using solder. To circumvent the problems of

solder-based interconnects, solder-less direct metal-metal bonding was proposed which is

discussed in the next section.

In addition to the assembly process, fine-pitch assembly also requires precision alignment

of a die to the substrate. Today, state-of-the-art tools achieve ≤2 µm accuracy (3 σ).

However, reducing the interconnect pitch to ≤10 µm requires sub-micron accuracies which

is challenging given the mechanical vibrations, temperature profile, and pressure profile of

the bond-heads. Testing of bonded assembly is also a major challenge because of the large

number of connections [KAB+05]. Also, KGD testing without damaging the fine-pitch pads

becomes extremely challenging and testing may need dedicated sacrificial pads.

4.2 Solder-less Thermal Compression Bonding

In solder-less TCB, two nominally flat metal surfaces are joined together using a solid-

solid diffusion process instead of a molten solder attach. The bonding is performed at

elevated temperatures, typically a homologous temperature of 0.3-0.5, with applied pressure

on the interface. The solid-solid diffusion process has been extensively studied in the

past [DW82, DW84, MGY+12]. Several mechanisms of diffusion were proposed including
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plastic deformation of surface asperities, grain boundary diffusion, surface diffusion, and

creep. Different mechanisms dominate depending on the material properties such as surface

roughness, yield strength, and bonding parameters such as temperature, pressure, and

time. To summarize the TCB process, when the two mating metal surfaces are brought in

contact, initially, the asperities on the surfaces touch. By applying force, these asperities

plastically deform because the effective pressure is higher than the yield strength due to

the low effective contact area. This forms the initial bond between the metal surfaces.

As this process continues, the percentage of bonded area increases, and the asperities are

flattened. Accordingly, the effective pressure is reduced below the yield strength. At this

point, depending on the temperature and pressure, the surface and grain boundary diffusion

mechanisms continue to close the voids as time progresses. Power-law creep deformation

typically occurs at higher temperatures and longer bonding times [DW82]. In the TCB

process developed in this work, the bonding conditions compel the dominant mechanism to

be plastic deformation, followed by a combination of surface and grain boundary diffusion

[GSHB+17]. The essential requirements for successful TCB are listed below.

1. Extremely flat mating surfaces with low surface roughness.

2. Pristine surfaces with no surface oxidation or surface contamination.

3. High global planarity of the samples, die or wafer, is also essential.

These surface properties affect the bonding parameters such as temperature, pressure,

and bonding time. Moreover, these bonding parameters are also correlated providing a

process design space where one parameter can be traded for another. In the Si-IF tech-

nology, flat mating surfaces are achieved using the established CMP process to planarize

Cu with a surface roughness of 3.0 (±1.9) nm rms [BJP+17]. In addition, global planarity

is achieved using uniform pillar density with dummy pillars as discussed in section 3.1.1.

Moreover, the global planarity requirements are slightly relaxed for die-to-wafer assembly

since planarity has to be ensured only across the die area. However, achieving pristine

mating surfaces is challenging.
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Ideally, for die-to-wafer assembly, direct Cu-Cu bonding is desirable as Cu is the facto

metal in a die metal stack and has excellent electrical and thermal properties. Consequently,

using fine-pitch Cu-Cu interconnects would seamlessly attach the dies to the Si-IF like vias

in a metal stack. However, the Cu surface is highly prone to the formation of surface

oxides (e.g. Cu2O, CuO, etc.) even under normal atmospheric conditions, making direct

Cu-Cu bonding extremely challenging. Furthermore, the rate of oxidation increases with

the increase of temperature and time that can be empirically modeled as shown in (4.1)

[BJP+17]. It indicates that at bonding temperatures, the Cu surface oxide thickness can be

several tens of nanometers, while even at room temperature ≈1 nm thick oxide is formed

within 1 hr.

Oxide thickness (Å) = 0.0076 ∗ exp(0.022 ∗ T ) ∗ log(t) (4.1)

where T is temperature in Kelvin, and t is time in minutes.

Therefore, today, Cu-Cu bonding is reliable only in wafer-to-wafer TCB processes in a

controlled environment such as vacuum or forming gas, with relatively high interface tem-

peratures (300-400 oC), and large bonding times (15-60 min) [KC12, TLA+12, TWB+16,

CCLT15]. These approaches, however, are not appropriate for die-to-substrate attachment

in practice, primarily because, creating a vacuum in a large machine is difficult, and main-

taining an inert environment requires extremely high flow rates (1000-1500 L/min) of gases.

Further, the throughput of these processes is extremely low for dielet assembly, inflating

the assembly costs. Other approaches such as hybrid bonding [GMF+18] are also used for

wafer-to-wafer bonding that are very difficult to extend to die-to-wafer bonding which is

discussed later.

4.2.1 Previous Work on Cu-Cu Bonding

Recently, significant research has been directed towards achieving direct Cu-Cu bond-

ing driven primarily by wafer stacking and 3D integration. Several different passivation,

pre-treatment, and in-situ treatment techniques were investigated for direct Cu-Cu bond-

ing [KC12, TLA+12, TWB+16, CCLT15]. For most wafer-wafer bonding applications, the
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Cu surfaces must be pre-treated and transferred to a vacuum chamber for bonding. Alter-

natively, the Cu surfaces can be passivated to prevent oxide formation using self-assembled

monolayers (SAM) like hexaethiol [TLA+12]. These monolayers can be desorbed at ele-

vated temperatures and bonding was demonstrated in an inert environment. Further, Cu-

Cu bonding was also demonstrated using argon (Ar) plasma to clean the Cu surface, called

surface activated bonding (SAB). In addition, Ar/Hydrogen (H2) and Ar/Nitrogen (N2)

plasmas were also shown to clean the surface and form copper hydrides and copper nitrides

respectively which passivate the surface, preventing further oxidation [TWB+16,CCLT15].

A 6 µm pitch Cu-Cu wafer-to-wafer bonding was demonstrated using a formic acid in-situ

treatment in an enclosed chamber in [XWC+16]. However, these techniques with a vac-

uum or controlled environment work only for wafer-wafer bonding and cannot be easily

extended to die-to-substrate attachment where each die must be sequentially aligned and

bonded. Also, as mentioned earlier, having such a bonding system entirely in a controlled

environment is not practical.

Ultrasonic bonding was proposed for die-to-wafer bonding that relies on the vibration

energy to break the Cu oxide and clean the Cu surface during the bonding process [ANT15].

Temperature may also be applied simulateneously for improving bond quality (thermosonic

bonding). However, achieving fine pitch using this process is difficult because it requires

tall Cu pillars >20 µm. Moreover, the bonding yield is low, and the bonding interfaces were

shown to consist of microscale voids. Authors in [RRSST20] have proposed a thermosonic

bonding with low pressure of <6 MPa and process times of <0.5 s as a tacking process for

dielet assemblies on a substrate followed by a gang TCB. But the demonstrated Cu pillars

were 100 µm in diameter and scaling of this process needs further investigation.

Hybrid bonding was also successfully demonstrated by [GMF+18]. In this process,

two dielectric surfaces are first treated with a plasma activation process and subsequently

bonded. The plasma activation process is used to leave dangling hydroxyl groups on the

surface that form strong covalent bonds with the corresponding dangling bonds on the

mating surface. After dielectric bonding, the assembly is annealed for the Cu pads to
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expand and form bonds by a solid-solid diffusion process. Unlike previous techniques, this

process does not require pressure and therefore, can potentially have higher throughput

[GMF+18]. But it requires extremely tight process control to ensure extremely flat mating

dielectric surfaces, and the control of the plasma treatment and attachment processes is

hard for practical implementation of die to wafer assembly.

Authors in [YAS14], have demonstrated Cu-Cu bonding using a formic acid pre-treatment

method to clean the Cu surface. The samples were pre-aligned and placed in an N2 inert

chamber and the formic acid was purged just prior to bonding. This approach showed good

Cu-Cu bond quality. However, the cleaning time was 10 min which is substantial for die-

to-substrate attach, and therefore is detrimental to the process throughput. Furthermore,

the loading/unloading of the die and substrate from the chamber for alignment is tedious

and not practical adding to assembly time.

4.3 Au-capped Cu Thermal Compression Bonding

In this work, the first approach to prevent Cu surface oxidation was to passivate both the

Si-IF Cu pillars and the die Cu pads with a thin film of Ti/Au (20 nm/200 nm). The Ti

layer acts as an adhesion layer and the Au acts as the mating surface for TCB. A lift-off

process was used to deposit the Ti/Au layer as described in chapter 3. Since Au is an inert

metal and free of native oxides, it does not oxidize during the bonding process. As a result,

direct Au-Au TCB is successfully achieved in ambient conditions. Moreover, Au has good

electrical conductivity next to Cu and has a lower yield strength compared to Cu which

aides the TCB process.

The samples are first sputter cleaned with low power (<40 W) Ar-plasma for 3 min

to remove any surface contamination. A state-of-the-art die-to-wafer bonder by Kulicke &

Soffa (K&S), APAMA was used to bond the dies to the Si-IF. The bonder consists of a

bond-head that aligns and bonds the die by applying temperature and pressure. It also

consists of a chuck to hold the Si-IF, and a double-sided camera to align the die to the Si-IF.
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The alignment scheme was illustrated earlier in Fig. 3.6 (b). The bond-head can be rapidly

heated (up to 380 oC) and cooled while the chuck is maintained at a steady temperature

of 150 oC because of the large thermal mass. The bonding process is described below.

Step 1: Both the die and the Si-IF temperatures are maintained at 150 oC. The double-

sided camera detects the alignment marks shown in Fig. 3.4 (d) and precision aligns

the die to the Si-IF.

Step 2: The bond-head is lowered to contact the die with the Si-IF. Concurrently, a force

is applied that is equivalent to 100 MPa of pressure and the die temperature is raised

to 350 oC. This corresponds to an interfacial bonding temperature of 220-250 oC.

Step 3: Finally, after the bonding process, the bond-head is removed and cooled while the

next die is transferred for subsequent bonding.

The schematic of the process and the tool setup are shown in Fig. 4.1 (a) & (b) respec-

tively. The process parameters are presented in Table 4.1. Using this process, direct Au-Au

bonding in ambient environment was demonstrated with actual bonding time of 3 s. This

corresponds to a bonding cycle time of ≈6 s. Note that the process parameters depend

on the properties of the samples as mentioned earlier and must be optimized accordingly.

After sequential bonding of individual dies, the Si-IF can be annealed at 200-300 oC for a

few hours with a slight pressure applied (<1 MPa) to improve the bond quality by allowing

diffusion. However, the experimental results presented here do not include this anneal step.

This process allowed for TCB under ambient conditions for fine-pitch (≤10 µm) inter-

connects. In addition, this method of passivation is effective, and the interface contact

resistance of Cu/Ti/Au layers is insignificant (section 4.5.3). Moreover, this process is ef-

fective to assemble III-V dies (e.g. indium phosphite, gallium arsenite, etc) which typically

have Au pads [SVJ+19].
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(a)

(b)

Figure 4.1: (a) Schematic of the Au-Au TCB process. (b) TCB using Kulicke & Soffa

(K&S) APAMA bonder tool.
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Process parameters Value

Substrate temperature 150 oC

Bond-head temperature 350 oC

Bonding pressure 100 MPa

Bonding time 3 s

Bonding cycle 6 s

Chamber environment Ambient (Air)

Table 4.1: Process parameters for direct Au-Au thermal compression bonding.

4.3.1 Limitations

Although this assembly process has several advantages stated before, it requires additional

processing of the dies which do not have Au pads (especially CMOS). CMOS foundries

do not use Au finishing and therefore, the Au layer must be added after dicing which is

difficult and impractical. Alternatively, die wafers may be received and processed which is

logistically cumbersome. Moreover, the shear tests of the bonded dies revealed failures at

the interface of Ti and Cu instead of the Au-Au bonding interface as shown in Fig. 4.7 (a),

illustrating poor adhesion of the thin films to Cu.

4.4 Direct Cu-Cu Thermal Compression Bonding

Earlier, we established the need for direct Cu-Cu bonding for ≤10 µm fine-pitch assembly

of dies on a wafer. It simplifies the CMOS die handling and assembly process compared

to the Au-Au bonding process in the last section. However, as described before, Cu-Cu

requires a reducing environment to ensure reliable bonding. To address this challenge,

a novel approach of local in-situ treatment of the Cu bonding surfaces using formic acid

vapor was developed [JBM+19]. The formic acid vapor reduces the Cu-oxides and cleans

the Cu surfaces locally below the bond-head during the bonding process. Accordingly, a
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die-to-wafer assembly was achieved without any vacuum or controlled environment. The

details of the mechanism, tool setup, and the bonding process are presented below.

4.4.1 Tool Setup

The APAMA tool was modified in collaboration with K&S to include the formic acid

treatment system. The tool setup is shown in Fig. 4.2 (a). The formic acid vapor is

obtained by passing a carrier gas (N2) through a bubbler containing formic acid (HCOOH

95%) solution. As a result, a saturated formic acid vapor is obtained at the output of the

bubbler which is then transferred to the bond-head. The percentage of formic acid in the

carrier gas can be altered by diluting with N2 gas. The bond-head was modified to include a

shroud consisting of three channels as shown in Fig. 4.2 (b). The innermost channel is used

to purge the formic acid vapor that cleans the Cu surfaces locally just prior to bonding.

The middle channel provides vacuum and acts as an exhaust for the formic acid vapor, and

other reaction products during the bonding process. The outermost channel delivers N2

as a shielding gas around the shroud. This helps contain the formic acid vapor and other

products inside the target area, eliminating the need for any controlled environment in the

bonding chamber.

The flow rates in these channels depend on the geometric properties of the samples as

well as the process setup. The flow rates were optimized to lower the bonding cycle time

and are adjusted such that the shielding gas has a higher flow than the exhaust, which in

turn has a higher flow than the formic acid vapor. This ensures that the formic acid vapor

and reactant products are exhausted without dispersing into the surrounding chamber.

The flow rates of different gases are presented in Table.4.2. These parameters depend on

the die and substrate morphology, and other assembly parameters.
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4.4.2 Mechanism

The reaction of formic acid (HCOOH) with Cu was extensively investigated by several

researchers [Sch12, YHB08, WL99]. A list of chemical reactions of formic acid vapor with

oxidized Cu surface is given in (4.2)-(4.5). This is not an exhaustive list but represents the

(a)

(b)

Figure 4.2: (a) Schematic of the tool setup where the N2 gas is passed through a bubbler

containing formic acid to provide the formic acid vapor. (b) Top view of the bond-head

shroud showing the three channels for shielding N2 gas, exhaust, and formic acid vapor.
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Gas Flow-rate (L/min)

N2 through bubbler containing

formic acid

2.5

Exhaust 4

Shielding N2 7

Table 4.2: Flow-rates of various gases in the formic acid vapor treatment setup.

major mechanisms through which the formic acid vapor reduces the surface oxides.

