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ARTICLE

Quantifying information accumulation encoded
in the dynamics of biochemical signaling
Ying Tang 1,2, Adewunmi Adelaja1,2, Felix X.-F. Ye3, Eric Deeds 1,4, Roy Wollman 1,4,5✉ &

Alexander Hoffmann 1,2✉

Cellular responses to environmental changes are encoded in the complex temporal patterns

of signaling proteins. However, quantifying the accumulation of information over time to

direct cellular decision-making remains an unsolved challenge. This is, in part, due to the

combinatorial explosion of possible configurations that need to be evaluated for information

in time-course measurements. Here, we develop a quantitative framework, based on inferred

trajectory probabilities, to calculate the mutual information encoded in signaling dynamics

while accounting for cell-cell variability. We use it to understand NFκB transcriptional

dynamics in response to different immune threats, and reveal that some threats are dis-

tinguished faster than others. Our analyses also suggest specific temporal phases during

which information distinguishing threats becomes available to immune response genes; one

specific phase could be mapped to the functionality of the IκBα negative feedback circuit. The

framework is generally applicable to single-cell time series measurements, and enables

understanding how temporal regulatory codes transmit information over time.
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Cells have the capacity to sense, respond, and adapt to their
environment through biochemical signaling pathways1–4,
which convey external information to intracellular effec-

tors that control cellular core functions5 such as gene expression,
metabolism, or cell shape and mobility. These signaling pathways
respond to perturbations in the presence of nutrients, pathogens,
cytokines, growth factors, toxins, or radiation that may function
as stimuli or signaling inputs. Prior work has established that the
temporal patterns (dynamics) of signaling molecular abundance
within these pathways play a crucial role in determining the
cellular response specific to each stimulus6–8. Moreover, signaling
typically occurs over a timescale of hours, as it involves de novo
protein synthesis and degradation. Regulatory circuits that con-
trol cellular core functions must interpret signaling dynamics
when information about the identity and dose of the stimulus
becomes available. Therefore, quantifying the temporal accumu-
lation of information for stimuli-discrimination is essential to
revealing how cells adapt to environmental changes and make cell
fate decisions in real time.

Signaling through biochemical pathways is affected by the
stochastic nature of molecular interactions9,10 that may diminish
its reliability as different individual cells of the same cell type
receiving the same stimulus respond differently. To quantify
information transmitted through noisy biochemical pathways,
information-theoretic approaches have been adapted to analyze
single-cell measurements of signaling molecules11–17. The mutual
information (MI) between the stimulus conditions and the single-
cell signaling responses is an estimate on the amount of infor-
mation about the stimulus identity and dose that are encoded in
the signaling molecular activity18. However, it remains an out-
standing challenge to quantify the MI encoded in the dynamics of
signaling and further to uncover how information accumulates
over time, as cells react to environmental changes in real time
with the information available at a certain timepoint19–22. That is
because the possible configurations of response trajectories
increase combinatorially with the number of timepoints, and this
combinatorial explosion hinders an exact estimation on trajectory
probabilities and MI.

Though several information measures consider two con-
secutive timepoints23–26, none estimates the MI from an entire
trajectory. One recently developed approach27 allows estimates
for several timepoints. However, it does not extract the infor-
mation encoded in the dynamical patterns of responses, because
it is not sensitive to the sequence of timepoints and does not
distinguish between differentially permuted timepoints. Another
method28 analyzed the MI in dynamic signals using a machine
learning decoder. However, such an analysis only provides a
lower bound as it is unclear how much information might be lost
in training the classifier. For example, classifiers employing linear
principal components29 may be inadequate to discriminate
oscillatory and non-oscillatory trajectories.

Here, we address the complexity challenge of quantifying
information accumulation from the trajectories with combina-
torially increasing configurations. We employ a modeling
approach to learn the ensemble of complex response trajectories
using a time-inhomogeneous Markov model30 or a hidden
Markov model31,32. We then present a general workflow to
identify the appropriate model and the optimal number of
parameters for calculating the trajectory probability. This forms
the basis for the dynamical mutual information (dMI), a measure
we propose to quantify MI in the trajectory space.

We demonstrate the workflow by applying it to the signaling
dynamics of the pathogen-response transcription factor NFκB,
which shows complex oscillatory and non-oscillatory trajectories
and determines the expression of immune response genes22,33.
For our data of NFκB signaling in macrophages, we show that a

hidden Markov model is superior to a Markov model and gives a
posterior trajectory probability for each response trajectory. Then,
the dMI framework reveals the capacity of cells to discriminate
different stimulus conditions, and is capable of quantifying
information accumulation with high temporal resolution unlike
the previous methods. Specifically, the present method could
reveal the timing of recognizing certain immune threats, and
identify molecular mechanisms for specific temporal phases of
information gain.

Results
Toward quantifying information accumulation encoded in the
dynamics of biochemical signaling molecules. Cellular signaling
molecules often encode information about the biological condi-
tion via the temporal trajectories, or dynamics, of their activities
(Fig. 1a, upper). The MI between categorical stimulus conditions
and response trajectories quantifies the extent of stimulus-
distinction over time (Fig. 1a, lower), and the maximum MI for
certain stimulus conditions represents the maximum capacity of
discriminating these conditions18,27. For example, log2 M bits of
maximum MI reveal perfect distinction on M different stimulus
conditions. The rate or temporal profile with which cells acquire
the information to discriminate specific stimulus conditions
remains largely unexplored.

