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ABSTRACT OF THE DISSERTATION 

 

Application of Machine Learning and Data Science in Synthetic 

Organic Chemistry 

 

by 

 

Jason Yiheng Wang 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2025 

Professor Abigail Gutmann Doyle, Chair  

 

Chapter 1 describes the development of Auto-QChem, an automated, high-throughput and 

end-to-end density functional theory (DFT) calculation tool that can generate quantum chemical 

descriptors for organic molecules. We discuss in detail the design and implementation of Auto-

QChem, as well as its current functionalities. We also review literature examples in synthetic 

organic chemistry where Auto-QChem-derived descriptors were applied in machine learning (ML) 

models to accelerate methodology development.  

Chapter 2 describes the design, implementation and application of reinforcement learning 

bandit optimization models in chemistry reaction optimization, where generally applicable 

reaction conditions were identified via efficient condition sampling and evaluation of experimental 

feedback. In addition to performance benchmarking on existing reaction datasets in literature, we 

also experimentally investigated a palladium-catalyzed imidazole C–H arylation reaction, an 
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aniline amide coupling reaction and a phenol alkylation reaction. In all three cases, bandit 

optimization models identified most generally applicable yet not well studied reaction conditions 

for the respective reaction.  

Chapter 3 describes the discovery and characterization of multiple N-(hetero)aryl, N-benzyl 

and N-alkyl derivatives of the 9-mesityl-3,6-di-tert-butyl-10-phenyl acridinium photocatalyst. The 

catalytic performances of these catalysts as photo-oxidant or photo-reductant (via in situ generated 

acridine radical) were compared in three model reactions. We also identified improved catalytic 

conditions for a previously reported cyanoarene-catalyzed nucleophilic amination reaction using 

a synthesized N-cycloheptyl acridinium catalyst with up to 98% reaction yield. 
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Chapter 1. Auto-QChem: an automated workflow for the generation and 

storage of DFT calculations for organic molecules 

 

1.1 Introduction 

Data-driven synthetic chemistry has witnessed rapid growth in recent years owing to 

advances in computing power, software, and algorithms, coupled with an increase in data 

availability from experiment and computation. The recent developments in machine learning, 

artificial intelligence and other data-driven approaches in organic chemistry has demonstrated their 

potentials as complementary and quantitative approaches for reactivity and selectivity predictions, 

1,2 synthesis planning3 and mechanistic studies.4 Importantly, the application of machine learning 

models in organic chemistry requires effective representations of chemical structures.5 Machine 

learning models trained with chemical descriptors often offer enhanced interpretability compared 

to molecular fingerprints and various learned representations.6-10 In particular, features derived 

from density function theory (DFT) calculations are more closely associated with physical and 

chemical attributes of molecules, thus enabling improved mechanistic understandings. Therefore, 

these features serve as good candidates for building statistical and machine learning models. 

However, DFT calculations often require vast computing resources and proficiency in the 

operation of various software tools, which presents a significant barrier to experimental chemists. 

These problems are exacerbated by the number of DFT calculations required to featurize datasets 

that are sufficient for modern machine learning models. An automatic, high-throughput DFT 

calculation framework has the potential to accelerate the workflow and facilitate the computation 

of chemical descriptors by non-experts.  
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Many tools have been developed to automate high-throughput DFT calculations, such as 

AFLOW,11 pymatgen,12 MAST,13 Atomate,14 QMflows,15 Nexus,16 and AiiDA17,18. However, most 

of these tools are designed to facilitate material science research and are not well-suited for small 

organic molecules. Downstream applications in machine learning models also require a framework 

to extract and store a large amount of information from DFT calculation results. Databases 

containing DFT-calculated properties of materials and small molecules19-22 have also been 

developed, usually with an underlying high-throughput workflow clearly defined. For example, 

the open-access VERDE materials database22 provides numerous calculated photophysical 

properties of π-conjugated organic molecules. Such databases usually provide exceptional data 

access through APIs and web interfaces but end users often do not have direct access to the 

calculation pipelines. Beyond functionalities, the simplicity and ease of use for non-experts is also 

an important consideration. The objectives and limitations of current systems prompted us to 

implement a framework specifically designed for usage requirements of synthetic organic chemists.  

1.2 Results and discussions 

1.2.1 Overall design and implementation of Auto-QChem 

A successful and robust high-throughput DFT calculation framework requires several key 

functionalities: (a) the ability to generate input files with user specifications for selected quantum 

chemistry software, (b) an interface with high performance computing (HPC) clusters for the 

submission and retrieval of jobs with error correction mechanisms, and (c) an analysis workflow 

to automatically extract information from calculation results. More specifically, we are interested 

in an end-to-end framework that can generate DFT-derived features directly from string 
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representations (such as SMILES23) of organic molecules in a high-throughput fashion, as well as 

provide storage and convenient access to processed data.  

With these goals in mind, we developed Auto-QChem, an automated software package that 

streamlines DFT calculations for organic molecules. Starting from string representations of 

molecules, Auto-QChem performs initial conformational searches, manages DFT calculations on 

local HPC cluster, and facilitates cloud data storage and access via a web interface (vide infra). 

The Auto-QChem framework is written in Python 3;24 DFT calculations are performed with 

Gaussian 16;25 the database is powered by MongoDB;26 and the database web interface is written 

in Python Dash web framework.27 Both the database and the web interface are hosted on a common  

AWS (Amazon Web Service) cloud server.28 The code base is publicly hosted on a GitHub 

repository (https://github.com/doyle-lab-ucla/auto-qchem) together with its functional 

documentation and a series of user manuals showcasing example usage. The database web 

interface is publicly available at https://autoqchem.org/. The framework is modularized such that 

all operations can be performed from a single Jupyter notebook.29  

1.2.2 Computational workflow 

The workflow of Auto-QChem (Fig. 1) starts with a set of molecules represented as 

SMILES strings. Each SMILES string is first converted to a RDKit30 molecule object. With a user-

defined limit on the maximum number of conformers generated, Auto-QChem performs a 

conformational search for each molecule using one of the following configurable force field 

methods: (a) a genetic algorithm for stochastic conformer search implemented in OpenBabel,31 (b) 

ETKDG distance geometry algorithm32 implemented in RDKit. In practice, the RDKit 

implementation is more commonly used and set as the default option due to its robustness and 

RDKit’s overall ease of installation and use compared to OpenBabel. An explicit option to sample 

https://github.com/doyle-lab-ucla/auto-qchem
https://autoqchem.org/
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conformers of large molecules was also later added to cope with the instability when searching for 

molecules with many conformational possibilities using RDKit.  

 

Fig. 1 Computational workflow of Auto-QChem. 

By default, the following calculation workflow is applied: (a) geometry optimization; (b) 

frequency and thermochemical analysis, including vibrational frequency, molecular volume, 

natural population analysis (NPA) and nuclear magnetic resonance (NMR) calculations; and (c) a 

time-dependent DFT calculation for vertical excited state transitions. DFT calculation parameters 

such as functionals, basis sets and solvation models can be specified by the user. For each 

conformer, an input file with calculation specifications and atomic coordinates is generated and 

submitted to a Slurm scheduler33 or SGE scheduler for DFT calculation with Gaussian on a local 

computer cluster (Slurm scheduler is used by Princeton’s cluster, and SGE scheduler is used by 

UCLA’s cluster). If a calculation runs out of time or memory, it can be resubmitted with a higher 
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time or resource limit using the last geometry checkpoint. Calculations with unspecified errors will 

be ignored. 

Upon successful completion of the DFT calculations, duplicate conformers are removed 

from the ensemble with a configurable root-mean-square deviation (RMSD) threshold (0.35 Å by 

default). For each unique conformer, both molecule-wide and atomic numeric descriptors are 

extracted from Gaussian output files (the exact name and definitions of these descriptors are listed 

in the Auto-QChem GitHub repository https://github.com/doyle-lab-ucla/auto-qchem). These 

numeric descriptors and Gaussian output files are then uploaded to the Auto-QChem database.  

 

Fig. 2 Collection schema of Auto-QChem database. 

1.2.3 Database 

Data is organized into 5 collections (tables) to support queries and retrieval of the data (Fig. 

2): 

https://github.com/doyle-lab-ucla/auto-qchem
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§ molecules: master collection that stores information of individual molecules, such 

as string representations (SMILES, InChI, InChIKey), atomic coordinates, charges, 

and connectivity matrices. 

§ metadata: one-to-one auxiliary collection that stores the configuration of 

calculation for each molecule. 

§ log_files: many-to-one collection of raw output files of the calculations (one per 

conformer).  

§ qchem_descriptors: many-to-one collection of extracted numeric descriptors (one 

per conformer). 

§ tags: many-to-one collection that stores individual project name tags for easier 

retrieval and better organization of data.  

 

Fig. 3 Query view (left) and the molecule view (right) of the web interface. 

Molecules are indexed such that a particular molecule along with its metadata must be 

unique, thus disallowing repeated calculations of one molecule with the same calculation 

configurations. However, calculations of the same molecule with a different configuration (e.g., 
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different solvents, different basis sets) are allowed. Prior to generation of DFT jobs, Auto-QChem 

warns users if the requested calculation has already been performed and exists in the database. If 

a calculation of the same molecule with same computational configuration does exist, Auto-

QChem will skip the calculation by default.  

1.2.4 Queries and data retrieval 

Data can be viewed and retrieved from the web interface hosted at https://autoqchem.org. 

There are two views available: 

§ query view: a view that allows for web queries of the database and downloads of 

descriptor sets. The query form contains the following filters: dataset name tags, 

solvents, functionals, basis sets, SMARTS substructure and SMILES strings. 

§ molecule view: an interactive display of the structures of all calculated conformers 

for one molecule, as well as tabulated numeric descriptors (an example is shown in 

Fig. 3).  

After a successful query, a selection of numeric descriptor sets can be downloaded with the 

following configurations: 

§ global: molecular descriptors, such as HOMO/LUMO energy, dipole moment and 

molecular weight.  

§ substructure atomic: atomic descriptors from substructure searches. When a 

substructure is used for the query, atoms from substructure matches are identified 

in a consistent order and their atomic descriptors (e.g., NMR shifts, partial charges, 

buried volume) are extracted.  

https://autoqchem.org/


 

8 
 

§ common core atomic: atomic descriptors for the maximum common substructure 

within a dataset of molecules. The common core is determined using the FMCS 

(Find Maximum Common Substructure) algorithm34 implemented in RDKit.35 

§ min max atomic: minimum and maximum values for each atomic descriptor over 

all atoms. 

§ transitions: top 10 excited state transitions ordered by oscillation strength and 

associated excited-state properties.  

Because multiple conformers exist for the same molecule, for each molecular or atomic 

properties there will be values corresponding to individual conformers. By default, Boltzmann-

weighted average of all conformers is calculated for each numeric descriptor and treated as feature 

vectors for each molecule. Different weighting options can be specified when exporting descriptors, 

for example, arithmetic average, the properties from the lowest (or highest) energy conformer only.  

1.3 Applications of Auto-QChem  

1.3.1 Substrate scope design in Ni/photoredox methodology development 

As one example of AutoQChem’s use in a synthetic chemistry context,36 a team from our 

group, led by Dr. Stavros Kariofillis, developed a Ni/photoredox catalyzed alkylation reaction of 

aryl halides using acetals as alcohol-derived aliphatic radical sources.37 To evaluate the 

generalizability of this methodology, the team set out to design a representative, diverse, and 

unbiased aryl bromide substrate scope through an unsupervised learning approach with DFT-

derived featurization. An initial set of aryl bromides (molecular weight < 400) was generated 

through a Reaxysâ search, which yielded around 290,000 candidates. After applying additional 

filters, such as commercial availability, spectroscopic data availability and functional group 
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compatibility, 2683 aryl bromides remain for DFT calculation. Some preliminary studies suggested 

that common featurization approaches, such as molecular fingerprints and cheminformatics 

descriptors, are often insufficient to represent electronic and steric features of substrates relevant 

to reactivity sites, necessitating the use of DFT-derived featurization.  

With Auto-QChem, low-energy conformers were generated directly from SMILES strings 

for all aryl bromides. Gaussian jobs of generated conformers were then submitted to a connected 

HPC cluster. Successful calculations were logged and uploaded to the Auto-QChem database, 

along with 168 electronic and steric features (HOMO/LUMO energy, dipole moments, atomic 

volume, etc.) extracted from Gaussian log files. It is worth noting that, using Auto-QChem, DFT 

calculations of this size can be completed within a few days with minimal human intervention.  

After feature preprocessing,44 the remaining 95 features were used for hierarchical 

clustering to generate 15 clusters43 and the molecules closest to the center of each cluster were 

chosen as the substrate scope (Fig. 4b). The final substrate scope includes a wide array of 

functional groups (such as esters, nitriles, chlorides), substitution patterns (mono-, di- and tri-

substitution) and sterically varied substituents (ortho-, meta- and para-substitution). By comparing 

substrates from Ni/photoredox literature with the selected substrate scope, the team discovered 

that most aryl bromide substrates from literature examples are only present in a few clusters, while 

others (primarily clusters possessing multi-substituted aryl bromides) are significantly unexplored 

(Fig. 4a). This approach allows for study of chemical space coverage in the literature and 

identification of areas where high versus low yields are generally obtained. Unlike traditional 

substrate scopes in the literature, where selection usually happens in an arbitrary and subjective 

fashion, a machine learning-designed substrate scope with quantum mechanically informed 

descriptors is better suited for evaluating the generality of a reaction without human bias (Fig. 4c). 
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A systematic selection of substrates also enabled the training of regression models without 

selection bias to formulate predictive generalizations from DFT-derived features. It was discovered 

that electronegativity of the aryl bromide was highly correlated with yield. Using electronegativity 

as a predictive feature, a generalized additive model (GAM) was trained and validated with 

additional substrates. Similar models trained with literature substrates were less accurate and did 

not generalize well during validation This analysis demonstrated that a systematically designed 

substrate scope can effectively evaluate the generality of a reaction, as well as reveal reactivity 

trends for a larger population of substrates.  

 

Fig. 4 Substrate scope design in a Ni/photoredox methodology development. 
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1.3.2 Ligand parametrization and enantioselectivity prediction in nickel catalysis  

In another example, a team in our group, led by Dr. Will Lau, developed a Ni/photoredox-

catalyzed enantioselective cross-electrophile coupling of aryl iodides and styrene oxides.38 The 

optimal ligand, a chiral biimidazoline (BiIm) ligand, was discovered only after extensive screening 

of common chiral amine bidentate ligands. Bioxazoline (BiOx) ligands previously used in our 

asymmetric reductive coupling of aziridines39 resulted in good enantioselectivity but low to 

moderate yield of the product. To understand the key features of BiIm ligands that affect reactivity 

and enantioselectivity of this reaction, we sought to use statistical modeling with physical and 

chemical descriptors from DFT calculations. 

A total of 20 BiOx and 9 BiIm ligands was selected to be studied. The team collected 

enantioselectivity data under standard reaction condition with a model substrate (Fig. 5a). Under 

the hypothesis that ligand environments will likely affect the computed features, DFT calculations 

were performed for all the ligands under three different environments: free ligand, ligand bound 

to a tetrahedral nickel difluoride complexes and ligand bound to a square planar nickel oxidative 

addition complex (Fig. 5b). As a potential limitation, Auto-QChem (and most conformer-

generating software) cannot reliably generate conformers for transition metal complexes,45 

especially for group 10 metals like nickel. As a result, all the initial conformers for nickel-bound 

ligand were manually generated and submitted for DFT calculation. Auto-QChem’s descriptor 

extraction module was still used to extract electronic and atomic volume features from output files. 

Importantly, a multivariate linear regression analysis showed that, although they give a worse fit 

for the data, features derived from free ligands were sufficient for a descriptive linear regression 

model. From the regression model, NBOC4, NBON1 and polarizability independently affect DDG‡, 

suggesting that electronic, rather than steric attributes of BiIm ligands govern the enantioselectivity 



 

12 
 

of this reaction (Fig. 5c). This study demonstrated how insights from regression modeling with 

DFT-derived features can afford a mechanistic probe of complex catalytic reactions.  

 

Fig. 5 Ligand parametrization and enantioselectivity prediction in nickel catalysis. 

1.3.3 Reaction condition optimization via Bayesian optimization 

The optimization of reaction conditions is often tedious and time-consuming in 

methodology development campaigns. In the pursuit of conditions that provide the highest yield 

for reactions of interest, chemists often rely on empirical knowledge and qualitative 

understandings of the current optimization progress to design the next experiment. Typical 

approaches include the adoption of known conditions from literature, design of experiments (DoE), 

or more time- and resource-intensive methods such as high-throughput experimentations (HTE) 

and in-depth mechanistic studies. For individual reaction components, the lack of quantitative 

assessment of their effects on reaction yield usually requires running many combinations of the 

conditions, which in turn limits the size of chemical space explored during optimization.  
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In a recent study by our group and BMS (Bristol Myers Squibb), led by Dr. Benjamin 

Shields,40 we demonstrated the application of Bayesian optimization, a sequential design algorithm 

for global optimization of black-box functions, in efficient reaction condition optimization. A 

software framework, EDBO (Experimental Design via Bayesian Optimization), was developed, 

where a Bayesian optimization algorithm was integrated into real-time laboratory 

experimentations (Fig. 6). After a reaction space is defined, initial experiments are selected via 

clustering or other sampling approaches. Chemists run the suggested reactions in lab, analyze the 

results when reactions finish and input reaction yield into the system. Bayesian optimization 

algorithms use new results to update the prior and form a new posterior distribution over the 

objective function. An acquisition function is constructed with the new posterior to determine new 

query points (new reactions to run). This optimization loop is repeated until the desired yield or 

resource limit is reached.   

During the development of the Bayesian optimization framework, its performance was 

evaluated by comparing simulation results to human decision-making benchmarks obtained with 

large HTE reaction datasets. Bayesian optimization requires each reaction component to be 

translated into a suitable numeric representation. The effects of different featurizations (DFT-

derived features, molecular descriptors such as Mordred,41 and one-hot encoding) were tested on 

optimization convergence. DFT calculations for hundreds of molecules contained in these reaction 

datasets were completed with an early version of Auto-QChem,42 which greatly simplified the 

workflow. Compared to other featurizations, DFT features offer more efficient learning curves and 

consistent performance in terms of worst-case loss. Using DFT-derived features, it was showed 

that Bayesian optimization outperformed human decision-making baselines established by expert 
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chemists. The performance benefits obtained with DFT-derived features further validate the 

necessity of high-throughput DFT featurization frameworks like Auto-QChem.  

 

Fig. 6 The optimization workflow of EDBO. 

1.3.4 Other applications 

In addition to the three applications of Auto-QChem described above, there has been some 

new developments since the publication (2022) in using Auto-QChem and DFT descriptors to 

model catalytic reactivities. For example, in a study from our group led by Dr. Wendy Williams on 

nickel-catalyzed cross-electrophile coupling of aziridines and aryl iodides,46 Auto-QChem was 

used to featurize thousands of aryl and heteroaryl iodide substrates. A diverse substrate scope was 

similarly constructed as discussed in 1.3.1, and a simple yet accurate linear regression model was 

fit to model the substrate effect on catalytic reactivities. HOMO (Highest Occupied Molecular 

Orbital) energy of the aryl iodide and %Vbur (percent buried volume) of the iodine atom were the 

two features required for the linear regression model, highlighting both the electronic and steric 
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requirements of this reaction. Another recent publication by our group, led by Dr. Shivaani Gandhi, 

models catalytic reactivities of a copper-catalyzed Chan-Lam reaction with sulfonamides and aryl 

boronic acids.47 Auto-QChem was again applied to featurize sulfonamide substrates and construct 

a diverse substrate scope. The Chan-Lam reaction was evaluated with multiple substrates and 

conditions combinations via HTE. DFT features derived with Auto-QChem and labels from the 

experimental dataset were used to build a neural networks model that can accurately predict the 

reaction yields of Chan-Lam reaction, allowing the screening of reaction conditions in silico.  

Beyond works from our group, other research groups have also started to adopt Auto-

QChem into reaction modeling. For example, Auto-QChem derived DFT-descriptors were 

benchmarked against other featurization methods in a nickel-catalyzed cross-coupling reaction 

dataset,48 as well as a Suzuki-Miyaura cross-coupling reaction dataset.49 In some cases, Auto-

QChem derived DFT features were observed to enhance the predictive model performance when 

coupled with other featurization methods.  

1.4 Conclusions and outlooks  

In conclusion, we developed Auto-QChem, an automated, high-throughput and end-to-end 

DFT calculation workflow. Designed to facilitate the increasing applications of machine learning 

models in organic chemistry, Auto-QChem generates DFT-derived molecular and atomic features 

starting from simple string representations of the molecules. After initial conformational searches, 

each conformer is submitted to a local computer cluster for DFT calculations with user-specified 

configurations. Cluster jobs are managed directly through Auto-QChem with error-correcting 

mechanisms. Successful calculation results and extracted DFT features are then uploaded to a 

database. A web interface (https://autoqchem.org) is also available for convenient data access. We 

also present three distinct studies from our group where Auto-QChem was used to featurize a large 

https://autoqchem.org/
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set of molecules and greatly simplified the workflow in reaction modeling. Some more recent 

examples that highlight the application of Auto-QChem after the publication of this work in 2022, 

both from our group and other research groups, were also discussed.  

We would also like to highlight some limitations of Auto-QChem at the present stage and 

outline some future directions. First, as mentioned in 1.3.2, Auto-QChem lacks the ability to 

generate accurate conformers for transition metal complexes and molecules with non-canonical 

bonds. Such problems are not unique to Auto-QChem as we leverage external programs such as 

RDKit to handle conformational searches. We are actively seeking improvement and experiment 

with other conformational search software that can alleviate such problems. 

