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PHYSICAL RE VIE% D VOLUME 10, NUMBER 7 1 OCTOBER 1974

Unitary multichannel sidewise dispersion calculation
of the nucleon anomalous magnetic moments*

Paul S. Lee, Gordon L. Shaw, and Dennis Silverman
Physics Department, University of California, Irvine, Irvine, California 92664

(Received 26 December 1973)

In sidew'ise dispersion calculations of the anomalous magnetic moments of the nucleon, the
intermediate mN strong states involved are the 8&& and P&&, both of which are highly inelastic
at low energies. These inelastic effects have not previously been included in a systematic
manner consistent with unitarity in order to ensure a real absorptive part. %e present a
multichannel ND ~ formalism for the strong scattering and photoproduction which gives a
unitary result for the anomalous moments. The strong form factor is given simply in terms
of D . Explicit calculations demonstrate that contributions to the dispersion integrals far
beyond S'- 1500 MeV F1be necessary in determining p. .

I. INTRODUCTION

The sidewise dispersion relation was introduced
by Bincer' to calculate the anomalous magnetic
moment of the nucleon. The sidewise form fac-
tors F,( W) describe an off-mass-shell nucleon of
mass squared 5' going to y¹The anomalous
magnetic moment g is F,(m). Bincer considered
only the contribution of the nN intermediate state
to the absorptive part, Fig. I(d). Subsequent cal-
culations'~ have shown the importance of ener-
gies up to 1.5 Gev in the nN intermediate state.
Since the relevant I= —,', J = —,

' mNpartial waves,
Spy and P», are highly inelastic, it is impor tant
to consider the inelastic intermediate states.
These states are related by unitarity and must be
treated in a consistent manner in order to obtain
a real absorptive part, which has not previously
been done. Note that this reduces to a trivial
problem if the amplitudes can be approximated by
a Breit-Wigner form. However, this is clearly
not the case for these partial waves at the ener-
gies in question. In this paper we present a gen-
eral, consistent calculation of the absorptive con-
tribution using the unitary multichannel ND '
formalism that has been previously applied to
low-energy hadron scattering' and to photoproduc-
tion. '

In doing so, we must also calculate the sidewise
form factor K„»(W) for the off-shell nucleon
N(W) —v+¹' The result is remarkably direct in
the ND ' formalism. In addition, as shown by
Suura and Simmons, ' the ratio g„/g„can be ob-
tained from this calculation.

Thus we are concerned with four processes in
which multichannel unitarity must be used. The
same intermediate strong channels occur in each
as shown in Fig. I: (a) the strong scattering
amplitude, (b) the strong nucleon form factor,
(c) photoproduction, and (d) the nucleon anomalous

magnetic moment. The ND ' description of (a)
allows a simple straightforward calculation of
(b), (c), and (d). In principle, the calculational
procedure would be as follows: (i}A multichan.
nel ND ' phenomenological fit is made to the I= —,',
J'=-,' mNpartial-wave amplitude (a). (ii) A calcu-
lation is made of the photoproduction Born terms,
which using fit (i}yields the photoproduction am-
plitudes (c). (iii) Fit (i) immediately gives form
factor (b), and then finally (b) plus (c) yields
1m', (W) (d).

We make use of our formalism together with
previous ND ' fits to the strong nN scattering'
and photoproduction' to calculate the anomalous
moments. We find that the contributions to the
dispersion integrals up to S'-1500 Mev do not
give good values for p. [This agrees with pre
vious calculations of p (Refs. 2-4) which were
done in a less systematic way. ] We stress the
importance of contributions from the inelastic
channels and the need for ND ' solutions to yN
scattering and photoproduction at higher energies.

11. MULTICHANNEL ND-I FORMALISM
AND SIDEWISE VERTICES K

In general we treat two-body channels such as
wN and qN, but we also include the three-body
channel ggN by treating the two pions as a Breit-
Wigner e (J =0') resonance. (Other iwo-body or
quasi-two-body channels can be included as de-
sired. ) The ND ' formalism' treats the partial
waves of given angular momentum and isospin by
writing the multichannel symmetric scattering
matrix

r= (I/2i)(s —I) = p~'t p~',
where p is a diagonal matrix of kinematic factors
which ensures the correct threshold behavior and
acceptable asymptotic behavior. Unitarity is then
[Fig. I(a)]
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Imt= t ~pt.