Pioneering work in estimating the maximum MI18 considered
the data of single-cell signaling activity at a single timepoint as a
distribution across cells (timepoint method), and calculated the MI
among the distributions under various stimulus conditions (Fig. 1b,
upper). When a timecourse of data is measured, it can be applied to
each timepoint individually. However, this method does not take
into account the information transmitted through the timecourse of
signaling responses, and thus cannot reveal how MI accumulates
while underestimating the capacity of the signaling channel.

To quantify the information from signal timecourses, a second
approach27 treated the response from each single cell as a
multivariate vector (Fig. 1b, middle), and used density estimation
(nearest neighbor estimator) to calculate the probability of every
data vector (vector method). Though such treatment includes the
information of the timecourse, it is not capable of distinguishing
dynamical patterns in the time series, because a permutation on
the ordering of data points does not alter the density estimation
on the data vectors. Besides, the approach is also restricted to a
few (<10) timepoints, because sampling the vectorial distribution
is subject to a combinatorial explosion and becomes inaccurate
when the number of timepoints increases.

To extract the maximum MI embedded in the timecourse of
signaling responses, a decoding-based method28 was developed
using a machine learning classifier. However, training the
classifier may involve an unknown amount of information loss,
leading to the realization28 that this method provides a lower
bound on the true MI. Since it builds on the linear principal
components of the time series data, it may not discriminate
oscillatory dynamics well, and thus does not fully extract the
information encoded in complex biological signaling dynamics.
The statistical estimation34, which uses linear regression to
estimate the trajectory probabilities’ ratio between stimuli, may
also be inaccurate when applied to oscillatory trajectories.

Therefore, how to extract the full trajectory information or how
the information accumulates over time remains an unsolved
problem that requires the development of a new algorithmic
framework (Fig. 1b, lower). Such a framework should be able to
distinguish signaling activities with various dynamical patterns,
including both oscillatory and non-oscillatory patterns. Thus, we
reasoned that it requires a model that can adequately learn the
ensemble of biological signaling trajectories under each stimulus

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21562-0

2 NATURE COMMUNICATIONS |         (2021) 12:1272 | https://doi.org/10.1038/s41467-021-21562-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


condition. To account for cell-to-cell variable trajectories, we
explored whether models rooted in statistical physics and
machine learning35,36, namely the time-inhomogeneous Markov
model30 or the hidden Markov model31,32, could be used to
recapitulate complex biological signaling dynamics.

In the newly devised workflow (Fig. 1c), the experimentally
measured trajectory ensemble (with full trajectory length) under
each stimulus condition may be used to train either a Markov or a
hidden Markov model. Such dynamical models may account for
all possible temporal trajectories including oscillatory patterns
and data features that may be due to technical or biological noise.
Thus, they can be used to classify the rich dynamical patterns
observed in the experimental data, beyond what the methods
based on linear regression can do.

The model-training step of the workflow also involves a careful
investigation on the proper number of parameters, because too
few parameters may not allow full representation of the complex
trajectory ensemble but too many parameters can cause over-
fitting that leads to overestimates of MI. Thus, an important step
in the workflow is to evaluate the model-training performance
and the extent of overfitting. Training performance is evaluated
by quantifying the similarity (such as by the Kullback–Leibler
(KL)-divergence) between the measured trajectory ensemble
under each stimulus condition and the simulated trajectory
ensemble from the trained model (see the next section and
Methods). Overfitting is guarded against by identifying the
number of states that would result in misclassification of the
heterogeneity within each condition.

Fig. 1 Toward quantifying information accumulation encoded in the dynamics of biochemical signaling molecules. a (Upper) When cells encounter a
stimulus, the responses of a major signaling molecule transmit information to the nucleus so that cells respond appropriately. The temporal trajectories of
single-cell signaling response can have rich dynamics, such as the two exemplified trajectories under each separately added stimulus. (Lower) The
maximum mutual information (MI) between the responses and the stimulus conditions quantifies the number of conditions that can be effectively
distinguished. If the information is perfectly transmitted, it would reach log2ðMÞ bits forM distinct stimulus conditions. The information transmits over time,
and the temporal profile of cells acquiring the information for stimuli-discrimination remains to be explored. b An overview of the three representative
approaches of quantifying the mutual information. c The workflow of the present approach. The measured trajectory ensemble under each stimulus
condition can be learned by training a time-inhomogeneous Markov model or a hidden Markov model (circles are hidden states and squares are emission
states in the model schematic). Under the optimal number of states, such stochastic models enable to infer the trajectory probabilities and develop the
dynamical mutual information (dMI), which quantifies the mutual information encoded in signaling dynamics cumulatively.
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When an appropriate model has been generated, the next step
is to infer the probability of each trajectory and its corresponding
trajectory entropy. Specifically, given a trained Markov or hidden
Markov model under each stimulus condition, every trajectory’s
probability p(y1:n), where y1:n denotes a trajectory from timepoint
1 to n, can be obtained32 by sampling from the inferred transition
matrix and emission matrix. Then, the trajectory entropy for each
single trajectory is given by37:

Hðy1:nÞ ¼ � log2 p y1:nð Þ: ð1Þ
Note that the trajectory entropy is for a single trajectory, rather

than the average on the trajectory ensemble. The trajectory
entropy was originally formulated for mesoscopic non-
equilibrium systems32, such as a colloidal particle in a viscous
fluid. Here, the trajectory entropy is calculated by inferring a
stochastic model, e.g., a hidden Markov model, from the data of
biochemical signaling responses.