Another important functionality of Auto-QChem is the ability to manage jobs on HPC 

clusters. Currently, Auto-QChem only supports Slurm scheduler and SGE-type scheduler. More 

specifically, Auto-QChem supports job syntax for Princeton University’s computer cluster and 

UCLA’s Hoffman2 cluster. Due to the lack of access to other computational clusters, and the fact 

that each cluster usually requires a specific job syntax for allocating resources and running jobs, 

integration of other cluster job schedulers will require some modifications to existing code. It is 

possible for experienced users to modify Auto-QChem in the current stage to work with other 

computational clusters. For example, some researchers from University of Michigan and Caltech 

have successfully done so.  

As a software package, Auto-QChem requires regular maintenance and troubleshooting. 

All known bugs that have not been fixed are recorded on the GitHub repository as issues waiting 

to be worked on. The website, database application and AWS server also need regular maintenance 

to ensure a reliable user experience, especially on scale. We are already observing operational 

difficulties with increasingly large datasets, which will require application update and server 
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migration. Efforts have also been made to improve Auto-QChem as a Python package with callable, 

programmable methods capable of more complicated operations for experienced users.  

For the major functionality updates, we will continue to include external packages and 

automate the calculation of additional electronic and steric features that are not currently supported 

by Auto-QChem, such as Hirshfeld charges and Sterimol parameters. Significant work might be 

necessary to retroactively re-calculate these parameters for molecules that are already existing in 

the database. Barring any quality control issues, we also intend to invite other users to upload data 

to Auto-QChem. Like previously mentioned, modified versions of Auto-QChem have been hosted 

in other research institutions, and some external users have already been contributing to the 

database. With enough data on hand, we would also like to train machine learning models with 

existing data to predict DFT-level features for similar molecules,50 which will address the speed 

bottleneck of DFT calculations in our workflow. 
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Chapter 2. Identifying general reaction conditions via bandit optimization 

2.1 Introduction 

Chemists have long sought robust synthetic methods that can be applied to a wide variety 

of substrates.1–3 However, methodologies are generally developed and optimized with only one or 

a few model substrates to circumvent synthetic and analytical constraints. These “optimized” 

conditions are subsequently applied to a substrate scope, usually with higher yielding substrates 

preferentially reported. Reaction conditions optimized for a single substrate are not guaranteed to 

be applicable to other molecules with distinct structural features. Despite the increased efficiency 

of reaction optimization enabled by automated reaction systems4–10 and optimization algorithms,11–

20 this phenomenon still significantly hampers the adoption of newly developed methodologies in 

synthetic chemistry.21,22 Further optimization for different target substrates is typically required, 

and pharmaceutically relevant molecules with high structural complexity might not even be 

compatible with existing conditions at all.23 Most work to date has focused on retroactively 

evaluating the general applicability of developed methodologies via substrate scope design. One 

approach is to cluster commercial substrates into groups with unsupervised learning models, from 

which a representative substrate scope can be constructed by sampling from all groups.24 Another 

approach involves expert-designed scopes intended to test substrate compatibility relevant in 

pharmaceutical synthesis.25 Additive screening is also a prevalent strategy to assess condition 

applicability.26,27 Identifying incompatible additives with problematic structural features or ones 

that facilitate the desired transformation can provide insights that can enhance the general 

applicability of a reaction method.  

Nevertheless, post hoc analyses of applicability do not change the reaction conditions 

derived from prior optimization. De novo optimization processes that can directly yield generally 
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applicable conditions are highly sought. Recent advances in asymmetric catalysis have started to 

address this problem, where chiral ligands/catalysts that enable highly stereoselective 

transformations for a broad range of substrates are identified through multi-substrate screening 

combined with mechanistic studies and data science approaches during methodology 

development.28–31 However, unlike asymmetric catalysis where catalyst/ligand effects 

predominantly affect stereoselectivity, optimization of reactivity is a multi-dimensional problem 

that involves both chemical (e.g., catalysts, bases, solvents) and physical components (e.g., 

temperature, wavelengths, voltage, time). External factors, such as reaction vessels and set-up 

procedures, can also have significant effects on reactivity. Despite advancement in high-

throughput experimentation (HTE) technologies, exhaustive examination of all aspects of a 

chemical reaction remains difficult and expensive to carry out. Such a problem is exacerbated by 

the simultaneous survey of a sizable scope of diverse substrates necessary to correctly identify 

conditions that are broadly applicable, which can result in lengthy authentic product synthesis 

campaigns and appreciable analytical challenges. Judicious selection of experiments is therefore 

imperative to efficiently explore the reaction space during optimization. A notable recent example 

from Burke, Aspuru-Guzik, and Grzybowski aimed to find more general sets of conditions for a 

Suzuki-Miyaura cross-coupling reaction with aryl halides and aryl N-methyliminodiacetic acid 

(MIDA) boronates.32 Bayesian optimization was used to select experiments that were carried out 

by a robotic system, which greatly alleviates synthetic challenges. After the initial benchmarking 

and down-selection of reaction conditions prior to optimization, exploration of over 50% of the 

reaction space identified conditions more general than a previously published standard condition. 

This important advance notwithstanding, a universal reaction optimization model targeting general 
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applicability, especially one with an efficient experiment selection strategy that can also be easily 

incorporated into the workflow of bench chemists, has not yet been realized.  

In this study, we show that reinforcement learning (RL) models can effectively guide 

chemists to the most generally applicable conditions for a given substrate scope without prior 

experimental data on the reaction system. We designed a discrete optimization framework with 

experiment selection strategies that target condition generality, as quantified by average reactivity 

(albeit other distribution metrics can be used). Through performance benchmarking on four 

existing reaction datasets, we demonstrate that the implemented reinforcement learning model and 

its underlying algorithms reach high accuracies for identifying optimal general conditions in all 

cases, while being adaptable, scalable, and data efficient. To further substantiate the optimization 

framework, we also validated the learning model on three unseen chemical transformations.  

2.2 Results and discussions  

2.2.1 Model design and development 

The multi-armed bandit problem33 is a RL problem that resembles many characteristics of 

the generality optimization problem in chemistry. In the classic formulation, a casino player is 

presented with a series of slot machines, each with a fixed but different reward distribution that is 

also initially unknown. With a limited budget, the objective of the player is to maximize overall 

winnings by recognizing and playing the slot machine with better payouts. Reconciling the classic 

exploration-exploitation tradeoff, the player must efficiently allocate limited resources to balance 

the exploration of rarely played machines and the exploitation of current best options. In a reaction 

optimization campaign, chemists often need to choose from many options for reaction conditions 

to maximize certain objectives with limited initial knowledge of how they will perform on a wide 
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range of substrates (Fig. 7a). Finite experimental resources must be efficiently allocated to each 

reaction condition in consideration of a similar exploration-exploitation tradeoff: current best 

conditions derived from empirical knowledge are usually exploited, while new conditions are 

explored in hopes of discovering novel and more effective methods. The similar characteristics of 

both problems prompted us to adapt solutions to the multi-armed bandit problem (often called 

bandit optimization algorithms) for a generality optimization problem in chemistry.  

 

Fig. 7 Optimize for most general condition with bandit optimization. 

 

We designed an optimization framework where reaction conditions are treated as options 

(arms) to explore, with substrates being the underlying population for each option. Using reaction 

yield as an example of an optimization objective, the same substrate scope is expected to exhibit 

different reactivity behaviors under different conditions, resulting in unique reward distributions 

for each arm (Fig. 7b). The treatment of condition variables as discrete arms allows for versatile 

interpretations of conditions. Unlike design of experiments (DOE) or Bayesian optimization where 

a high-dimensional search space needs to be defined to cover all combinations of condition 

components,34 our approach allows arms to be defined to cover one condition dimension (e.g., 
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solvent) or many dimensions (e.g., catalyst/ligand/base/solvent combinations). In other words, it 

is possible to accommodate different precisions required in a single optimization campaign, 

ranging from comparing full sets of conditions established in literature to fine-tuning a specific 

reaction component. This approach bypasses the need to re-define high-dimensional spaces when 

pivoting objectives during optimization and recycles existing data by representing reaction results 

covered by one arm as samples from that distribution. Incorporating substrates into a distribution 

also means no explicit search space needs to be defined, and the algorithm can adjust its estimation 

of each condition’s distribution by continuing to sample that condition. This feature allows for 

both the elimination of ineffective arms and the expansion of substrate scope on the fly during 

optimization. The latter is especially important in application, as the generality of a reaction 

condition is highly dependent on the scope it is applied to.   

Leveraging algorithms formulated for multi-armed bandit problems, we implemented the 

optimization framework in Python specifically aimed at identifying generally applicable reaction 

conditions. Fundamentally, bandit algorithms balance exploration and exploitation of conditions 

and efficiently allocate experimental resources to conditions that exhibit higher reactivity (Fig. 7c). 

Our implementation centers around a reaction scope object that can create substrate scopes with 

possible conditions, interface with bandit algorithms, propose and record experimental results, 

predict yields for unrun reactions, and recommend general conditions (Fig. 8). We implemented 

bandit algorithms for both binary rewards (e.g., reactivity thresholds) and continuous rewards (e.g., 

numeric reaction yields). Bandit algorithms that optimize for continuous rewards are not 

commonly studied compared to those designed for binary rewards, and their behaviors in real-

world datasets can often deviate from theoretical performance analyses. To address these 

limitations, we adapted existing algorithms, such as Thompson sampling35 and Bayes UCB (Upper 
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Confidence Bound) algorithms,36 with gaussian priors to accommodate continuous rewards. 

Effective algorithm classes were identified through extensive benchmarking with synthetic data, 

as well as empirical modifications and hyperparameter selections that are beneficial to algorithm 

performance. Multiple approaches to support batch proposing and updating were also implemented 

to allow parallel experimentation in practice (see Section 2.4 for details on algorithm development). 

Unlike optimization frameworks that involve costly fitting of Gaussian processes and neural 

networks as surrogate models,37 our framework is also lightweight and computationally efficient, 

written almost in pure Python with minimal dependencies. This advantage not only enhances 

software performance in a production environment but also allows us to extensively simulate the 

learning model with existing datasets to statistically evaluate its effectiveness.  

 

 

Fig. 8 Model architecture and workflow of bandit algorithms during reaction optimization. 
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2.2.2 Performance testing with chemistry reaction datasets  

We simulated the optimization model on three previously published real-world chemistry 

reaction datasets consisting of a variety of conditions applied to a broad scope of substrates: a 

nickel-catalyzed borylation dataset previously investigated by Bristol Myers Squibb (BMS),38 a 

deoxyfluorination dataset from the Doyle group,39 and a Buchwald-Hartwig C–N cross-coupling 

dataset,40 all with the aim of finding the most general conditions (Fig. 9a). The optimization targets 

range from ligand (borylation), base–sulfonyl fluoride combination (deoxyfluorination) to full sets 

of catalytic conditions (C–N cross-coupling). In addition to numeric reaction yields 

(deoxyfluorination), we used other reactivity metrics, including pass/fail responses (borylation) 

and normalized UPLC-MS (Ultra-Performance Liquid Chromatography-Mass Spectrometry) ion 

counts (C–N cross-coupling) to represent scenarios when calibrated reaction yields are not 

available. For every dataset, the most general conditions are first determined through analyses of 

reaction yield distributions (Fig. 9c; see Section 2.4.8 for detailed yield analyses on all datasets). 

Optimization runs were then simulated by iteratively allowing suitable algorithms to propose 

experiments and providing algorithms with actual experimental results. After each round, the 

learning model updated its beliefs for the reaction scope, and this process was continued until a 

specified number of experiments was reached. This simulation process was repeated many times 

(e.g., 500) and the top-n accuracy was calculated as the relative frequency of the learning model 

correctly identifying top-n conditions across all simulations. 
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Fig. 9 Testing the bandit optimization framework on three datasets with different objectives and 
condition complexities. 

 

To confirm that meaningful learning took place with the developed model, we established 

two baselines for comparison for each dataset. One of them is the pure exploration baseline where 

conditions are randomly selected for evaluation, the accuracy of which is equivalent to a random 

guess. The other baseline strategy, explore-then-commit (ETC), tries each condition a fixed 

number of times during the exploration stage and then continuously exploits the best empirical 

option. ETC is similar to how chemists traditionally optimize reactions, where screens are 

conducted for one reaction dimension with other parameters fixed and the best option is then 

exploited. Compared to the two established baselines, our model achieved good accuracies within 

100 experiments for all three datasets, with substantial improvements over pure exploration 
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baseline (63%–73%) and ETC baseline (14%–32%) (Fig. 9b). These results validated that our 

learning model can be successfully translated to chemistry reaction data and is accurate in finding 

the most general conditions for various reactions. Different condition precisions and optimization 

objectives can also be accommodated through the flexible design of the optimization framework.  

Compared to model performance, data efficiency is often overlooked during computational 

model development. RL models can be especially data-hungry and computationally expensive. 

While access to large amounts of data is possible in certain scenarios, the execution of a reaction 

has always been the bottleneck in chemistry reaction optimization, especially in a batch experiment 

setting where experiments are conducted sequentially. Notably, our learning model does not 

require any pre-training or initialization and is inherently data efficient. To further demonstrate the 

model’s effectiveness at low data availability, we tested a large-scale Buchwald-Hartwig C–N 

cross-coupling HTE dataset previously published by the Doyle group and Merck.41 After removing 

incomplete reaction entries, this dataset contains 300 unique combinations of aryl halides and 

isoxazole additives, 4 ligands in the form of palladium pre-catalysts and 3 organic bases, totaling 

3600 experiments (Fig. 10a). MTBD as base, with t-BuXPhos (L2), t-BuBrettPhos (L3) and 

AdBrettPhos (L4) as ligands are the top three most general conditions based on average yield 

across the substrate scope (Fig. 10b). Various algorithms were again simulated with random starts, 

and the average accuracies of identifying the top three conditions were tracked throughout the 

simulations. Meaningful learning was achieved by most algorithms tested when compared to the 

plain annealing ε-greedy algorithm. The best-performing Bayes UCB algorithm achieved >90% 

accuracy on average after exploring only 2% of the scope (72 reactions) and converged to >95% 

accuracy after 100 reactions (or 2.8% of the scope) (Fig. 10c). 
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We also probed algorithm behaviors in detail by visualizing optimization progresses at 

specific time points during one simulation. Without any deliberate selection of favorable results, 

we used the first simulation run with Bayes UCB algorithm to visualize the experiments selected 

at four different time points, as well as the current empirical average yields for each condition 

combination at each time (Fig. 10d). During the exploration stage (up to n=12, n refers to the 

number of experiments), the algorithm sampled one experiment for each condition combination to 

Fig. 10 Testing the bandit algorithms on a previously published C–N cross-coupling reaction 
dataset. 
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gain a preliminary understanding. The learning model subsequently balanced the exploration of 

conditions with limited data and the exploitation of conditions with high reactivity. The increased 

sampling of a particular condition provides a more accurate estimate of its average yield and better 

informs the algorithm of the potential gain if this condition was to be chosen again. At n=60, L3–

MTBD (54.0% empirical yield) still had a higher empirical average than L2–MTBD (50.8% 

empirical yield). At n=99, the algorithm has corrected this inaccurate estimation by continuously 

sampling L2–MTBD, which turned out to have a higher empirical average (54.8% empirical yield, 

vs. 47.0% empirical yield for L3–MTBD). L2–MTBD (t-BuXPhos–MTBD) is therefore correctly 

identified as the most general condition in this dataset.  

2.2.3 Optimization study 1: palladium-catalyzed C–H arylation reaction 

Literature datasets that probe the effects of conditions on a scope of substrates often contain 

only a singular dimension of substrates.40 However, in many chemical transformations, best 

exemplified by cross-coupling reactions, two or more substrate components are usually present in 

the scope. A reaction dataset with many diverse substrates pairings and calibrated reaction yields 

for all products under the same environment, one that is also sufficiently large for modeling, would 

be ideal to evaluate the performance of generality optimization algorithms in a regime where 

multiple substrate dimensions simultaneously interact with conditions. Due to the lack of such 

datasets in the literature, we decided to collect a palladium-catalyzed imidazole direct C5–H 

arylation dataset that satisfies these requirements. Compared to cross-coupling methods commonly 
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studied in the form of large reaction datasets, direct C–H arylation bypasses the need for pre-

functionalization or potentially unstable coupling partners.  Building upon a C–H arylation dataset 

investigated in a prior collaboration between the Doyle group and BMS,15 where conditions were 

extensively surveyed with a single pair of substrates, we expanded the substrate dimensions of 

both imidazoles and aryl bromides and specifically studied ligand effects with an expanded ligand 

scope. Commercial imidazoles and aryl bromides were clustered using k-medoids clustering, and 

Fig. 11 Optimization studies of a palladium-catalyzed C–H arylation reaction. 
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representative molecules from each cluster were selected based on expert knowledge to cover 

various functionalities and substitution patterns. An extended ligand scope was selected from the 

BMS monophosphine ligand library, which includes most of the ligands in the previous dataset. A 

total of 64 unique C5-arylated imidazole products were generated from 8 imidazoles and 8 aryl 

bromides, each evaluated with 24 ligands yielding 1536 total reactions (Fig. 11a). 

We first retrospectively analyzed the dataset by mimicking a traditional model substrate 

approach, where ligands are screened with a model substrate (or product) to identify the highest-

performing ligand as optimal. For each of the 64 products in the scope, we filtered out products 

(40 out of 64) that did not achieve a reaction yield above 75% (these reactions are usually 

considered as “not optimized” in practice). For the rest of the products, the highest-yielding ligand 

was selected (Fig. 11b). 12 out of 24 ligands in the scope can be considered as “optimal” with 

different substrate pairings. Most of these ligands, however, are non-optimal when considering all 

64 products. The most notable example, PPh3, is the optimal ligand for imidazole C with multiple 

aryl bromides, but its average yield over all products is only 32.4%, compared to the 46.2% for 

CyBippyPhos. Moreover, our previous HTE study of C–H arylation,15 where imidazole C and aryl 

bromide 7 were used as model substrates to evaluate 1984 different reaction conditions including 

14 monophosphine ligands, identified CgMe-PPh as the optimal ligand almost exclusively (19 out 

of top 20 conditions, with the only other ligand being PPh3). These analyses highlight that a 

traditional screening approach with model substrates, even after significant exploration of the 

condition space, does not usually produce a satisfying condition. The derived “optimal” conditions 

can be biased and misleading, often with poor general applicability. In contrast, simulating our 

learning model with this dataset showed an 85% top-5 accuracy (Fig. 11e, compared to the 21% 

random exploration baseline), and a >95% top-9 accuracy on average after 200 experiments (see 
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Section 2.4.8 for detailed simulation studies for this reaction). Non-optimal ligands, such as PPh3, 

are almost always excluded from consideration by the model, thus reducing bias when choosing 

general conditions.  

One key advantage of the bandit optimization model is that no search space needs to be 

explicitly defined. Reactivity responses from various substrates are treated as feedback from the 

environment that the algorithm is learning from. This means that the substrate scope, as part of a 

dynamic environment, can arbitrarily change on the fly and the model can learn these changes 

continuously based on the feedback it receives during optimization. It is common in practice to 

expand the substrate scope and further evaluate a developed method’s utility, which will affect 

how generally applicable a condition is and possibly affect the optimization model’s ability to 

select such conditions. To test the learning model’s performance in this problem setting, we 

designed a test scenario where both the imidazole and aryl bromide scopes available to the 

algorithm were restricted at first and expanded on the fly during optimization. Four imidazoles (A, 

B, C, D) and four aryl bromides (1, 2, 3, 4) constituted the initial scope, defined as Phase I. After 

50 experiments in Phase I, the imidazole scope was expanded to include four additional imidazoles 

(E, F, G, I), creating 16 new potential products in Phase II. After 50 experiments in Phase II, the 

aryl bromide scope was expanded again to include four additional aryl bromides (5, 7, 9, 10), 

creating 32 new potential products in Phase III (Fig. 11c). While Phase I and II experience similar 

rankings for the top 5 ligands, the relative order changes in Phase III after the addition of four aryl 

bromides (Fig. 11d). During optimization simulations, the individual accuracies over time for each 

of the top 5 ligands were tracked and compared (Fig. 11e). The model correctly identified the 

initial ligand reactivity rankings in Phase I and II. Crucially, when the reactivity ranking was 

changed in Phase III, the algorithm did not overcommit and successfully adjusted its belief in 
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ligand performance by increasingly sampling Cy-BippyPhos (red) and Et-PhenCarPhos (blue), the 

top two performing ligands. The previous top ligands, tBPh-CPhos (orange) and JackiePhos 

(purple), were downgraded by the algorithm in Phase III. We also compared the accuracy of Cy-

BippyPhos under a substrate expansion regime with the accuracy of Cy-BippyPhos obtained from 

a separate optimization where the full substrate scope is always available for the algorithm to 

sample from. Although the initial accuracies understandably differed due to the different reactivity 

distributions in Phase I and II, the end accuracies at experiment 200 are similar despite the 

differences in the initial sampling pools. The model is capable of learning a changing substrate 

scope through continued sampling, while not overcommitting to any prior beliefs. The same level 

of performance can also be achieved in the same time frame regardless of the substrate scope 

expansion, further highlighting the developed model’s efficiency.  

2.2.4 Optimization study 2: amide coupling reaction 

Due to the prevalence of amide bond structures in biological systems and pharmaceutical 

compounds, amide coupling reactions are the most commonly employed reactions in medicinal 

and process chemistry.42 Carboxylic acids are often preferred as inexpensive and abundant starting 

materials. Their chemical stability, while desirable on account of the ease of handling on scale, 

necessitates activation by coupling reagents, usually through in situ formation of an acid halide or 

anhydride. Despite the vast number of activators (>200) developed for amide coupling reactions,43 

chemists often resort to a few routine reagents on the basis of their proven reliabilities.44 However, 

the efficacy of these coupling reagents when applied to specific target substrates is still difficult to 

assess a priori, especially for the challenging coupling with weakly nucleophilic anilines. Aniline 

deactivation from the aromatic system, as well as accompanying steric and electronic demands 
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from various substituents, complicates the selection of productive coupling reagents. Other aspects 

of reaction conditions, such as bases and solvents, can also affect reactivity. 

  

Fig. 12 Optimization studies of an amide coupling reaction with anilines. 