2 HCOOH(g) + CuO −−→ Cu(HCOO)2 + H2O(g) (4.2)

2 Cu(HCOO)2 −−→ Cu + 2 CO2 + H2(g) (4.3)

HCOOH(abs) −−→ HCOO(abs) + H(abs) (4.4)

CuO + 2 H(abs) −−→ Cu + H2O(g) (4.5)

In gaseous form, the formic acid vapor reacts with the Cu-oxide (CuO) layer and forms

Cu-formate (Cu(COOH)2) and water vapor according to (4.2) at temperatures between

100-150 oC. This forms a thin Cu-formate layer that covers the bare Cu surface. When

the temperature of the surface is raised above 200 oC, the Cu-formate layer dissociates into

carbon dioxide and hydrogen gas, while leaving pure Cu metal on the surface (4.3). Further,

the formic acid vapor can be absorbed on the Cu surface and dissociated into formates and

hydrogen radicals as shown in (4.4), which is further accelerated by the presence of oxygen

activation sites on Cu. These hydrogen radicals also reduce the Cu-oxides as shown in

(4.5). These processes together clean the Cu surface of any native oxides and help the Cu-

Cu TCB process in ambient conditions. Although most of these reactions are exothermic,

they need high activation energy and therefore require higher temperatures (>200 oC) to be

effective [GJB74]. At lower temperatures, the Cu-formates on the surface do not dissociate

and hinder the bonding process.
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4.4.3 In-situ Formic Acid Treatment Process

Similar to the Au-Au TCB process, the samples were pre-treated with low power (<40 W)

Ar-plasma for 3 min to remove any surface contamination. As previously mentioned, the

formic acid vapor reacts with the Cu-oxide layer and forms Cu-formate which dissociates at

elevated temperatures (>200 oC) rapidly. Heating the die on the bond-head to reach these

temperatures is easily feasible. However, raising and maintaining the temperature of the

entire substrate region (diameter >300 mm) is technologically challenging. Further, since

the chamber is at atmospheric pressures, the Cu pillars on the substrate (Si-IF) will oxidize

considerably if the chuck is held at high temperatures. Therefore, a novel approach was

implemented where the substrate is held at lower temperatures (≈100 oC) and the die is

used to transfer heat conductively to the substrate during the bonding process [JBM+19].

This helps dissociate the formates locally under the die. The steps involved in the bonding

process are listed below.

Step 1: Both the die and the Si-IF temperature are maintained at 100 oC. The double-

sided camera detects the alignment marks shown in Fig. 3.4 (d) and precisely aligns

the die to the Si-IF.

Step 2: As the camera retracts, the formic acid vapor valve is triggered. The die is lowered

to contact the substrate with a low force (<1 MPa) and consequently, the bond-head

temperature is raised to 380 oC. This establishes pad-to-pillar contact and the heat is

transferred from the die to the Si-IF. The interface temperature reaches 200-240 oC

which dissociates the Cu-formates that are being formed. This step lasts for 5 s.

Step 3: The bond-head is lifted up for 3 s to allow for the residual formic acid vapors and

other reaction products to be sucked up the exhaust. This leaves pristine Cu surfaces

both on the die and the Si-IF for the subsequent TCB.

Step 4: Once the oxides are reduced locally from the die pads and Si-IF pillars, the die is

lowered to contact the Si-IF and conventional metal-metal TCB is implemented by

applying a bonding pressure of 100-250 MPa for up to 10 s.
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Step 5: Finally, after the bonding process, the bond-head is removed and cooled for the

placement of the next die.

(a)

(b)

Figure 4.3: (a) Schematic of the direct Cu-Cu TCB assembly process illustrating the steps:

Formic acid trigger, Oxide reduction, and TCB. (b) Die position, temperature, and pressure

profile during the assembly process.

The schematic of the assembly process illustrating the steps is shown in Fig. 4.3 (a)

and the profile of the process parameters during bonding are presented in Table 4.3 and
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illustrated in Fig. 4.3 (b). Using this process, direct Cu-Cu bonding at ≤10 µm pitch was

demonstrated with optimized bonding times of <10 s and corresponding cleaning times

of <10 s. This corresponds to a total bonding cycle time of <30 s which is a significant

improvement in throughput for a TCB process, although considerably longer than solder-

based attachment processes. Note that these times by themselves are unacceptably high

and efforts are needed to reduce these times which is discussed in section 4.5.4. The selec-

tion of these process parameters is highly dependent on surface morphology, i.e. roughness

and planarity, and material related factors such as rigidity, surface oxidation, etc. Further-

more, the force and thermal budgets for the TCB process are dictated by the underlying

applications.

Process parameters Value

Substrate temperature 100 oC

Bond-head temperature 380 oC

Touch-down pressure <1 MPa

Bonding pressure 100-250 MPa

Cleaning time 10 s

Bonding time 10 s

Bonding cycle <30 s

Chamber environment Ambient (in-situ formic acid

vapor treament)

Table 4.3: Process parameters for direct Cu-Cu thermal compression bonding.

4.5 Results

The solder-less metal-metal (Au-Au and Cu-Cu) TCB process is essential for fine-pitch

(≤10 µm) integration on the Si-IF. The results of both the Au-Au TCB and direct Cu-Cu

TCB processes are presented in this section.
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4.5.1 Test Vehicles

Both the TCB processes were developed using daisy chain samples that form a continuous

electrical link when the die is attached to the Si-IF as illustrated in Fig. 4.4. The Si-IF

consists of 10 µm pitch Cu-pillars with 5 µm diameter that are alternatingly connected using

a single wiring level below. Similarly, the die consists of Cu pads that form a daisy chain

along the horizontal direction when attached to the Si-IF. The Si-IF also consists of probe

pads (80x80 µm2) between the dies for testing the electrical connectivity. The Si-IF and

dies were fabricated according to the process in chapter 3 and are shown in Fig. 4.5 (a) & (b)

respectively. In addition, for the initial Au-Au TCB process development, the Cu-pillars

on the Si-IF and the Cu-pads on the die were capped with Ti/Au thin layer as shown in

Fig. 4.5 (c). Also, the daisy chains can be extended to include multiple dies in series as

shown in Fig. 4.4. The inter-dielet spacing between adjacent dies is ≤100 µm. Furthermore,

various Si-IFs were designed to include dies of different sizes including 1x1 mm2, 2x2 mm2,

2x3 mm2, 3x3 mm2, 4x4 mm2, 5x5 mm2, and 10x6 mm2 as shown earlier in Fig. 2.2.

However, most of the electrical and mechanical results presented in this section correspond

to 2x2 mm2 dies on appropriate Si-IFs.

Figure 4.4: Schematic of the daisy chain test structures consisting of Cu wires on the Si-IF

and pads on the dies that are attached using 10 µm pitch Cu pillars. Multiple dies can be

assembled at 100 µm spacing to extend the daisy chain in series.

The 2x2 mm2 dies bond to 32,400 ten micrometer pitch Cu-pillars on the Si-IF. This

corresponds to a pillar-interconnect density of ≥1x104 mm-2. For comparison, the intercon-
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(a)

(b)

(c)

Figure 4.5: Micrograph of the fabricated test vehicles. (a) A fabricated Si-IF with inset

showing the 10 µm fine-pitch Cu pillars on the Cu wires. (b) A fabricated 2x2 mm2 die

consisting of Cu pads. (c) Fabricated Si-IF Cu pillars capped with Ti/Au layer for Au-Au

TCB.

nect density of C4 connections is 60-100 mm-2, and BGA connections is 1-6.25 mm-2. Each

of these assembled dies consists of 180 horizontal daisy chains and each chain consists of

180 Cu-pillars. However, due to the limitation of the probe pad size, only 15 of these daisy

chains can be tested. The testable chains are distributed evenly across the die. Further,

note that every Cu-pillar in a daisy chain must be bonded for electrical continuity.

Some of the assemblies of dies bonded to the Si-IF using TCB are shown in Fig. 4.6.
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Fig. 4.6 (a) shows two dies bonded at close proximity using Cu-Cu TCB. Fig. 4.6 (b) shows

10 dielets bonded using Au-Au TCB forming a continous daisy chain in series. A wafer-scale

assembly of heterogeneous dielets of different die sizes are bonded at close proximity using

Cu-Cu, illustrated in Fig. 4.6 (c). Assembly of a larger die 10x6 mm2 on a corresponding

Si-IF using Cu-Cu TCB is shown in Fig. 4.6 (d).

(a) (b)

(c) (d)

Figure 4.6: (a) Two dies assembled on the Si-IF at 100 µm inter-dielet spacing using Cu-Cu

TCB. (b) An array of 10 dies on the Si-IF assembled using Au-Au TCB. (c) A wafer-scale

assembly of heterogeneous dies of 2x2 mm2, 2x3 mm2, and 3x3 mm2 on the Si-IF at 20-

100 µm inter-dielet spacing using Cu-Cu TCB. (d) Assembly of larger dies (10x6 mm2) on

the Si-IF.
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4.5.2 Mechanical Characterization

4.5.2.1 Alignment Accuracy

To scale the interconnect pitch to ≤10 µm, it is crucial to achieve a die-to-substrate align-

ment of ≤2 µm. As mentioned earlier, the APAMA tool has a camera that looks at the

fiducials shown in Fig. 3.4 (d) to align the die to the Si-IF. The alignment is done through

software control before the die contacts the Si-IF and therefore, is a second-order align-

ment. Since the alignment is software-controlled, the camera has to be trained to recognize

the alignment marks and the offsets have to be corrected. The mechanical stability, optics,

and temperature gradients during the operation affect the alignment accuracy.

To characterize the alignment accuracy, the dies were bonded to the Si-IF using the

TCB processes in previous sections and then sheared to observe the interface. The micro-

graph of a sheared die bonded using Au-Au TCB process is shown in Fig. 4.7 (a). The

2-sigma translational alignment overlay accuracy was ≤±1 µm and a rotational accuracy

was ≤6 mdeg. The micrograph of a sheared die bonded using direct Cu-Cu TCB process is

shown in Fig. 4.7 (b). The misalignment for direct Cu-Cu TCB process is higher because

of the two touch-down steps involved in the bonding process as discussed in section 4.4.

The 2-sigma translational alignment overlay accuracy for direct Cu-Cu TCB is ≤±2 µm

and the rotational accuracy is ≤10 mdeg.

4.5.2.2 Inter-dielet Spacing

Elimination of the individual die packages allows for integrating the dies at ≤100 µm

on the Si-IF. Inter-dielet spacings of ≤100 µm up to a minimum spacing of 15 µm were

successfully demonstrated as shown in Fig. 4.8. This corresponds to a spacing of 100-

200 µm between the actual I/O circuits of the neighboring dies. The inter-dielet spacing is

limited by the tolerances of the dicing process of the dies including the roughness and the

dicing street variations. Moreover, the physical die size is larger than the actual design size

to include some overlay that effects the inter-die I/O spacing. Therefore, state-of-the-art
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(a)

(b)

Figure 4.7: Micrograph of the dies sheared after bonding to observe misalignment. (a) Die

sheared after Au-Au bonding showing Au-cap of the Cu pillars transferred from the Si-IF

to the die. (b) Die sheared after Cu-Cu bonding showing Cu pillars transferred from the

Si-IF to the die. Both the dies show misalignment of ≤±1 µm and ≤10 mdeg.

dicing processes including stealth dicing and plasma dicing [MWMA12] help in reducing

the inter-dielet spacing to a few microns.

4.5.2.3 Cross-section

The cross-section of the bonded dies on the Si-IF is inspected using the scanning electron

microscopy (SEM) to observe the bonding interface. The SEM cross-section of the dies
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Figure 4.8: Micrograph of the ≤100 µm inter-dielet spacing between adjacent dielets on

the Si-IF.

bonded using the Au-Au TCB process is shown in Fig. 4.9. At the bottom is the Si-IF with

Cu trace and Cu pillars. The die with Cu-pad is on the top. The thin Ti/Au layers, both

on the Si-IF pillars and the die pads, are shown at the bonding interface. As shown, no

voids can be observed at the interface. The observed overhang of the Au layer is because

of the lift-off pattern to account for alignment overlay and to enclose the Cu-pillars on all

sides. The assembly misalignment of ≤1 µm can also be observed.

The cross-section of the dies bonded to the Si-IF using direct Cu-Cu TCB is shown in

Fig. 4.10. The structure of the assembly is similar to the Au-Au bonded samples except

for the Ti/Au layer. Again, there are no observable voids at the bonding interface, and

in fact, there is an extrusion of Cu into the recess indicating that the bonding pressure is

high and may be reduced. Moreover, the misalignment of the assembly is observed to be

≤1 µm.

56



Figure 4.9: SEM cross-section of a dielet assembly on the Si-IF showing the fine-pitch inter-

connects bonded using Au-Au TCB. The bonding interface is void-free. (Picture Courtesy:

Global Foundries)

4.5.2.4 Shear Strength

In the case of soldered interconnects, intermetallic compounds are formed at the interface

that are brittle and undergo fatigue cracks which fail during thermal cycling. Direct metal-

metal bonding, however, eliminates these intermetallics and forms strong bonds. Shear tests

of the dies bonded to the Si-IF were performed to characterize the mechanical strength of

the bonds. The dies were sheared using a standard shear tester according to the MIL-

STD 883G, method 2019.9. The micrograph of the sheared dies after Au-Au TCB is shown

in Fig. 4.7 (a). The average shear strength of the bonded dies is found by dividing the shear

force with the effective contact area of the die. The average shear strength of the Au-Au

bonded samples for a sample set of 20 was >105 MPa. The average shear strength was

improved by the pre-treatment of the samples using the Ar plasma. In addition, observing

the sheared dies shows that the failure is not at the Au-Au bonding interface but instead

at the Ti to Cu-pillar interface demonstrating that the bonding is strong.

Similar shear tests were performed on the dies bonded to the Si-IF using direct Cu-

Cu TCB. The micrograph of the sheared die is shown in Fig. 4.7 (b). The average shear

strength of these samples was >127 MPa for a sample set of 12 dies. Moreover, the sheared
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Figure 4.10: SEM cross-section of a dielet assembly on the Si-IF showing the fine-pitch

interconnects bonded using direct Cu-Cu TCB. No distinct boundary is observed between

the Cu pads on the die and the Cu pillars on the Si-IF demonstrating a high-quality void-

free bonding. Note that the morphology at the bottom of the Cu pads is an artifact of the

sample preparation. (Picture Courtesy: Pranav Ambhore).

dies show that the failure is not at the Cu-Cu bonding interface but the Cu-pillar on the

Si-IF broke and transferred to the die, demonstrating excellent bond quality. Although

the die shear values give an overall strength of the assembly, they may not represent the

individual pillar shear strength because the applied shear pressure is not uniform across the

die. In order to quantify the individual pillar strength, test dies were designed with large

Cu pillars (30 µm) on a sacrificial layer that was used to remove the Si substrate of the die

after bonding. The average shear strength of these individual Cu pillars was observed to

be >200 MPa [JBM+19].