As detailed in Methods and Supplementary Note 1, the MI
between the chosen M conditions of stimuli set (S) and the
signaling responses set (R1:n) is

IðR1:n; SÞ ¼ HðR1:nÞ � HðR1:njSÞ; ð2Þ
where H R1:njSð Þ and H R1:nð Þ are the conditional and uncondi-
tional trajectory entropy. Since the trajectory probability was
generated from the dynamical model, the information embedded
in dynamical patterns of signaling responses was extracted. We
thus termed this quantity as dMI. We note that the dMI extends
the MI calculation27 by revealing the information encoded in
dynamical patterns.

Considering the probability distribution of the M stimulus
conditions q ¼ q1; q2; ¼ ; qMf g, the maximum dMI is obtained
by the maximization with respect to this probability distribution:

ImaxðR1:n; SÞ ¼ max
q

IðR1:n; SÞ; ð3Þ
under the constraint of q1 þ q2 þ ¼ þ qM ¼ 1 and qi ≥ 0. The
maximization in ImaxðR1:n; SÞ is conducted at each timepoint,
n ¼ 1; 2; 3; ¼ , as a quantification on the maximum extent of
distinguishing the M stimulus conditions cumulatively up to that
timepoint. A computational optimization over the distribution of
stimulus conditions can be different from the genuine optimiza-
tion conducted by the cell, because cells might not weight the
distribution of stimuli as in the computation. Thus, ImaxðR1:n; SÞ is
a maximum estimate on the degree of stimuli-discrimination at
the timepoint n.

The proposed workflow estimates the maximum dMI, of which
the value depends on the stimulus conditions under considera-
tion. It approximates to the channel capacity of the signaling
channel if an exhaustive number of perturbing conditions
(stimuli) were employed experimentally. In practice, one can
only sample a finite number of stimulus conditions in the
continuous-concentration space, resulting in the maximum dMI
that can be gleaned from the available datasets. In other words, if
M distinct conditions were employed, perfectly transmitted
information would result in log2 M bits. A smaller value than
log2 M bits implies that cells cannot fully discriminate the stimuli
via the dynamics of the signaling molecule under consideration.

Applying the framework to NFκB signaling dynamics. To apply
and evaluate the workflow, we studied the immune response
transcription factor NFκB7 which responds with diverse
dynamics to different immune threats. We obtained a dataset of
NFκB trajectories from macrophages exposed to the cytokine
TNF and four different pathogen-associated molecular patterns,
namely the bacterial cell wall components LPS and Pam3CSK,
and the nucleic acids CpG and polyIC38. Responses to each were

tracked for 12 h. Various concentrations were used for the stimuli
with responses dependent on concentrations (Fig. 2a and Sup-
plementary Fig. S1). Applying our workflow, we found that the
trained Markov and hidden Markov model can generate similar
trajectory ensembles to the data (Fig. 2b and Supplementary
Fig. S2).

We evaluated the performance of model training by using three
measures (Fig. 2c and Supplementary Fig. S3): the relative KL-
divergence; the false k-nearest neighbor probability, and the
rescaled log-likelihood of test dataset (see Methods). The
measures indicate that with a sufficient number of states the
model can approximately reproduce the ensembles of single-cell
NFκB trajectories. For example, the relative KL-divergence
measuring the relative accuracy of the model reaches below 0.1
and the false k-nearest neighbor probability approaches 0.4, close
to the optimal mixing probability 0.5. For the hidden Markov
model, we explored how the numbers of hidden and emission
states affect the training performance (Supplementary Fig. S4).
Increasing the number of either hidden or emission states
generally improves the model performance.

Both time-inhomogeneous Markov and hidden Markov
models can be used to recapitulate cell-response trajectory data,
each having advantages for specific datasets, such as p5339

(Supplementary Fig. S6) and p38, JNK, and ERK40 (Supplemen-
tary Fig. S7). The time-inhomogeneous Markov model performs
better in capturing synchronized features when a perturbation is
provided at an intermediate timepoint; alternatively, two hidden
Markov models may be used for the two time windows before and
after the perturbation (Supplementary Fig. S7). For datasets with
oscillations at various frequencies, the hidden Markov model is
more suitable, because it can describe trajectories with history
dependence. In terms of calculating the dMI, the time-
inhomogeneous model may be more sensitive to overfitting
(Supplementary Fig. S8), and the hidden Markov model is
superior in that regard, as demonstrated below.