 

Using the late-stage functionalization of indomethacin, a commonly prescribed 

nonsteroidal anti-inflammatory drug (NSAID), as an example, we sought to demonstrate our 

model’s ability to identify generally applicable amide coupling conditions when faced with a 

diverse scope of aniline substrates and reaction conditions. Starting from a commercial library of 

anilines, we generated dense vector embeddings for all molecules using mol2vec45 and clustered 
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them into ten groups using k-means clustering. One representative aniline was chosen from each 

cluster to constitute the aniline scope, which encompasses combinations of various heterocycles 

(quinolines, pyrazoles, pyridazines), electronically deactivating groups (nitriles, nitros, 

trifluoromethyls), sterically demanding ortho-substitutions, and potentially problematic functional 

groups (aryl chlorides/bromides, sulfonamides, esters). A series of eight amidation reagents, 

including aminiums, uroniums, (halo)phosphoniums, and phosphinic halides, were investigated as 

part of the condition scope, as well as four common organic bases and three solvents (Fig. 12a).  

For the defined reaction scope, we attempted to identify the most general activators and 

bases for the selected scope and used the solvent dimension as a way of minimizing anomalous 

experimental observations. We first aimed to filter out less-effective activators by setting the 

optimization objective to activators alone. Unlike simulation studies where real-time feedback was 

immediately provided for each proposed experiment, batch experiments are necessary in practice 

to maximize time efficiency, resulting in a delayed feedback setting. After each proposal of batch 

experiments, predicted results for these experiments, which came from a separately trained 

supervised learning model with existing data, were continuously supplied to the bandit algorithm 

until experimental feedback became available. After 8 rounds of initial experiments (5 experiments 

per round), activators were ranked by reactivity based on the model’s beliefs, and the bottom four 

activators (PFTU, HOTU, HATU, PyBOP) were eliminated. For the four remaining activators 

(DPPCl, BOP-Cl, TCFH, TFFH), the optimization objective was modified to activator–base 

combinations. Relevant data for the four activators retained were recycled and incorporated as 

knowledge of the new objective by the optimization model. After 16 additional rounds of 

experiments, all activator–base combinations were again ranked by projected reactivity (top nine 
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conditions are shown in Fig. 12b). Overall, about 12% of the reaction scope were experimentally 

explored following the model’s suggestions. 

To conclusively evaluate the resulting rankings from our model, we collected experimental 

results for all remaining reactions not explored during optimization and analyzed true reactivity 

rankings for activators and activator–base combinations for comparison. The model correctly 

identified and ranked the top three activators during the activator selection phase. For activator–

base combinations, top nine out of ten combinations were identified, with the top four correctly 

ranked. Interestingly, HATU–DIPEA, one of the most commonly applied amide coupling 

activator–base combinations,46 was the only condition not selected in top ten as HATU was 

eliminated in the initial rounds. Employment of DPPCl (diphenylphosphinic chloride) with NMM 

or DIPEA yielded the most effective general reactions conditions, ranking number one and two, 

respectively. Using HATU–DIPEA as a benchmark, the average yields over three solvents (THF, 

MeCN, and DMF) for DPPCl–NMM and DPPCl–DIPEA for each aniline substrate were also 

analyzed (Fig. 12d). DPPCl–NMM significantly outperformed, or at least matched, HATU–

DIPEA for most anilines except n10, including highly deactivated anilines (n1) and sterically 

hindered anilines (n8). When compared to TCFH–NMI, a reagent combination developed by BMS 

for challenging amide coupling reaction with non-nucleophilic amines,47 DPPCl also exhibited 

superior reactivities for selected anilines (e.g., n7). Although not a commonly employed amide 

coupling reagent, the optimization results suggest that DPPCl can be effective for amide coupling 

with anilines. These findings can extend to well-established activators not included in the model: 

for example, in comparison to T3P, a mechanistically similar activator that is much more frequently 

used in amide coupling, DPPCl can be considered as a promising alternative reagent with 

exceptional thermal stability48 and improved atom economy. In fact, effective amide couplings 
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using DPPCl have been separately investigated by BMS.49 The desirability of DPPCl-mediated 

amide coupling in commercial routes has also been demonstrated on multi-kilo scales,50 further 

corroborating the optimization model’s findings. 

Finally, we evaluated the accuracy of the final prediction model from the last round of 

optimization with measured ground truth data for the full scope. The random forest model was 

only trained with 12.5% of the data from the reaction scope explored during optimization but 

exhibits good prediction accuracy for unexplored experiments involving both activators retained 

and eliminated after initial experimental rounds (12% mean absolute error for both, Fig. 12c). The 

good accuracy of the prediction model under a low-data regime further validates the approach of 

using a supervised machine learning model to predict experimental results in a delayed-feedback 

setting during optimization. 

2.2.5 Optimization study 3: phenol alkylation reaction 

The prevalence of alkyl aryl ethers in natural products and pharmaceuticals has prompted 

developments in mild and general syntheses of these products. Despite advances in transition-

metal catalyzed C–O cross-coupling reactions,51 traditional approaches, such as Williamson ether 

synthesis,52 Mitsunobu etherification53 and nucleophilic aromatic substitution (SNAr), are still 

widely used due to their simplicity. However, these reactions usually have limited functional group 

compatibility. We decided to investigate a base-promoted phenol alkylation reaction with alkyl 

mesylates, which also suffers from similar substrate applicability issues, with the objective of 

identifying a more general condition.   

Six mesylates and six phenols were selected from commercial databases as substrates with 

varying structural motifs and complexities. We randomly left out one phenol (p5) and one mesylate 

(m1) as external testing substrates and did not include them in the optimization process. As a result, 
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25 substrate pairings (five phenols ´ five mesylates) were sampled by the algorithm during 

optimization, and 11 unseen pairings (those with p5 and m1, including p5-m1) were tested after 

to externally validate the generality of the identified conditions. Six bases (inorganic and organic), 

two solvents and three temperatures were selected as the condition scope, totaling 36 overall 

conditions (Fig. 13a). Conditions selected by expert medicinal and process chemists at BMS and 

their corresponding reactivity data were used as a benchmark for the bandit algorithm’s decisions 

and optimization performance.  

Using UCB1-Tuned algorithm, we conducted four rounds of optimization with a total of 

90 experiments (36, 18, 18 and 18 for each round, all conducted experiments are included in 

Fig. 13 Optimization studies of a phenol alkylation reaction with mesylates.  
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Section 2.5.3). The first round of experiments is a uniform exploration of all conditions required 

by UCB-type algorithms. All conditions were sequentially explored with randomly sampled 

substrate pairings (21 out of 25 were sampled at this stage). Subsequent rounds of experiments 

were chosen by the algorithm evaluating different conditions and substrate pairings. After 90 

experiments, or 10% of the available reaction scope, the average yields and number of samples for 

each condition were analyzed (Fig. 13b). Significant base (BTMG) and temperature (60 °C) effects 

on reactivity were observed, with BTMG–t-AmOH–60 °C identified as the most generally 

applicable condition, achieving an average yield of 30.4% over five substrate pairs tested. Two 

conditions most commonly used and most successful in past HTE datasets at BMS, Cs2CO3–

DMF–60 °C and K3PO4–DMF–60 °C, were selected as benchmark conditions for comparison (see 

Section 2.5.3 for details on the selection of these conditions). These three conditions were tested 

on 11 unseen substrate pairings that involve phenol p5 and mesylate m1 (Fig. 13c). Compared to 

the benchmark conditions, the algorithmically derived condition, BTMG–t-AmOH–60 °C, 

performed better (or at least comparably) in all except one substrate pairing (p5-m5). These results 

showed that bandit algorithms are compatible with continuous parameter optimization and can be 

used with batch sizes amenable to HTE. Furthermore, validation with unseen substrate pairings 

showed that the condition identified by the bandit algorithm during optimization is more generally 

applicable for the reaction scope, even when compared with conditions selected by practicing 

chemists that performed well in historical datasets.  

2.3 Conclusions and outlooks 

Our learning model can achieve data-efficient learning at high accuracies and has unique 

functionalities that we substantiated through the experimental investigations of three chemical 

transformations. Despite its advances, the optimization framework still has limitations and can be 
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improved in a few areas. Given the typical experimental budget (100–1,000 experiments) and the 

efficiency of optimization (2–10% exploration of the scope needed), our approach is not suitable 

for the evaluation of a scope with thousands of possible conditions. Rather, the condition scope 

needs to be reduced by expert chemists to selective conditions that show reactivity initially, so that 

more experimental resources can be spent on sampling substrates. Furthermore, the treatment of 

reaction conditions as independent arms in a stochastic multi-armed bandit problem setting means 

that there is no sharing of structural information between arms. Although effective in all our test 

cases, this approach can be inefficient when more than 100 conditions need to be simultaneously 

evaluated and significant correlations between conditions are present. Elimination of less effective 

conditions, as demonstrated in the amide coupling example (optimization study 2), can attenuate 

this problem. Alternatively, suitable descriptors for conditions could be used to transfer knowledge 

between similar conditions, but the choice of descriptors is difficult to determine a priori. Finally, 

although we showed that the learning model can successfully adjust to a changing environment 

with unseen substrates and correctly identify most general conditions, addition of any new 

conditions will require additional sampling for the model to have an accurate estimation of their 

performance. This issue was partially addressed by the inclusion of a real-time supervised learning 

model, which can be used to extrapolate to unseen conditions and predict their effectiveness, but 

a more direct approach with knowledge transfer between arms is still desired.  

From a theoretical standpoint, there are also other potential directions that can be further 

explored. First off, a more dynamic problem setting can be explored where a “living model” is 

always operational and evolving using newly available data on new substrates. One approach for 

this problem setting is to discount older data points in the reward function, e.g., use a geometric 

series of a discount factor (older data points will get more discounted), or use a sliding window 
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and only consider the last n data points. The second area to explore is a new sampling strategy for 

the substrate dimensions. Currently, bandit optimization model will randomly sample a substrate 

for a selected condition. This is done for several reasons (see section 2.4.7 for details) and have 

been shown to be more effective than other sampling strategies.72 However, other substrate 

sampling strategies can still be explored, e.g., maximize substrate diversity by selecting the 

substrate that is the most distant (distance metrics based on molecular fingerprints or other 

representations) from previously selected substrates. Another area to explore is to improve the 

uncertainty estimation function, which currently relies on the number of substrates sampled with 

each condition. A recent study showed that uncertainty estimation can be improved with 

supplemental data from a ML prediction model (which has been implemented and used for a 

different purpose in this work).73 In addition to the stochastic bandit setting investigated in this 

work, other types of bandit problem settings and their solutions can also be applied, such as 

contextual bandit, combinatorial bandit, and linear bandit.33 In particular, contextual bandit has 

been considered, but it is difficult to implement in practice. In other application settings such as 

website traffic optimization, contextual bandit works by observing a context (such as user interest) 

and subsequently suggesting options (such as website contents) more suitable for that context. 

Although this might seem like a suitable approach for generality optimization where the algorithm 

suggests reaction conditions by observing the substrate context first, chemists usually have the 

freedom to choose any substrate from the scope during optimization. Therefore, it is more 

beneficial to strategically sample all the substrates from the start, rendering the contextual bandit 

approach less relevant.  
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2.4 Computational section 

2.4.1 Bandit optimization algorithms 

Most of the algorithms discussed here have been extensively studied in literature. While 

theoretical studies tend to focus on proving expected regret bound and sample/time complexity of 

the algorithms, we aim to give a high-level description of these algorithms with minimal usage of 

mathematical equations and symbols, as well as some empirical observations of the behavior of 

these algorithms. Not intended as a rigorous technical explanation of the algorithms, these 

introductions aim to help non-experts (such as those in the field of chemistry) to better understand 

the logic and underlying principles of these algorithms without the need of analyzing complex 

mathematical notations.  

Bandit optimization algorithms are algorithms designed to solve the multi-armed bandit 

problem. In a multi-armed bandit problem, the player is faced with multiple arms (or options), 

each with a different reward distribution that was initially unknown to the player. The player must 

choose arms strategically to identify the best arm and to maximize cumulative rewards. The 

general role of a bandit algorithm is to select an action to take next (select an arm to play), based 

on all past results that have been collected so far. A successful algorithm efficiently exploits known 

good arms and explores arms with high uncertainty. The information available to an algorithm at 

each time point t is all the arms selected at all previous time points, and the rewards returned by 

playing each of those arms. Different bandit algorithms use this same information in different ways 

to determine the next action, all with the same objective of identifying the best arm and maximizing 

overall reward in the long run.  

 

Pure exploration 
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Pure exploration simply explores all arms randomly throughout the time horizon. At each 

time point, one arm is randomly selected and played.  

 

Explore-Then-Commit (ETC) 

Explore-then-commit is a very similar to traditional A/B testing, where equal amounts of 

resources are allocated to all options during the initial exploration phase. The best option is selected 

based on initial data only and exploited throughout the rest of the time horizon. This algorithm is 

also similar to the traditional reaction optimization approach employed by chemists, where control 

experiments are performed with one reaction component varying at a time. The “best” reaction 

parameters (solvent, catalyst, temperature…) are determined from these experiments and exploited 

for the rest of the optimization campaign.  

Formally, ETC is characterized by the number of arms n, and the number of explorations 

for each arm m (m is a natural number). Assuming we have a preset value of m, the action at each 

time point t is chosen as such: 

 

To establish a ETC baseline that can be compared to other algorithms at every time point 

t, we simulate our datasets with all possible values of m, limited by the maximum number of 

experiments allowed ( ). Since each round of exploration will take n 

experiments (1 experiment for each arm), the accuracy (or other metrics) during a current 

exploration round is calculated with results from all previous rounds of exploration that are 

completed, excluding the current, ongoing round. The resulting baseline is a step plot, with 

accuracy (or other performance metric) being updated every n experiments. Examples of the 
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explore-then-commit baseline and more detailed explanations of how the baselines are calculated 

can be found in Section 2.4.2 for synthetic data, and Section 2.4.8 for reaction data.   

 

ε-greedy 

ε-greedy algorithm is an improved version of simple greedy algorithm (exploitation only). 

ε-greedy incorporates exploration as follows: with a parameter 0<ε<1, at each time point, the 

algorithm either randomly explores all arms (with probability ε) or exploits the current best arm 

(with probability 1-ε). In other words:  

 

The obvious limitation of ε-greedy is the necessity of selecting a fixed ε at the beginning 

of the experiment. If ε is too small, the algorithm does not explore enough at the start and will get 

tricked by a few positive examples and continuously exploit these sub-optimal options. If ε is too 

big, the algorithm collects a lot of initial data and figures out the best option quickly but will also 

continuously explore at later stages of optimization when it is not necessary to do so. Such late-

stage exploration wastes resources when the optimal option has been identified. 

It is often difficult to know whether a selected parameter will work for the real-world data 

we have not collected yet. We can only know that a certain ε is better with hindsight knowledge. 

One solution to this problem is to adaptively adjust ε throughout the time horizon: adopt a big ε at 

the start to explore all options and gradually decrease ε when exploration is not as necessary in 

later stages. Such adaptive algorithm is called annealing ε-greedy. The benefit of using annealing 

ε-greedy is that it eliminates the need to find appropriate ε for each specific use case, while 

providing somewhat of a performance guarantee.  
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A common annealing function (also used in our study) is:  

 

Plotting this function reveals that ε decreases over time, and the rate of decrease (first 

derivative) also decreases, making ε more stable as t increases (Fig. 14). The small number 10-7 is 

used to avoid any division by zero error.  

 

Fig. 14 Annealing function used for annealing ε-greedy algorithm. 

 

Softmax (Boltzmann exploration) 

Softmax algorithm assigns each arm a probability that is proportional to the average 

empirical reward of that arm at each time point.54 Arms with a higher empirical average reward 

will have a higher probability to be picked. Specifically, the probability for each arm is modeled 

using a Boltzmann distribution.  

At time point t, probability of selecting arm i for the next round is updated as follows: 

 

Typically, a temperature parameter τ is also used to control the randomness of choices. 

When τ→0, algorithm acts as pure greedy where only the arm with the highest empirical average 
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is picked. When τ→∞, the algorithm becomes uniformly random regardless of the current 

empirical averages. An illustration of the different probability distributions with different τ’s from 

the same empirical average is shown below.  

 

 

Fig. 15 Probability distribution of five arms with different parameter τ set for softmax. 

When selecting τ, it is important to consider the possible range of rewards, as that will 

affect the scale of appropriate τ’s. Similar to annealing ε-greedy, annealing τ is also possible to 

implement, with a big τ at the beginning to encourage exploration, which slowly decreases to 

exploit the best options. However, unlike the bounded parameter ε in ε-greedy (0<ε<1), τ does not 

have an upper bound. This makes finding the appropriate annealing function more difficult. In our 

testing, finding an appropriate fixed value for τ is usually easier than identifying a suitable 

annealing function.  

 

Pursuit 
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 Similar to softmax, pursuit algorithm also uses a set of probabilities to guide arm 

selection.55 The update rules of probabilities, however, is not directly related to the empirical 

means. Starting with uniform probabilities, pursuit algorithm re-computes probabilities at each 

step with a learning rate β (0<β<1). The probability of selecting the current best arm (with the 

highest empirical average) increases while the probabilities of selecting all other arms decrease.  

 

 

 

Reinforcement Comparison 

Reinforcement comparison54 also uses probabilities to guide arm selection, but in a more 

complex fashion. First, a set of expected average rewards for each arm i are updated with empirical 

average rewards at each time step t with a learning rate of α (0<α<1).  

 

 

 

Another set of heuristics called preferences are then updated via comparison between 

expected and empirical average rewards with a learning rate β (0<β<1).  

 

 

 

Finally, the set of probabilities used for arm selection is computed with a Boltzmann 

distribution.  
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Intuitively, more promising arms with empirical average rewards higher than expected 

average rewards will get a higher preference, resulting in a higher probability of getting selected. 

Theoretical analysis, to the best of our knowledge, does not exist for this algorithm. In practice, 

this algorithm can also be difficult to use due to the need of tuning two parameters at the same 

time. When correctly tuned, however, this algorithm can offer good performance compared to other 

simpler algorithms (vide infra).  

 

Upper Confidence Bound 

Most algorithms described above, like ε-greedy and softmax, only keep track of the current 

rewards for each arm and use that information to determine the next action. As a result, these 

algorithms can be “gullible”: they can easily be fooled with a few unusually good/bad examples 

for a given arm initially. In other words, only considering empirical means to estimate true means 

does not account for the uncertainty of such estimation, which can result in less effective 

optimization. One improvement to address such limitation is to quantify the uncertainty with other 

information available to the algorithm, for example, the number of samples for each arm. 

Intuitively, the more times an arm is sampled, we are more confident that the empirical mean for 

this arm is close to the actual mean, and vice versa.  

More specifically, upper confidence bound algorithms uses the strategy of “optimism in 

the face of uncertainty”. Algorithm will be optimistic about any uncertainty present in the 

estimated mean and regard uncertainty as potential for improvement. As a result, upper confidence 
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bound algorithms will attempt to select arms with a high combined value of empirical mean and 

uncertainty. As time goes on, uncertainty for all arms decreases and algorithm can confidently 

select based on estimated empirical means.  

The simplest algorithm in this family is UCB1.56 At each round, UCB1 updates the upper 

confidence bound values for all arms. For arm j, the UCB value is a combination of its current 

empirical mean and the number of samples for this arm compared to the overall number of samples 

for all arms:  

 

 

After the update for all arms, UCB1 then selects the arm with the highest upper confidence 

bound, receives the reward for selected arm and updates the UCB values for all arms. Like 

discussed above, high empirical mean and low sample size can both prompt the algorithm to select 

a particular arm. Many other variants of upper confidence bound algorithms also exist, each with 

different confidence interval terms to describe the uncertainty. For example, UCB1-tuned56 is 

found to work better in practice with a modified confidence bound: 

 

 

where V is defined as the upper confidence bound for machine j’s variances based on 

current samples:  
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Other UCB-type algorithms are also implemented in this work, including UCB2,56 

MOSS,57 UCB-V,57 DMED.58 In our testing, we found that UCB1-tuned usually offered the best 

performance, even when compared to other more advanced algorithms. Therefore, the details of 

these algorithms are not discussed here and can be found in the respective publications where they 

were introduced. 

 

Thompson sampling 

Thompson sampling is one of the earliest algorithms proposed for bandit problems. The 

player will maintain a prior distribution for all arms, which gets updated according to Bayes rule 

with empirical data in each round. The player then samples from the posterior distributions and 

plays the arm that is optimal based on the sampling results. Exploration of the environment comes 

from the randomness during the sampling process. At early rounds, with the lack of empirical data, 

the posterior is not well-concentrated, which results in uniform (more or less) exploration of all 

arms by the algorithm. With more data collected, each posterior distribution more accurately 

represents the true distribution for each arm, and the algorithm tends to choose the optimal arms 

and is less likely to explore (though still possible, since it always samples from the posterior first, 

rather than simply choosing the posterior with the highest mean). Thompson sampling therefore 

takes into consideration both the empirical means and the uncertainty in mean estimation with the 

help of prior distributions.  

Operationally, this procedure benefits from an algebraic convenience called conjugate prior. 

If the posterior distribution and prior distribution belong to the same probability distribution family, 

the prior is called a conjugate prior for the likelihood function. This gives a closed-form expression 

for the posterior, which greatly simplifies the update process at each time point. For this reason, 
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the reward distribution is usually assumed to be a Bernoulli distribution or Normal distribution, 

where a conjugate prior of Beta distribution or Normal distribution (Normal-Gamma if no fixed 

variance is assumed) can be used to give a closed form of expression for posterior update.  

Assuming Bernoulli reward distributions and using beta distribution as conjugate prior, 

each arm i is represented by a beta distribution Beta(Si, Fi) where S represents the number of 

successes and F represents the number of failures this arm has seen. For the selected arm, the prior 

is updated to posterior Beta(Si + reward, Fi + (1-reward)). For the arms not selected, no update 

happens. When selecting an arm, the algorithm samples from each posterior distributions and 

chooses the arm based on sample values.  