A comparison of the average shear strength of the Si-IF assembly using both Au-Au TCB

and Cu-Cu TCB with conventional solder-based interconnects is shown in Fig. 4.11. As

demonstrated, the direct Cu-Cu bonded assemblies offer 2X better shear strength compared
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to µ-bumps. According to MIL-STD 883G method 2019.9, the dies larger than 4 mm2

should withstand a force of at least 50 N. In a typical assembly, this is only partially

supported by the solder bump, and the rest of the shear strength comes from the underfill.

However, direct Cu-Cu or Au-Au interconnects can easily withstand these forces without

any underfill as shown in Fig. 4.11.

Figure 4.11: Comparison of the shear strength (blue) of solder µ-bumps [CCYK13], and the

direct metal-metal interconnects in this work. The shear force for a 4 mm2 die using these

interconnects is also presented (red) and compared with the MIL-STD 883G requirement.

4.5.3 Electrical Characterization

Electrical continuity tests were performed after assembling the dies on the Si-IF to form a

daisy chain. As mentioned earlier, the 2x2 mm2 dies consist of 32,400 fine-pitch Cu-pillars

on the Si-IF, or equivalently 180 daisy chains with 180 Cu-pillar per chain. Of these,

15 daisy chains can be tested using probes. The dies were sequentially placed and the

resistance of the daisy chains was measured using a 4-point contact after each consecutive

die attach. The assembly exhibited a 100% contact continuity yield across all the dies for
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Cu-Cu and Au-Au TCB process. The assembled dies on the Si-IF using direct Cu-Cu TCB

are shown in Fig. 4.6 (a). All the 15 testable daisy chains were connected for both the single

die and two dies case. The current-voltage (I-V) plots of the daisy chains of a single die

and two dies in series are shown in Fig. 4.12 (a) & (b) respectively. For the two dies case,

the daisy chains pass through both the dies with a total of 360 interconnects per chain.

The different colors represent different daisy chains tested. Both the measurements show

well-behaved resistance of the Cu-Cu interconnects. The variation in the measurements

between chains can be due to the misalignment during bonding process and measurement

errors. The contact resistance of the individual Cu pillar was extracted from the daisy

chain resistance by de-embedding the fan-out wire, Cu trace, and Cu pad resistances. The

average resistance per pillar was ≈35 mΩ. This corresponds to an effective specific contact

resistance of ≈0.685 Ω-µm2. However, the pillar resistance was observed to vary from

28 mΩ to 50 mΩ which can be attributed to the misalignment during the bonding process.

Similar electrical continuity measurements were performed for dies bonded to the Si-IF

using Au-Au TCB. Figure. 4.6 (b) shows the assembly of 10 dielets connected in series

with 18,000 fine-pitch interconnects per daisy chain. Once again, a 100% continuity yield

was achieved across the dies. The average contact resistance of the interconnects was

found to be 42 mΩ which corresponds to effective specific contact resistance of ≈0.82 Ω-

µm2 [BJP+18]. This is 20% higher than interconnects bonded using direct Cu-Cu TCB

because of the interfacial resistance between the Ti/Au layer and the Cu-pillar, and Cu-pad.

A comparison of the specific contact resistance of various interconnects and geometries is

presented in Table 4.4 and a plot of the same is illustrated in Fig. 4.13.

4.5.4 Challenges

Although fine-pitch interconnects (≤10 µm) using direct metal-metal TCB were successfully

demonstrated, several challenges still remain that need to be addressed for translating to

high volume manufacturing. Some of the challenges are listed below.
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1. Alignment accuracy is a major consideration to ensure the repeatability of the pro-

cess. For solder-based interconnects, molten solder provides self-alignment due to

surface tension. However, by eliminating solder, accurate placement becomes criti-

(a)

(b)

Figure 4.12: Current vs voltage plots for (a) Daisy chains of a single die on the Si-IF, (b)

Daisy chains of two dies assembled in series on the Si-IF. The different colors represent

different daisy chains tested. The average contact resistance was 35 mΩ.
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Interconnect Diameter Contact

pad area

Contact

resistance

Effective specific

contact resistance

(µm) (µm2) (mΩ) (Ω-µm2)

C4 bump

[WPG+06]

100 7800 10 78

C4 bump

[WPG+06]

50 1950 25 48.7

µ-bump

[DWA+07]

23 415 47 19.5

µ-bump

[DWA+07]

16 201 43 8.64

Cu

pillar [DGT+09]

11.2 100 12 1.2

Au-capped

Cu pillar

(This work)

[BJP+17,

BJP+18]

5 19.6 42 0.82

Cu pillar

(This work)

[JBM+19]

5 19.6 35 0.685

Table 4.4: Geometric and electrical comparison of different interconnect technologies.

cal. Improving the optics, reducing the mechanical disturbances such as vibrations,

and improving the software control could improve the alignment. In addition, the

multi-touch process in the direct Cu-Cu TCB degrades the native misalignment and

therefore, should be eliminated. Alternative methods to locally heat the Si-IF during

the bonding process should be explored.
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Figure 4.13: Comparison of the specific contact resistance of solder-based interconnects,

and the direct metal-metal interconnects in this work.

2. Assembly of larger dies (>20 mm2) using the direct metal-metal TCB is challenging

because of the warpage and non-planarity across the die. There is a trade-off between

the die thickness and planarity since full-thick dies have lower warpage while thinned

dies are flexible and can be easily flattened during bonding. This trade-off should

be explored to achieve successful bonds. In addition, during Cu-Cu TCB, it was

observed that the formic acid vapor was not effectively cleaning the center of the die

which is shown in Fig. 4.14. By using computational fluid dynamic simulations, the

bond-head shroud design should be modified to improve the formic acid vapor flow

from turbulent to laminar.

3. Wafer-scale systems present unique challenges in assembly which require the inte-

gration of multiple dies with different die sizes and specifications. Wafer-scale inte-

gration of heterogeneous dies on the Si-IF was demonstrated using both the direct

Cu-Cu TCB earlier in Fig. 2.2 (a) and Au-Au TCB in Fig. 2.2 (b). The current tool
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(a) (b)

(c)

Figure 4.14: Micrograph showing oxidation in the center of larger dies (a) 10x6 mm2,

(b) 5x6 mm2 because of inadequent formic acid flow. (c) No oxidation is observed on

smaller dies 2x2 mm2.

is not capable to simultaneously handle multiple die sizes. Therefore, all the dies of a

particular size are bonded first on the entire wafer. Subsequently, the machine tools

are changed to handle the next die size and the process is repeated to assemble all the

required dies. Automatic tool changing should significantly improve the flexibility of

handling multiple dies.

4. Further, for wafer-scale integration using the Cu-Cu TCB process, the substrate
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needs to be held at elevated temperatures (>80 oC) for an extended period of time.

This leads to extensive oxidation of the Cu-pillars on the target sites that bond

at the end which cannot be cleaned by the formic acid vapor. In this work, the

approach to address this problem was to periodically clean the Si-IF after every hour

with Ar plasma treatment to sputter the Cu-oxide layer. Another approach was to

progressively increase the formic acid vapor cleaning time as more dies are bonded.

Other solutions including temporary passivation of the Cu-pillar surface should be

explored. Ar/N2 plasma treatment was shown to form a thin copper nitride that

protects the Cu surface from oxidation in [CCLT15] which can be implemented before

bonding.

5. Integration of conventional dies with solder bumps along with passives on the Si-IF

was demonstrated in Fig. 2.5. A traditional solder-reflow process on the Cu-pillars

capped with Ni/Sn layer was used for bonding. However, this no longer has the

benefit of 10 µm fine-pitch interconnects and the solder-bump must be bonded to

multiple Cu-pillars. Also, the integration of dies with wire-bond pads below the die

surface is extremely challenging. The dies have to be bumped to ensure contact with

the Si-IF pillars. Moreover, the passive components are difficult to handle because

of their surface topology and they occupy a significant area on the Si-IF increasing

the inter-dielet spacing. Therefore, it is best to avoid passive components and use

built-in deep trench capacitors in the Si-IF [TI20] or mount the passives in a platform

below.

6. Finally, the throughput of the demonstrated TCB process, although, is much higher

than other competing TCB technologies, is still lower than the traditional solder-

based assembly. However, one should consider the bigger picture here. The Si-IF

integration eliminates other traditional processes such as under-bump metallurgy,

solder bumping, and so on, reducing the overall assembly time, and cost. But, the

TCB process, especially the Cu-Cu TCB, must be optimized to reduce the bonding

time to a few seconds (<10 s) to have a competitive advantage. This can be achieved
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by improving machine hardware with better temperature ramp-up and cool-down,

and having dual bond-heads working simultaneously. In addition, eliminating the

multiple touchdowns also reduces the bonding cycle time.
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CHAPTER 5

Simple Universal Parallel intERface for Chips

In the previous chapters, we have established the technologies required for fine-pitch in-

tegration of wafer-scale systems on the Si-IF platform. In this chapter, we will explore

how to translate the benefits of fine-pitch integration to achieve performances comparable

to SoCs for heterogeneous systems. A communication interface protocol called the Simple

Universal Parallel intERface for Chips (SuperCHIPS) was developed to leverage the Si-IF

technology. It efficiently interconnects heterogeneous dies on the Si-IF with simple I/Os

for optimal system performance. According to the SuperCHIPS protocol, two adjacent

dies assembled on the Si-IF at close proximity are connected using data-links that are only

50-500 µm long. This is possible because of the sub-10 µm die-to-wafer interconnect pitch

and the short inter-dielet spacing of ≤100 µm. These links are significantly shorter than

links on PCBs which are several centimeters long. As a result, the channel loss and link

latency overheads are greatly reduced, thus, eliminating the need for complex transceiver

circuitry. This significantly reduces the power consumption and the real estate for I/O

circuitry by 5-40X and 9-25X respectively. Moreover, the wiring between the dielets are

at on-chip like pitches (2-10 µm) providing a greater number of data links compared to

existing technologies. With the availability of a large number of data-links, each link can

be operated at a relatively lower frequency (<10 Gbps) and at the same time achieve a

higher bandwidth density (up to 8 Tbps per millimeter of the die edge). Thus, the need for

serialization and deserialization of data is eliminated by parallelizing data transfer. There-

fore, using the SuperCHIPS protocol, simple inverter drivers transfer data across a highly

parallel interface consisting of short links (≤500 µm). The schematic of the SuperCHIPS

interface on the Si-IF and the I/O circuit is shown in Fig. 5.1.
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(a)

(b)

Figure 5.1: (a) Schematic of the fine-pitch, short-reach SuperCHIPS interface between two

neighboring dies. (b) Schematic of the simple SuperCHIPS I/O.

Some of the key features of the SuperCHIPS protocol are listed below-

• SuperCHIPS is a hard interface protocol to interconnect neighboring dies with high-

density wiring and simple buffer I/Os. Any logical or soft protocol can be imple-

mented on the SuperCHIPS interface for communication.

• The SuperCHIPS protocol uses simple buffer I/Os and short links for communication

and is therefore efficient only for near-chip communication, especially for neighboring

or next to neighboring dies (<5 mm long). It cannot be easily extended for long-

haul communication on the Si-IF and would require some modifications described in
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chapter 7.

• SuperCHIPS relies on key technological enablers such as the development of a superior

substrate that allows for fine-pitch interconnects and tight dielet integration. As

demonstrated earlier, the Si-IF technology achieves these objectives and is crucial for

the implementation of SuperCHIPS.

• In this protocol, all the peripheral links are configured as single-ended unidirectional

signals to achieve the maximum data-bandwidth.

5.1 Electrical Characterization

5.1.1 Test Vehicles

To experimentally demonstrate the electrical performance of the short SuperCHIPS links,

test structures were designed and fabricated. These structures were designed to emulate

the signal transfer between dielets communicating using the SuperCHIPS interface. The

dielets have metal pads that are connected to the Si-IF links using the fine-pitch pillar

interconnects (10 µm). Daisy chain structures were designed to imitate signal flow between

dielets when attached to Si-IF. In a real implementation, the links will be less than 500 µm,

(typically 100 µm). However, measuring the signal transfer characteristics of these short

links is challenging due to the low channel losses, the physical constraints on the proximity

of probes, and the subsequent de-embedding of the fan-out and probe parasitics. Therefore,

to get measurable link characteristics, the short link segments on the Si-IF were cascaded

in series in a daisy chain fashion using the pads on dies. This forms a long link between

the two probing ports with measurable losses. The schematic of the cascaded structure

and the cross-section of a link segment are shown in Fig. 5.2. The characteristics of the

actual device under test (DUT), which is the short link segment, were later extracted using

de-embedding techniques [FCM08, Fri94]. Additionally, this ensures that the parasitics

introduced by the bonded interconnects and the assembly process (TCB) are also included
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in the measurements.

Figure 5.2: Schematic of link segments (DUT) cascaded between the two measuring ports

and the cross-section of a DUT.

The DUTs consist of Si-IF links that are configured as coplanar Ground-Signal-Ground

(GSG) for the insertion loss measurements and Ground-Signal-Signal-Ground (GSSG) for

the cross-talk measurements. Three main parameters of the links were varied, namely the

length of the link, the width of the link, and the wiring pitch as depicted in the Table. 5.1.

This helps in understanding the effect of each parameter on the link characteristics. The

height of the links was 2 µm conforming to the design manual specifications. In all the

cases, the link segments were terminated with 10 µm pitch Au-capped Cu pillars with a

diameter of 5 µm. The corresponding dies were also designed with Au-capped Cu pads that

are 17 µm long, 7 µm wide, 2 µm thick to connect two link segments in series. These test

vehicles were fabricated using the process described earlier in chapter 3 and the micrographs

of the fabricated Si-IF are shown in Fig. 5.3 & Fig. 5.4. The dies were precisely aligned

(≤1 µm) and bonded to the Si-IF using the TCB process in section 4.3 and the bonded

assembly is shown in Fig. 5.5. As mentioned earlier, the dielets were assembled to ensure

the loss of the bonded interconnects is also included in the measurements. This would give

us the actual link behavior when the dielets are in operation. In addition, de-embedding
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structures with shorted fan-out wires were designed to measure the fan-out wire losses and

the probe parasitics. The de-embedding structures are shown in Fig. 5.4 (e).

Length of the link Wire width Wiring pitch

(µm) (µm) (µm)

125
2

4

10

5 10

585
2

4

10

5 10

1750
2

4

10

5 10

Table 5.1: Different link parameters used for electrical characterization. In all cases, the

link segments were terminated with 10 µm pitch pillar interconnects.