To detect and quantify overfitting, we compared the capacity
for distinguishing various stimulus conditions or the hetero-
geneity of response trajectories within each condition due to
stochasticity. Specifically, for each stimulus condition, we split the
trajectory ensemble into two subsets and calculated the maximum
dMI between the two equally partitioned subsets (Supplementary
Fig. S5). The maximum MI between the two subsets should be
near zero when the model is not overfitted, because both are
under the same stimulus condition. We repeated the calculation
for every stimulus condition, and obtained the average maximum
dMI between each pair of subsets. Then, the calculation was done
with different numbers of discretized states for the two models,
which determined the maximum number of allowable states that
did not lead to overfitting. As described, overfitting is detected
when the maximum dMI for two subsets of the same condition
increases above zero. For the available datasets, the time-
inhomogeneous Markov model becomes overfitted with more
than only four states (Supplementary Fig. S8). For the hidden
Markov model, we focused on the present NFκB dataset with
sufficient number of trajectories, and our analysis defined a
regime of around 60 hidden states and 30 emission states that can
train a high-performance model without overfitting.

In navigating the trade-off between model performance and
overfitting when choosing the number of states (Supplementary
Fig. S5), the hidden Markov model may be more robust as it
requires only two inferred matrices. It also does not have the
Markovian assumption of being memoryless, and can therefore
generate trajectories with history dependence, such as oscillations
at various frequencies. These properties make the hidden Markov
model more suitable than the time-inhomogeneous Markov
model to quantify the dMI for the NFκB dataset.
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Dynamical mutual information and comparison with the
previous approaches. The trained hidden Markov model allows
us to infer the trajectory probability characterized by its dyna-
mical features. We now estimate the dMI based on the sum-
marized workflow (Fig. 1 and Supplementary Fig. S9), and
compare it with the previous methods18,27,28. The dMI estimation
has also been validated by a minimal model of a hidden Markov
process (Supplementary Fig. S10).

For the NFκB signaling channel stimulated by the 13 different
immune stimulus conditions (Supplementary Fig. S1), the
maximum dMI rises with time (Fig. 3a), implying that distinct
dynamical patterns are present at all times (Supplementary
Fig. S2). Random permutation of timepoints decreases the dMI
(Fig. 3a and Supplementary Fig. S12), indicating that the genuine
ordering of timepoints provides information. After random
permutation, the maximum dMI rises to about 1 bit as responses
can be identified due to response amplitudes (Supplementary
Fig. S11) but that distinct stimuli become less distinguishable.

We also investigated the dependence of dMI on key
parameters. While it is not sensitive to the subsample size of
trajectories following model training (Supplementary Fig. S13a),
it depends on the number of hidden states (Supplementary
Fig. S13b) and emission states (Supplementary Fig. S13c).
Optimizing training performance while guarding against over-
fitting, we chose 64 hidden and 32 emission states as optimal.
Using half of the trajectories (Supplementary Fig. S13d), shorter
trajectories (Supplementary Fig. S13e, f) led to overfitting that
inflates dMI estimates. The dMI values remained similar for
bootstrapped replicates of randomly sampled data (response
trajectories) with replacement (Supplementary Fig. S13g). The

difference increases over time, which may be attributed to the
inaccuracy of model training at late timepoints, when signaling
responses are less active and model training is more affected by
measurement noise. It also indicates how limited availability of
data impairs model training. Increasing the number of measured
trajectories will improve the accuracy of model and dMI.

In comparison, MI calculated at single timepoints ignores
trajectory information entirely (Fig. 3b). The vector method
cannot consider more than around ten consecutive timepoints,
because sampling the vectorial distribution becomes inaccurate,
and does not distinguish the dynamical patterns when timepoints
are aligned properly. Furthermore, the decoding-based method28

that gives a lower bound on MI needs a minimal number of
timepoints (Supplementary Fig. S14) and has little appreciation
for additional information in longer timecourses (Fig. 3c),
indicating an incomplete discrimination on the temporal
dynamical patterns. We note that all the methods give MI
estimates of 1–2 bits, less than the ideal limit log2 13 � 3:7 bits.
The loss of the information can be caused by the molecular noise
that governs signaling responses. Indeed, the maximum dMI are
underestimates of the true biological value because all measure-
ments are subject to technical noise or uncertainty.

Pairwise stimuli distinction occurs in different temporal
orders. The dMI can reveal distinct temporal orders of distin-
guishing various stimulus pairs. To investigate the temporal order
of stimulus-distinction, we took pairwise stimulus conditions from
the 13 conditions in Fig. 2 and obtained the maximum dMI when
using pairwise conditions (Supplementary Fig. S15). As repre-
sentative examples, three distinct temporal profiles of information