Rewards can also be assumed as a Normal distribution. In this case, the conjugate prior can 

either be a normal distribution if variance is assumed to be fixed, or a normal-gamma distribution 

if variance needs to be estimated. A more detailed discussion on Thompson sampling under these 

situations in later sections. 

2.4.2 Bandit algorithms: Monte Carlo simulation testing results with Bernoulli rewards  

General remarks on testing frameworks  

All implemented algorithms were evaluated with synthetic data first to validate the 

implementation and identify the optimal parameters and algorithm under different scenarios. The 

classic testing scenario uses multiple stochastic Bernoulli arms, each with stochastic rewards that 

follow a Bernoulli distribution with a different probability. In different test scenarios, we adjust 

the probabilities and the number of arms to determine the appropriate algorithms and their 

parameters to use under different circumstances.  

Because bandit algorithms are active learning algorithms that query for a stochastic reward 

in real time, each run of the algorithm will give different results. To reduce the effect of randomness 
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in assessing algorithm performance, algorithms are evaluated with Monte Carlo methods. More 

specifically, all algorithms are repeatedly run many times and the average metrics across all runs 

(simulations) for each algorithm are used to establish and compare the performances of different 

algorithms.  

Most of the bandit algorithms studied in literature were developed for arms with Bernoulli 

rewards (0/1 reward with a probability). Some of the algorithms can be readily applied to 

continuous rewards such as normally distributed reward, and others need to be modified first. 

During our testing with synthetic data, we focused on arms with Bernoulli rewards to assess the 

performance of all algorithms more accurately.   

All the algorithms discussed are implemented in Python with a uniform function structure. 

Simulation testing and analysis functions used to analyze algorithm performance are also provided. 

These testing and analysis functions are provided as part of the software code. The raw testing logs 

are also provided, and all the testing results visualized in plots can be reproduced with the raw data.  

 

Performance metrics 

Accuracy is defined as the relative frequency (or percentage) of simulations where an 

optimal arm is played at each time point t. An effective algorithm will tend to play the optimal 

arms more often as time progresses, which increases the accuracy over time. It is worth noting that 

this definition tends to underestimate the ability of the algorithm to select an optimal arm: at each 

time point t, some instances of the algorithm might be exploring at the time when accuracy is 

evaluated, which does not affect the identification of optimal arms by the algorithm overall but 

does lower the accuracy. We modified this definition when we tested these algorithms with 

chemistry reaction datasets to consider all previous selections by the algorithm (Section 2.4.8). 
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Average reward is defined as the average reward across all simulations at time point t. As 

more optimal arms are played, the average reward will also increase. Average reward tends to trend 

similarly with accuracy, and we chose to focus on accuracy in most of the test cases. In practice, 

the highest achievable average reward will vary in different cases, but the accuracies are always 

the same scale (0-100%). 

Cumulative reward is defined as the average cumulative sum of rewards across all 

simulations up until time point t. We did not implement a related metric, regret, which measures 

the difference between the rewards of action taken and the rewards of optimal action and is often 

used in theoretical analysis. It is, however, often impossible to calculate regret in a real-world 

application due to the lack of hindsight knowledge. Due to this limitation, we mainly focus on 

cumulative reward, which also trends with accuracy in most cases.  

 

Test scenario 1: 5 Bernoulli arms with probabilities [0.1, 0.2, 0.3, 0.4, 0.9] 

As discussed above, each Bernoulli arm is assigned a different probability for its Bernoulli 

reward distribution, with the arm with p=0.9 being the best arm that will produce the highest 

reward on average. An effective algorithm should find the optimal arm nearly 100% when 

converged.   

For ε-greedy algorithms, a small ε (e.g., 0.1) exhibits slow start due to over-exploitation 

when the best option has not been identified but results in higher accuracy overall. A large ε (e.g., 

0.5) is effective at the start, but quickly converges to a lower accuracy due to wasteful exploration 

when best option has already been identified in later stages. Annealing ε combines the advantages 

of both: sufficient exploration at the start and exploitation of the best option towards the end.  
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Fig. 16 Accuracy of ε-greedy algorithms with fixed and annealing ε’s (test scenario 1). 

 

Softmax algorithm uses scaled empirical averages to make a generally exploitative 

selection and controls the degree of exploration via a randomness parameter τ. The results for test 

scenario 1 are shown in Fig. 17. At the start, empirical averages are not representative of the true 

averages and randomness parameters do not matter as much. Therefore, all models perform 

similarly at the start regardless of τ. Towards the end, models with smaller τ (0.1, 0.2, annealing) 

perform better. Interestingly, unlike ε-greedy, annealing softmax does not appear to be superior to 

models with fixed τ’s.  
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Fig. 17 Accuracy of softmax algorithms with fixed and annealing τ’s (test scenario 1). 

 

Pursuit algorithm maintains a probability of selection for each arm and adjusts the 

probabilities to favor the current optimal arm based on empirical averages. Large learning rates 

cause the algorithm to converge quickly, often with a subpar accuracy. Smaller learning rates do 

not converge prematurely but also result in slower learning overall. Only learning rate=0.05 

converges to near 100% accuracy within the defined time frame. A 0.025 learning rate also 

converges to nearly 100% accuracy but suffers from the lack of accuracy initially.  
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Fig. 18 Accuracy of pursuit algorithms with different learning rates (test scenario 1). 

 

Reinforcement comparison has two parameters, α and β, to tune. Although it’s possible 

to achieve high accuracy, correctly identifying both α and β requires fine tuning and can be very 

difficult to use in practice with limited prior knowledge. A series of α’s and β’s are simulated with 
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test scenario 1, and good results are only obtained after extended tuning. Due to the lack of 

theoretical studies on this algorithm, it is difficult to rationalize the choice of α and β from the 

empirical observations.  

 

 

 

Fig. 19 Accuracy of reinforcement comparison algorithms with different learning rates (test 
scenario 1). 
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UCB-type algorithms and Thompson sampling do not have any parameters to select, 

which makes them ideal candidates to use for real-world applications. The only exception is UCB2 

algorithms, which has a parameter α to control the confidence interval and the number of repeated 

samplings for a selected arm. UCB2, by design, will iteratively exploit best option for a period of 

time and “back off” to explore other options again, even if the optimal arms have been confidently 

identified. This behavior is not the most ideal for our purposes since we operate in a resource-

limited environment and want to minimize unnecessary exploration. Compared to other algorithms, 

UCB1-tuned and Thompson sampling (beta prior) seems to perform the best (Fig. 20).  

It is also worth noting that the initial spike that reaches 100% accuracy is caused by the 

uniform exploration that some of the UCB algorithms require. For these algorithms, every arm is 

sampled once initially to provide initial data. The implementation of this requirement in our 

software simply goes down the list and chooses each arm sequentially. At some initial time point 

t, algorithms across all simulations are selecting the same optimal arm, which causes the 100% 

accuracy artifact.  
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Fig. 20 Accuracy of UCB-type algorithms and Thompson sampling (test scenario 1). 

 

Finally, some of the best-performing algorithms are compared against the explore-then-

commit (ETC) algorithm, which we use as a more advanced baseline. Normally, ETC will have a 

fixed parameter for the number of exploration rounds. To establish a ETC baseline that can be 

compared to other algorithms, we took a stepwise approach and calculated the ETC accuracy with 
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the maximum number of exploration rounds possible at each time point. Specifically, for test 

scenario 1 with 5 arms, ETC baselines are established by progressively exploring 1, 2, 3… times 

per arm, which equates to 5, 10, 15… samples in total with 5 arms. After each exploration round, 

the algorithm temporarily commits to the best option based on samples seen so far and re-evaluate 

after the next round of exploration is complete. After every round of exploration, accuracy is 

calculated in the same way as the frequency of the true best arm being selected as optimal across 

all simulations. For example, from t=11 to t=15, the algorithm is committed to the best option 

determined by 2 rounds of exploration (10 samples), and the accuracy of such option being the 

true best option is calculated across all simulations. Starting from t=16 to t=20, the algorithm has 

an updated accuracy with 3 rounds of exploration (15 samples) complete. This process is continued, 

and the resulting accuracy curve represents the highest ETC accuracy attainable at each time point 

with the maximum number of exploration rounds.  

As shown in the accuracy plot (Fig. 21), ETC can be quite effective for simple test cases, 

with similar levels of performance as UCB1-tuned and Thompson sampling.  



 

65 
 

 

Fig. 21 Accuracy of best-performing algorithms (test scenario 1). 

Note: data points from t=0 to t=4 are omitted for clarity, since some of the algorithms 

require initial explorations and will choose the same arm across all simulations, which will result 

in a 100% accuracy spike at a random initial time point (t=4 in this case) and might cause confusion. 

This also applies to all the test scenarios discussed in the following sections.  

 

Test scenario 2: 5 Bernoulli arms with probabilities [0.1, 0.1, 0.1, 0.1, 0.2] 

This scenario simulates the situation where there is still a clear best option, but the 

difference between rewards is minimal. Considering the time horizon specified (250 experiments), 

an effective algorithm should not converge and should continue to improve. The probability of 

selecting the best arm at the end of acquisition also indicates how effective an algorithm is.  
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For ε-greedy algorithms, annealing ε-greedy still offers the best performance, despite the 

overall lower accuracy. Due to the close averages of all arms, none of the algorithms converges 

before the specified time horizon (t=250).  

 

Fig. 22 Accuracy of ε-greedy algorithms with fixed and annealing ε’s (test scenario 2). 
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Softmax algorithms exhibit similar behavior compared to scenario 1, although a smaller τ 

is required in this case to better differentiate the small differences in averages. 

 

Fig. 23 Accuracy of softmax algorithms with fixed and annealing τ’s (test scenario 2). 
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Pursuit algorithms in this case are also more effective with a very small learning rate. With 

learning rate bigger than 0.05, algorithms converge prematurely.  

 

Fig. 24 Accuracy of pursuit algorithms with different learning rates (test scenario 2). 
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Reinforcement comparison does not offer any discernable trend when it comes to 

parameter selection. (α=0.01, β=0.4) seems to perform the best. Compared to the optimal 

parameters identified in test scenario 1, α is much smaller and β is much bigger. Again, it is difficult 

to identify these parameters a priori, which makes it impractical to use in real time.  

 

 

Fig. 25 Accuracy of reinforcement comparison algorithms with different learning rates (test 
scenario 2).  



 

70 
 

UCB-type algorithms and Thompson sampling offer similar level of performance in this 

test case, with Thompson sampling and UCB1-tuned being the best performers.  

 

 

Fig. 26 Accuracy of UCB-type algorithms and Thompson sampling (test scenario 2). 
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Some of the best performing algorithms in this test scenario were also compared to ETC 

baseline. As shown by the plot, with a small number of arms (5) and very close arm averages, ETC 

seems to be the most efficient algorithm. We do note that this limitation is rectified by the 

introduction of other more advanced algorithms in Section 2.4.3 and 2.4.4.  

 

 

Fig. 27 Accuracy of best-performing algorithms (test scenario 2). 
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Test scenario 3: 5 Bernoulli arms with probabilities [0.1, 0.25, 0.5, 0.75, 0.9] 

This scenario still simulates the situation where a best option is present among five arms, 

but the average rewards are more evenly distributed between 0 and 1, which makes it slightly more 

challenging than test scenario 1.  

ε-greedy algorithms show similar trends as test scenario 1, with a lower accuracy for all 

algorithms.  

 

Fig. 28 Accuracy of ε-greedy algorithms with fixed and annealing ε’s (test scenario 3). 
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Softmax algorithm. Annealing softmax in this case actually offers comparable 

performance to the optimal parameter (τ=0.2), unlike test scenario 1. This shows that annealing 

softmax can have advantage in a more balanced reward average setting.  

 

Fig. 29 Accuracy of softmax algorithms with fixed and annealing τ’s (test scenario 3). 
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Pursuit algorithm shows that learning rate has to be small enough (0.025) to converge to a 

higher accuracy, but big enough (0.05) to achieve good initial accuracy. It will be difficult to 

properly choose parameter to balance both in practice.  

 

Fig. 30 Accuracy of pursuit algorithms with different learning rates (test scenario 3). 
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UCB-type algorithms and Thompson sampling performed similarly compared to test 

scenario 1. Thompson sampling and UCB1-tuned appear to be optimal.  

 

 

Fig. 31 Accuracy of UCB-type algorithms and Thompson sampling (test scenario 3). 
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Best performing algorithms in test scenario 3 were again compared with ETC baseline. 

Compared to test scenario 1, this test scenario is more challenging and top performing algorithms 

offer advantage over ETC in the initial stages (t<50). However, since there are still only 5 arms in 

total, ETC quickly catches up and offer comparable performance to the best performing algorithms 

such as Thompson sampling.  

 

Fig. 32 Accuracy of best-performing algorithms (test scenario 3). 

 

Test scenario 4: 9 Bernoulli arms with probabilities [0.1, 0.2, 0.3, …, 0.8, 0.9] 

This scenario simulates the results with evenly distributed average reward similar to test 

scenario 3, but has more arms compared to scenario 3 to test the effect of increased number of 

arms. The maximum time horizon is also increased from 250 to 500 to allow algorithms to 

converge.  
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Overall, the trends of algorithm performance are very similar to those from test scenario 3, 

except that the algorithms take longer to converge due to the increased number of arms. ETC 

algorithms are less efficient in this case due to its uniform exploration of increased number of arms. 

Top-performing algorithms like Thompson sampling offers definitive advantages.   

 

Fig. 33 Accuracy of ε-greedy algorithms with fixed and annealing ε’s (test scenario 4). 
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Fig. 34 Accuracy of softmax algorithms with fixed and annealing τ’s (test scenario 4). 

 

 

Fig. 35 Accuracy of pursuit algorithms with different learning rates (test scenario 4). 
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Fig. 36 Accuracy of UCB-type algorithms and Thompson sampling (test scenario 4). 

 



 

80 
 

 

Fig. 37 Accuracy of best-performing algorithms (test scenario 4). 

 

Test scenario 5: 19 Bernoulli arms with probabilities [0.05, 0.1, 0.15, 0.2, …, 0.85, 0.9, 0.95] 

This test scenario is similar to test scenario 3 and 4 but further increases the number of 

arms to 19. The difference in average reward is also smaller (0.05). This test scenario mainly 

simulates algorithm performance on a bigger scale.  

It is worth noting that a lot of the previously effective algorithms are not as effective in this 

case due to increased number of arms. Thompson sampling is clearly the best algorithm in this 

case due to its ability to do probability matching and offers significant advantage over ETC 

baseline in this test scenario.  
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Fig. 38 Accuracy of ε-greedy algorithms with fixed and annealing ε’s (test scenario 5). 

 

Fig. 39 Accuracy of softmax algorithms with fixed and annealing τ’s (test scenario 5). 
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Fig. 40 Accuracy of pursuit algorithms with different learning rates (test scenario 5). 
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Fig. 41 Accuracy of UCB-type algorithms and Thompson sampling (test scenario 5). 
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Fig. 42 Accuracy of best-performing algorithms (test scenario 5). 

 

2.4.3 Bandit algorithm modifications: Thompson sampling algorithms with normal priors  

For all five test scenarios described above, Thompson sampling seems to be the optimal 

algorithm. However, in all these test cases Thompson sampling is implemented with a beta 

conjugate prior since each arm is represented with a Bernoulli distribution. For a real-world 

chemistry reaction dataset, the reward is a bounded continuous variable. For other algorithms 

where only empirical means and numbers of arm pulls are considered in updating the algorithm, 

continuous reward bounded between 0 and 1 (as in the case of reaction yield) can still be used. 

However, for Thompson sampling with beta prior, the update of beta distribution explicitly uses 

the binary result (success/fail) and cannot be directly used with reaction yields (or other relevant 
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metrics). To address this limitation, we implemented Thompson sampling with other conjugate 

priors under different assumptions about distributions.59  

 

Gaussian distribution (unknown mean, known variance) 

Assuming the underlying distribution for each arm is a Gaussian distribution with unknown 

mean but known variance, a gaussian conjugate prior can be used. Assume the variance is σ2, the 

Thompson sampling procedure at each time point t, for each arm i, will sample θi from: 

 

where σ2 is the sample variance and σ02 is the variance of the prior.  

Assuming σ2 = σ02, this can be simplified to:  

 

After sampling, algorithm will then play arm: 

 

The assumption of fixed variance is often difficult to validate in practice, and it is important 

to note the different effects of over-/under-estimating the variance. We tested this version of 

Thompson sampling with four test scenarios. In each of the four test scenarios, there are five 

normally distributed arms with the same fixed means [0.1 ,0.2, 0.3, 0.4, 0.9], but the standard 

deviations for all arms in these four scenarios are set to 0.1, 0.25, 0.5, 0.75, respectively. For the 

Thompson sampling algorithm with Gaussian prior, the standard deviation assumption is set to 0.1, 

0.25, 0.5, 0.75, and 1 to test the effect of different variance assumption. The accuracy of selecting 

the correct optimal arm for these three test cases are plotted in Fig. 43. Assuming a standard 
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deviation of 0.25 seems to work better for data with low standard deviations, while assuming a 

standard deviation of 0.5 offers comparable and even better performance for high standard 

deviation data settings. 

 

 

Fig. 43 Accuracy of selecting the best arm with Thompson sampling, assuming different standard 
deviations, under three different test scenarios each with normally distributed data (same averages, 
different standard deviation at 0.1, 0.25, 0.5, 0.75). 

 

It has also been suggested that this algorithm can be used not only for Gaussian multi-

armed bandit problem, but also general stochastic MAB problems. Problem-specific regret bound 

has also been proved for general stochastic MAB problems.60 In our simulations, testing with the 
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five previously discussed test scenarios in Section 2.4.2, none of the standard deviation settings 

for gaussian prior performed better than beta prior (Fig. 44). However, fortuitously (through a 

mistake in a previous implementation), we discovered that good results can be obtained by 

sampling from a slightly different posterior: 

 

 

 

This implementation Thompson sampling (referred to as “squared” in the plots) offers 

similar (or sometimes better) accuracy when used for arms with Bernoulli distribution. It is 

especially worth noting that we significantly increased accuracy in challenging test scenario 2, 

where all other algorithms failed to beat ETC baseline. Results of using TS with gaussian prior in 

the Bernoulli test scenarios are plotted and compared to TS with beta prior in Fig. 44. 
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Fig. 44 Comparing performance of Thompson sampling with beta prior and gaussian (normal) 
prior in five Bernoulli test cases described in Section 2.4.2. 

Overall, for arm rewards with a normal distribution, Thompson sampling assuming fixed 

standard deviation of 0.25 or 0.5 works well, with 0.5 being the most versatile choice. For arm 
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rewards with a Bernoulli distribution, using a squared variance term for posterior update seems to 

match the performance (or outperform) Thompson sampling with beta prior.  

 

Gaussian distribution (known mean, unknown variance) 

Gaussian conjugate prior for this case also exists, but is less suitable for our problem, as 

we are primarily interested in estimating the different means for all arms.   

 

Gaussian distribution (unknown mean, unknown variance) 

Assuming the underlying distribution for each arm is a Gaussian distribution with unknown 

mean and unknown variance, a gaussian-gamma conjugate prior can be used (more precisely 

speaking, this conjugate prior is used when precision is unknown, which is the inverse of 

variance).61 The sampling procedure at each time point t, for each arm i, will sample θi from a 

normal-gamma distribution:  

 

and play arm: 

 

The posterior parameters α and β are updated as follows: 
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where n is the number of samples drawn, xi is each individual sample, μ0 is empirical mean, 

and ν is the overall number of samples drawn to derive empirical mean. In the case of MAB 

problems where one arm is pulled once at each time horizon, n=1 is used, the middle sum term 

equals to zero and 𝒙" is simply the reward.  

As for the test case for the implemented algorithms, three test scenarios were used. The 

means of five arms are fixed at [0.1 ,0.2, 0.3, 0.4, 0.9], but the standard deviations were set to 0.5, 

1, and 1.5 respectively. The difference here is that Thompson sampling no longer assumes a fixed 

variance of 1. The accuracy of selecting the best arm is plotted in Fig. 45. The results seem to 

suggest that the ability to estimate variance does not necessarily translate to higher accuracy. 

 

Fig. 45 Accuracy of Thompson sampling (unknown mean, unknown variance) in three test 
scenarios with normally distributed reward (same mean, different standard deviation) 
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A closer examination of our implementation and simulation results points the problem to 

parameter initialization. In this case, α and β for all arms are initialized to 1. This results in a high 

initial estimate of standard deviation for all arms (~0.7). It is difficult to lower uncertainty for arms 

that have lower mean quickly, due to the limited number of samples drawn for these arms with low 

means. At the same time, high uncertainty prompts algorithm to do unnecessary exploration of 

arms with low means. These factors contributed to the limited accuracy with this algorithm. 

Since the yield data we are trying to model falls in the interval [0,1], we used a low standard 

deviation test scenario to identify suitable initialization for β parameter. With the same five 

individual mean for five arms as before, [0.1, 0.2, 0.3, 0.4, 0.9], and all arms’ standard deviation 

set to 0.1, we again plot the accuracy of selecting the best arm with different β initialization (Fig. 

46). Initializing β to 0.1 seems to give the most optimal accuracy.  

 

Fig. 46 Tuning β initializations with a low standard deviation (0.1) normal reward test case. 
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For the same test scenario, if standard deviation for all arms is set to 0.5 (usually above the 

maximum standard deviation we would observe in a real reaction dataset), initializing β to 0.01 

offers a slight advantage compared to 0.1 initialization, but both have similar initial accuracy and 

converge at about the same time (Fig. 47). We opted to use 0.1 as default initial value for β.  

 

Fig. 47 Tuning β initialization with a high standard deviation (0.5) normal reward test case.  
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Unlike the previous implementation of Thompson sampling assuming fixed variance, this 

version of Thompson sampling does not appear to work well for the Bernoulli arm test cases.  

 

Fig. 48 Comparing three versions of Thompson sampling in Bernoulli test scenario 1 

Note: gaussian prior (fixed var=1) uses the “squared” implementation discussed.  