This may be solved by writing

t =ND-' (3)

where D has only the unitarity cut (m+m, ) & W& ~
and -~ & W&-(m+m„), and N does not have this
cut. Denoting the contribution of the other singu-
larities to t by B(W) (Born term), the solution is

equals the s-channel nucleon-pole terms. The
subscript i denotes the ith channel which is also
labeled by the boson B,. = m, g, or e. Note that the
calculation of the anomalous moment has assumed
that the nucleon is an elementary particle and thus
the nucleon must be included as a CDD (Castillejo-
Dalitz-Dyson) pole term in the B(W) and not as a
dynamical zero in the determinant of D.

Denoting E~ as the energy of the nucleon in the
c.m. system of the BN channel, and q~ the c.m.
momentum, the kinematic factors are

x B(W') —, ' |I(W)
5' —W~

xp(W')N(W'),

D())') = 1 —
J(

p(W')N(W')
X

(4)

p, =p, (+W)

p, =p„(+W)

+E„-m= Q'~

p~ =p, (sW)

where the solution is independent of the normaliza-
tion point 5'0. A symmetric input matrix BwiJ. l en-
sure that t is symmetric as demanded by time-re-
versal invariance for the partial-wave amplitude.
The P» and Spy waves can be simultaneously deter-
mined by using the MacDowell relation'

f( ( W}= f(( )-|(W)~

In actual calculations, the contributions to B are
approximated by a. series of poles:

1
w ~G

r 7

where Q„are nxn real symmetric matrices for n
channels. The subtraction point is taken at the
nucleon mass S', =m where the matrix 6, is given
by (G,), , =-gs»g»„/4v and the kinematic fac-
tors are chosen so that p '(G, ), , p,

' '/(W —m)

(a) Im i~tj

dm, f~~ (m, )p, (+W),

where m is the nucleon mass,

q =(m ' —4m ')'~'

( )-
(m, —m, )'+ (I'/2)'

In this formalism, the sidewise form factors for
the strong vertices' Ks „„(W)obey the unitarity

S

relationship'

rmK(W) = i ~pK(W), (10}

where K(W) is taken to be a column vector normal-
ized to Ks»(m) =gs». Bincer' has shown that
K, »(W} has only unitarity cuts, or obeys the dis-
persion relation

(b) Irn K i
N ( )

( f j" d)V'

(c} Im

(d} Irn

x ImK, „~(W )

We assume this also for the other K~ »(W).
Equations (10) and (11) can be solved if we note

that Eq. (2) with t=ND ' becomes, after using

FIG. 1. Multichannel unitarity relations for (a) the
strong scattering amplitude t, (b) the strong sidewise
nucleon form factor K(W), (c) the photoproduction multi-
poles m, and (d) the sidewise nucleon anomalous moment
form factors E2(W).

D-I D 14 2 D-l+ ND-1

Taking the transpose,
D-' —D-'* = 2&~pD-'* .

(12)

(13)



UNITARY MULTICHANNEL SIDEWISE DISPERSION. ..

Now by complex conjugation, we find that D '
satisfies the same form equation as K does:

D '-D '*=2st* D ' (14)

Therefore K= D '4 satisfies Eqs. (10}and (11}for
any column vector 4. Since D(m)=I, D '(m)=f,
and we find the simple solution

In practice, the Born terms for the pN channel
are calculated from a few simple diagrams. '
The Born terms for the other channels are pa-
rametrized by using the poles of Eq. ('I) with real
residues.

The isoscalar and isovector photon amplitudes
are related to those of CGLN» by

K(w) = D-'(W)K(m), (15)

III. PHOTOPRODUCTION AMPLITUDES AND

THE ANOMALOUS MAGNETIC MOMENTS

We summarize here the application of the ND '
formalism to photoproduction as presented by
Ball, Campbell, and Shaw. '

The amplitudes with correct threshold and

asymptotic behavior are defined in terms of the
CQLN" amplitudes M, by

m. = q. '/'p '/'M q

where the subscripts i on the rn and M denote the
amplitude for yN- J3, ¹ For the photoproduction
Born terms J3y we similarly have

~ y ~
1/2 -1/2 +y -1 (19)

The unitarity relation for photoproduction is
[Fig. 1(c)j

Imm = t ~pm = t *pm (20)

for the eolurnn vector m of the m, In particular
the m, (M, ) transition leads to the P» partial
wave, and the e„(E„)to the S» wave.