Fig. 2 Applying the framework to NFκB signaling dynamics. aWhen macrophages encounter a stimulus, the single-cell signaling response of NFκB under
each of the five types of stimuli was measured. Different concentrations of stimuli have been added, with in total 13 different conditions (Supplementary
Fig. S1). Two representative examples of the experimental data are shown: under 10 ng/ml TNF, 100 ng/ml LPS, and more examples are in Supplementary
Fig. S2. In each heatmap, the color code denotes signaling activities in different cells (y-axis) over time (x-axis). Source data are provided as a Source Data
file. b The sampled trajectories from the time-inhomogeneous Markov model (upper row) and the hidden Markov model (lower row), for the two stimulus
conditions marked by the stimuli symbols. The time-inhomogeneous Markov model has 32 states, and the hidden Markov model has 64 hidden states and
32 emission states. c Quantification on the training performance for the two models by three measures: the ratio between KL (Kullback–Leibler) divergence
(of sample and data) and entropy (of data) at each timepoint (orange), the false k-nearest neighbor probability (blue), and the rescaled log-likelihood
(green). Each dot is the mean value of the measure on all the 13 stimulus conditions, and the error bar denotes the standard deviation on the 13 stimulus
conditions. The numbers of hidden states and emission states have a fixed ratio 2 here. The cases of ratio 1 and individually varying the number of states
can be found in Supplementary Fig. S4, while the overfitting quantification in Supplementary Fig. S5.
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transmission were revealed (Fig. 4a): (1) an early increase with
sustained high MI (TNF vs LPS); (2) a rapid early increase with a
drop in the intermediate phase (TNF vs Poly(I:C)); and (3) a late
accumulation (Poly(I:C) vs CpG).

Examining the data directly confirmed these conclusions. First,
TNF and LPS show distinct NFκB signaling dynamics through
the timecourse. Second, TNF and poly(I:C) have distinct
responses in the first hour, where only TNF leads to a peak of
activity, and give similar responses in an intermediate phase
leading to a decrease in MI. Third, CpG and poly(I:C) are
different only in the late phase (Fig. 4b). Undertaking the same
pairwise comparison with the previous timepoint method18,
vector method27, and decoding-based method28 does not provide
the temporally resolved information accumulation (Supplemen-
tary Fig. S16) that the dMI provides.

To investigate the robustness of dMI calculations, we used the
replicate data to replace one of the two in each pairwise
conditions in Fig. 4. The dMI by using the replicates are similar
(Supplementary Fig. S17), and the small differences can be
attributed to the variations of the measured data between the
replicates, as shown by the corresponding heatmaps. The dMI
robustly reveals such differences in the replicates.

To explore how the information of the NFκB signaling can be
decoded by the responsive genes, we analyzed the data of NFκB-
responsive genes41 in the same conditions (cells and stimuli)
measured at 1, 3, and 8 h. From the calculated correlation
between the dMI values and the absolute difference of gene
expression fold change between the pairwise stimuli in Fig. 4, a
large proportion of the genes track the signaling information of
NFκB (Supplementary Fig. S19). We also identified representative

Fig. 3 Dynamical mutual information and comparison with the previous approaches. We used all the 13 different stimulus conditions to calculate the
mutual information. a The maximum dMI increases with time and is diminished when timepoints are randomly shuffled. To be consistent with other MI
measures, all y-axis of the maximum dMI is labeled as “Maximum MI.” b The timepoint method18 and the vector method27 do not capture information in
the full signaling trajectory. The vector method suggests that mutual information decreases after around 10 timepoints, while the trajectory ensembles
retain substantial differences, and is independent of the ordering of timepoints. c The decoding-based method28 (using the first ten principle components)
provides a lower bound on mutual information (y-axis is “MI” without “Maximum”) and does not reveal how mutual information accumulates over time.
The random permutation of timepoints does not dramatically affect the saturated value. Source data are provided as a Source Data file.

Fig. 4 Pairwise stimuli distinction occurs in different temporal orders. a The maximum dMI for three pairs of stimulus conditions chosen from the
dataset in Fig. 2: 10 ng/ml TNF and 100 ng/ml LPS (blue); 10 ng/ml TNF and 10 μg/ml Poly(I:C) (green); 100 nM CpG and 100 ng/ml Poly(I:C) (red).
b The heatmaps of the NFκB response for the corresponding stimuli pairs grouped in columns. The time regime with relatively distinct dynamical patterns
corresponds to the high maximum dMI in (a). Source data are provided as a Source Data file.
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genes whose expression patterns appear to follow the information
accumulation. These examples suggest that the temporal ordering
of discriminating immune threats may be harnessed by immune
responsive target genes to sequence successive phases of immune
responses. Further testing of this observation may involve
knockin fluorescent reporters that provide temporal trajectory
information of responsive genes at single-cell resolution and
optogenetic approaches19 that may avoid the co-activation of
other factors involved in gene expression control.

Phases of information accumulation may be mapped to reg-
ulatory motifs. The NFκB signaling pathway consists of a series
of molecular circuit motifs, including negative feedback loops42,
that operate at different timescales (Fig. 5a). One prominent
feedback loop is mediated by IκBα that has the potential to
provide oscillatory responses with a 1–2-h period. To test whether
the information accumulation timecourse by the dMI provides
insight on the timescales of regulatory mechanisms, we measured
NFκB activation in response to three stimuli (10 ng/ml TNF, 100
ng/ml LPS, 50 µg/ml Poly(I:C) in control and mutant cells defi-
cient in IκBα-feedback (IκB-mutant). Both control and mutant
cells showed a rapid increase of the dMI in the first hour, but then
diverged during the second hour in which mutant cells showed a
diminished increase of the dMI than control cells; after that, both
cell types showed a slow but steady information gain for the
duration of the 12-h timecourse (Fig. 5b).