 

Finally, we tested two versions of the Thompson sampling algorithms (assuming fixed 

variance and not assuming fixed variance) in a test scenario with arms with normally distributed 

rewards, each with different variances. Five arms are present in this test scenario with [means, 

standard deviations]: [0.1, 0.2], [0.3, 0.4], [0.5, 0.3], [0.7, 0.1], [0.9, 0.2] (Fig. 49).  
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Fig. 49 Visualization of the test case with five arms, each with normally distributed rewards with 
specified mean and standard deviation.  

 

Simulation results are shown in Fig. 50. We tested both unbounded rewards for all arms 

(left), and bounded [0,1] reward (right) by setting any reward lower than 0 to 0 and setting any 

reward higher than 1 to 1. We also used ε-greedy algorithm with annealing exploration rate, an 

effective algorithm demonstrated by Bernoulli arm testing, as a benchmark comparison.  

 

Fig. 50 Comparing the accuracy performance of two versions of Thompson sampling implemented 
for normal rewards, with ε-greedy as a baseline. Unbounded rewards (left) and [0,1] bounded 
rewards (right) are both tested.  
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Thompson sampling with gaussian prior assuming a fixed variance seems to work best for 

both these situations, outperforming the annealing ε-greedy benchmark. Thompson sampling 

assuming unknown variance does not seem to offer any advantage, despite its ability to estimate 

the variance of each arm’s distribution. However, plotting the cumulative reward for both situation 

shows that this algorithm is still capable of achieving the same level cumulative reward 

performance compared to ε-greedy (Fig. 51).  

 

Fig. 51 Comparing the cumulative reward performance of two versions of Thompson sampling 
implemented for normal rewards, with ε-greedy as a baseline. Unbounded rewards (left) and [0,1] 
bounded rewards (right) are both tested. 

 

Our testing demonstrates that Thompson sampling with normal conjugate prior assuming 

a fixed variance is sufficient and often out-performs more complicated normal-gamma conjugate 

prior which can estimate variance for arms with normal distributions. This algorithm can also be 

used for arms with Bernoulli distributions and can outperform or offer similar accuracies. However, 

Thompson sampling with normal-gamma conjugate prior still offers good performance when 

evaluated with cumulative reward as a metric, so it still warrants consideration when choosing the 

appropriate algorithm.  
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Other distributions 

We also considered modeling arms as beta distribution or gamma distribution, but the 

conjugate priors for these distributions can be difficult to derive and compute. These cases are 

outside the scope of this study and the authors’ knowledge in this matter.  

 

2.4.4 Bandit algorithm modifications: Bayesian UCB algorithms with Beta and Normal 

priors  

Not satisfied by the small performance advantages most algorithms have over explore-

then-commit baseline, we tried to identify a more effective algorithm. One such algorithm that was 

later developed after initial synthetic data benchmarking is Bayesian upper confidence bound 

(UCB) algorithms. Similar to other upper confidence bound algorithms, Bayesian UCB algorithm 

maintains an upper confidence bound for each arm and selects the arm with the highest UCB value. 

But unlike other UCB algorithms, Bayesian UCB maintains a prior distribution (which is similar 

to Thompson sampling) that gets updated after each update. Bayesian UCB uses a fixed quantile 

function of the posterior distribution as confidence interval and an estimate of uncertainty. We 

implemented different versions of Bayesian UCB with beta prior and gaussian prior.  

 

Bayesian UCB with standard deviation as confidence bound (beta prior) 

The first version of Bayesian UCB simply uses standard deviation as confidence bound, 

the length of which is controlled by a tunable parameter, c. At each update, UCB values are updated 

as follows:  
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We first evaluated the different lengths of confidence interval considered in UCB 

calculations and their effect on optimization. The confidence intervals in Bayesian UCB 

algorithms are controlled by the number of standard deviations considered. We first tested 

Bayesian UCB with beta conjugate prior in Bernoulli test scenario 1, 2 and 3 (Section 2.4.2), while 

considering one, two or three standard deviations as confidence intervals (Fig. 52). 

For test scenario 1, 1 SD and 2 SD confidence intervals perform very similarly. For test 

scenario 2 where the means are all very similar, a 1-SD confidence interval seems to be beneficial. 

For test scenario 3, 2 SD and 3 SD confidence intervals converge to the same accuracy over time, 

but 3 SD lacks some initial performance. Based on these results, we will use 1 SD confidence 

interval when all arm means are expected to be very similar, and 2 SD confidence intervals for all 

other cases.  

  



 

98 
 

 

Fig. 52 Bayesian UCB (beta prior) with 1, 2, 3 SDs as confidence interval for Bernoulli test 
scenarios. 

 

Bayesian UCB with percent point function of posterior distribution (beta prior) 

We also implemented the Bayes-UCB algorithm proposed in literature.62 At each time t, 

the UCB values are updated as follows:  
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where Q(p, λ) is the percent point function (inverse of cumulative distribution function) of 

the posterior distribution (with distribution parameter λ) for each arm j at time t, such that:  

 

 

 

In the paper where this algorithm was proposed,62 the authors also suggest dropping the 

(log n) term (n represents the total number of time horizon) and use c=0 in practice. This version 

uses the same probability "cutoff” for all arms and compares the value at which such probability 

constraint is satisfied for the posterior distribution for each arm. The arm with the highest such 

value is chosen as the next arm to play.  

This implementation does not have any parameter to tune and is compared to the 

implementation in the previous section (Fig. 53). Other than test scenario 2, using the percent point 

function defined by each t does seem to offer slight advantages.  
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Fig. 53 Comparing two confidence bound implementations with beta prior in test scenario 1-4. 

 

Bayesian UCB (Gaussian priors) 

We also implemented Bayesian UCB with gaussian priors based on the implementations 

with beta priors. For the first approach of using standard deviation as confidence bounds, we only 

test the case with an assumed variance and set c to 2 (2 standard deviation, a ~95% confidence 

interval). For the second approach with percent point function, no parameter tuning is needed. We 

also tested the posterior update with a squared variance term that we used in Section 2.4.3, with 

c=2 (2 standard deviation confidence interval). All these algorithms are tested with five arms with 

gaussian reward distributions (means = [0.1, 0.2, 0.3, 0.4, 0.9], all with standard deviation of 0.25 

or 0.5), and the results are shown in Fig. 54.  



 

101 
 

 

Fig. 54 Testing different approaches of Bayes UCB with Gaussian prior in two Gaussian test 
scenarios.  

 

Approach 1 which uses 2 standard deviations as confidence bound, with assumed SD of 

0.25, seems to work well for both situations. An assumed SD of 0.1 also seems to work for a low 

standard deviation setting, although 0.25 seems to be the more generally effective choice. The 

squared variance approach seems to show decent performance and is worth exploring, while 

approach 2 with percent point function does not seem to work well in this case.  

It is also worth noting that Bayes UCB algorithms with Gaussian priors can also be used 

in Bernoulli test scenarios. Some of the testing results can be found in Section 2.4.5. 

 

2.4.5 Best-performing bandit algorithms in test scenarios with Bernoulli and normal rewards  

After modifications made to Thompson sampling as well as Bayes UCB algorithms, we re-

tested some of the Bernoulli reward test scenarios as well as two normal reward test scenarios with 

low and high standard deviations.  

 

Bernoulli test scenario 1 
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The best performing algorithms are now Bayes UCB algorithms with beta priors, followed 

by Bayes UCB algorithms with normal priors and Thompson sampling algorithms. Simpler 

algorithms such as ε-greedy, softmax and pursuit algorithms are not as effective.  

 

 

Fig. 55 Bernoulli test scenario 1, updated best performing algorithms. 
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Bernoulli test scenario 2  

Based on results from test scenario 1, we focused mostly on TS and Bayes UCB algorithms 

for this test scenario due to their effectiveness. Only Bayes UCB with normal priors outperforms 

the explore-then-commit baseline significantly. 

 

Fig. 56 Bernoulli test scenario 2, updated best performing algorithms. 
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Bernoulli test scenario 3 

For test scenario 3, the performance trends of Bayes UCB and TS algorithms largely follow 

those in test scenario 1. Bayes UCB (beta prior, ppf) seems to offer the best initial accuracy, while 

Bayes UCB (normal prior, 2SD, squared) achieves a higher accuracy in later stages. Note: “ppf” 

refers to the percent point function implementation for Bayes UCB, and “squared” refers to the 

implementation with a squared variance term. 

 

Fig. 57 Bernoulli test scenario 3, updated best performing algorithms. 

 

  



 

105 
 

Normal reward test scenarios 

First normal reward test scenarios have five arms, with means [0.1, 0.2, 0.3, 0.4, 0.9] and 

standard deviation [0.5, 0.5 0.5, 0.5, 0.5]. All possible rewards returned from each arm is also 

bounded between 0 and 1. For arms with normally distributed reward, TS and Bayes UCB 

algorithms with normal priors can outperform simple ε-greedy and UCB1-tuned algorithms. 

 

Fig. 58 Best performing algorithms in test scenario with normal rewards, high standard deviation 
setting (0.5). 
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The second normal reward test scenarios have five arms, with means [0.1, 0.2, 0.3, 0.4, 0.9] 

and standard deviation [0.25, 0.25 0.25, 0.25, 0.25]. Similar trends can be observed, with Bayes 

UCB algorithms being particularly effective.  

 

Fig. 59 Best performing algorithms in test scenario with normal rewards, low standard deviation 
setting (0.25).  

 

2.4.6 Developing learning models and algorithms for batched experiments 

Optimization algorithms, including those designed to address multi-armed bandit problems, 

are mostly sequential optimization algorithms. In other words, at each time point the algorithm 

outputs one arm to be queried and does not update until the result for that experiment becomes 

available. For chemistry experiments, which can take hours or days to complete, this creates an 

obstacle to efficiently conduct optimization in a reasonable, and sometimes constrained, timeframe. 
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Chemists usually resort to parallel experimentation to improve efficiency, where several 

experiments exploring different conditions are run at the same time. To allow such parallelization, 

optimization algorithms need to propose a batch of several experiments and accommodate delayed 

feedback and only update when all results in batch become available. For the algorithms 

considered optimal from previous simulation studies with synthetic data, we considered several 

approaches to accommodate batched experimentation based on the characteristics of the 

algorithms.   

 

Algorithms with randomness: propose multiple experiments  

For algorithms with inherent randomness, it is possible to propose multiple experiments 

before updating the algorithm. We tested this approach using ε-greedy algorithm with annealing 

exploration rate, varying the number of experiments proposed in each batch from 1 to 5.  

For both scenario 1 and 2, the number of experiments per batch doesn’t seem to affect the 

accuracy or cumulative reward performance (Fig. 60, Fig. 61). 

It’s also worth mentioning that, for simulation tests in this and all following sections, the 

definition of “time horizon” is not actual time, but rather the number of experiments regardless of 

batch sizes to allow for direct performance comparison. When plotting results, each experiment in 

one batch is randomly assigned to a time horizon point that covers that batch. For example, for a 

batch size of 2, batch 1 will cover experiment 1 and 2, and batch 2 will cover experiment 3 and 

4… When plotting, experiment 1 can 2 can be assigned to time horizon 1 or 2; experiment 3 and 

4 can be assigned to time horizon 3 or 4… Such processing is done because experiments in the 

same batch are not proposed and updated sequentially.  
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Fig. 60 The effect of batch size on optimization metrics (left: accuracy; right: cumulative 
reward) using ε-greedy for Bernoulli test scenario 1.  

 

 

Fig. 61 The effect of batch size on optimization metrics (left: accuracy; right: cumulative reward) 
using ε-greedy for Bernoulli test scenario 2. 

 

Thompson sampling algorithms: repeatedly sample posterior distribution 

Thompson sampling algorithms can also propose multiple experiments in batch by 

repeatedly sampling from the posterior distribution before updating. The number of experiments 

does not seem to affect accuracy and cumulative reward, except some minor performance dips, 

due to the lag in updating the model (Fig. 62).  
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Fig. 62 The effect of batch size on optimization metrics (left: accuracy; right: cumulative reward) 
using Thompson sampling for test scenario 1.  

 

Other algorithms 

Algorithms without randomness or ones that do not sample from posterior distributions are 

usually deterministic in nature (although not completely deterministic, because each arm will 

return a stochastic reward, which makes the overall process stochastic). UCB algorithms fall into 

this category. Because of their deterministic nature, algorithms must select experiments 

sequentially, which requires some alternative ways of proposing multiple experiments. Different 

approaches to adapt these algorithms in a batched setting were considered.  

 

§ Sample multiple times for each chosen arm 

The first approach is to select arms sequentially but run multiple reactions for each selected 

arm. For example, if optimizing for ligands, at each time, the algorithm will choose one ligand to 

investigate, and the same ligand can be tested with n substrates (n=batch size). This approach can 

be wasteful especially for large batch sizes, since all experiments in the same batch are dedicated 

to the same selected arm. The potential advantage is that by sampling multiple experiments for 
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each selected arm, the algorithm will likely converge faster since the mean/variance estimate will 

be more accurate.  

We tested this approach with UCB1-tuned with Bernoulli test scenario 1 and 2. Overall 

convergence and accuracy do not seem to be affected. In scenario 1, running multiple experiments 

per selected arm seem to fix the “dip” in accuracy. In scenario 2, more experiments per chosen arm 

indeed provides a more precise mean estimate, therefore a higher accuracy overtime. It is worth 

noting that this approach will likely be less effective with a large number of arms (only five in both 

test cases). It will also be less effective in chemistry reaction optimization with a large batch size, 

where there are a finite number of substrates to sample from (unlike a Bernoulli distribution, which 

can be sampled repeatedly).  

 

Fig. 63 The effect of batch sizes on optimization metrics using UCB1-tuned for test scenario 1 
(left) and 2 (right).  

 

§ Initialize multiple algorithms at the same time 

The second approach is to initialize n different algorithms at the same time (n = # of 

experiments per batch). Each algorithm will select one arm and propose one experiment at each 

round, and all the results are pooled together to update all algorithms, if applicable.  
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We tested this method with UCB1-tuned, Bayes UCB with beta prior, Bayes UCB with 

gaussian prior and Thompson sampling with Gaussian prior, again in Bernoulli test scenario 1 and 

2. Accuracy is not plotted here since all algorithms select one reaction every round, and it is not 

reasonable to assign a specific time to a specific selection by one algorithm within each round. But 

based on cumulative reward, this batched approach achieves similar level of performance as 

individual algorithms, possibly guaranteeing an average performance level.  

 

 

Fig. 64 The effect of batching different algorithms on cumulative reward for Bernoulli test scenario 
1 (left) and 2 (right).  

 

§ Interpolation with underlying prediction models 

The general idea for this approach is similar to kriging and uses an underlying machine 

learning prediction model that updates after every batch. When algorithm proposes an arm to 

evaluate and a specific experiment is proposed, instead of waiting for the experiment to be run, 

algorithm updates itself with the predicted result for the proposed experiment and propose the next 

arm to evaluate (and the experiment to be run). This process is continued at each round of 

optimization, until the desired number of experiments has been reached. Then, all proposed 
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experiments are conducted, and algorithms are updated with the real experimental results, and 

continue to the next round.  

This approach will rely on the prediction model to be effective, especially with low number 

of training data available. We first tested the feasibility of implementing such prediction model 

with good prediction accuracy with a small percentage of the scope as training data. We used the 

deoxyfluorination dataset as a test set, and used random forest model, which has been 

demonstrated in the original publication63 to be an effective model, as the prediction model. The 

random forest model (with default parameters in scikit-learn) was trained with various training set 

size. A training set size ratio of 10% means that model is trained with 10% of all data in the scope 

and tested with the remaining 90% of data. Test RMSEs are obtained as the averages of 100 runs 

with randomly partitioned train/test sets at each ratio. Different featurization methods are also 

tested and compared: DFT features used in the original publication, one-hot encoding, and a 

combination of molecular fingerprints (for substrates) and one-hot encoding (for conditions). A 

linear regression model is also implemented as baseline comparison. As shown in Fig. 65, random 

forest model with fingerprint and one-hot encodings gave similar accuracy performance as the 

random forest model trained with DFT features, with average RMSE around 20% with only 10% 

of the data. This is beneficial for our on-the-fly prediction model, as fingerprints are cheap to 

calculate and time-consuming DFT calculations can be avoided.  
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Fig. 65 The effect of training set size on test RMSEs with different models and features. Average 
of 100 runs on randomly partitioned deoxyfluorination dataset. 

 

After testing prediction model in a low training data setting, and the validation of 

fingerprints as effective features, we tested the proposed interpolation method during optimization 

with UCB1-Tuned algorithm on the deoxyfluorination dataset. Substrates are featurized with 

extended connectivity fingerprints (ECFP) and conditions are featurized with one-hot encoding. 

After each round, a random forest model is trained with data collected so far and predicts reaction 

yield for the rest of the scope. Similar to a believer algorithm, this model supplies predicted results 

to the bandit algorithm, which uses these predicted results to sequentially proposes experiments 

without actual experimental feedback. We tested the effect of batch sizes on the simulated 

optimization accuracy. The performances with batch size from 2 to 10 are very similar to the results 

with batch size of 1 (which is the standard sequential approach, Fig. 66, top). Extreme batch sizes 

(e.g., 50, 100) show lower initial accuracies because a large number of reactions were proposed 

with limited initial data, but the accuracies catch up if given enough time (Fig. 66, bottom). These 
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results show that experiments can be proposed in batch with ML model interpolation without 

compromising overall accuracies.  

In Fig. 66, “time horizon” still represents the number of experiments for all batch sizes to 

directly compare performance. The exact definition of time horizon, however, is worth discussing 

in this case. Most bandit algorithms are applied with a batch size of 1, where one arm is selected 

to query, and immediate feedback is available to the algorithm. In these cases, the definition of 

time horizon is interchangeable with number of experiments. However, when a batch size of n 

(n>1) is used, the algorithm does not get any feedback (or experimental result) until all n 

experiments are proposed and the results of these experiments in the same batch are available. 

Assuming one batch of reactions take the same amount of time to complete regardless of batch 

size, the definition of time horizon is better represented with actual time rather than number of 

experiments. To this end, we plotted the accuracy data in Fig. 66 with an arbitrary unit of time, 

assuming one round of experiments take one unit of time (Fig. 67). As expected, more experiments 

per round result in higher accuracies achieved in the same amount of time. However, such effect 

is less obvious when initial accuracies are low for batch sizes like 50 and 100.  
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Fig. 66 The effect of batch size on UCB1-Tuned accuracy using a random forest prediction model 
to interpolate experiment results. 
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Fig. 67 The effect of batch size on UCB1-tuned accuracy using a random forest prediction model 
to interpolate experiment results, with the x-axis being actual time, or the number of rounds.  
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2.4.7 Generality optimization model design for chemistry reaction data 

Background 

Reaction condition optimization is a closed-loop, interactive problem where the goal-

directed learning system’s actions uncover characteristics of an uncertain environment and carry 

consequences that affect its later inputs. Unlike a supervised learning problem where instructive 

feedback from expert-labeled training data is used to establish models that can identify correct 

actions in different situations defined by unique features, an optimization problem is a 

reinforcement learning problem where the model must balance real-time action selection and long-

term planning to incrementally learn in uncharted territory. When optimizing an unknown target 

reaction, chemists take actions in real-time, use evaluative feedback to update beliefs over the 

initially unknown environment, and continue the process iteratively to reach reactivity or 

selectivity objectives. Compared to stateless active learning approaches such as Bayesian 

optimization, one key difference for reinforcement learning models is that the learning agent 

maintains knowledge of the environment and has an explicit goal directly related to the state of the 

environment. By design, it can enable efficient optimization by maximizing knowledge learned 

from limited existing data.   

Optimization for generally applicable conditions, where multiple substrates must be 

simultaneously considered to identify a single set of satisfactory conditions, renders conventional 

approaches such as Bayesian optimization inefficient. As a stateless algorithm suitable for sub-

problems with fixed search spaces, Bayesian optimization sequentially and actively queries select 

data points to find global optimum of black-box functions, with the assistance of a surrogate model 

that maps the relationship between inputs and outputs. While effective for single substrate 

optimization problems, it is not experimentally feasible to individually make separate queries with 
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selected condition for all substrates in a given scope. Existing approaches with Bayesian 

optimization64 have relied on the use of supervised learning models to provide predicted results 

for such queries. Multi-task Bayesian optimization approach also exist to transfer existing 

knowledge from one optimization to others.65 In a general sense, we became interested in using 

reinforcement learning models to optimize for generally applicable conditions.  

 

Optimization model design with bandit optimization 

We envision bandit optimization algorithms as a more suitable approach to identify 

generally applicable conditions for a reaction scope. Optimization for such conditions aims to find 

the best condition for a scope of substrate (not just one, as most Bayesian optimization approaches 

tackle). Fundamentally, our model treats reaction conditions as arms in a multi-armed bandit 

problem. In a reaction scope with multiple conditions and multiple substrates, each condition will 

exhibit different reactivities when used on different substrates, resulting in a unique, condition-

specific reactivity distribution for each condition. Similar to the classic multi-armed bandit 

problem and its algorithmic solutions, the player (chemist) will try to select an arm (condition) to 

evaluate. A reward (reactivity) is returned by sampling the reward distribution (reactivity 

distribution) of the selected arm (condition). The sampling, in the chemistry reaction case, is done 

by sampling one reaction with the selected condition that has not been explored yet.  

To further demonstrate the reactivity distribution represented by different conditions in a 

chemistry reaction, we use a deoxyfluorination dataset63 to visualize such effect. The details of this 

reaction dataset, as well as other analyses, can be found in Section 2.4.8. This reaction dataset has 

both sulfonyl fluorides and bases as conditions, and a sizable alcohol substrate scope. Like 

discussed above, the most obvious and straightforward representation will be that the arms are 
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represented by sulfonyl fluoride–base conditions, and the distribution for each arm is the different 

reactivities exhibited by all substrates for each condition. For simplicity, we only visualize three 

out of all conditions and their reactivity distributions (Fig. 68). Each condition has a different yield 

distribution with regard to the same substrate scope, which is ultimately the distribution that the 

learning model will sample from after an arm (condition) is selected. 

 

 

Fig. 68 Reactivity distribution of three base–sulfonyl fluoride conditions in the deoxyfluorination 
dataset.  