5.1.2 Insertion Loss

Two-port S-parameter measurements were performed on the bonded Si-IF structure in

Fig. 5.5, using a 67 GHz Vector Network Analyzer (VNA). The S-parameters were mea-

sured for frequencies from 50 MHz to 30 GHz. To calibrate the GSG RF probes, the Line-

Reflect-Reflect-Match (LRRM) standard was used. The key challenges for the insertion loss

measurements were (1) De-embedding the parasitics introduced by the probes and fan-out

wires; (2) Extracting the characteristics of a single link segment from the cascaded struc-

ture. To overcome these problems, first, the S-parameters of the de-embedding structures

were measured and using the S-to-T-parameter conversion techniques in [FCM08, Fri94],

the probe, and fan-out wire parasitics were de-embedded. Finally, using a similar tech-
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Figure 5.3: Micrograph of the fabricated Si-IF test site consisting of different link segments.

nique, the S-parameters of each link segment is extracted from the cascaded structure.

The measured insertion losses (S21) for 585 µm link segments of different wire widths and

wiring pitches are shown in Fig. 5.6 (a). The insertion loss of these 585 µm links was found

to be <2 dB for frequencies up to 30 GHz. In addition, the measured insertion losses of

2 µm wide, 4 µm pitch links of varying lengths are shown in Fig. 5.6 (b). Accordingly,

the measured insertion loss for the 125 µm links is <0.7 dB and the loss for 1.75 mm

links is >3 dB for the same frequency range. Furthermore, there is a very good agreement

between all the measured characteristics (solid lines) and the simulated values (dashed

lines), validating the experimental results. In addition, the insertion loss of SuperCHIPS

links is significantly lower than existing interposer technologies [CKL+18, KP14] because

of the reduction in link length. Moreover, it is observed that the transfer characteristics

of these short SuperCHIPS links have only a single pole. This establishes the RC-like

behavior of short links on Si-IF (<500 µm) contrary to the long links on a conventional

PCBs (>50 mm) and interposers (3-5 mm) that show an RLC-like resonance at higher

frequencies. Further, this re-emphasizes that the inductance of SuperCHIPS interface is
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(a) (b)

(c) (d)

(e)

Figure 5.4: Optical micrographs of the fabricated link segments on Si-IF. (a) 585 µm GSG

link with width: 5 µm, wiring pitch: 10 µm. (b) 585 µm GSG link with width: 2 µm,

wiring pitch: 4 µm, (c) 125 µm GSG configured link with width: 2 µm, wiring pitch: 4 µm.

(d) 125 µm GSSG configured link width: 2 µm, wiring pitch: 4 µm. (e) De-embedding

structure of shorted fan-out wires. In all cases, the link segments were terminated with

10 µm pitch pillar interconnects.

not significant because the link lengths are smaller than the wavelength (< λ/10) of the

propagating EM wave [AN01]. Therefore, like on-chip wires, the short SuperCHIPS links

do not have signal reflections during data transfer and consequently, eliminate the need for

matching circuitry and complex I/O drivers with equalizers. This permits the use of simple

buffers as drivers to significantly reduce the energy/bit to ≤0.03 pJ/b.
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Figure 5.5: Optical micrographs of the test vehicle with 2x2 mm2 dies bonded to the Si-IF

at 100 µm spacing.

5.1.3 Cross-talk

The cross-talk between the SuperCHIPS links is predominantly due to the capacitive cou-

pling between the signal traces rather than the fine-pitch pillars. However, some resistive

and inductive coupling also exists due to the shared ground for single-ended signals. There-

fore, short link lengths are essential to guarantee low cross-talk. To characterize the cross-

talk in the SuperCHIPS links, four-port S-parameter measurements of the GSSG configured

links were performed for frequencies from 50 MHz to 20 GHz. Both the ground traces of

the GSSG links were shorted, establishing a shared ground for the signals. Using similar

methods as described earlier, a four-port de-embedding with T-parameters [FCM08] was

used to extract the cross-talk of the short link segments from the cascaded structure. The

variation of the near-end cross-talk (NEXT) for 585 µm links with different wire widths

and pitches is shown in Fig. 5.7 (a). The NEXT in these links is <-15 dB for the mea-

sured frequency range. The cross-talk is relatively higher due to the ground bounce effects

because of the shared grounds. Besides, the NEXT for 2 µm wide, 4 µm pitch links of

different link lengths are shown in Fig. 5.7 (b). The NEXT for the 125 µm link is <-30 dB,
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(a)

(b)

Figure 5.6: Plots of insertion loss vs frequency for GSG configured links (solid: measured,

dashed: simulated). (a) 585 µm links with different wire widths and pitches showing <2 dB

insertion loss. (b) 2 µm width and 4 µm pitch links with different lengths.

and the NEXT for the 1.75 mm link is <-10 dB for the measured frequency range.

Additionally, the far end cross-talk (FEXT) for the 585 µm links with various wire

widths and pitches is shown in Fig. 5.8 (a). In both the cases, the FEXT is <-30 dB for
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(a)

(b)

Figure 5.7: Plots of NEXT vs frequency for GSSG configured links (solid: measured,

dashed: simulated). (a) 585 µm links with different wire widths and pitches showing

NEXT of <-15 dB. (b) 2 µm width and 4 µm pitch links with different lengths.

frequencies up to 20 GHz. Similarly, the variation of FEXT for 2 µm wide, 4 µm pitch links

of different lengths is shown in Fig. 5.8 (b). The FEXT for the 125 µm link is <-45 dB, and

the FEXT for 1.75 mm links is <-20 dB for the same frequency range. The noise in the
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measurement at higher frequencies can be attributed to noise of the measurement setup that

did not have adequent shielding. As shown, all the NEXT and FEXT measurements (solid

lines) agree well with the simulations (dashed lines) and are less than a typical acceptable

value of -12 dB in all cases.

The insertion loss-to-cross-talk ratio (ICR) which corresponds to the signal-to-noise

ratio (SNR) is presented in Fig. 5.9 for varying SuperCHIPS link lengths. When compared

to interposer links (3-5 mm) that have an ICR <15 dB [BJH+17] at 4 GHz, the short

SuperCHIPS links of 500 µm and 125 µm have ICR >23 dB, and >35 dB respectively.

This underlines the necessity for short links to minimize signal degradation and associated

driver overhead.

5.1.4 Parasitics Extraction

The measured S-parameters were used to extract the parasitics in the Si-IF links. An

RLGC transmission line model of the link was used for the parasitics extraction. However,

we established that the short Si-IF links cannot be modeled as transmission lines. Therefore,

the S-parameters of the long 1.75 mm links were used for the parasitic extraction. The

extracted parasitics are shown in Fig. 5.10. The extracted values include the parasitics of

the interconnects and die pads amortized across the length of the wires which is negligible.

The extracted resistance, inductance, capacitance, and conductance per unit length are

presented in Table. 5.2. As shown, all the measured values (solid lines) concur with the

simulation results (dashed lines) and are identical to the on-chip top wiring level parasitics

in a 65-90 nm CMOS technology node. Moreover, the variation in the extracted resistance

is like the trend observed in [EE92]. Besides, the decrease in measured inductance is

consistent with the previous studies [EE92,JAG+17].

Further, the difference in the number of interconnects (Cu-pillars) among different mea-

surements was used to extract the resistance and capacitance of a single pillar, shown in

Fig. 5.11. The resistance/pillar is 50-70 mΩ and the capacitance/pillar is 3-4 fF. The

parasitics of these interconnects are negligible when compared to the link parasitics and
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(a)

(b)

Figure 5.8: Plots of FEXT vs frequency for GSSG configured links (solid: measured, dashed:

simulated). (a) 585 µm links with different wire widths and pitches showing FEXT of <-

30 dB. (b) 2 µm width and 4 µm pitch links with different lengths.

therefore, can be ignored. Furthermore, this highlights the efficiency of the Si-IF platform

to integrate heterogeneous dielets in the same way as functional blocks on a monolithic

SoC.
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Figure 5.9: Plot of insertion loss to cross-talk ratio (ICR) for 2 µm width and 4 µm pitch

Si-IF links with different lengths.

Parasitic per unit length Value

Resistance (DC) 4.6 mΩ/µm

Capacitance 0.2 fF/µm

Inductance 0.42 pH/µm

Conductance 10-6 Ω-1/µm

Table 5.2: Extracted parasitics of the Si-IF links per unit length.

A comparison of the total parasitic load on the driver using the SuperCHIPS interface

on the Si-IF, interposers, and PCB-based assemblies is shown in Table. 5.3. The values

presented include the total parasitics of the traces, interconnects, and packages, which is the

total load on the driver. The package parasitics are applicable only to the PCB substrates.

Besides, the major difference between the interposer and SuperCHIPS interface is the length

of the traces. Moreover, the capacitance due to Electro-Static-Discharge (ESD) protection

is not included for Si-IF assemblies that can add significant (>0.1 pF) parasitic capacitance.

Overall, compared to PCB, the Si-IF has 40-200X lower parasitic inductance and 30-150X

lower parasitic capacitance. Compared to interposers, the Si-IF has 20X lower parasitic

79



inductance and capacitance.

(a) (b)

(c) (d)

Figure 5.10: The plots of (a) Resistance, (b) Inductance, (c) Conductance, and (d) Ca-

pacitance per unit length of the links, extracted from the S-parameters (measured: solid,

simulated: dashed) using RLGC line model. The plots show good agreement of the mea-

sured data with simulations.
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Figure 5.11: The plots of resistance (50-70 mΩ), and capacitance (3-4 fF) per pillar ex-

tracted from the measurements.

Technology Si-IF Interposer Package PCB

Interconnect pitch (µm) 10 55 150 1000

Typical link length (mm) 0.25 5 10 50

Inductance (nH) 0.1 1.97a 4.25 [KE19] 19.25 [DWC19]

(Normalized to interposer) (0.05X) (1X) (2.16X) (9.77X)

Capacitance (pF) 0.05 1.04a 1.68 [KE19] 8.1 [DWC19]

(Normalized to interposer) (0.05X) (1X) (1.62X) (7.79X)

a [DWC19,KFK13]

Table 5.3: Comparison of the typical parasitic load on the driver due to the links in different

packaging technologies.
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5.2 Circuit-level Simulations

The previous section established that the SuperCHIPS interface has low channel loss and

cross-talk because of which, simple inverters can be used as transceivers to efficiently stream

data between dielets. To validate this theory, circuit simulations were performed with

tapered I/O buffer drivers designed using standard cell inverters in TSMC 16 nm technology.

Note that the data transfer depends on the driver strength, and the voltage swing and

therefore, would change with the die technology. The equivalent driver on-resistance for

the buffers used is 250 Ω and the voltage swing is 0.8 V (core voltage). The measured

S-parameters and extracted RLGC parameters were used to model the links for a circuit-

level simulation study. These RLGC parameters were adjusted to resemble single-ended

links and worst-case parasitics. They also include the values corresponding to cross-talk.

A practical implementation of the SuperCHIPS interface was considered with 8 fine-pitch

single-ended links with a wire width of 2 µm and wire pitch of 5 µm corresponding to two

rows of pads per wiring layer as shown in Fig. 5.12. The length of the links was varied

from 100 µm to 5 mm to observe the change in characteristics. The input of the driver was

presented with a pseudo-random bit stream (PRBS) sequence at various frequencies and

the output of the SuperCHIPS link and the receiver were analyzed. The rise and fall time of

the input was assumed to be 20 ps which is typical in this technology. Two scenarios were

evaluated, (1) without ESD protection circuitry; (2) with ESD protection circuitry shown

in Fig. 5.13 (a) & (b) respectively. The ESD protection adds significant load (assumed to

be 50 fF per terminal) on the drivers, that is comparable to the parasitics of short links

(≤500 µm), increasing the delay and power by almost 2X. Note, due to the low contact

area per interconnect and the minimal die handling in the assembly process, the required

ESD protection is expected to be lower (≤50 fF) for integration on Si-IF, when compared

to a PCB or interposer style integration (≥100 fF) [KVI19, TBV+19]. The results of the

simulations are listed below.
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Figure 5.12: Schematic of a SuperCHIPS interface consisting of 8 links used for simulations.

5.2.1 Data-rate

The maximum data-rate achievable per link depends on the driver load and the SNR of

the links. The maximum frequency for single-ended links is approximately dictated by the

equation shown in (5.1) where tr is the rise time of the pulse, Rdriver is the on-resistance

of the driver, and Clink is the link capacitance including parasitics such as ESD. This

directly correlates to the length of the links. The advantage of the Si-IF technology is

the availability of fine-pitch (≤10 µm) die-to-substrate interconnects which result in short

communication links (≤500 µm). This is not feasible in interposers or PCBs which will

be discussed in chapter 7. Therefore, high data-rates (>10 Gbps) can be easily achieved

using the short SuperCHIPS links. The simulated eye diagrams of the signal at the output

of a 100 µm SuperCHIPS link with and without ESD protection circuitry for 10 Gbps

data-rate are shown in Fig. 5.14. As shown, for the case without ESD protection, the

eye is completely open with an eye width of 97.5 ps and eye height of ≈800 mV. Also, as

shown, an ESD protection capacitance of 50 fF changes the transfer characteristics of short

links even though the eye width and eye height are similar. Note that the effect of the

ESD capacitance diminishes for longer link lengths (≥1 mm) because the link parasitics
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(a)

(b)

Figure 5.13: Schematic of simulated transceiver circuits: (a) without ESD protection, and

(b) with ESD protection.

are relatively higher. The eye diagram of a 10 Gbps signal at the output of a 500 µm

SuperCHIPS link with ESD protection is shown in Fig. 5.15. The eye width is 88.5 ps and

the eye height is 780 mV. It can be observed that the eye-opening deteriorates compared

to the 100 µm link as expected.

Maximum Frequency =
0.35

tr
=

0.16

Rdriver ∗ Clink
(5.1)

In the simulations, no input jitter was added and the jitter observed is purely due to

the SuperCHIPS links only. The plot of the jitter induced by the SuperCHIPS links vs the

frequency of data transfer for different link lengths is shown in Fig. 5.16. It can be observed

that the induced jitter increases with link length and frequency proportionately. Note that

these are simulated values and a real implementation would have higher (20%-30%) jitter.
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(a)

(b)

Figure 5.14: Simulated eye diagram for a 100 µm SuperCHIPS link at 10 Gbps data-rate:

(a) without ESD protection, and (b) with ESD protection.