Examining the NFκB timecourses confirmed that the second
hour shows stimulus-specific deployment of an oscillatory pattern
in control cells, which is abrogated in mutant cells (Fig. 5c). Thus,
we could begin to map stimulus-specific dynamical features

mediated by circuit motifs to specific phases of the information
accumulation timecourse (Fig. 5d). Our experimental evidence
identified oscillations contributing to information accumulated in
the second hour. In the first hour we speculate that stimulus-
specific activation speed and amplitude provide for the first
around 1 bit of information, which is largely a function of the
ligand-receptor interaction and signaling adaptor activation
properties. In the late phase, slow information accumulation
may be due to stimulus-specific integral and duration of activity,
which in turn is mediated by differential stimulus lifetimes and
irreversible negative feedback loops42. The insights could not be
fully obtained from the previous information-theoretic
approaches (Supplementary Figs. S20 and S21).

We further investigated the temporal phases of dMI accumula-
tion by generating NFκB response data with a mathematical
model of the NFκB signaling network formulated by38 and used
in43 with distributed parameters. We perturbed key parameters in
the signaling network, which affect either mainly the responses’
early activation, the intermediate-phase oscillation, or the
sustained activity. We then calculated the dMI by considering
the pairwise comparison of the data generated in the presence or
absence of the signaling mechanism (Supplementary Fig. S22).
Specifically, for the perturbation of the early-phase responses
(modifying the ligand-receptor interaction), the dMI increases in
a few minutes. When altering the intermediate-phase oscillation
(reducing the negative feedback of IκBα), the dMI increases at
around 1 h when the negative feedback produces an oscillatory
pattern. For the perturbation on the sustained features (modifying
the stimulus lifetime), the dMI increases after about 2 h,
indicating the information gain derives from signaling duration

Fig. 5 Phases of information accumulation may be mapped to regulatory motifs. a Schematic of NFκB signaling with molecular mechanisms operating at
different timescales shown in different colors. The IκB-mutant has a reduced induction of IκBα by NFκB (green arrow). To investigate the role of the
feedback, we considered three stimuli (10 ng/ml TNF, 100 ng/ml LPS, 50 μg/ml Poly(I:C)) that lead to distinct signaling dynamical patterns between the
genotypes. b The maximum dMI for NFκB responses to three stimuli (10 ng/ml TNF, 100 ng/ml LPS, 50 μg/ml Poly(I:C)) in wild-type and mutant cells
lacking the IκBα feedback. The mutant shows a diminished dMI increase between 1 and 2 h. c Representative response trajectories for the two genotypes,
illustrating that mutant cells lack oscillatory responses. d Schematic indicating how specific phases of information accumulation may be mapped to
different molecular mechanisms that mediate specific dynamical features in the responses. The second phase was diminished in the IκB-mutant that is
defective in producing oscillations; the first and third phases are conjectured to be mediated by activation amplitude and total duration of signaling,
respectively. Source data are provided as a Source Data file.
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and integral. The analysis supports the hypothesis in Fig. 5d, and
may prompt future experimental confirmation.

Discussion
We have developed a quantitative framework to estimate the
information accumulation encoded in the dynamics of bio-
chemical signaling molecule. Specifically, we have used time-
inhomogeneous Markov and hidden Markov models to learn
such dynamics, which enabled the calculation of dMI to reveal the
temporal profile of how information for distinguishing stimulus
conditions becomes available. We demonstrated the workflow by
applying it to NFκB signaling responses, where we found that
some immune threats are recognized by cells more rapidly than
others.

The ideal measurement of signaling responses for information-
theoretic analysis would involve the same set of cells responding
to different inputs, such that the potential differences between cell
populations can be avoided. In practice, this is not possible as the
response to one stimulus will affect the cells to the second sti-
mulus. Therefore, in order to compare signaling responses of
naïve cells, we split the single population of cells into physically
separated compartments stimulated with a single stimulus. It is
possible that the physical separation causes the subpopulations to
be distinct. This is mitigated if the stimulations are done at the
same time in parallel on the same microscope run, with the
microscope objective gathering the data from compartment to
compartment for each timepoint. To address the scenario when
experiments cannot be done in parallel, we have investigated
replicates produced at different times (Supplementary Fig. S17);
these show only minor differences in dMI estimates.

We considered two types of stochastic models to learn sig-
naling dynamics. The time-inhomogeneous Markov model is
generally better at learning synchronized features, and the hidden
Markov model is more suitable for data with history dependence,
such as oscillatory trajectories with various frequencies. The
training performance indicates that neither model reproduces the
data perfectly (Fig. 2), prompting future work for more advanced
machine learning models35,36,44,45.

The proper model choice also depends on the numbers of cells
and timepoints available. For the NFκB dataset with the hidden
Markov model, ~500 cells with ~150 timepoints ensure the exis-
tence of the proper number of parameters to achieve high model
performance and avoid overfitting for the dMI calculation (Sup-
plementary Fig. S5). Overfitting occurs when using half of the
measured cells or every two timepoints (Supplementary Fig. S13).
Yet, the time-inhomogeneous Markov model can be trained on
just ~100 cells (Fig. 2 and Supplementary Figs. S6 and S7).
However, to avoid overfitting, at least several fold of 500 cells are
required, as indicated by the overestimates of dMI in NFκB, p53,
and ERK datasets (Supplementary Fig. S8). While the time-
inhomogeneous Markov model has a transition matrix to be fitted
for each two consecutive timepoints, the hidden Markov model
only requires two matrices in total, and thus demands fewer
measured cells and timepoints.