 

The unique aspect of bandit optimization approach, however, is that any reaction 

component (not necessarily substrates) that is not part of the optimization objective can be easily 

incorporated into the reward distributions. For the same deoxyfluorination reaction, if we only 

want to optimize for the most general base, but still maintain the same reaction scope, each base 

also has their own reactivity distribution with substrates and sulfonyl fluorides included (Fig. 69). 

BTPP has a slightly better distribution than MTBD. Both BTPP and MTBD are significantly better 

than DBU.  
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Fig. 69 Reactivity distribution of three bases in the deoxyfluorination dataset. 

 

Similar distributions can be visualized for sulfonyl fluorides (Fig. 70). PBSF offers 

significantly better reactivities than 3-Cl and 3-NO2 phenyl sulfonyl fluoride.  

 

 

Fig. 70 Reactivity distribution of three sulfonyl fluorides in the deoxyfluorination dataset. 

 

Therefore, for any given reaction scope, each optimization target will have a unique 

distribution to be sampled from, which includes substrates and may include additional conditions 

that are not part of the optimization objectives. The goal of the learning model is to efficiently 

estimate such distributions through sampling, and subsequently suggest best option based on its 

estimation. As demonstrated, this implementation can enable unique functionalities, such as an 

evaluation of some of the condition dimensions to eliminate less effective options early on, and 

then expand to include other condition dimensions to further optimize the reaction (demonstrated 

in the amide coupling study). Another important functionality is the ability to accommodate 
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changing substrate scopes. Because substrates are only represented by a distribution, changes in 

substrates do not directly interfere with the optimizations themselves. Bandit algorithms do not 

expect a finite search scope anyways, but rather learns from the feedback from the environment 

(which can be dynamic). Therefore, bandit algorithms can adjust to the changing substrate scope 

through continued sampling, which was demonstrated by the C–H arylation study.  

 

Experiment selection via sampling from reactivity distributions 

One important consideration after a condition is selected by the bandit algorithm is which 

experiment to run. In its simplest form, this involves choosing a specific substrate to test the 

condition with. In this study, all substrates selection were done through random sampling of the 

substrate scope. After a condition is selected, the substrates that have not been explored with that 

condition is recognized, and one substrate is randomly chosen to run.  

This approach is seemingly very simple but can be very effective in practice. Several 

considerations contributed to the selection of this strategy. First and foremost, the reactions 

investigated in this study have a sizable but still quite limited substrate scope. The selection of 

these substrates usually occurs through expert selection to represent diverse structural motifs. With 

limited number of substrates in the scope with distinct structural features, random sampling is the 

most efficient way of sampling from the scope. We do acknowledge that in situations such as 

library synthesis, where a large number of structurally similar molecules exist in the substrate 

scope, our approach of random sampling can be less efficient. In those situations, an approach 

where molecules are first grouped by similarity (e.g., through clustering) and sampled with 

consideration of their cluster labels will be more suitable.  
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However, it is still worth considering that even structurally similar molecules can exhibit 

different reactivities under the same conditions. For example, the addition of inconspicuous methyl 

groups, when ortho to the halide for aryl halide substrates, can cause significant steric constraints 

in cross coupling chemistry and require changes to the conditions to enable effective coupling. 

Such considerations, though obvious to organic chemists, are difficult to capture through molecular 

fingerprints or descriptors of substrates that model can understand. These phenomena contribute 

to the difficulty of optimization especially when trying to find general conditions. In these 

situations, random sampling might still be the most effective approach, as it does not make any 

prior assumption of the reactivities.  

The nature of the condition space is also worth considering. In our studies, we limited the 

number of conditions and conditions that might show very similar reactivity trends. If there are 

many similar conditions and if a particular substrate has been evaluated with one of such conditions, 

it does not make sense to evaluate the same substrate with very similar conditions. However, this 

strategy still requires the assumption that similar conditions, when applied to the same substrate, 

will yield similar results, which may or may not be true in practice. Again, random sampling is 

probably still the simple and effective approach here.  

Within the scope of our study, we tested two other approaches of selecting substrates 

beyond random sampling with the aid of a supervised learning model. The main idea is that when 

selecting substrates to run, substrates that might show high reactivities (estimated by a prediction 

model) is more worthwhile to test than low-yielding substrates, because the former happens less 

often in discovery (it is still worth pointing out that this assumption might be flawed for reactions 

that are well established, such as an amide coupling reaction investigated in this study). Therefore, 

we tested our C–H arylation dataset (details about this dataset can be found in Section 2.4.8) using 
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the same Bayesian UCB algorithm, but with two other sampling methods after selecting a 

condition: (1) propose the substrate that gives the highest yield based on model prediction; (2) 

propose a random substrate out of the top five substrates ranked by predicted yield (to reduce bias). 

These two approaches are compared with the random sampling approach (Fig. 71).  

 

 

Fig. 71 Comparing substrate sampling methods with C–H arylation data. Top-1 (left) and top-5 
(right) accuracy are shown with three methods.  

 

Compared to accuracies from random sampling of substrates, choosing a random substrate 

out of top five substrates showed similar accuracies, which might be explained by the low accuracy 

of prediction model. If the prediction model is not accurate (which is likely the case with very low 

training data initially, where many conditions and substrates have not even been sampled once yet), 

then the “top five” substrates based on prediction might as well be randomly chosen. Always 

choosing the substrate that gives the highest predicted yield, however, definitely resulted in bias 

during optimization. While top-5 accuracy is high with approach (Fig. 71, right), the model is not 

selecting the optimal condition based on the top-1 accuracy (Fig. 71, left). It is conceivable that 

by choosing substrates that gives the highest predicted yield, the model is biasing towards a few 
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substrates that show higher reactivities and not sampling the rest, which makes it more similar to 

a less ideal model substrate approach. With these observations, and the fact that both of these 

approaches require a supervised learning model, we opted to use random sampling of substrates in 

this study.   

 

Optimization model architecture 

The overall architecture of the optimization model is shown in Fig. 8. In the simplest 

scenario where one experiment is evaluated at a time, the bandit algorithm will choose conditions 

to evaluate first (step 1), which then gets passed on to the reaction scope (which we implemented 

as a python object that handles many relevant operations, step 2). The reaction scope then suggests 

a reaction to evaluate with the selected condition and a chosen substrate (step 3). This reaction is 

executed in lab (step 4), and the labeled reaction data (reaction with yield or other reactivity metric) 

is used to update both the reaction scope and the bandit algorithm (step 5). In cases where reactions 

are proposed in batch, a prediction model is trained with all labeled data available in the reaction 

scope (step 6). In these cases, instead of executing the reaction in lab in step 4, a predicted result 

from the prediction model is used to “label” the reaction and “update” the reaction scope and bandit 

algorithm. 

After the update, the bandit algorithm suggests the next condition to evaluate (step 1), and 

this entire process is repeated. It is also worth noting that no stopping criteria are implemented in 

this case, as we often observe in practice that time or experimental resources usually exhaust first. 

From empirical observations, exploring around 10% of the reaction scope (e.g., 100 out of 1000 

possible experiments) usually gives satisfactory results.  
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2.4.8 Chemistry reaction dataset: data processing, global analysis, and optimization studies 

Overview  

Organic chemistry reaction datasets are collected from literature and experiments to test 

various functionalities of optimization framework. Access to datasets used in this study, test and 

analysis functions and testing log files are described in this GitHub repository: 

https://github.com/doyle-lab-ucla/bandit-optimization. The scope of each reaction dataset, as well 

as the visualization, global analysis and optimization simulation studies for each dataset are 

presented in the following sections. Overall, seven datasets are included, five of which were 

previously published and two were experimentally investigated in this study.  

It is worth noting that we made a modification to the accuracy metric when analyzing 

chemistry reaction data. Previously, for our simulation studies using arms with Bernoulli and 

gaussian distribution rewards, accuracy at time point t was calculated as the average percentage of 

times that the optimal arm is selected across all simulations (Section 2.4.2). For simulations with 

chemistry reaction data, however, we do not only look at which arm is being selected at time point 

t, but rather all previous arms that are selected up until time point t. This is due to the limited scope 

of a chemistry reaction dataset, and the fact that each arm (condition) can only be sampled so many 

times in a finite scope. The arm sampled the most times up until time point t is regarded as the 

optimal arm chosen by the algorithm, and the percentage of such selection is similarly calculated 

across all simulations. This modified definition of accuracy matches with what happens in a real 

optimization campaign, where all historical data are considered when deciding which condition is 

optimal. All accuracy plots in this section are created with this modified definition.  

For the literature datasets we examined, we first determined the most general conditions 

with all experimental data and tasked our model to “rediscover” these conditions and evaluate the 

https://github.com/doyle-lab-ucla/bandit-optimization
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accuracy. Ideally, for every dataset, there will be one most general condition to be identified by the 

algorithm based a reactivity metric (such as the number of hits, or average/median yields, as used 

in this study). However, the top-n conditions often have very close values, and a single best 

condition cannot be reasonably decided. In these cases, we ranked all conditions from best to worst, 

and looked for a relatively significant drop in reactivity, and treat all conditions before this drop 

as optimal conditions. Furthermore, the single best condition based on one metric (e.g., average 

yield) might also differ from that based on another metric (e.g., number of >80% yield reactions). 

A top-n accuracy, where n>1, can often accommodate these differences between metrics.  

 

Full descriptions of algorithm abbreviations shown in plots. 

Names for algorithms were abbreviated in result plots for clarity. The full descriptions of 

algorithms used in simulation studies are listed here.  

 

§ Algorithms for Bernoulli-type (0/1) reward: 

o TS (normal prior): Thompson sampling with normal prior, the “squared” 

implementation where a standard deviation of 1/(n+1) is used for the normal prior. 

This is the same algorithm as TS (squared) for continuous [0,1] reward.  

o TS (beta prior): Thompson sampling with beta prior. 

o ucb1-tuned: UCB1-tuned algorithm.  

o ucb1: UCB1 algorithm. 

o Bayes ucb (normal prior): Bayesian UCB with a gaussian prior with the “squared” 

implementation in Section 2.4.4, where a standard deviation of 1/(n+1) is used for 

the normal prior and a 2-standard deviation confidence interval is used for UCB 
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values. This is the same algorithm as Bayes ucb (2SD, squared) for continuous 

[0,1] reward. 

o Bayes ucb (beta prior, 2SD): Bayesian UCB with a beta prior that uses mean + 2 

standard deviation (2SD confidence interval) as UCB values. 

o Bayes ucb (beta prior, ppf): Bayesian UCB with a beta prior that uses a percent 

point function to update UCB values. 

o Annealing ε-greedy: ε-greedy algorithm with an annealing function used for ε. 

o pure exploration: exploration, or random selection. 

o explore-then-commit: explore-then-commit. 

 

§ Algorithms for continuous reward from 0 to 1: 

o TS (squared): Thompson sampling with normal prior, the “squared” 

implementation where a standard deviation of 1/(n+1) is used for the normal prior. 

This is the same algorithm as TS (normal prior) for Bernoulli-type reward. This 

is also the TS (implementation 1) in Fig. 10. 

o TS (fixed sd 0.25): Thompson sampling with normal prior, assuming a known 

standard deviation of 0.25. This is also the TS (implementation 2) in Fig. 10.  

o ucb1-tuned: UCB1-tuned algorithm. 

o ucb1: UCB1 algorithm. 

o Bayes ucb (2SD, squared): Bayesian UCB with a gaussian prior with the “squared” 

implementation in Section 2.4.4, where a standard deviation of 1/(n+1) is used for 

the normal prior and a 2-standard deviation confidence interval is used for UCB 
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values. This is the same algorithm as Bayes ucb (normal prior) for Bernoulli-type 

reward. This is also the Bayes UCB (implementation 1) in Fig. 10. 

o Bayes ucb (2SD, 0.25): Bayesian UCB with a gaussian prior with assumed 

standard deviation of 0.25. A 2-standard deviation confidence interval is used for 

UCB values (Section 2.4.4). This is also the Bayes UCB (implementation 2) in 

Fig. 10. 

o ε-greedy: ε-greedy algorithm with an annealing function used for ε. 

o pure exploration: exploration, or random selection. 

o explore-then-commit: explore-then-commit.  
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Nickel borylation 

This dataset is extracted from the publication: “Advancing Base Metal Catalysis through 

Data Science: Insight and Predictive Models for Ni-Catalyzed Borylation through Supervised 

Machine Learning.” Stevens, J. M.; Li, J.; Simmons, E. M.; Wisniewski, S. R.; DiSomma, S.; 

Fraunhoffer, K. J.; Geng, P.; Hao, B.; Jackson, E. W. Organometallics 2022, 41 (14), 1847–1864. 

[DOI: 10.1021/acs.organomet.2c00089].66  

The raw data was processed before being used in our optimization simulation studies. 

Ligand PnBu3•HBF4 was removed from the scope due to missing yields for some substrates. The 

electrophile and ligand scope of the dataset is shown in Fig. 72.   

Reaction yields are visualized with heatmap, with a side-by-side comparison of yields in 

MeOH and EtOH (Fig. 73). Both substrate- and ligand-dependent reactivities can be observed 

from the heatmap. The differences in yields for EtOH and MeOH were also plotted to compare 

solvent performance (Fig. 74). Notably, for certain substrates (such as s16), MeOH offers much 

higher reactivity compared to EtOH. The exact reason for these reactivity differences is not clear, 

and likely not due to solubility issues. But overall, MeOH and EtOH exhibit similar reactivity 

trends across the majority of the substrates.  
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Fig. 72 Nickel-borylation dataset after processing: electrophile scope and ligand scope. Top eight 
ligands identified are highlighted in red. 
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Fig. 73 Visualization of nickel borylation dataset. The y-axis shows electrophiles by their ID, the 
x-axis shows ligands by names. Reaction yields in both EtOH (left) and MeOH (right) are shown 
for each electrophile/ligand combination.  
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Fig. 74 Visualization of yield difference (EtOH-MeOH) for each electrophile/ligand 
combination. 

 

For our optimization testing of this dataset with yields as binary rewards, only reactions in 

EtOH were used, and 50% yield is chosen as a threshold to determine whether a reaction gives 

satisfying yield or not (hit/no hit). This leaves 759 reactions in total (33 aryl halides, 23 phosphine 

ligands). The top three and top eight ligands were identified through ranking the number of hits 

for each ligand across the entire substrate scope (Fig. 75, Fig. 76). These top ligands align with 

the top ligands identified in the original publication with standardized Z-score.66 For the 

optimization campaign, we only used EtOH data in this hit/no hit (1/0) format with the objective 

of correctly identifying these top ligands.  
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Fig. 75 Top three ligands based on yield threshold (50%) analysis for reactions in EtOH.  

 

 

Fig. 76 Top eight ligands based on yield threshold (50%) analysis for reactions in EtOH.  

 

Different algorithms are simulated 500 times with a maximum time horizon of 75 (75 

experiments). Accuracy is used as a metric for algorithm performance, where algorithms are tasked 

to select top-n ligands identified through global analysis. Explore-then-commit (ETC) is used as a 

baseline algorithm. Similar to how the stepwise ETC baseline was calculated for synthetic data 

(Section 2.4.2), every condition is explored once in each exploration round. At a given time point, 
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the best condition from all previous, completed exploration rounds is chosen as optimal. This 

current best condition is temporarily committed until a new round of exploration is completed, 

which is also when ETC includes the data from the new round and reevaluates the current best 

condition. The top-n accuracy will get updated after each round, depending on which condition is 

chosen.  

The top-n accuracy is again calculated as the frequency of the identified condition actually 

being the true optimal condition across all simulations. For ETC, at each time point, the accuracy 

is the highest ETC accuracy attainable with the maximum number of explorations for each arm. 

For example, as shown in Fig. 77, ETC (black trace) has an accuracy of 0 before t=23, because all 

23 ligands are being investigated in the first round of exploration. From t=24 to t=46, the first 

round of exploration is complete and the accuracy from this round is calculated and shown, while 

the second round of exploration is underway. In other words, ETC accuracies were updated every 

23 experiments (a full round of exploration).  

It is also worth noting that, it is actually possible to calculate the accuracy of ETC by 

enumerating all possible combinations of random samples for each condition, but this calculation 

becomes exponentially more expensive once the number of samples for each condition reaches 3 

and more, which is why we opted for a simulation approach. Because there is no selection of 

conditions involved, we simulated ETC more extensively (typically 10,000 times) compared to 

bandit algorithms (typically 500 for reaction dataset) to arrive at a consistent result for the baseline. 

The top-3 (Fig. 77) and top-8 (Fig. 78) accuracies are plotted with various algorithms. 
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Fig. 77 Top-3 accuracy of identifying optimal ligands in nickel borylation dataset for various 
algorithms.  

 

Fig. 78 Top-8 accuracy of identifying optimal ligands in nickel borylation dataset for various 
algorithms.  
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Deoxyfluorination 

This dataset is extracted from the publication: “Deoxyfluorination with Sulfonyl Fluorides: 

Navigating Reaction Space with Machine Learning.” Nielsen, M. K.; Ahneman, D. T.; Riera, O.; 

Doyle, A. G. J. Am. Chem. Soc. 2018, 140 (15), 5004–5008. [DOI: 10.1021/jacs.8b01523].63 

The raw data is used without any additional preprocessing. Some reaction yields reported 

in the original dataset slightly exceeds 100% due to random analytical errors, all of which we 

reassigned to 100%. In total, 740 reactions (4 bases, 5 sulfonyl fluorides, and 37 alcohol substrates) 

are included in the scope (Fig. 79). All reaction results (except substrate S37) were visualized in a 

heatmap (Fig. 80).  

Different metrics were used to evaluate each condition’s reaction yields with respect to the 

entire substrate scope and to determine the most general conditions for the scope. For bases (Fig. 

81), BTPP and BTMG offer similar performance and outperform MTBD (slightly) and DBU. For 

sulfonyl fluoride (Fig. 82), PBSF significantly outperforms the rest. Base/sulfonyl fluoride 

combinations are also evaluated with the same set of metrics (Fig. 83). Based on these analyses, 

PBSF/BTPP and PBSF/BTMG are identified as the top-2 most general conditions for this scope.  

We also visualized optimization results with a traditional model substrate approach. In an 

optimization campaign for a particular condition component, a model substrate is selected, and 

reactions are run with different conditions to directly compare their performance with a reactivity 

threshold (e.g., 75%). For each substrate in our reaction scope, we find the condition that gives the 

highest yield. If this highest yield is below the yield threshold we set, the optimization is considered 

as not complete. If this highest yield is above the threshold we set, we choose the condition 

component that gives this highest yield as optimal. The optimal conditions identified by such 

model substrate approach are visualized for base (Fig. 84), sulfonyl fluoride (Fig. 85), and 
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base/sulfonyl fluoride combination (Fig. 86). Around half of the substrate scopes do not give 

reaction yields higher than the defined threshold of 75%.  For the substrates that have conditions 

with yields above threshold, the “optimal” conditions identified usually cover most of the 

condition space. In other words, the true optimal condition, or the most general conditions, 

identified through global analysis for the entire reaction scope are not guaranteed to be found 

through traditional model substrate approaches.  

We then tested different algorithms in a continuous [0,1] reward setting (400 simulations, 

up to 100 total experiments), with the optimization task of finding the optimal base (Fig. 87), 

sulfonyl fluoride (Fig. 88) and base/sulfonyl fluoride combinations (Fig. 89). Explore-then-

commit algorithm was again chosen as the baseline algorithm. 
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Fig. 79 Deoxyfluorination dataset: alcohol substrates, base and sulfonyl fluoride scope. 

 

Fig. 80 All results for deoxyfluorination dataset organized by conditions. X-axis represents 
sulfonyl fluorides, y-axis represents bases. Each colored square represents one substrate, and the 
same order for substrates are preserved for all condition combination, with S37 omitted for better 
visualization.  
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Fig. 81 Different metrics to evaluate base performance in deoxyfluorination dataset (top five for 
each metric shown). 

 

Fig. 82 Different metrics to evaluate sulfonyl fluoride performance in deoxyfluorination dataset 
(top five for each metric shown). 
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Fig. 83 Different metrics to evaluate base/sulfonyl fluoride combination performance in 
deoxyfluorination dataset (top five for each metric shown). 

 

Fig. 84 Optimal base identified through a model substrate approach for deoxyfluorination dataset. 
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Fig. 85 Optimal sulfonyl fluoride identified through a model substrate approach for 
deoxyfluorination dataset. 

 

 

Fig. 86 Optimal base/sulfonyl fluoride combination identified through a model substrate approach 
for deoxyfluorination dataset. 
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Fig. 87 Accuracy of identifying optimal bases in deoxyfluorination dataset for various algorithms. 
The plot on the left shows the accuracy of identifying BTMG, BTPP, MTBD in 40 reactions. The 
plot on the right shows the accuracy of identifying BTMG and BTPP in 100 reactions. 

 

 

Fig. 88 Accuracy of identifying optimal sulfonyl fluoride (PBSF) in deoxyfluorination dataset for 
various algorithms. 
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Fig. 89 Top-2 (top) and top-3 (bottom) accuracy of identifying optimal base/sulfonyl fluoride in 
deoxyfluorination dataset for various algorithms. Top-2: BTMG–PBSF, BTPP–PBSF; top-3: 
BTMG–PBSF, BTPP–PBSF, MTBD–PBSF. 
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Buchwald-Hartwig C-N cross-coupling reaction dataset 1 (with yield). 

This dataset is extracted from the publication: “Predicting Reaction Performance in C-N 

Cross-Coupling Using Machine Learning.” Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; 

Doyle, A. G.  Science 2018, 360, 186-190. [DOI: 10.1126/science.aar5169].67 

The raw data was processed before being used in our optimization simulation studies. 

Control reactions run without substrates were removed first. Additives that are missing any 

reaction yields were removed from the scope completely. Finally, substrates and additives are 

labeled as “s#” and “a#” (#’s are sequentially assigned numbers). This processing leaves 3600 

reaction entries overall (15 aryl chloride substrates, 20 additives, 3 based, 4 ligands). Structures 

for all reaction components are shown in Fig. 90. It is worth noting that the isoxazole additives are 

treated as substrates in this case, because they were used as an alternative way of testing functional 

group compatibilities if the functional groups present on the isoxazoles were to be present on the 

actual aryl halide substrates.  