Using these simulations, and using the jitter and eye-opening values, the maximum data-

rate for a SuperCHIPS link was estimated. The maximum data-rate vs link length and is

shown in Fig. 5.17. For asynchronous transfer, the data-rate was estimated using the ICR

plot in Fig. 5.9, and a jitter tolerance of 20% unit interval (UI). As shown, data-rates of

>10 Gbps can easily be achieved for links <1 mm. The data-rate can be further improved

for longer links using shielded or differential signaling identical to other interfaces in typical
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Figure 5.15: Simulated eye diagram for a 500 µm SuperCHIPS link at 10 Gbps data-rate

with ESD protection.

packaging substrates. While the data-rate is limited by the driver strength for asynchronous

transfer, the clock jitter and uncertainty dominates for synchronous transfer. Generating

and distributing a high-speed clock (>2 GHz) with low jitter and distortion is extremely

difficult and energy-intensive. Therefore, for synchronous transfer, the data-rates are much

lower to account for uncertainty in the clock. Therefore, as shown, short SuperCHIPS

links (<500 µm) can support 10 Gbps asynchronous data-transfer and 4 Gbps synchronous

double data-rate (DDR) data-transfer.

5.2.2 Bandwidth

As mentioned earlier, because of the fine interconnect pitch, there are a large number of

parallel links using SuperCHIPS which contribute to improvement in inter-dielet commu-

nication bandwidth. The bandwidth of the SuperCHIPS interface is found by multiplying

the data-rate per link with the number of links. To standardize the SuperCHIPS protocol,

four data-rates are considered for the synchronous mode of data-transfer including single

data-rate (SDR) and double data-rate (DDR) modes that are listed in Table 5.4. The cor-

responding maximum data-bandwidths are also presented. The values presented assume
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Figure 5.16: Comparison of simulated jitter vs SuperCHIPS link length for different data-

rates.

Figure 5.17: Estimated maximum data-rate vs SuperCHIPS link length for both syn-

chronous and asynchronous data transfer. In synchronous case, the clock frequency de-

termines the data-rate and could be increased significantly without penalty for short links

(≤500 µm).

four layers of wiring on the Si-IF and single-ended wires at a wiring pitch of 5 µm. Also, it

is assumed that all the wires are used for signaling (maximum bandwidth). However, note
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that this is not true and typically 20% of the edge is allocated for control signals like clock

and power wires for a real implementation described in section 6.1.

SuperCHIPS

mode

Clock

frequency

Data-rate per

link

Maximum data-bandwidth

per die edge

(Gbps) (Gbps/mm)

Synchronous

1
1 (SDR) 800

2 (DDR) 1600

2
2 (SDR) 1600

4 (DDR) 3200

Asynchronous N.A up to 10 8000

Table 5.4: Data-rate and maximum bandwidth of the SuperCHIPS protocol.

5.2.3 Latency

The latency introduced by the short SuperCHIPS links is shown in Fig. 5.18, that can

be found using standard Elmore delay formulation [KM97] given in 5.2, where Rdeff
is the

effective driver resistance, Cp is the pillar capcitance, Clink is the link capacitance, Cpar

is the parasitic capacitance on the driver including the ESD capacitance, and Cr is the

receiver capacitance. Note that the pillar resistance (Rp), and the link resitance (Rlink) are

ignored compared to the on-resistance of the driver (Rd) because of the reasons mentioned

above in section 5.1. The overall latency of the SuperCHIPS I/O can be found using 5.3,

where toverall is the overall latency, tTx & tRx are the latencies of transmitter and receiver

respectively, and tlink is the SuperCHIPS link latency. The simulated waveforms of the

input and output of the SuperCHIPS I/O with 500 µm link at 10 Gbps data-rate with

ESD protection is shown in Fig. 5.18. The overall latency from the input of the transmitter

to the output of the receiver is <26.5 ps and <31.5 ps for the scenarios without and with

ESD respectively. The latency added by the SuperCHIPS link compared to just on-chip
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wire is <14 ps, which is very close to the theoretical value. For synchronous communication,

the data can be transfered within 1 clock cycle.

tlink = Rdeff ∗ (2Cp + Clink + Cpar + Cr) (5.2)

toverall = tTx + tlink + tRx (5.3)

Figure 5.18: Simulated waveforms: 10 Gbps PRBS input; the transmitted data across the

link before receiver; the receiver output.

5.2.4 Energy per bit

The use of low loss channels in the SuperCHIPS interface allows for the use of simple buffer

I/Os and simple control logic to significantly reduce the energy per bit. The energy per

bit variation of the SuperCHIPS protocol with link length is shown in Fig. 5.19. The plot

shows the contribution of the I/O without ESD, the contribution of the ESD capacitance,

and the contribution of logic and clock for synchronous transfer. The contribution of the

I/O and ESD do not change considerably with frequency and the values are presented for a

10 Gbps asynchronous transfer. For the I/O control logic, a modified “lite” version of the

Advanced Interface Bus (AIB) [Keh19] soft protocol that is suitable for 10 µm I/O pitch
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called the Short Near Range-10 (SNR-10) is assumed. This protocol uses simple single-

ended unidirectional SuperCHIPS I/Os for data-transfer. The logic energy values presented

in Fig. 5.19 are estimated for a 2 GHz clock frequency with a very high activity factor of

50%. As shown, the energy per bit for asynchronous transfer using short SuperCHIPS links

(≤500 µm) is ≤0.03 pJ/b for the case without ESD protection and ≤0.06 pJ/b for the case

with ESD protection. For equivalent SuperCHIPS interface with synchronous transfer, the

energy per bit is ≤0.15 pJ/b that includes the logic, and ESD contributions.

Figure 5.19: Plot of energy per bit vs link length for SuperCHIPS communication for an

activity factor of 50%. The energy contributions of the link, ESD, and the logic are shown

separately.
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CHAPTER 6

Experimental Demonstration of SuperCHIPS

6.1 Test Vehicles

To demonstrate the functionality of the Si-IF assembly and the performance of the Super-

CHIPS interface, functional dies and macros were designed in both the TSMC 16 nm fin-

fet (16FF), and GF 22 nm FDSOI (22FDX) technologies. The dies were designed in col-

laboration with Prof. Markovic’s research group at UCLA [Mar] as a part of the DARPA

Common Heterogeneous Integration and IP Reuse (CHIPS) program [Gre16]. The die in

TSMC 16FF is designed by Prof. Markovic’s group to function as a Universal Digital Sig-

nal Processor (UDSP). It also includes test macros to test the SuperCHIPS protocol. The

die in GF 22FDX, which will be referred to as GF die for simplicity, consists of a neural

inference engine designed by Prof. Iyer’s group [CHI], but it also includes macros to test

the UDSP core and the SuperCHIPS protocol. Furthermore, the UDSP and GF dies were

designed to be terminated with 9.8 µm and 10 µm pitch Cu pads respectively. The Cu pad

size is ≈7x7 µm2 and is compatible with the Si-IF assembly process instead of the typical

Al pads with sizes ≥25x25 µm2. This was accommodated by stopping the wafer processing

at the last Cu wiring level in the metal stack (wafer-pull) and passivating with a 200 nm

Si3N4 layer. Moreover, all the SuperCHIPS I/O transceivers use the existing standard cell

buffers with the highest drive strength in a given technology. Further, there is no ESD

protection circuitry at the terminals except for antenna diodes.
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6.1.1 SuperCHIPS Macros

As mentioned above, test macros were designed in both the technologies to independently

test the assembly, measure the latency introduced by the Si-IF links, demonstrate high-

speed data-transfer, and estimate the bit-error-rate (BER) of the SuperCHIPS interface.

Each die consists of two copies of the test macros that are isolated from the rest of the die.

The UDSP die has these test macros placed on the east and west edge of the die so that

they can be connected to a test macro in an adjacent die as shown in Fig. 6.6 (a). The

GF die has the test macros closely placed, separated by 400 µm to be consistent with the

worst-case communication distance between two neighboring dies as shown in Fig. 6.6 (b).

These test macros are completely isolated on the chip and communicate only using the

Si-IF links to emulate two different dies. The overall schematic of the SuperCHIPS macros

is shown in Fig. 6.1. Each macro consists of three modules described below.

Figure 6.1: Block diagram of the implemented SuperCHIPS test macros showing continuity,

latency, and BER characterization modules.
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6.1.1.1 Continuity Check

Daisy chain structures were implemented to check for continuity of the electrical links after

assembly on the Si-IF. There were two types of daisy chains, namely passive and active

chains. The passive chains are simple wires on the die, that when attached to the Si-IF,

form a continuous link similar to the ones demonstrated earlier in section 4.5.3. These

structures help to debug any misalignment and bonding related failures. The active chains

consist of buffers instead of just wires between the pads on the die. Continuity of these

chains would ensure no device failures after the assembly process. The schematic of both

the daisy chain structures is shown in Fig. 6.2. Multiple of these chains were connected in

series to check continuity and verify the assembly process.

Figure 6.2: (a) Schematic of an active daisy chain consisting of buffers on the die and links

on the Si-IF connected alternatively. (b) Schematic of a passive daisy chain consisting of

wires on the die and links on the Si-IF connected alternatively.

6.1.1.2 Latency Characterization

To characterize the latency introduced by the Si-IF links, two identical sets of buffer de-

lay and inverting delay blocks were designed. One of these sets was internally connected

on-chip to form a ring oscillator which acts as a reference. The second set was termi-

nated with Cu pads that are connected externally using the Si-IF links to form a ring

oscillator. The schematic of the testing circuit is shown in Fig. 6.3. The I/Os of both
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these blocks are consistent with the SuperCHIPS buffers and the schematic shown earlier

in Fig. 5.1 (b) & Fig. 5.13 (a).

Figure 6.3: Schematic of the latency characterization module. (a) On-chip reference ring

oscillator. (b) Ring oscillator formed by connecting the buffer delay and inverting delay

blocks using Si-IF links. Also shown are the frequency divider and the on-chip counter

latch to measure latency.

The delay due to the link can be found by (5.2). For on-chip oscillator, the tlink is small

and can be ignored. Also, the Cr and Cpar in the die technologies are small compared to the

Si-IF link capacitance. Therefore, the time period of the two oscillators is shown below.

TSi−IF = 2(tinv + tbuf + 2tlink) (6.1)

Tref = 2(tinv + tbuf ) (6.2)

where TSi-IF is the time period of the oscillator with Si-IF links, Tref is the time period
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of the reference oscillator, tinv is the delay of the inverting block, and the tbuf is the delay

of the buffer block. Using (6.1) and (6.2), the latency corresponding to Si-IF links can be

found by (6.3).

tlink = (TSiif − Tref )/4 (6.3)

The reference oscillator will resonate at a higher frequency compared to the oscillator

with Si-IF links. Moreover, the frequency of the oscillator through Si-IF depends on the

length of the links. The reference oscillator was designed to resonate at 3-4 GHz for both

the dies. Measuring these high-speed signals directly is challenging, therefore, a 12-stage

on-chip frequency divider is implemented to reduce the output frequency by 212 to get

a measurable waveform, Fig. 6.16. Consequently, the latency of the Si-IF links can be

found by dividing the measured delay in (6.3) by 212. Additionally, there is an on-chip

counter latch designed to quantify the exact difference between the number of cycles of the

oscillators within a given time.

6.1.1.3 High-speed Data Transfer & Bit Error Rate (BER) Estimation

For high-speed data transfer and BER measurement, two identical copies of the test macros

connected using the SuperCHIPS interface are used. Each macro consists of 8 transmitters

and 8 receivers to send and receive data using 16 SuperCHIPS links. As mentioned earlier,

the I/O circuits use the available standard-cell buffers, and registers for data transfer.

Further, we designed an 8-bit Pseudo-Random Number Generator (PRNG) to generate

an 8-bit input data for the SuperCHIPS links. The data is transmitted from one macro

to the other using the SuperCHIPS interface consisting of ≈450 µm links. Subsequently,

the received data is compared with the generated data internally at the receiver and the

bit errors are counted using an on-chip error counter. For the GF die, both the macros

on a single die can be connected to do the measurements. However, for the UDSP die,

the test macros of two neighboring dies have to be connected. As mentioned earlier, the

SuperCHIPS links have very low latency and can support up to 10 Gbps data-rate per link.
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But the clock jitter and synchronization limit this data-rate. Therefore, we incorporated a

programmable ring oscillator to generate the clock at variable frequencies from 500 MHz

to 3 GHz. Consequently, we can measure the BER vs the clock frequency. In addition, the

programmable ring oscillator clock frequency is divided by 28 and sent as an output for

observation. The schematic of the test macro is shown in Fig. 6.4.

Figure 6.4: Schematic of the high-speed data transfer and BER measurement circuit show-

ing the two macros connected with the SuperCHIPS interface. Both macros are identical

although a simplified transmitter schematic is shown on the left. The macros consist of a

programmable ring oscillator as the clock, PRNG, comparator, and error counter.
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6.1.2 Universal Digital Signal Processor

The UDSP die is designed to be a digital signal processor to perform signal processing

computations on inputs. It consists of many small cores that are interconnected at different

logical hierarchies. What makes the UDSP universal is that these connections between the

cores can be re-programmed to perform many different functions like a field-programmable

gate array (FPGA) [WYYM14]. As mentioned earlier, the design and implementation of

the UDSP die is by Prof. Markovic’s group and is beyond the scope of this thesis. From

a system point of view, the UDSP design can be scaled to incorporate a vast number of

cores to improve both functionality and performance. However, practical limitations of

the die size restrict the number of these cores. But, if multiple dies can be efficiently

integrated such that the inter-die core-to-core communication latency, and bandwidth are

comparable to the values within a single die, then the UDSP system can be extended to

include a massive number of cores. This is where the Si-IF platform provides the fine-

pitch integration that satisfies these requirements. Further, the SuperCHIPS protocol

provides a simple, low latency, low energy, and high bandwidth interface for core-to-core

communication comparable to on-chip metrics.

As a result, the UDSP is designed in TSMC 16FF with a die size of 2.5x2.5 mm2, con-

sisting of 196 cores that communicate to neighboring dies using the SuperCHIPS interface.

Moreover, as a part of DARPA’s effort to standardize the communication protocol between

dies [Gre16], a modified version of the Advanced Interface Bus (AIB) protocol [Keh19] was

adopted as the soft protocol. However, the AIB protocol is designed for interposer/EMIB

style integration and has several features for an end-to-end solution that are not needed for

simple neighboring die communication. Therefore, a “lite” version of AIB was implemented

in the UDSP prototypes, called the Short Near Range-10 (SNR-10) which is suitable for

sub-10 µm pitch I/Os that is simple and compatible with AIB. The SuperCHIPS I/Os

were designed to conform to this communication standard. The UDSP consists of 8 of

these channels on each side and each channel consists of 32 input (Rx) and 32 output (Tx)

links. Apart from data-channels, the UDSP also consists of a control channel that is used to
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program and control the UDSP, and a phase-locked loop (PLL) IP to generate high-speed

clock up to 3 GHz on-chip. The UDSP was designed to work at clock frequencies up to

1 GHz. The schematic of the UDSP is shown in Fig. 6.5.

Figure 6.5: Schematic of the UDSP die showing different components of the UDSP (Cour-

tesy: Prof. Markovic’s Group [Mar]).