The required numbers of cells and timepoints may vary with
the complexity and heterogeneity of the dataset. We have estab-
lished a computational protocol to determine those variables
(Supplementary Fig. S9). If there is a range of parameters that
achieves high model performance and avoids overfitting (e.g.,
Supplementary Fig. S5c), numbers of cells and timepoints are
sufficient for the dataset. However, if the optimal number of
parameters cannot be properly constrained, more cells and
timepoints should be measured. In this work we used the same
number of parameters across stimulus conditions as this is con-
venient for computing conditional trajectory probabilities in Eq.

(7). Though different conditions are differentially prone to
overfitting, the variation of overestimated MI was no more than
0.1 bit, as shown by the error bar in Supplementary Fig. S5b.
Furthermore, the dMI values are comparable across datasets
when the optimal number of parameters are found and used for
each dataset.

The maximum dMI for a given dataset is obtained from the
optimal weighting of different stimulus conditions. Cells are more
likely to differentiate stimuli with high weights leading to higher
maximum dMI than when weights are uniformly distributed
(Supplementary Fig. S18). This plays a big role in dMI estimates
for all stimulus conditions in Fig. 3 and less so for the pairwise
conditions in Fig. 4, indicating that weighting optimization leads
to better information transmission when discriminating many
stimulus conditions.

The dMI is an information measure formulated in the trajec-
tory space. A hundred years after formulating entropy for a static
distribution46, the trajectory entropy was defined along a single
trajectory37. However, quantifying the trajectory probability
remained challenging as the number of possible trajectory con-
figurations increases exponentially with timepoints. By estab-
lishing that stochastic models can be used to account for a large
diversity of trajectories, we could arrive at an appropriate infer-
ence on the trajectory entropy that allowed MI to be estimated37.
Whereas the conventional entropy rate in the hidden Markov
model23,32 gives MI decaying to zero in the toy model (Supple-
mentary Fig. S10), our choice of the trajectory entropy Eq. (1)
leads to the proper 1 bit (2 bits) of the saturated MI for two (four)
distinguishable trajectory ensembles.

The timecourse of information accumulation is determined by
the stimulus-specific behavior of dynamic regulatory circuits. In
the case of the NFκB response to distinct immune threats, we
could identify three phases for threat distinction: an early phase
of information based on mere signal activation; a middle phase of
information gain due to the richer dynamical patterns involving
selective deployment of oscillations; and a later phase of infor-
mation determined by stimulus-specific values in total integral
and duration. Indeed, the second phase was found to be selec-
tively deficient in cells from a mutant lacking the IκBα-negative
feedback circuit that provides for oscillations at the characteristic
period of 1–2 h (Fig. 5c). Our results from analyzing the trajec-
tories generated from a mathematical model of NFκB signaling
network38,43 further support that the temporal phases of infor-
mation accumulation can come from identifiable dynamical fea-
tures and molecular mechanisms that operate at different
timescales, suggesting potential strategies for perturbing infor-
mation accumulation by targeting specific regulatory motifs.

More broadly, quantifying information accumulation via the
dMI reveals the information available to effector mechanisms that
must appropriately respond in real time. Integrating the infor-
mation from all earlier timepoints (after the stimulus was added)
is consistent with how responsive gene expression is deter-
mined19–22. The present framework is applicable to a variety of
time series data, not only the direct measurements of cellular
signaling responses, but also the temporal trajectories of gene
expression when accurately inferred from single-cell RNA
sequencing47. With such data at high temporal resolution,
quantifying the information accumulation by combinatorial sig-
naling pathways and the information flow between genes and
gene sets are interesting future directions to be explored.

Methods
The Methods section briefly outlines the model training, the performance eva-
luation, and the calculation on the dMI. More descriptions of methods are given
in Supplementary Notes 1–4.
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Model training
Time-inhomogeneous Markov model. Given an ensemble of the trajectories, we can
extract a set of transition matrices as follows. We first binned the observed data
points into discrete states. For every two consecutive timepoints, we counted the
number of the data points with yn ¼ l0; yn�1 ¼ l, where l0; l are the states. Then,
these counts represent the number of transitions from state l to l0 at time t ¼ n� 1
and are set as the l0th row and lth column element in the count matrix
c yn; yn�1ð Þjt¼n�1. The subscript for t specifies the timepoint. The transition matrix
is obtained by normalizing the count matrix by each column: p ynjyn�1ð Þjt¼n�1 ¼
c yn; yn�1ð Þjt¼n�1=c yn�1ð Þjt¼n�1 where c yn�1ð Þjt¼n�1 ¼

P
yn
c yn; yn�1ð Þjt¼n�1. The

trajectory probability for each measured trajectory can be obtained from these
inferred transition probabilities.

Hidden Markov model. The Baum–Welch algorithm48 was used to infer one
transition matrix between hidden states, and one emission matrix between hidden
states and emission states. It derives a maximum likelihood estimation on the
parameters of the hidden Markov model given time series data. There are two
numbers of states, i.e., of hidden states and emission states. In most analyses the
ratio between the numbers of hidden states and emission states was fixed to 2:1
(Fig. 2). Supplementary Note 2 studies explored the case with a 1:1 ratio, and the
case with individually varying the number of emission states or hidden states.
Model training used a MATLAB toolbox package (https://www.mathworks.com/
help/stats/hidden-markov-models-hmm.html).