All 3600 reactions are visualized with heatmap (Fig. 91). The heatmap is divided into 

sections with each ligand/base combination. For each section, the x axis represents additives and 

the y axis represents aryl chlorides. Each colored square represents one reaction. A zoomed in 

visualization for the combination AdBrettPhos–BTMG is shown in Fig. 92 as an illustration.  

A global yield analysis of best-performing conditions (base/ligand) was also conducted 

(Fig. 93). t-BuXPhos, t-ΒuBrettPhos, and AdBrettPhos with MTBD as base are the top three most 

optimal conditions. Various algorithms are simulated (500 simulations, 100 total experiments) and 

top-1 (Fig. 94), top-2 (Fig. 95) and top-3 (Fig. 96) accuracies are plotted. 

 In these accuracy plots, a spike in accuracy can often be seen for UCB-type of algorithms 

at the end of exploration phase. This is due to the fact that UCB-type algorithms require one round 

http://science.sciencemag.org/content/360/6385/186
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of exploration first (one experiment per arm). Our implementation of this initial exploration 

behavior is to sample condition arms sequentially based on the order that they are defined 

(condition 1, condition 2, condition 3…) The top three conditions, MTBD-L2, MTBD-L3, MTBD-

L4 happen to be the last three conditions defined in this order. Across all simulations, these three 

conditions are always sampled at the end of the exploration phase, therefore causing a spike in 

accuracy as they have higher average yields. This spiked accuracy after the exploration round 

should also be similar to the explore-then-commit accuracy after one round, which is the case as 

shown in the plots. After the exploration round, the algorithm can freely sample any arm which 

causes the accuracy to dip. Other algorithms like Thompson sampling or ε-greedy, as shown in the 

plot, do not produce this artifact as they do not have the exploration requirement.  

Note: some results in top-3 accuracy (Fig. 96) were presented in Fig. 10 with the names of 

the algorithms simplified for clarity. The same algorithm has the same color traces in both figures. 

For example, TS (implementation 1) in Fig. 10 corresponds to TS (squared) in Fig. 96. 
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Fig. 90 C-N coupling dataset components: aryl halides, isoxazole additives, ligands and bases. 
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Fig. 91 Heatmap visualization of reaction yields for 3600 Buchwald-Hartwig C-N cross-coupling 
reactions. 

 

Fig. 92 Heatmap visualization of reaction yields for 300 Buchwald-Hartwig C-N cross-coupling 
reactions with AdBrettPhos and BTMG. 
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Fig. 93 Different metrics to evaluate ligand/base combination performance in C-N coupling dataset 
(top five for each metric shown). 

 

Fig. 94 Top-1 accuracy of identifying optimal base/ligand (MTBD/tBuXPhos) in C-N cross-
coupling dataset for various algorithms. 
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Fig. 95 Top-2 accuracy of identifying optimal base/ligand (MTBD/tBuXPhos, 
MTBD/tBuBrettPhos) in C-N cross-coupling dataset for various algorithms. 

 

Fig. 96 Top-3 accuracy of identifying optimal base/ligand (MTBD/tBuXPhos, 
MTBD/tBuBrettPhos, MTBD/AdBrettPhos) in C-N cross-coupling dataset for various algorithms. 
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Buchwald-Hartwig C-N cross-coupling reaction dataset 2 (no calibrated yield, evaluating four 

different catalytic methods) 

This dataset is extracted from the publication: “Mapping the Dark Space of Chemical 

Reactions with Extended Nanomole Synthesis and MALDI-TOF MS.” Lin, S.; Dikler, S.; Blincoe, 

W. D.; Ferguson, R. D.; Sheridan, R. P.; Peng, Z.; Conway, D. V.; Zawatzky, K.; Wang, H.; Cernak, 

T.; Davies, I. W.; DiRocco, D. A.; Sheng, H.; Welch, C. J.; Dreher, S. D. Science 2018, 361 (6402). 

[DOI: 10.1126/science.aar6236].70 

For our analysis, we used data from Fig. 3 in the original publication. More specifically, 

we only used half of the data where the amine partner is fixed, and 192 aryl bromide coupling 

partners are varied. No calibrated yield was provided for the reactions, but two different analytical 

metrics, UPLC-MS ion counts and normalized MALDI data, are provided. Since there was poor 

correlation between the two analytical methods, we only used UPLC-MS ion counts as a readout 

of reactivity. All ion counts were normalized to [0,1] with the highest ion count in the entire scope 

being 1. Overall, 768 reactions (4 catalytic conditions, 192 aryl bromide substrates) remain (Fig. 

97). Because of the large number of substrates used in this reaction, the structures for all aryl 

bromide coupling partners are not shown here and can be found in the original publication.  

The average normalized UPLC-MS ion count responses for each condition is plotted in Fig. 

98. Surprisingly, copper catalysis conditions perform significantly better than palladium catalysis 

conditions on average. The two photoredox methods, Ir/Ni and Ru/Ni conditions exhibited almost 

identical performances, which was expected since these two conditions both rely on the same 

nickel catalysts for cross coupling and only differ in the photocatalysts used.   
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Fig. 97 C-N cross-coupling reaction dataset that evaluates amine scope with four different 
catalytic conditions.  

 

Fig. 98 Average UPLC-MS ion counts (normalized) for four different catalytic methods.  

 

Again, we simulated this dataset with our optimization algorithms, with the objective of 

identifying copper catalysis condition as the most general condition. Overall, several of the 

algorithms converged to >95% accuracy within 200 experiments. The top-performing UCB1 and 

UCB1-tuned algorithms reached 95% accuracy after 100 experiments (Fig. 99).   
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Fig. 99 Top-1 accuracies of identifying optimal condition (copper catalysis conditions) in C-N 
cross-coupling dataset for various algorithms. 

 

Imidazole C-H direct arylation dataset 

Following a previous imidazole C–H direct arylation dataset investigated by the Doyle 

group and BMS, where 1728 combinations of conditions are evaluated with one pair of coupling 

partners, we designed a new dataset to focus on substrate effect with both coupling partners (aryl 

bromides and imidazoles) and their reactivities with different ligands. Evidenced by some of the 

previous datasets we have simulated in Section 2.4.8, one of the biggest hurdles for a large reaction 

dataset is to obtain rection yields. Alternative readouts for reactivity, such as additive screening 

and processed instrument responses are typically used. While simple and quite effective, these 

readouts still cannot replace actual reaction yields, which allows the direct comparison between 

reaction conditions and their performances with different substrates. For the C–H arylation dataset, 
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we decided to explore the substrate dimension extensively with different phosphine ligands and 

obtain calibrated reaction yields for all reactions.  

The first step to establish the dataset is to select the substrate scope (aryl bromides and 

imidazoles) and ligand scope. We started the selection process with the aryl bromide, imidazole 

and monophosphine ligand libraries at BMS. By clustering the respective libraries via 

unsupervised learning approach (e.g., k-Medoids clustering with Mordred descriptors, selecting k 

by minimizing silhouette scores), we obtained clusters of structurally similar molecules. For each 

library, we then manually selected the molecules from each cluster based on their availability and 

structural features of interest. Overall, 8 aryl bromides and 8 imidazoles are selected as the 

substrate scope, and 24 monodentate phosphine ligands are selected as the condition scope (Fig. 

100). All 64 products are synthesized, and all 1536 experiments are carried out and analyzed to 

obtain calibrated reaction yield. The experimental details of the product synthesis and HTE 

reactions can be found in 2.5.1.  

It is also worth noting that, the original plan for the substrate scope involves 10 aryl 

bromides and 10 imidazoles. Two of the aryl bromides and two of the imidazoles were later 

excluded from the substrate scope due to their products’ low reactivities and challenging isolations 

during the authentic product synthesis stage.  To ensure consistency in all experimental records, 

the original labels of substrates were kept for the remaining substrates (hence the non-continuous 

numeric and alphabetical labels). The substrates excluded are shown in Fig. 101. 

Results for all experiments are visualized as a heatmap grouped by ligand first, then by 

substrate pairings (Fig. 102). For all 64 substrate pairs, the median and average yields are shown 

for results with 24 ligands (Fig. 103) as a metric of general reactivities. Categorial bar plots for 

aryl bromides (Fig. 104) and imidazoles (Fig. 105) with binned yields are also shown. For ligand 
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performances, a categorical bar plot (Fig. 106) and a box plot (Fig. 107) are shown, as well as a 

ranking of top-10 ligand performance based on various metrics (Fig. 108). Based on these analyses, 

Cy-BippyPhos, Et-PhenCarPhos, tBPh-CPhos, CgMe-PPh, and JackiePhos are identified as the 

top-5 ligands (by average) and used in the optimization studies.  

We also visualized optimization results obtained with a model substrate approach, as 

discussed in the manuscript. The results are shown with a 50% (Fig. 109), 75% (Fig. 110), and a 

90% yield cutoff (Fig. 111). Various optimization algorithms were also tested and top-1 (Fig. 112), 

top-5 (Fig. 113) and top-9 (Fig. 114) accuracies were plotted with ETC baselines (top 1 and top 9 

ligands were also determined from average yields in Fig. 108).  
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Fig. 100 C–H arylation dataset components: ligands, imidazoles, aryl bromides. 
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Fig. 101 Two imidazoles and two aryl bromides removed from the planned substrate scope. 

 

Fig. 102 Heatmap visualization of reaction yields in the imidazole C–H arylation reaction. 

N

N

PhMe

H

N

N
Me CO2Me

J

Br

MeO O

6

Me
Br

Me Me

8



 

158 
 

 

Fig. 103 Median (left) and average (right) reactions yields across 24 ligands for all 64 products in 
the imidazole C–H arylation reaction.  

 

 

Fig. 104 Categorical bar plot of reaction yields for 8 aryl bromides (electrophiles) in the imidazole 
C–H arylation reaction. 
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Fig. 105 Categorical bar plot of reaction yields for 8 imidazoles (nucleophiles) in the imidazole 
C–H arylation reaction. 
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Fig. 106 Categorical bar plot of reaction yields for 24 ligands in the imidazole C–H arylation 
reaction. 
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Fig. 107 Box plot of reaction yields for 24 ligands in the imidazole C–H arylation reaction. 

 

Fig. 108 Different metrics to evaluate ligand performance in the imidazole C–H arylation reaction 
(top ten for each metric shown). 
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Fig. 109 Model substrate optimization results using a 50% yield cutoff.  

 

Fig. 110 Model substrate optimization results using a 75% yield cutoff.  
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Fig. 111 Model substrate optimization results using a 90% yield cutoff.  

 

Fig. 112 Model substrate optimization results using a 90% yield cutoff. 
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Fig. 113 Top-5 accuracy of identifying optimal ligand in the imidazole C–H arylation reaction for 
various algorithms. 

 

Fig. 114 Top-9 accuracy of identifying optimal ligand in the imidazole C–H arylation reaction for 
various algorithms. 
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Amide coupling dataset 

For this reaction, we fixed the carboxylic acid core (indomethacin) and varied the aniline 

coupling partners. Starting from a commercial library of anilines, we generated dense vector 

embeddings for all molecules using mol2vec71 and clustered them into ten groups using k-means 

clustering. One representative aniline was chosen from each cluster to constitute the aniline scope, 

which encompasses combinations of various heterocycles (quinolines, pyrazoles, pyridazines), 

electronically deactivating groups (nitriles, nitros, trifluoromethyls), sterically demanding ortho-

substitutions, and potentially problematic functional groups (aryl chlorides/bromides, 

sulfonamides, esters). A series of eight amidation reagents, including aminiums, uroniums, 

(halo)phosphoniums, and phosphinic halides, were investigated as part of the condition scope, as 

well as four common organic bases and three solvents. The selected condition scope was selected 

manually, mostly based on occurrences in amide coupling literature and their relevance in process 

and medicinal chemistry. Overall, 10 aniline substrates, 8 activators, 4 bases and 3 solvents were 

selected as the reaction scope (Fig. 115).  
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Fig. 115 Amidation dataset components: aniline substrates, activators, bases, solvents. 
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sampling. For this stage, 8 rounds of experiments (5 experiments per round) were run in batch. 

The batch proposal was done by a random forest prediction model. For on-the-fly training with 

prediction models, aniline substrates were encoded with Morgan fingerprints using RDKit’s 

default settings (radius=2, 2048 bits). For bandit algorithms, we used UCB1-Tuned for its 

generally high performance and lack of parameters that need to be tuned.  

The experiment runs are shown in Table 1. After 8 rounds of experiments, activators were 

then ranked based on the number of times they were sampled by the algorithms first, and then 

further ranked based on their empirical average yields to break ties.  

Round activator base substrate solvent Exp. yield Pred. yield 
1 PFTU 2,6-Lutidine n2 THF 0.38 1.0 
1 TCFH 1-Methylimidazole n4 MeCN 0.09 1.0 
1 HATU Diisopropylethylamine n6 THF 0.04 1.0 
1 PyBOP 1-Methylimidazole n5 MeCN 0.04 1.0 
1 BOP-Cl Diisopropylethylamine n3 THF 0.11 1.0 
2 TFFH 2,6-Lutidine n4 DMF 0.09 0.0881299999999999 
2 DPPCl 2,6-Lutidine n1 THF 0.15 0.1012220000000000 
2 HOTU Diisopropylethylamine n6 THF 0.11 0.060454 
2 PFTU 2,6-Lutidine n6 THF 0.01 0.076482 
2 BOP-Cl N-methylmorpholine n4 DMF 0.17 0.0825559999999999 
3 DPPCl Diisopropylethylamine n8 MeCN 0.15 0.108348 
3 HOTU 2,6-Lutidine n3 MeCN 0.04 0.106451 
3 TCFH 2,6-Lutidine n9 DMF 0.26 0.115564 
3 TFFH 2,6-Lutidine n3 DMF 0.19 0.107861 
3 HATU 2,6-Lutidine n3 MeCN 0.06 0.089769 
4 PyBOP 2,6-Lutidine n5 MeCN 0.01 0.0517049999999999 
4 PFTU 1-Methylimidazole n3 THF 0.08 0.0862029999999998 
4 TCFH 1-Methylimidazole n9 MeCN 0.52 0.1603820000000000 
4 DPPCl N-methylmorpholine n3 THF 0.50 0.121883 
4 BOP-Cl 2,6-Lutidine n9 DMF 0.74 0.2069110000000000 
5 BOP-Cl Diisopropylethylamine n9 THF 0.37 0.5544630000000000 
5 BOP-Cl N-methylmorpholine n2 MeCN 0.54 0.4037220000000000 
5 TCFH Diisopropylethylamine n1 MeCN 0.17 0.10918 
5 BOP-Cl 1-Methylimidazole n10 MeCN 0.01 0.0833569999999999 
5 DPPCl N-methylmorpholine n1 MeCN 0.47 0.337869 
6 TFFH Diisopropylethylamine n3 DMF 0.47 0.1510380000000000 
6 DPPCl 2,6-Lutidine n3 DMF 0.20 0.17307 
6 HOTU Diisopropylethylamine n6 DMF 0.05 0.0974269999999998 
6 TCFH 1-Methylimidazole n5 DMF 0.17 0.0714609999999999 
6 DPPCl Diisopropylethylamine n1 DMF 0.38 0.211555 
7 TFFH N-methylmorpholine n8 MeCN 0.07 0.3179590000000000 
7 TFFH Diisopropylethylamine n3 MeCN 0.11 0.2506630000000000 
7 HATU 2,6-Lutidine n4 THF 0.02 0.0829859999999999 
7 BOP-Cl N-methylmorpholine n3 DMF 0.07 0.3201540000000000 
7 PFTU 2,6-Lutidine n5 THF 0.01 0.0468079999999999 
8 DPPCl N-methylmorpholine n5 THF 0.18 0.278249 
8 PyBOP 2,6-Lutidine n5 THF 0.00 0.018839 
8 TCFH Diisopropylethylamine n5 MeCN 0.05 0.087767 
8 DPPCl 1-Methylimidazole n3 MeCN 0.52 0.2706000000000000 
8 BOP-Cl 1-Methylimidazole n7 MeCN 0.50 0.2918940000000000 
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Table 1 Proposed experiments for activator optimization rounds. Exp. yield: experimental yield. 
Pre. yield: predicted yield. 

After the activator optimization rounds, we selected the top four (out of eight) activators, 

and optimized activator–base combinations. Optimization was re-initialized with 16 activator–

base combinations (4 activators, 4 bases). Relevant existing results from the activator optimization 

rounds were used as initial data for the new optimization. The bandit algorithm (UCB1-Tuned) 

selects an activator–base combination to evaluate, and 16 rounds of experiments (5 experiments 

per round) were run in batch in the same way as the activator optimization round. The experiments 

run in this phase are shown in Table 2. The activator–base combinations were similarly ranked 

with the number of samples and empirical averages.  

Round activator base substrate solvent Exp. yield Pred. yield 
9 PFTU 2,6-Lutidine n2 THF 0.38 1.0 
9 TCFH 1-Methylimidazole n4 MeCN 0.09 1.0 
9 HATU Diisopropylethylamine n6 THF 0.04 1.0 
9 PyBOP 1-Methylimidazole n5 MeCN 0.04 1.0 
9 BOP-Cl Diisopropylethylamine n3 THF 0.11 1.0 

10 TFFH 2,6-Lutidine n4 DMF 0.09 0.0881299999999999 
10 DPPCl 2,6-Lutidine n1 THF 0.15 0.1012220000000000 
10 HOTU Diisopropylethylamine n6 THF 0.11 0.060454 
10 PFTU 2,6-Lutidine n6 THF 0.01 0.076482 
10 BOP-Cl N-methylmorpholine n4 DMF 0.17 0.0825559999999999 
11 DPPCl Diisopropylethylamine n8 MeCN 0.15 0.108348 
11 HOTU 2,6-Lutidine n3 MeCN 0.04 0.106451 
11 TCFH 2,6-Lutidine n9 DMF 0.26 0.115564 
11 TFFH 2,6-Lutidine n3 DMF 0.19 0.107861 
11 HATU 2,6-Lutidine n3 MeCN 0.06 0.089769 
12 PyBOP 2,6-Lutidine n5 MeCN 0.01 0.0517049999999999 
12 PFTU 1-Methylimidazole n3 THF 0.08 0.0862029999999998 
12 TCFH 1-Methylimidazole n9 MeCN 0.52 0.1603820000000000 
12 DPPCl N-methylmorpholine n3 THF 0.50 0.121883 
12 BOP-Cl 2,6-Lutidine n9 DMF 0.74 0.2069110000000000 
13 BOP-Cl Diisopropylethylamine n9 THF 0.37 0.5544630000000000 
13 BOP-Cl N-methylmorpholine n2 MeCN 0.54 0.4037220000000000 
13 TCFH Diisopropylethylamine n1 MeCN 0.17 0.10918 
13 BOP-Cl 1-Methylimidazole n10 MeCN 0.01 0.0833569999999999 
13 DPPCl N-methylmorpholine n1 MeCN 0.47 0.337869 
14 TFFH Diisopropylethylamine n3 DMF 0.47 0.1510380000000000 
14 DPPCl 2,6-Lutidine n3 DMF 0.20 0.17307 
14 HOTU Diisopropylethylamine n6 DMF 0.05 0.0974269999999998 
14 TCFH 1-Methylimidazole n5 DMF 0.17 0.0714609999999999 
14 DPPCl Diisopropylethylamine n1 DMF 0.38 0.211555 
15 TFFH N-methylmorpholine n8 MeCN 0.07 0.3179590000000000 
15 TFFH Diisopropylethylamine n3 MeCN 0.11 0.2506630000000000 
15 HATU 2,6-Lutidine n4 THF 0.02 0.0829859999999999 
15 BOP-Cl N-methylmorpholine n3 DMF 0.07 0.3201540000000000 
15 PFTU 2,6-Lutidine n5 THF 0.01 0.0468079999999999 
16 DPPCl N-methylmorpholine n5 THF 0.18 0.278249 
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16 PyBOP 2,6-Lutidine n5 THF 0.00 0.018839 
16 TCFH Diisopropylethylamine n5 MeCN 0.05 0.087767 
16 DPPCl 1-Methylimidazole n3 MeCN 0.52 0.2706000000000000 
16 BOP-Cl 1-Methylimidazole n7 MeCN 0.50 0.2918940000000000 
17 TFFH 1-Methylimidazole n1 THF 0.23 0.197645 
17 TCFH N-methylmorpholine n9 DMF 0.06 0.3841750000000000 
17 BOP-Cl 2,6-Lutidine n7 MeCN 0.12 0.4059960000000000 
17 DPPCl 1-Methylimidazole n3 THF 0.23 0.4057010000000000 
17 TCFH N-methylmorpholine n5 MeCN 0.11 0.07122 
18 TCFH 2,6-Lutidine n2 MeCN 0.35 0.3356930000000000 
18 TFFH 1-Methylimidazole n4 DMF 0.05 0.1522020000000000 
18 BOP-Cl 2,6-Lutidine n8 MeCN 0.06 0.178906 
18 DPPCl 1-Methylimidazole n2 MeCN 0.49 0.4196860000000000 
18 TFFH N-methylmorpholine n5 THF 0.05 0.117228 
19 TCFH 2,6-Lutidine n7 MeCN 0.36 0.2134070000000000 
19 TFFH Diisopropylethylamine n8 MeCN 0.13 0.1359070000000000 
19 DPPCl 1-Methylimidazole n4 THF 0.07 0.2040260000000000 
19 DPPCl Diisopropylethylamine n10 MeCN 0.04 0.2281860000000000 
19 DPPCl N-methylmorpholine n2 MeCN 0.61 0.459644 
20 BOP-Cl 1-Methylimidazole n2 DMF 0.48 0.464601 
20 BOP-Cl Diisopropylethylamine n6 DMF 0.04 0.0726219999999999 
20 DPPCl N-methylmorpholine n3 MeCN 0.51 0.4077180000000000 
20 BOP-Cl 1-Methylimidazole n8 DMF 0.30 0.1469760000000000 
20 TCFH 2,6-Lutidine n1 THF 0.36 0.1742770000000000 
21 DPPCl N-methylmorpholine n9 DMF 0.71 0.3761540000000000 
21 BOP-Cl 2,6-Lutidine n7 THF 0.04 0.2616620000000000 
21 DPPCl 2,6-Lutidine n10 MeCN 0.11 0.0704579999999999 
21 DPPCl N-methylmorpholine n5 MeCN 0.12 0.1703900000000000 
21 TFFH 1-Methylimidazole n10 DMF 0.02 0.0714489999999999 
22 TFFH 2,6-Lutidine n9 DMF 0.22 0.4203900000000000 
22 TCFH 1-Methylimidazole n7 THF 0.18 0.3021630000000000 
22 BOP-Cl N-methylmorpholine n6 THF 0.01 0.0960179999999999 
22 DPPCl 1-Methylimidazole n5 DMF 0.12 0.121413 
22 TCFH 2,6-Lutidine n4 THF 0.05 0.104383 
23 BOP-Cl 1-Methylimidazole n9 MeCN 0.45 0.5089850000000000 
23 TCFH Diisopropylethylamine n2 MeCN 0.18 0.3909040000000000 
23 DPPCl N-methylmorpholine n10 THF 0.01 0.1178700000000000 
23 TFFH Diisopropylethylamine n10 THF 0.17 0.0415429999999999 
23 BOP-Cl 1-Methylimidazole n4 DMF 0.06 0.1205600000000000 
24 TCFH N-methylmorpholine n5 THF 0.27 0.108199 
24 TFFH N-methylmorpholine n7 DMF 0.10 0.25712 
24 DPPCl Diisopropylethylamine n3 DMF 0.26 0.3659460000000000 
24 BOP-Cl Diisopropylethylamine n10 THF 0.01 0.0603559999999999 
24 TFFH 2,6-Lutidine n5 THF 0.01 0.0452339999999999 

Table 2 Proposed experiments for activator–base optimization rounds. Exp. yield: experimental 
yield. Pre. yield: predicted yield.  
 