A macro of four UDSP cores with 2 SNR channels is also included in the tape-out of

the GF die which is shown in Fig. 6.6 (b). In addition, the UDSP die also includes the

SuperCHIPS macros discussed above.

6.1.3 Fabricated Dies

The fabricated UDSP die in TSMC 16FF is presented in Fig. 6.6 (a), showing different

components of the die including the Cu metal termination and the 9.8 µm pitch pads. The

fabricated GF die is shown in Fig. 6.6 (b) and consists of the SuperCHIPS and UDSP test

macros.
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(a)

(b)

Figure 6.6: Fabricated dies- (a) UDSP in TSMC 16 nm finfet technology, (b) Die in

GF 22 nm FDSOI technology, showing fine-pitch Cu metal termination and the Super-

CHIPS channels & macros.
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6.2 Design and Fabrication of Si-IF

Three different assemblies were demonstrated on the Si-IF as listed below.

1. Single UDSP on the Si-IF to demonstrate the functionality of the die. The goal is to

perform a low-speed test to validate the UDSP cores and the assembly.

2. Single GF die on the Si-IF to characterize the SuperCHIPS macros and verify the

functionality of the UDSP core.

3. An array of 2x2 UDSPs integrated on the Si-IF at close spacing (≤55 µm) to demon-

strate the high-speed inter-die communication using SuperCHIPS, and the function-

ality of the system.

Three different Si-IFs were designed to test the three assemblies mentioned above. All

the Si-IFs were fabricated with two wiring levels that include both the signal and power

wiring. The Si-IFs were terminated with 4 µm diameter Cu pillars at 9.8 µm and 10 µm

pitch for the UDSP and GF dies respectively. All the external I/Os were fan-ed out to pads

at the periphery with 100 µm pitch for testing and wire-bonding to board. All three Si-IF

test sites were placed on a single wafer and processed together. The Si-IFs were fabricated

at the UCLA facilities using the process mentioned earlier in chapter 3. The details of

individual test site design and fabrication are presented below.

6.2.1 Single UDSP

The Si-IF platform can support numerous I/Os because of the fine-pitch interconnects.

However, all the I/Os cannot be fan-ed out to periphery pads for wire-bonding because of

the larger pitch. Therefore, for the single UDSP testing, only the control channel, and two

SuperCHIPS data-channels, each corresponding to 64 I/Os (32 Tx, 32 Rx) were fan-ed out

to be tested. The I/O pads on the die bond to 4 µm diameter Cu-pillars and two wiring

levels are used to fan-out the connections to periphery pads. Also, the power is distributed

using multiple Cu-pillars across the UDSP die. Moreover, a single row of wire-bonding pads

100



was used that connect to two rows of staggered pads on the testing board. This is limited

by the PCB pitch, routing, and wire-bonding complexity. Also, the Si-IF includes test

pads for the continuity check of the SuperCHIPS macro daisy chains to validate successful

assembly. The Si-IF size is 5.5x5.5 mm2 and the fabricated Si-IF is shown in Fig. 6.7. The

design consists of 7574 pillar interconnects of which 308 are for signal transfer, 5737 are for

power transfer, and the rest are dummy pillars.

Figure 6.7: Micrograph of the fabricated Si-IF for single UDSP assembly. Inset shows the

data and control channels with 9.8 µm Cu pillars that are fan-ed out to pads for wire-

bonding.
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6.2.2 Single GF Die

The Si-IF for the GF die is designed to be compatible with the single UDSP testing board

consisting of a similar layout of the periphery pads and the 5.5x5.5 mm2 Si-IF size. A

second row of periphery pads was also included for additional test points and to serve as

alternative wire-bonding pads. The pads of the daisy chain structures were connected in

series of three using the Si-IF links and fan-ed out to probing pads. Also, the ring oscillator

of the two macros on each die was connected using the Si-IF links of two different lengths:

200 µm, and 500 µm. This allows for measuring the change in latency vs the link length.

The SuperCHIPS links connecting the two BER modules are ≈450 µm long. The wire

width is 1.5 µm and the wiring pitch is 5 µm. The fabricated Si-IF is shown in Fig. 6.8.

Note that only 364 pillar interconnects are required for the test, but additional 15,480

dummy pillar interconnects were included for the mechanical stability and bond strength

of the assembly. Moreover, other test macros that are related to the neural engine on the

die were also fan-ed out to the probe pads for testing as shown in Fig. 6.8. The testing of

these macros is beyond the scope of this work.

6.2.3 2x2 UDSP System

To demonstrate a functional UDSP system, an 8x8 mm2 Si-IF was designed to integrate

four UDSPs in a 2x2 array. The fabricated Si-IF is shown in Fig. 6.9. Two adjacent UDSPs

are connected using the short SuperCHIPS channels of length ≈350 µm as shown. The

wire width is 1.5 µm and the wiring pitch is 4.9 µm. The inter-dielet spacing is crucial in

achieving the desired SuperCHIPS link lengths and one has to account for the die fabrication

shrinkage, physical die size after dicing which is typically larger than the design, and

variation in the die edge due to dicing. The SuperCHIPS channels between the UDSPs can

communicate using either synchronous mode at core clock frequency or asynchronous mode.

There a total of 8 SuperCHIPS channels between two adjacent UDSPs that correspond to

a bandwidth of 512 Gbps between the dies. Few of the periphery SuperCHIPS channels
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Figure 6.8: Micrograph of the fabricated Si-IF for the GF die assembly. Insets show the

test macros, Si-IF wires connecting the ring oscillator, and 10 µm pitch Cu pillars.
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are fan-ed out to serve as external data I/O to the system. There are a total of 30,402

pillar interconnects for the system of which 8,111 are for signal transfer and 22,291 are for

power transfer.

The 2x2 UDSP system is designed to function at high frequency and a corresponding

clock cannot be reliably supplied externally from the board. Therefore, a slow reference

clock is given as input which is distributed on the Si-IF using a simple H-tree and given to

all the UDSPs. This ensures the same clock delay and skews for all the UDSPs. Moreover,

another H-tree is used to distribute a high-speed clock generated by the PLL of one of the

UDSPs to all the others. This serves as the core clock which ensures synchronicity across

all the UDSPs. Therefore, the 2x2 UDSP accomplishes high-bandwidth (512 Gbps) data-

transfer between two adjacent dies. Although this is nowhere close to a wafer-scale system,

it is the first step in demonstrating the performance of the Si-IF platform and SuperCHIPS

communication.

Apart from the UDSP, the SuperCHIPS test macros on all the dies were also connected

using the Si-IF. The continuity daisy chains extend across two dies in series to verify the

bonding of both the dies. In addition, similar to the Si-IF for GF die, the ring oscillators

were connected using the Si-IF links of two different lengths, 200 µm and 500 µm, to

measure the difference in latency. For high-speed data transfer and BER measurement,

two SuperCHIPS macros on adjacent dies were interconnected as shown in Fig. 6.9. The

ring oscillator and BER modules are routed to peripheral wire-bonding pads on the second

row as shown and share some of the bonding pads with the data-channel on the PCB.

Therefore, for a sample, either the data-channel or the SuperCHIPS macro can be bonded

and tested.

6.3 Assembly

As mentioned earlier, the dies were terminated with pads at the last Cu metal wiring level

and passivated with 200 nm of Si3N4 layer. Before bonding to the Si-IF, this passivation
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Figure 6.9: Micrograph of the fabricated Si-IF for assembly of 2x2 UDSP dies. Insets show

the SuperCHIPS channels between the dies and the connections between the SuperCHIPS

macros of two dies.

on the dies was removed using a dry etch of the Si3N4 layer, exposing the Cu pads. Sub-

sequently, the dies and the Si-IF were treated with Ar-plasma for 3 min to remove any
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surface contamination. Using the direct Cu-Cu TCB process described in section 4.4, the

dies were precision aligned and bonded to the Si-IF. The process parameters used are given

in Table 4.3. All the different sites on the Si-IF and their corresponding die alignment

marks were individually taught before assembly. All the different sites were first bonded on

the Si-IF wafer as shown in Fig. 6.10. The Si-IF wafer is later diced to separate individual

assemblies. The individual assemblies are presented below.

(a) (b) (c)

Figure 6.10: Multiple dies assembled on the Si-IF wafer before dicing: (a) Single UDSPs,

(b) GF dies, (c) 2x2 array of UDSPs.

6.3.1 Assembly of Single UDSP on Si-IF

The micrograph of a single UDSP assembled on the Si-IF is shown in Fig. 6.11. As shown,

the die size is 2.5x2.5 mm2 and the Si-IF size is 5.5x5.5 mm2. The periphery wire-bond

pads were used for preliminary probe testing and later wire-bonded to the testing PCB.
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Figure 6.11: Micrograph of a single UDSP die assembled on the Si-IF.

6.3.2 Assembly of Single GF die on Si-IF

The micrograph of a single GF die assembled on the Si-IF is shown in Fig. 6.12. As shown,

the die size is 3x3 mm2 and the Si-IF size is 5.5x5.5 mm2. The periphery wire-bond pad

layout is the same as a single UDSP Si-IF. However, only some of these pads correspond to

the SuperCHIPS and UDSP core macros. Preliminary probe testing was performed using

this assembled Si-IF before wire-bonding to the PCB.

6.3.3 Assembly of 2x2 UDSPs on Si-IF

The micrograph of a 2x2 UDSP array assembled on the 8x8 mm2 Si-IF is shown in Fig. 6.13.

The inset shows the inter-dielet spacing between two adjacent UDSPs is ≈55 µm. As

mentioned earlier, the variation in die size after dicing constraints this spacing. For the

UDSP die, the die edge left-over after dicing is 30±5 µm larger than the design size on each
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Figure 6.12: Micrograph of the GF die assembled on the Si-IF.

side. The four UDSPs are bonded sequentially on the Si-IF with no intermediate cleaning

process other than the in-situ formic acid treatment process. Once again, preliminary probe

tests were performed as mentioned above before wire-bonding to the PCB.

6.3.4 Assembly of Si-IFs on PCB

For the complete functional testing of the dielet assemblies, the Si-IFs were mounted on

testing PCBs and wire-bonded. Two different PCBs were designed to test the single die

assemblies, and the 2x2 UDSP assemblies. Because there was no packaging of the Si-IF, the

assemblies had to be directly wire-bonded to the PCBs which presented some challenges.

However, the Si-IFs were successfully wire-bonded to the PCBs and the final assemblies of

the three different samples is shown in Fig. 6.14. An FPGA was used for programming,

and interfacing with the boards to perform tests.
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Figure 6.13: Micrograph of a 2x2 array of UDSP dies assembled on the Si-IF. Inset shows

the inter-dielet spacing of ≤55 µm.

6.4 Results of SuperCHIPS Macros Characterization

The SuperCHIPS macros of the dies in both the technologies were characterized and the

results are presented below.
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(a)

(b) (c)

Figure 6.14: Micrographs of wire-bonded samples: (a) Si-IF with single UDSP, (b) Si-IF

with GF die, (c) Si-IF with 2x2 array of UDSPs.
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6.4.1 Continuity

The continuity check is the first test that was performed to validate the bonding. Both the

passive and active daisy chains of all the bonded assemblies were tested using probing of the

Si-IF pads. For a single die, the daisy chains on the opposite edges were tested to ensure

alignment. Additionally, for 2x2 UDSPs assembly, the daisy chains that pass through two

dies in series were also successfully tested that ensured bonding of all the dies. A square

wave was applied to the inputs and the outputs of the daisy chains were measured. The

passive daisy chains passed the continuity tests for all the bonded samples. The measured

waveform is shown in Fig. 6.15 (a). This establishes that the TCB process is successful,

reliable, and repeatable. In addition, the output of the active daisy chains was also observed

to follow the input waveform as illustrated in Fig. 6.15 (b). This demonstrates that the

assembly process does not affect the functionality of the devices. Therefore, no bonding

pressure or ESD related failures were observed. The reduction in the output voltage swing

of the active daisy chain is because of the voltage drop (100 mV) from the supply to the

power and ground pillars of the Si-IF. All the assemblies passed the continuity tests.

6.4.2 Latency Characterization

As previously stated in section 6.1.1, the ring oscillator output was frequency divided and

measured by probing on the fan-ed out pads on the Si-IFs. For these measurements, both

the GF die assembly, and the 2x2 UDSP dies assembly on Si-IF were used. The average

measured frequencies of the reference, and the Si-IF ring oscillators with 200 µm and

500 µm link lengths are listed in Table 6.1. The actual oscillator frequencies are found

by multiplying the measured frequencies with 212. Subsequently, the latencies introduced

by the Si-IF links are determined using (6.3) which are also presented in Table 6.1. The

measured output waveforms are illustrated in Fig. 6.16.

The latency introduced by the Si-IF links is dependant on the driver strength. The

TSMC 16FF library had larger buffers than GF 22FDX and the values presented in Ta-
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Figure 6.15: Measured waveforms verifying electrical continuity after assembly. (a) Passive

daisy chain, (b) Active daisy chain.

Ring oscillator Measured

frequency

Actual frequency

(before division)

Measured latency

of the Si-IF links

(kHz) (GHz) (ps)

2x2 UDSP array on Si-IF

On-chip reference 921.1 3.77 N.A

With 200 µm Si-IF links 836.8 3.43 6.67

With 500 µm Si-IF links 762.3 3.12 13.80

GF die on Si-IF

On-chip reference 1033.9 4.23 N.A

With 200 µm Si-IF links 877.6 3.59 10.51

With 500 µm Si-IF links 760.3 3.11 21.26

Table 6.1: Characterization of the latency introduced by the Si-IF links.
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(a)

(b)

Figure 6.16: The measured output waveforms of the ring oscillators after frequency division

by 212 for the macros in (a) 2x2 UDSP dies assembled on the Si-IF, (b) GF die assembled

on the Si-IF. Presented are the waveforms of the reference ring oscillator (black), ring

oscillator with 200 µm (red), and 500 µm Si-IF links (blue).
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ble 6.1 reflect that and are consistent with the theory (5.2). The latency values were also

verified with the on-chip cycle counter measurements and the values match perfectly. More-

over, the latency introduced by Si-IF links is comparable to on-chip buffer delays. As a

result, the latency using the SuperCHIPS protocol is 50X lower than the typical SERDES

interface on PCBs. Further, the latency is 10X lower compared to interposers. Therefore,

by using a fine-pitch (≤10 µm) assembly and small inter-die spacings (≤100 µm), the Su-

perCHIPS interface achieves superior latency performance. Furthermore, as presented in

Table 6.1, the ring oscillators using both the 200 µm and 500 µm Si-IF links have operat-

ing frequencies up to 4 GHz. Achieving such high clock speeds (≥4 GHz) on interposers

is challenging which will be discussed in chapter 7. On the contrary, the short Si-IF links

(≤500 µm) in SuperCHIPS, achieve high data-rates ≥10 Gbps/link as shown in section 5.2.