The solution is given in terms of the ND ' solu-
tion to the hadron scattering':

1 OO ~ ~ lit ill

m(W) = b»(w}+ —D ' +
lit+ lit &

Np b&(w')
( )8"—8'- is

where

KB NN( } gB ~ NS '

We see that the form factors K(W) in this formal-
ism are obtained simultaneously with the partial-
wave phase-shift fits. This is an improvement
since unlike the Bincer solution, elastic unitarity
does not have to be assumed for the highly in-
elastic P» and S» partial waves. To appreciate
the simplicity of our result (15), compare it with

the lengthy numerical calculations of coupled form
factors in a two-channel problem done by Kreuzer
and Kamal. "

Suura and Simmons' have shown that the ratio
g„/g» is obtainable from this form factor as

g~lg» = K,~g(m)IK, «g(-m) ~

M'=M '~+2M~-~ =M&'~r lr ll' 1}' l

0 0

V 1
Mo = ~Ma(~)

(22)

where the m, 0 subscripts indicate the photopro-
duction of pions and isoscalar bosons (q or e),
respectively. The unitarity relations Eq. (20) are
obeyed by m'" and m~'~.

The calculation of absorptive contributions to
the sidewise E,(w) form factors, Fig. 1(d), pro-
ceeds as in Ref. 1 (see footnote 9), and the result
may be written in the matrix form

' imF,"(+W) = ~ K'(W)p(W)m', "(W),

—' lmF,»(-W}= ~K '(-W)p(-W)e,",~(W),
2m

(23)
imF,'(+ W) = W K '(W)p(W)m~ "~(W),

' lmF,'(-W) = WK "(-W)p( W)e,",~(W) .

1m', ~ K'pm= K(m)D-"pm. (24)

Now from the unitarity relation for m, Eq. (20},

(25)

Multiplying Eq. (25) by K(m)N ' we see that
ImF2 is real since Imm is real.

Bincer' proved that the E,(w) form factors obey
a dispersion relation with only the unitarity cut.
The isoscalar and isovector anomalous magnetic
moments

The multipoles in Eq. (23) are related by the
Mac Dowell symmetry

M, (W) =Eo, ( W} . -
With the solution for K(W), Eq. (15), Eqs. (23)

are unitary; that is, Imp2(w) is real, although it
is a sum over complex numbers from each chan-
nel. This is the final consequence of having had-
ron scattering, hadron sidewise vertices, photo-
production, and electromagnetic sidewise vertices
all tied together consistently by the unitary multi-
channel formalism.

To show that ImE, is real we use (15) to write
(23) as
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&ma "(m) =k(V'~ u" }

can then be calculated from

(26}

(27)

IV. DISCUSSION

We have seen how unitarity ties together the
four processes shown in Fig. 1. A phenomenolog-
ical ND ' description for the strong J = —,', I= —,

'

(3» and P„) vNpartial-wave amplitudes f then
allows, in principle, a parameter-free deter-
mination of the other three processes: strong
form factor, photoproduction, and anomalous
magnetic moment.

In Sec. II we explicitly considered three chan-
nels: mN, qN, and eN. We would then simul-
taneously fit the phase-shift data for the S» and

P» waves in a three-channel ND ' form. This
would, from (16) and (16}, yield the strong ver-
tex K(W}. Calculating the photoproduction Born
terms b~ we then find the multipoles m~ using
(21). Finally we use (23) to find the contribution
to the anomalous magnetic moments integral (2'f)
up to the energy of the ND ' fit.

We have evaluated the anomalous moments in
this formalism, using previously obtainede
strong partial waves and photoproduction multi-
poles. In these calculations, it was assumed that
the mN and eN channels saturate unitarity for the

P»,"and that the mN and qN do likewise for the
S».' Each of these waves was fitted separately,
since we neglected the -S' contribution in each
case. K(+ W} is obtained from the P» fit and is
normalized in the usual way. K(-W}, however,
is obtained from the S» fit and cannot be normal-
ized at the nucleon pole, which is too far away
to be accurate. To calculate the anomalous mo-
ments, we have normalized K(-W) and, at the
same time, joined the bvo solutions by imposing,
first, that K(+0) =K(-0), and second, that'
K,„„(m)/K„„„(-m)=g„/go=1.23. Equations (23)
are calculated, except that each of the matrices
is now 2 x 2 instead. The P» partial-wave" fit
was good to W past 1600 MeV, but the fit for the
S» was good only up to the opening of the gN chan-
nel at approximately 1500 MeV. The photopro-
duction multipoles were taken from the work of
Ref. 6. There the Born terms b~ for the inelastic
channels were treated as parameters which were
determined from fits to the photoproduction cross
sections. We find that the contribution (2V) to p
up to W-1500 MeV is too small for the isovector
moment and still increasing at a substantial rate.
The isoscalar contribution was much smaller and
less rapidly varying. This agrees with previous
calculations of p, (Refs. 2-4), which were done in
a less systematic way, however.

In conclusion, our calculations have demon-
strated the importance of the inelastic channels
to the anomalous moments dispersion relations.
They also point out the need for accurate fits to
the scattering and photoproduction data up to
much higher energies in order to determine p, .
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