Model performance evaluation
KL-divergence. The KL-divergence at each timepoint is the relative entropy between
the sampled trajectories and the true data distribution. The ratio of the KL-
divergence and the entropy of the data distribution, termed as the “relative KL-
divergence,” was calculated (Supplementary Fig. S3a), and averaged along the
timecourse.

False k-nearest neighbor probability. After mixing the sampled trajectories and data
under each stimulus, for every sampled trajectory, false k-nearest neighbors were
counted. A histogram of the number of false k-nearest neighbors (Supplementary
Fig. S3b) was fitted to a binomial distribution to obtain the false k-nearest neighbor
probability. The procedure was conducted for each stimulus condition, using dif-
ferent number of states and various number of nearest neighbor search (Supple-
mentary Fig. S3). The false k-nearest neighbor probability 0.5 indicates an optimal
mixing between the sampled trajectories and data.

The log-likelihood. We randomly picked 30 trajectories served as test dataset and
the remaining as training data, enabling estimates of the log-likelihood of the
trajectory probability of the test dataset based on the model of the training dataset.
The trajectory probability decays inversely with the number of emission states after
every time step. To counteract that, a rescaling procedure was implemented
(Supplementary Note 2, II.B2). The rescaled log-likelihood is a logarithm function
of the ratio between the trajectory probability and that from the null hypothesis of
the hidden Markov model.

Quantifying the dMI. We employed the hidden Markov model to demonstrate the
procedure. The forward algorithm of the hidden Markov model32 was used to
estimate the probability of each trajectory in the data. For a given observed tra-
jectory y1:N for the timepoint 1 to N, the joint trajectory probability (1 < n < N):
p y1:n; xn
� � ¼ P

xn�1
EðynjxnÞTðxnjxn�1Þpðy1:n�1; xn�1Þ, where E is the emission

matrix, and T is the transition matrix for the hidden states xn. The emission and
transition matrices were inferred by the Baum–Welch algorithm for the given
trajectory ensemble. The trajectory probability for an observed time series is given
by summing over the K hidden states: p y1:n

� � ¼ PK
l¼1 p y1:n; xn ¼ l

� �
.

Then, applying Eq. (1) led to the trajectory entropy. MI calculations employed
the method in27 to estimate the conditional and unconditional trajectory entropy.
Specifically, For the set of mi trajectories fyi;j1:Ngmi

under the ith stimulus, where j is
the index for a trajectory, the conditional trajectory entropy for the ith stimulus is
estimated with the probability distribution of observing the trajectories27:

H Ri
1:njS ¼ i

� � ¼ �
Xmi

j¼1

1
mi

log2 p
�
Ri
1:n ¼ yi;j1:njS ¼ i

�
: ð4Þ

Given the probability of different stimulus qi ¼ pðS ¼ iÞ, we get the total
conditional entropy by summing over the conditional entropies for the M stimuli:

H R1:njSð Þ ¼ �
XM

i¼1
qi
Xmi

j¼1

1
mi

log2 p
�
Ri
1:n ¼ yi;j1:njS ¼ i

�
: ð5Þ

The unconditional trajectory probabilities are obtained by weighting the
conditional trajectory probabilities with the stimulus probability distribution:

p
�
Ri
1:n ¼ yi;j1:n

� ¼
XM

k¼1
qkp

�
Ri
1:n ¼ yi;j1:njS ¼ k

�
: ð6Þ

The total unconditional trajectory entropy is given by:

HðR1:nÞ ¼ �
XM

i¼1
qi
Xmi

j¼1

1
mi

log2
XM

k¼1
qkp

�
Ri
1:n ¼ yi;j1:njS ¼ k

�h i
: ð7Þ

The dMI is calculated by Eqs. (2), (5), and (7), and its maximum is evaluated by
Eq. (3). Compared with the method in27, the present framework quantifies the
information transmission encoded in dynamics of the trajectory space. More details
about the calculations are in Supplementary Notes 1–3.

Experimental data generation. Using an mVenus-RelA endogenously-tagged
mouse line38, WT and IκB-mutant mice were produced (Supplementary Note 5, V.
A). Bone marrow-derived macrophages generated from an mVenus-RelA knockin
reporter mouse strain were stimulated with indicated ligands. A live cell micro-
scopy workflow allowed measurement of nuclear NFκB levels at single-cell reso-
lution. The measured fluorescence intensity was further normalized to image
background levels, and baseline-subtracted by using an automated image analysis
workflow (https://github.com/Adewunmi91/MACKtrack). It resulted in the data-
sets used here.

The UCLA Institutional Animal Care and Use Committee approved the
protocol for animal research per guidance from the American Veterinary Medical
Association.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper [and its supplementary information files]. Source data are provided with
this paper.

Code availability
The MATLAB code package dMI is available at GitHub (https://github.com/
signalingsystemslab/dMI)49 with a guideline on the website (https://sites.google.com/
view/dmipackage). All the simulations were done with MATLAB version R2018b.
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