6.4.3 High-speed Data Transfer & BER

For high-speed data transfer and BER characterization, the assembly of the GF die on Si-IF

was wire-bonded to the testing PCB. The programmable ring oscillator clock frequency was

varied from 500 MHz to 3 GHz which was verified by the 28 divided output clock frequency.

The module was triggered and the output bits of the error counter were monitored. The

testing showed no errors for all the frequencies from 500 MHz to 3 GHz, demonstrating

successful data-transfer up to 3 Gbps/link. The aggregate bandwidth for the 16-bits across

both the macros is 48 Gbps which corresponds to a maximum data-bandwidth/mm of

1200 Gbps/mm for the two-layer Si-IF. Increasing the frequency from 3 GHz to 6 GHz

caused timing closure problems because of the technology limitation and the data-transfer

beyond 3 GHz could not be verified. The testing was continued for more than 43 hrs with

no errors, corresponding to a BER of <10-14 with 99% confidence. The BER testing is

limited by the testing time and the actual BER is expected to be much lower. The SNR at

the sampling frequency is estimated to be >35 dB from the plot shown in Fig. 5.9. Using

this, one can estimate the BER to be much lower (<10-25). Verifying this BER is extremely

challenging and would require a variable sampling point at the receiver to plot a bathtub
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curve. However, this circuitry was not implemented in the macros.

Moreover, the difference in the power between the active and reset state was measured

to estimate the energy per bit. The measured difference in power was 1.34 mW for 48 Gbps

data-transfer across 450 µm long SuperCHIPS interface. This corresponds to an energy

per bit of 0.028 pJ/b which includes the clocking, registers, and I/O buffers. However, note

there is no ESD protection implemented. The ESD protection capacitance of 50 fF would

add 0.03 pJ/b to the overall energy per bit and would also double the link latency.

6.5 Results of UDSP Characterization

6.5.1 Single UDSP Functionality

The UDSP die functionality was analyzed using the testing PCB. The UDSP was suc-

cessfully booted up and the idle power was ≈100 mW. First, a clock loop-back test was

performed using both an external clock, and the PLL reference clock. In the clock loop-

back test, the clock is transferred to the center of the clock-tree within the UDSP and

distributed to all the nodes. One of the leaf nodes is given as an output for observation.

The clock loop-back test was successful with the output waveform following the input clock.

This establishes that the clock tree within UDSP is functional. Second, a programming

loop-back test was performed using an FPGA to transfer the program to the UDSP which

is subsequently looped-back to the output and observed. The programming loop-back was

successful where all the programs transferred were correctly looped-back. Moreover, other

control flags were also working as expected and the output can be observed reliably. Next,

the UDSP core and the data-plane were programmed and the output was monitored. This

test, however, showed inconsistent results, and the exact problems are under scrutiny. The

summary of the observations suggests that the control plane of the UDSP is functional

without flaws, however, the data-plane had errors. The errors occured internal to the data

channels on the UDSP because the errors were sampled with the UDSP internal clock.

Programming the cores seemed to trigger faults in some of the data bits, an issue that is
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being investigated. In addition, some of the input bits have a loss of data in the input path

while all the output bits show activity.

The macro of the UDSP cores on the GF die was also tested in the same sequence as

above. Once again, the clock and programming loop-back are functional and consistent

with the UDSP die results. Programming the cores again resulted in inconsistent results,

however, some programs showed complete functionality while others showed errors. These

experiments also suggest that the problem is internal to the data-channels on the die,

particularly the input path, because all the output bits show expected data.

6.5.2 2x2 UDSP System

The 2x2 UDSP assembly was first tested by probing to verify the SuperCHIPS macros

performance. These results are presented above in section 6.4, and the successful func-

tionality of the macros was established. The assembly was mounted on a testing PCB for

further tests. Once again, the assembly was successfully booted up and the idle power

was ≈400 mW. Because of the design choice in section 6.2, the clock loopback can only be

verified using the PLL reference clock since the external clock input of all the UDSPs were

tied to the PLL output of one of the UDSP. The PLL clock loop-back gave inconsistent

results both in the single UDSP and 2x2 UDSPs system. Further, none of the four PLLs in

the 2x2 UDSP system achieved a lock, although the output waveform of the PLL suggests

some partial locking was achieved. The PLL is essential to achieve a high-frequency clock

to test the high-speed data transfer of the UDSP system. However, the experiments suggest

that the failures are in the input data-path similar to the faults observed in single UDSP

testing. This may be the reason for the failure of the PLL as well. Further testing couldn’t

progress until the single UDSP functionality is verified and the reason for the input data

path failures is debugged.
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6.5.3 Conclusions

From the experiments, it is clear that the problem is not related to the Cu-Cu TCB process,

because both the SuperCHIPS macros and the output channels show expected behavior.

Also, no passive coupling or short behavior was observed. Further, all the faults observed

were sampled according to the internal UDSP clock. As a result, the faults seem to be

internal to the UDSP such as manufacturing defects or errors in the input channel logic.

Although, having no ESD protection leads to the suspicion that there are ESD related

failures in the input path. This, however, couldn’t explain all the results of the experiments.

Moreover, the data from the SuperCHIPS macro testing suggests that ESD related failures

didn’t occur, or at least are not common. The problems are under study by Prof. Markovic’s

research group [Mar].
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CHAPTER 7

SuperCHIPS Benefits & Signaling Figure of Merit

From the previous chapters, both experimental and circuit simulations demonstrate that

the SuperCHIPS protocol achieves low energy (≤0.03 pJ/b), low latency (≤30 ps), and

high bandwidth (8 Tbps/mm) communication between dielets. This protocol is partic-

ularly efficient for a streaming interface between dielets that is comparable to on-chip

communication on an SoC. In this chapter, the benefits of the SuperCHIPS protocol are

contrasted with those of the existing technologies. As mentioned earlier, the SuperCHIPS

protocol is a hardware interface protocol with simple buffer I/Os. Any logical protocol

can be implemented using the SuperCHIPS including SERDES. However, to achieve the

benefits presented in this work, a simple logical protocol is needed and the SNR-10 protocol

described in section 6.1 serves this purpose. The values presented in this chapter assume

this logic protocol implementation.

7.1 Comparison with Conventional Technologies

Today, the best bandwidth performance is achieved by using SERDES for packages &

PCBs, and High Bandwidth Memory (HBM) or AIB protocols for interposers. For a PCB or

package, the wiring density is only 2 wires/mm/layer compared to >200 wires/mm/layer on

interposers and the Si-IF. Moreover, as mentioned earlier, the interconnect pitch for package

and PCB is limited by C4-bump pitch (130 µm) and BGA pitch (0.4-1 mm) respectively.

Therefore, for a PCB style integration, SERDES is the only way to achieve high bandwidth.

Over the past decade, there has been significant research in increasing the SERDES data-

rate and improving the energy efficiency owing to the data-bandwidth demands. The
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current state-of-the-art SERDES typically operate at data-rates of 56 Gbps with differential

wires and typically use PAM-4 signaling [ECH+18, LWL+19]. Recently, higher data-rate

SERDES of 112 Gbps/link were also demonstrated [KBD+19, KPL+20]. These SERDES

typically have energy efficiencies of 4-7 pJ/b depending on reach and can compensate

for signal attenuation of 20-35 dB [KPL+20,KBD+19,LWL+19,DZM+19,NCH+15]. For a

neighboring die on MCM package or on a board, the signal attenuation is only 4-10 dB, and

therefore, the SERDES energy efficiency can be improved to 1-2 pJ/b [PDC+13,PWT+19,

TBC+20, SCF+16] using single-ended links with lower data-rate per link of 10-25 Gbps.

Apart from the interconnect pitch, the SERDES circuits are also limited by the real estate

on a chip. Typical SERDES circuits that operate at 56 Gbps occupy an area of 2x0.31 mm2

per link [KZ19]. Therefore, the I/O circuitry extends 2 mm deep into the die which is >25%

even for large dies (>625 mm2). The DARPA CHIPS program targets a bandwidth density

of 1 Tbps/mm [Gre16] which would require 12 mm depth along the die perimeter just for

I/Os. This is almost the whole die area and therefore, is not practical [KZ19]. Some

recent SERDES implementations [KPL+20,KBD+19] have shown smaller area and higher

data-rates, but they still require significant die area (>3 mm) to meet the 1 Tbps/mm

specification.

Interposers, on the other hand, have moderate interconnect densities and connect neigh-

boring dies using relatively simple I/O cells. Therefore, higher energy efficiencies are

achieved (<1 pJ/b [Keh19, OCL+17]) using a lower data-rate of 2-4 Gbps/link [Keh19,

Sta20]. At the same time, a higher bandwidth density of >500 Gbps/mm is achieved due

to fine wiring pitch of ≤4 µm, reduced interconnect pitch of 40-55 µm [CHT+17,MSP+16],

and short link lengths of 1-5 mm for neighboring dies. The I/O real estate and reach in in-

terposers are typically limited by the µ-bump pitch rather than the I/O circuitry. Therefore,

to achieve the DARPA CHIPS target of 1 Tbps/mm, interposers today require 1.85 mm

depth along the die perimeter [KZ19]. By reducing the bump pitch to <35 µm, this can

be reduced to 0.92 mm [KZ19]. Authors in [LHT+20], have shown high bandwidth density

of 1.6 Tbps/mm2 (corresponding to 533.33 Gbps/mm per die edge) with high data-rate
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of 8 Gbps/link on CoWoS platform using a Low-voltage-InPackage-INterCONnect (LIP-

INCON) interface [MCC+16]. The energy per bit was low (0.56 pJ/b) because of the low

swing transfer but the area of their I/O was larger to accommodate the circuit complexity.

Moreover, the reach for these links was only 500 µm which was achieved by configuring the

40 µm bumps appropriately, and reducing the inter-dielet spacing to <70 µm. Therefore,

the I/O depth is limited to eight columns and may not be easily scalable.

The advantage of the SuperCHIPS protocol in terms of the physical implementation

is shown in Table 7.1. The SuperCHIPS protocol has a good balance of fine pillar pitch

(≤10 µm) on the Si-IF and much simpler I/Os with a transceiver area of <10x10 µm2

including the control logic. Therefore, to achieve a 1 Tbps/mm of bandwidth density, only

50 µm of the die perimeter is utilized which in turn allows for the short inter-dielet link

lengths of 100-500 µm. This corresponds to a 37X and 240X improvement in area efficiency

compared to PCB or interposer-based implementations. Moreover, the SuperCHIPS pro-

tocol simplifies the I/Os implementation by designing with standard cells and to work at

core frequency and transfer data either at SDR or DDR.

A comparison of different metrics of the SuperCHIPS protocol with the state-of-the-

art SERDES protocol on PCBs and HBM or AIB interfaces on interposers is presented in

Table 7.2. As mentioned earlier, the short links (≤500 µm) in the SuperCHIPS interface

have a latency of <30 ps or 1 clock cycle. This corresponds to an improvement of 4-65X

and 3-50X when compared to PCB and interposer-based interfaces respectively. Moreover,

this is comparable to 1-2 stage on-chip buffer delays. Also, because of the simple I/O

cells, the energy per bit using SuperCHIPS is <0.03 pJ/b for the asynchronous mode,

and <0.15 pJ/b for the synchronous mode. For reference, global communication on SoCs

typically has an energy efficiency of 0.01 pJ/b/mm [LLS+13]. Therefore, the SuperCHIPS

energy/bit is significantly lower (5-40X) compared to traditional systems on PCBs and

interposers. At the same time, due to the fine-pitch interconnects, the bandwidth density

is up to 8 Tbps/mm for asynchronous mode, and up to 2.56 Tbps/mm for synchronous

transfer. Although the data-rate per link of the SuperCHIPS protocol is 4-10 Gbps, which
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Parameter PCB/

SERDES

Interposer/

AIB

Si-IF/

SuperCHIPS

Wire density

(lines/mm/layer)

2 250 [MSP+16] 200-250b

Data-rate (Gbps) 56-112a 2-4 [Keh19] 2-4

Typical

I/O size

Height along die

edge

310 µm [KZ19] 104 µm [KZ19] 10 µm

Depth into the

die

0.5-2 mm [KZ19] 27.5 µm [KZ19] 10 µm

I/O depth required for

1 Tbps/mm bandwidth

density

3-12 mm [KZ19] 0.92-

1.85 mm [KZ19]

50 µm

aReferences: [ECH+18,KBD+19,KPL+20,LWL+19].

bAssuming UCLA fabrication facilities and corresponding design rules.

Table 7.1: Typical I/O area required to meet 1 Tbps/mm data-bandwidth specification for

different implementations.

is 10X slower than the SERDES interface, the bandwidth density is extremely high (7-

23X) due to the fine interconnect pitch and wiring density. Moreover, the data-rate per

link of SuperCHIPS is comparable if not higher than interposer interfaces and is limited

by the core operating frequency for simplicity of implementation. Compared to interposer

interfaces, the bandwidth density of SuperCHIPS is 4-11X higher.

7.2 Signaling Figure of Merit

In the Table. 7.2, several different metrics including latency, energy/bit, bandwidth are

listed and compared separately. This is the current norm for comparison of signaling for

any packaging technology. Although these parameters represent different aspects of perfor-
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Technology/

Interface

protocol

Si-IF/

SuperCHIPS

Interposer/

HBM2E,

AIB

PCB/ SERDES Change

Async Sync

Reach Neighbor Neighbor Neighbor Long

reach

(length) (≤500 µm) (1-5 mm) (≈50 mm) (≈300 mm)

Interconnect

pitch (µm)

10 40-55 100-150 400-1000 4-

100X

I/O depth (µm) 80 715 [Sta20]-

1320 [WAA+20]

686 [PWT+19] 1027b 9-25X

Data-rate/link

(Gbps)

10 4 2 [Keh19]-

3.2 [Sta20]

25 [PWT+19] 56-112c 0.1-5X

Overall latency

(ps)

30 1 clock

cycle

(500)

1500 [Keh19] ≈2000 ≈6000 3-65X

Energy/bit

(pJ/b)

<0.03 <0.15 0.8 [OCL+17]-

0.85 [Keh19]

1.17 [PWT+19] 6.9 [LWL+19] 5-40X

Maximum

bandwidth/mm

(Gbps/mm)

8000 2560a 707.7a 354 149-298b 4-23X

aAssuming 20% overhead for power and control signals.

bEstimated from data in [KPL+20,KBD+19,LWL+19].

cReferences: [ECH+18,KBD+19,KPL+20,LWL+19].

Table 7.2: Comparison of the SuperCHIPS interface protocol with existing technologies.

mance, they are inter-dependent and there exists a trade-off between them. Therefore, it

would be good to have a Figure of Merit (FoM) for signaling that captures all the different
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parameters into a single metric. One FoM was proposed in [WAA+20] by Intel, shown in

(7.1), where Bandwidth/mm is the bandwidth per millimeter of the die edge and Energy/bit

is the energy consumed for transferring single bit. This FoMIntel is useful in understanding

the system performance benefits because one would naturally desire higher bandwidth/mm

and lower energy/bit. A plot of the FoMIntel vs the interconnect length is shown in the

Fig. 7.1.

FoMIntel =
Bandwidth/mm

Energy/bit
(7.1)

Although this FoM is useful, it does not capture several other aspects that are important

in signaling. For example, the interconnect length is not considered which is a packaging

technology attribute and depends on how far the chips are. Note that the FoMIntel of

technologies decreases with the increase in length. This is expected as interconnect length

increases, the interconnect density decreases, and the energy/bit increases to compensate

for the increased loss. Therefore, it is not fair to compare an I/O designed to drive long

distances with an I/O that only communicates with a neighboring die. Moreover, band-

width/mm is not well defined because it depends on the number of wiring layers used for

routing. For example, one could increase the bandwidth/mm by going deeper into die,

i.e. use more columns of I/O pads, area, and additional wiring levels. Once again, a fair

comparison between technologies does not exist. The latency and transceiver area are also

important metrics to consider.

A good FoM should consider all the different metrics and combine them in a way that is

meaningful, easy to quantify, and weigh them appropriately for a fair comparison. Keeping

this in mind, a novel FoM, called the FoMUCLA is proposed in this work and shown in

(7.2). Some of the terms are explained as follows- shoreline is the length along the die edge

through which the I/Os communicate; IOcols is the number of columns of the I/O pads

used, perpendicular to the die edge; TransceiverArea is the actual circuit area of both the

transmitter and the receiver (not I/O pad area). The explanation and justification of the

terms in FoM are presented below.
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Estimated from the references to the best of knowledge.

Figure 7.1: Plot of the FoMIntel (Bandwidth per mm/ Energy per bit ((Gbps/mm)/(pJ/b)))

vs interconnect length for different state-of-the-art signaling schemes.

FoMUCLA =
( Bandwidth
shoreline∗IOcols) ∗ (Lengthlink)

(Energy
bit

) ∗ (TransceiverArea
Link

) ∗ Latency
(7.2)

• Bandwidth/(shoreline*IOcols) represents the bandwidth per mm of the die edge but

it also includes the number of I/O columns used. It normalizes the number of wiring

layers used and provides fair comparison within and across technologies. A higher

Bandwidth/(shoreline*IOcols) is desired and therefore, the FoMUCLA is directly pro-

portional to this term.
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• Lengthlink is the interconnect length between the transmitter and receiver. This term

represents the load on the driver and justifies designing larger drivers for longer links.

Longer reach transceivers should be given higher merit and therefore, it is in the

numerator.

• Energy/bit is intuitive to be in the denominator as lower energy is desired.

• The TransceiverArea/link represents the silicon area occupied by the transceiver to

achieve the metrics. Note that this is not the I/O pad area which is already accounted

for in the Bandwidth/(shoreline*IOcols) term. Transceivers do not contribute to

the functionality of a system except they are an inevitable burden for data-transfer

through the connecting links. In addition, the transceiver area cuts into the active

area of the die that could be used for computation and memory. As a result, a

lower transceiver circuit area is desired which should correspond to a higher FoM

value. In addition, the directionality of links is also accounted for in this term. For

unidirectional links, both the transmitter and receiver area are considered, while for

bi-directional links, the entire transceiver area on one terminal is considered.

• Latency is also considered and lower latency is desirable. This is included since many

of the applications today including real-time processing are latency sensitive.

Note that these parameters depend both on the semiconductor and packaging tech-

nologies which is true for the performance of any signaling scheme including SuperCHIPS.

A smaller Si technology node reduces the I/O circuit area, and energy, while a better

packaging technology increases the bandwidth per mm and reduces latency. For example,

moving from GF 22FDX to TSMC 16FF die technology provided ≈60% improvement in

the FoMUCLA for the same SuperCHIPS signaling on the Si-IF platform. On the other

hand, consider a SuperCHIPS signaling scheme between dies placed at close proximity

(≤100 µm) on an interposer. The corresponding FoMUCLA value decreases by a factor of

2.5X compared to the Si-IF technology due to a lower Bandwidth/(shoreline*IOcols) and

an increase in Energy/bit because of the underlying packaging technology. Moreover, the
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FoMUCLA not only represents the performance but also considers the cost for such perfor-

mance. For example, consider a comparison between MCM and packaged dies on PCB. The

performance for MCM may be better than PCB but the cost of integration is also higher

which is not beneficial. This is indirectly accounted for in the Lengthlink term. Typical cost

is correlated with the feature sizes and smaller links mean higher cost which could nullify

the benefit. Therefore, this FoMUCLA represents the overall efficiency of both the die and

packaging technologies.

The FoMUCLA for different signaling schemes and technologies is plotted against the

length in Fig. 7.2. From the plot, typical SERDES interfaces on PCBs have an FoMUCLA

value in the range of 1-10 while packages and interposers have an FoMUCLA value in the

range of 10-100 which is a 10X improvement over boards. However, the SuperCHIPS inter-

face in both synchronous and asynchronous exceeds an FoMUCLA value of >10,000. This

corresponds to an overall improvement of 100-10,000X in the FoMUCLA. Note that the Si-IF

link lengths are only 500 µm, which negatively impacts the FoMUCLA, but the improvement

in all the other parameters is so significant that we see such a high improvement. This

demonstrates the SuperCHIPS protocol is a highly efficient signaling interface with good

balance between all the terms in the FoMUCLA.

7.3 Limitations

As mentioned earlier, the SuperCHIPS protocol is a hardware protocol that is dependant

on fine-pitch technologies such as the Si-IF. Therefore, the SuperCHIPS protocol requires

the ≤10 µm interconnects and cannot be easily implemented on other integration schemes.

Moreover, the range of the SuperCHIPS is limited to neighboring die with short links of

≤500 µm. This range can be extended to be comparable to interposer link lengths >5 mm

with a slight hit in data-rate of ≤2 Gbps as shown earlier in Fig. 5.17. Note that although

the range is increased from 500 µm to 5 mm, other parameters such as the data-rate, energy

per bit, and latency take a hit, reducing the FoMUCLA by about 30%. A range of >5 mm
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Estimated from the references to the best of knowledge.

Figure 7.2: Plot of the FoMUCLA vs interconnect length for different state-of-the-art signal-

ing schemes.

allows the SuperCHIPS protocol to communicate with the next-to-neighbor dies if the die

sizes are relatively small (≤5 mm). The range can be extended further by using differential

signaling, however, it is still limited because of the Si substrate that is lossy compared to

organic PCBs.

As a result, it is not a fair comparison to contrast SuperCHIPS with long reach SERDES

without the FoMUCLA. In a typical PCB-based integration, the dies are packaged and as-

sembled on boards and several of the boards communicate using a data-backplane. State-
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of-the-art SERDES are designed to accommodate losses of over 35 dB [KPL+20,LWL+19].

Today, the die-to-package ratio is 5-18X [PPT+19] and the packages have typical losses of

about 4-10 dB [PWT+19]. Moreover, the PCB wires have a typical loss of ≈0.1-0.2 dB/mm.

Therefore, these long-range SERDES are designed to serve 30-40 cm long backplane connec-

tions. Now, integration on Si-IF miniaturizes the overall system by eliminating packages,

reducing the inter-dielet spacing, and assembling the entire system on a single wafer. There-

fore, the overall form factor of the system is reduced remarkably by a factor of at least 5-10X.

Even if we assume a conservative 5X reduction, the equivalent length the SuperCHIPS pro-

tocol needs to reach is ≈60 mm. This cannot be achieved by an end to end connection on

passive Si-IF and requires intermediate boost on dies. Therefore, the dies in the system

need to allocate certain SuperCHIPS channels for feed-through to pass the signals to the

neighboring dies. As a result, the signals area transmitted by several hops along the path

to the destination. Depending on the system and the size of the dies, the number of hops

can vary and latency and energy per bit increase appropriately. The comparison of the

communication using this scheme with SERDES is presented in Table 7.3. The underlying

assumptions are that the die sizes are 2-10 mm (side) with the signals passed from the first

die and repeated through every die with on-chip energy/bit of 0.01 pJ/b/mm [LLS+13].

Also, two link lengths are assumed (1) 300 mm long, and (2) 60 mm long assuming 5X

scaling because of technology. The FoMUCLA for the SuperCHIPS interface is still 35-830X

better than the long-reach SERDES interface.

Alternatively, a SERDES protocol for global communication on the Si-IF, described

in [VBI18], may be implemented. Also, because of the lossy Si substrate, the SuperCHIPS

interface cannot be used for radio frequency (RF) communication across the wafer or with

external sources. As a result, technologies such as quartz inlays [DAJI20] may be imple-

mented on the Si-IF for RF communication. The implementation and implications of such

wafer-level communication schemes are beyond the scope of this thesis.
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Technology/

Interface protocol

Si-IF/ SuperCHIPS PCB/

SERDES

Change

Link length (mm) 300 60 300 5X

Bandwidth/mm

(Gbps/mm)

<2560 <2560 298a 9X

Energy/bit (pJ/b) 4.55-21.45 1.19-5.7 6.9 [LWL+19] 0.3-6X

Overall latency (ns) 29-142 5.9-28.6 ≈6 0.04-1X

UCLA Figure of Merit

(FoM)

70-333 345-1667 2 35-830X

aReferences: [KBD+19,KPL+20].

Table 7.3: Comparison of the SuperCHIPS protocol with hops and conventional long-reach

SERDES protocols.
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CHAPTER 8

Conclusion

8.1 Summary

In this dissertation, a package-less, closely packed, highly scalable, fine-pitch heteroge-

neous integration technology called the Silicon-Interconnect fabric (Si-IF) was developed.

The fundamental aspects of a scalable technology including packaging substrate fabrica-

tion, fine-pitch assembly process, and high-bandwidth communication interface protocols

were developed. Further, the characteristics and performance benefits of the fine-pitch

integration on the Si-IF were investigated.

By repurposing mature semiconductor fabrication techniques, a process flow for fine-

pitch silicon-based packaging substrate was developed and demonstrated in chapter 3. Ac-

cordingly, a design manual was established for the Si-IF technology.

A solder-less direct metal-metal thermal compression bonding (TCB) process was demon-

strated in chapter 4 to achieve sub-10 µm die-to-substrate interconnect pitch. Both direct

gold-gold (Au-Au) and copper-copper (Cu-Cu) TCB processes were demonstrated with

bonding cycle times of ≤6 s and ≤30 s respectively. For the direct Cu-Cu TCB, a novel

in-situ formic acid vapor treatment process was developed. The fine-pitch pillar intercon-

nects, bonded using these techniques, show an average shear strength of over 127 MPa.

Further, electrical continuity was demonstrated across multiple dies with a low specific

contact resistance of <0.7 Ω-µm2.

In chapter 5, a Simple Universal Parallel intERface for Chips (SuperCHIPS) proto-

col was proposed as an interface protocol for near-neighbor communication on the Si-IF.
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Experimental characterization of the short SuperCHIPS links of ≤500 µm shows a low

insertion loss of ≤2 dB up to 30 GHz, and a near-end cross-talk of <-15 dB for frequencies

up to 20 GHz. Moreover, the parasitics of the Si-IF assembly were found to be 20-50X

lower compared to interposer and PCB counterparts. Further, simulation studies of the

SuperCHIPS interface were presented.

The performance benefits of the SuperCHIPS protocol were demonstrated using func-

tional hardware assembled on the Si-IF in chapter 6. Dies in two different technologies

(TSMC 16FF & GF 22FDX) with sub-10 µm pitch pads were assembled on the Si-IFs

using the fabrication and assembly techniques developed in this work. Experimental char-

acterization of the hardware shows a low link latency of <21.56 ps for ≤500 µm Si-IF links.

Further, 3 Gbps/link data-transfer across the SuperCHIPS interface was also demonstrated

corresponding to a data-bandwidth of 1.2 Tbps/mm of die edge. The energy per bit was

also measured to be <0.03 pJ/b.

Finally, chapter 7 compares and contrasts the SuperCHIPS protocol with interfaces in

interposers and PCB-based assemblies. The SuperCHIPS protocol achieves 4-23X improve-

ment in data-bandwidth, 3-65X reduction in latency, and 5-40X reduction in energy per

bit compared to nearest-neighbor communication on interposers and PCBs. Further, a new

figure of merit, called the FoMUCLA has been proposed according to which the SuperCHIPS

protocol supersedes existing technologies by 100-10,000X.

8.2 Outlook

The Si-IF technology is a superior alternative to PCBs for heterogeneous integration of mas-

sive wafer-scale systems. Fine-pitch integration on the Si-IF provides SoC-like performance

while ensuring technology heterogeneity. Although the viability and merits of the fine-pitch

integration on the Si-IF platform are demonstrated in this work, several challenges remain

for wafer-scale assemblies. Three major directions for the future are suggested below:

1. Integration of other enabling technologies in the Si-IF: As mentioned in section 2.2.2,
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there are several key enablers for the Si-IF technology which include multiple wiring

levels using maskless lithography, TWVs, integrated passives, quartz inlays, and

passivation. These technologies were demonstrated independently [LVH+19, TI20,

DAJI20, SHI19a, SSYI20] but they must be integrated together for wafer-scale sys-

tems. Although, these processes are compatible with conventional semiconductor

processing, integrating them may be challenging and must be earnestly pursued.

Also, technology transfer to industry is essential to ensure yield and repeatability.

Other supplement technologies like connectors for a reliable communication interface

with external systems, power delivery, and heat extraction for massive wafer-scale

systems are also important. These technologies [AMV+19, SMA+19] present a new

domain of challenges and must be integrated with the Si-IF assembly appropriately.

2. Scaling of the assembly process: Assembly of an entire wafer would require han-

dling of multiple dies of different sizes which is limited by tooling availability. The

throughput of the TCB process should also be improved further for wafer-scale sys-

tems as suggested in section 4.5.4. Also, a contactless substrate heating is essential

for the Cu-Cu TCB process because the current approach of plasma-cleaning at reg-

ular intervals is not practical. One can consider a laser-based heating or temporary

passivation approach for this purpose. Moreover, the reliability of the TCB process

must be investigated in great detail in order to ensure high bonding yield across the

entire wafer.

3. Novel wafer-scale architectures and systems: To efficiently utilize the benefits of the

Si-IF assembly, new architectures have to be explored. The highly parallel Super-

CHIPS interface provides high data-bandwidth at low energy and latency which

should be capitalized upon. Some of the ideas presented in [PPT+19, Sys] show

the tremendous potential for wafer-scale systems.
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