All reactions in the scope were run with HTE to allow for the direct comparison between 

optimization ranking and true rankings. Heatmap of results grouped by aniline substrates and 

conditions are shown in Fig. 116 and Fig. 117. The experimental details of the product synthesis 

and HTE reactions can be found in Section 2.5.2. 
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With HTE data for the entire reaction scope, average yields for activators, bases, and 

solvents (Fig. 118) and different metrics were used to analyze activator performance (Fig. 119) 

and activator–base performance (Fig. 120, Fig. 121). The true rankings for activators and 

activator–base presented in the manuscript were obtained based on average yields.  

We also simulated the full dataset with some optimization algorithms. For activators, top-

1 accuracy of identifying DPPCl (Fig. 122), top-3 accuracy of identifying DPPCl, BOP-Cl, TCFH 

(Fig. 123) are shown. For activators–bases, top-2 accuracy of identifying DPPCl–NMM, DPPCl–

DIPEA is shown (Fig. 124). 

A more detailed reactivity comparison for DPPCl– NMM and DPPCl–DIPEA, using 

HATU–DIPEA and TCFH–NMI as baseline, divided by solvents and substrates, is shown in Fig. 

Fig. 125.  

 

Fig. 116 HTE results for amide coupling reaction (base–solvent, activator). 



 

171 
 

 

Fig. 117 HTE results for amide coupling reaction (activator–base, solvent). 
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Fig. 118 Average yields of activators, bases, and solvents for each substrate. 
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Fig. 119 Different metrics to evaluate activator performance in the amide coupling reaction.  

 
Fig. 120 Different metrics to evaluate activator–base performance in the amide coupling reaction 
(top 5 plotted). 
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Fig. 121 Top 10 average yields for activator–base in the amide coupling reaction.  

 

 
Fig. 122 Top-1 accuracy of identifying optimal activator (DPPCl) in the amide coupling reaction 
for various algorithms. 
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Fig. 123 Top-3 accuracy of identifying optimal activator (DPPCl, BOP-Cl, TCFH) in the amide 
coupling reaction for various algorithms. 

 

 
Fig. 124 Top-2 accuracy of identifying optimal activator–base (DPPCl–NMM, DPPCl–DIPEA) 
in the amide coupling reaction for various algorithms. 
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Fig. 125 Yields grouped by solvents for identified conditions of DPPCl–NMM and DPPCl–DIPEA 
when applied to all ten aniline nucleophiles. HATU–DIPEA and TCFH–NMI were used as 
baseline comparisons.  

 

2.5 Experimental section 

2.5.1 C-H arylation dataset experimentation details 

High-Throughput Experimentation 

Bulk Ligand Plate Preparation. In a glovebox, 8 mL vials containing 25 μmol ligand 

were dissolved in 1,2-dichloroethane (2.5 mL) and stirred for 5 min.  A 100 μL aliquot of each of 

the resultant ligand solutions was dispensed to the desired location in the 96 well plate. The solvent 

was removed in vacuo using a Genevac centrifugal evaporator inside the glovebox. Ligand plates 

were sealed and stored in the glovebox until time of use.  

Base Plate Preparation. Potassium Pivalate (6.3 mg, 0.045 mmol)/well was dispensed to 

each 96 well plate using Unchained Labs Powder Protégé. The vials containing potassium pivalate 

were stored open in a glovebox for no less than three days prior to use to remove trace amounts of 

water and then sealed and stored in the glovebox until time of use. 



 

177 
 

Reaction Execution. In a glovebox, 0.5 M solutions of aryl bromide (0.58 mmol) in N,N-

dimethylacetamide were prepared and dispensed to the ligand vials (40 μL, 0.02 mmol) via 

electronic multi-step pipettor. A solution of [Pd(allyl)Cl]2 (50.0 mg, 0.136 mmol) in N,N-

dimethylacetamide (3.04 mL) was prepared (0.045 M) and dispensed to the vials containing a 

solution of aryl bromide and ligand (10 μL, 0.45 μmol). The resultant reaction mixtures were sealed 

and stirred on a shaker block in the glovebox for no less than 30 min. Solutions of imidazole 

nucleophile (1.15 mmol, 0.27 M) containing 4,4’-di-tert-butylbiphenyl (15.3 mg, 0.057 mmol) in 

N,N-dimethylacetamide (17.3 mL) were prepared and dispensed to the reaction mixture vials (150 

μL, 0.04 mmol). The reaction mixtures stirred for 2 min in the glovebox and 150 μL from each 

well was transferred to the base plate using a multichannel pipettor. The reactions were then sealed 

and stirred at the desired temperature 120 °C for 24 h in the glovebox and subsequently cooled to 

23 °C. The plate was removed from the glovebox, opened, and diluted to a 900 μL total volume 

with N,N-dimethylacetamide. The plate was stirred for 5 min and a 75 μL sample was taken and 

filtered into an HPLC analysis plate. The filter was rinsed with 400 μL acetonitrile/water (4:1) 

solution and analyzed by UPLC-MS. 

Calibration Curve: A solution of the product marker (0.9 mmol) in 5.40 mL N,N-

dimethylacetamide was prepared. A serial dilution from this solution was performed into vials 

containing 4,4’-di-tert-butylbiphenyl (0.91 mg, 3.42 μmol) to generate solutions that contain 10%, 

20%, 40%, 60%, 80%, and 100% of the original product marker vs the consistent amount of 4,4’-

di-tert-butylbiphenyl internal standard. A 75 μL sample of each was taken and filtered into an 

UPLC-MS analysis plate. The filter was rinsed with 400 μL acetonitrile/water (4:1) solution and 

analyzed by UPLC-MS. 

UPLC-MS Method: 
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Solvent A: Water with 5% acetonitrile and 0.05% TFA 

Solvent B: acetonitrile with 5% water and 0.05% TFA 

Gradient: 95% A/B to 5% A/B over 2.5 min, hold 1.0 min at 95% B 

Stop Time: 3.5 min 

Flow Rate: 0.8 mL/min 

Wavelength1: 220 nm 

Wavelength2: 254 nm 

Column: Agilent Poroshell C18 2.7 um 2.1x50mm 

Oven Temperature: 40 °C 

 

Dataset Analysis 

Substrate scope. 8 imidazoles and 8 aryl bromides were selected as the substrate scope, 

generating 64 cross-coupled products labeled as <imidazole>-<aryl bromide> (e.g., A3, G5). 

Note: The original substrate scope was designed with 10 imidazoles and 10 aryl bromides, 

but imidazole H, J and aryl bromide 6, 8 were later removed from the scope. The original labels 

from the design were kept to ensure consistency internally. 

 

Data Processing. Data processing was completed in R 3.4.4 software installed on Ubuntu 

16.04 using the tidyverse 1.2.1 package. The experimental results (Experimental_Data) and 
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calibration results (Calibration_Data) from the UPLC-MS instrument were imported as .csv files 

and merged with the experimental design. The relative yields (RelYield_PDT) for the experimental 

and calibration data were calculated by dividing the area percent of the desired product by the area 

percent of the internal standard for each entry. The yields were calculated by fitting a linear model 

on the Calibration_Data and applying to the Experimental_Data using the function below. 

 

Model <- function(Calibration_Data, Experimental_Data) { 

Model <- lm(Yield ~ RelYield_PDT, Calibration_Data) 

Model_coeffs <- coefficients(Model) 

Experimental_Data $Yield <- Model_coeffs[1] + Model_coeffs[2]* Experimental_Data 

$RelYield_PDT 

Experimental_Data $Yield <- round(Experimental_Data $Yield, digits = 2) 

Experimental_Data  

} 

 

Duplicated Studies. A total of 18 of 64 possible studies were conducted in duplicate: A4, 

A5, A9, A10, B2, B9, D1, D2, D3, D5, F2, F4, F5, F7, G3, G4, G7 and G9. Analysis of the data 

found that the average absolute difference between duplicated runs for the 432-experiment set was 

3.6% yield with a standard deviated of 5.0% yield. The yield difference was lower than 10% yield 

(two standard deviations) for 92% of the experiments. 
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Preparation of substrates (imidazoles E, F, I) 

 

1-Benzyl-2,4-dimethyl-1H-imidazole (E).  

To a nitrogen-flushed 500 mL round-bottom flask was added 2,4-dimethyl-1H-imidazole 

(14.5 g, 145 mmol, 1.1 equiv.), potassium carbonate (38.2 g, 276 mmol, 2.1 equiv.), and 
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acetonitrile (225 mL, 10 mL/g). The mixture was cooled to 0 °C and treated with a solution of 

benzyl bromide (22.5 g, 132 mmol, 1.0 equiv.) in acetonitrile (22.5 mL, 1 mL/g) over 30 minutes. 

The reaction mixture was aged at 0 °C for 3 h and warmed to 23 °C and aged for an additional 15 

h. The solvent was removed in vacuo and was treated with ethyl acetate (225 mL, 10 mL/g). The 

solution was washed with water (225 mL, 10 mL/g) followed by 10% aqueous sodium chloride 

solution (225 mL, 10 mL/g). The isolated organic phase was dried over magnesium sulfate, filtered, 

and concentrated. Purification of the crude by silica gel chromatography (220 g ISCO RediSep-Rf 

Gold column; 1% to 10% methanol/dichloromethane gradient) afforded the desired product E 

(18.0 g, 97 mmol) in 73% yield as yellow oil. 

1H NMR (400 MHz, CDCl3): δ 7.58 - 7.43 (m, 3H), 7.26 (d, J=6.8 Hz, 2H), 6.74 (s, 1H), 

5.17 (s, 2H), 2.50 (s, 3H), 2.38 (d, J=0.9 Hz, 3H)  

13C NMR (101 MHz, CDCl3): δ 144.0, 136.6, 136.1, 128.8, 126.5, 125.6, 116.0, 49.4, 13.5, 

12.9  

 

 

1-(Difluoromethyl)-2-phenyl-1H-imidazole (F).  

To a 250-mL round bottomed flask was added 2-phenylimidazole (3.1 g, 21 mmol, 1.0 

equiv.) and potassium fluoride (2.44 g, 42 mmol, 2.0 equiv.). The flask was transferred to a 

glovebox under inert atmosphere and treated with acetonitrile (125 mL, 40 mL/g) followed by 1-

[[bromo(difluoro)methyl]-ethoxy-phosphoryl]oxyethane (5.6 g, 21 mmol, 1.0 equiv.). The 

reaction was aged 18 h and the solvent was removed. The crude was redissolved in ethyl acetate 
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(125 mL, 40 mL/g) and treated with 1 M aqueous hydrochloric acid solution (200 mL, 64 mL/g) 

and mixed vigorously for five minutes. The organic phase was removed, and the aqueous phase 

was washed with ethyl acetate (125 mL, 40 mL/g). The isolated aqueous phase was adjusted to pH 

= 8 with 6 M aqueous potassium hydroxide, treated with ethyl acetate (250 mL, 81 mL/g) and 

mixed vigorously for five minutes. The isolated organic phase was dried over magnesium sulfate, 

filtered, and concentrated. Purification by silica gel chromatography (80 g ISCO RediSep-Rf Gold 

column; 5% to 25% ethyl acetate/heptane gradient) afforded the desired product F (2.1 g, 10.0 

mmol) in 48% yield as yellow oil. 

1H NMR (400 MHz, CDCl3): δ 7.64 - 7.55 (m, 2H), 7.53 - 7.48 (m, 3H), 7.40 (s, 1H), 7.27 

- 7.20 (m, 1H), 7.07 (t, J=6.0 Hz, 1H)  

13C NMR (101 MHz, CDCl3): δ 147.4, 130.3, 130.0, 129.1, 128.9, 115.5, 108.6 (t, J=249.8 

Hz, 1C) 

19F NMR (276 MHz, CDCl3): δ -90.50 (d, J=41.4 Hz) 

 

 

 

1-(4-Nitrophenyl)-2-phenyl-1H-imidazole (I).  

To a nitrogen flushed reaction vessel containing potassium carbonate (25.9 g, 187.5 mmol, 

2.5 equiv.) and (2-phenylimidazole (10.8 g, 75 mmol, 1.0 equiv.) was added N,N-

dimethylformamide (108 mL, 10 mL/g) followed by 4-nitrofluorobenzene (11.6 g, 82.5 mmol, 1.1 



 

183 
 

equiv.). The reaction mixture was heated to 100 °C and aged for 3 h then cooled to 23 °C. Ethyl 

acetate (216 mL, 20 mL/g) was added and the organic solution was rinsed 3 ×10 wt% aqueous 

sodium chloride solution (216 mL, 20 mL/g) and the isolated organic phase was concentrated to 

red oil. Purification by silica gel chromatography (220 g ISCO RediSep-Rf Gold column; 40% to 

70% ethyl acetate/heptane gradient) afforded the desired product I (14.5 g, 55 mmol) in 73% yield 

as red solid. 

1H NMR (400 MHz, DMSO-d6): δ 8.36 - 8.23 (m, 2H), 7.65 (d, J=1.2 Hz, 1H), 7.60 - 

7.50 (m, 2H), 7.43 - 7.29 (m, 5H), 7.26 (d, J=1.2 Hz, 1H) 

13C NMR (101 MHz, DMSO-d6): δ 146.4, 145.9, 143.2, 129.9, 129.4, 128.7, 128.5, 128.5, 

126.8, 124.9, 123.4 

 

Authentic product synthesis and characterization 

General Procedure A:   

Aryl halide (5 mmol, 1 equiv.) was dispensed to 20 mL vial in a glovebox and treated with 

a solution of PCy3•HBF4 (92 mg, 0.25 mmol, 5 mol%) in DMA (5 mL). The mixture was stirred 

for 2 min and treated with a solution of [(Allyl)PdCl]2 (41 mg, 0.11 mmol, 2.25 mol%) in DMA 

(5 mL) and stirred for no less than 30 min. The reaction mixture was then treated with a solution 

of the imidazole (10 mmol, 2 equiv.) in DMA (5 mL). The reaction was stirred for 2 minutes and 

was then poured into a 40 mL vial containing KOPiv (2.15 g, 15 mmol, 3 equiv.). The initial ArBr 

vial was rinsed with DMA (5 mL) into the reaction vial. The reaction was capped and heated to 

140 °C external temperature for 24 h. Upon reaction completion as determined by UPLC-MS, the 

reaction was cooled to room temperature and filtered through a short plug of celite (this filtration 
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can be really slow). The filtrate was then concentrated using a Genevac evaporator. The crude 

material was purified by reversed phase chromatography. 

 

General Procedure B: 

Aryl halide (5 mmol, 1 equiv.) was dispensed to 20 mL vial in a glovebox and treated with 

a solution of PCy3•HBF4 (92 mg, 0.25 mmol, 5 mol%) in DMA (5 mL). The mixture was stirred 

for 2 min and treated with a solution of [(Allyl)PdCl]2 (41 mg, 0.11 mmol, 2.25 mol%) in DMA 

(5 mL) and stirred for no less than 30 minutes. The reaction mixture was then treated with a 

solution of the imidazole (10 mmol, 2 equiv.) in DMA (5 mL). The reaction stirred for 2 minutes 

and was then poured into a 40 mL vial containing KOPiv (2.15 g, 15 mmol, 3 equiv.). The initial 

ArBr vial was rinsed with DMA (5 mL) into the reaction vial. The reaction was capped and heated 

to 140 °C external temperature for 24 h. Upon reaction completion as determined by TLC and/or 

LC-MS, the crude reaction mixture was cooled to room temperature and subsequently dissolved 

in 100 mL of H2O. The solution was then extracted with Et2O (3 ´ 50 mL) and concentrated in 

vacuo. The crude residue was then purified by silica gel column chromatography. 

 

A-Series 

 

 

 

Ethyl 1-ethyl-4-(1-methyl-1H-imidazol-5-yl)-1H-pyrrole-2-carboxylate (A1).  
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Prepared according to the general procedure B. The title compound was isolated via flash 

chromatography (100% dichloromethane with 5% triethylamine additive) as an orange oil (88.1 

mg, 356 μmol, 7% yield). 

 

1H NMR (500 MHz, CDCl3): δ 7.44 (s, 1H); 7.01 (s, 1H); 7.00 (d, J = 2.0 Hz, 1H); 6.94 

(d, J = 2.1 Hz, 1H); 4.38 (q, J = 7.2 Hz, 2H); 4.30 (q, J = 7.1 Hz, 2H); 3.67 (s, 3H); 1.43 (t, J = 7.0 

Hz, 3H); 1.36 (t, J = 7.1 Hz, 3H) 

13C NMR (126 MHz, CDCl3): δ 160.9; 138.3; 127.6; 127.1; 126.0; 122.6; 116.8; 112.2; 

60.2; 44.5; 32.6; 17.1; 14.6 

HRMS: (EI+) calculated for [C13H17N3O2+H] + 248.1392, found: 248.1394.  

FTIR (ATR, cm–1): 3376.5; 3110.6; 2980.4; 2932.9; 1698.5; 1528.5; 1475.2; 1445.3; 

1377.8; 1283.1; 1255.9; 1234.6; 1198.1; 1113.9; 1096.7; 1075.8; 802.7; 652.9 

  

 

 

1-(5-(1-Methyl-1H-imidazol-5-yl)thiophen-2-yl)ethan-1-one (A2).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 2% B, 2-42% B over 

23 minutes, then a 0-minute hold at 100% B; Flow Rate: 20 mL/min; Column Temperature: 25 °C. 
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Fraction collection was triggered by MS signals. Fractions containing the desired product were 

combined and dried via centrifugal evaporation to give the title compound (324 mg, 1.57 mmol, 

31% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.94 (d, J = 4.0 Hz, 1H), 7.80 (dd, J = 1.2, 0.6 Hz, 1H), 

7.40 (d, J = 4.0 Hz, 1H), 7.35 (d, J = 1.1 Hz, 1H), 3.80 (d, J = 0.5 Hz, 3H), 2.53 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 190.5, 142.3, 141.3, 139.0, 134.7, 129.9, 125.8, 125.8, 

32.8, 26.3. 

HRMS: (EI+) calculated for [C12H10N2O+H]+ 207.0587, found 207.0603 

FTIR (ATR, cm–1): 3086, 1640, 1513, 1490, 1442, 1349, 1274, 1222, 1125, 1069, 1028, 

965, 928, 868, 838, 805, 667. 

 

 

 

5-(Benzofuran-5-yl)-1-methyl-1H-imidazole (A3).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge Phenyl, 250 mm x 30 mm, 

5-μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase 

B: 95:5 acetonitrile: water with ammonium acetate; Gradient: 22% B over 18 minutes, then 

isocratic B; Flow Rate: 80 mL/min; Column Temperature: 25 °C. Fraction collection was triggered 

by MS signals. Fractions containing the desired product were combined and dried via centrifugal 

evaporation to give the title compound (289 mg, 1.46 mmol, 29% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.05 (d, J=2.1 Hz, 1H), 7.75 (d, J=1.6 Hz, 1H), 7.70 

(s, 1H), 7.67 (d, J=8.5 Hz, 1H), 7.41 (dd, J=8.5, 1.8 Hz, 1H), 7.02 (s, 1H), 7.00 (s, 1H), 3.67 (s, 

3H). 

 13C NMR (101 MHz, DMSO-d6): δ 153.7, 146.8, 139.3, 132.9, 127.7, 127.2, 124.8, 124.7, 

120.8, 111.5, 106.8, 32.2.  

HRMS: (EI+) calculated for [C12H10N2O+H]+ 199.0866, found 199.0883 

FTIR (ATR, cm–1): 3093, 3045, 1610, 1576, 1498, 1457, 1253, 1226, 1163, 1110, 1021, 

928, 902, 805, 745, 711. 

 

 

 

5-([1,1'-Biphenyl]-2-yl)-1-methyl-1H-imidazole (A4).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 17% B, 17-57% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (175 mg, 0.75 mmol, 15% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 7.59 - 7.35 (m, 5H), 7.34 - 7.21 (m, 3H), 7.16 (d, J=7.2 

Hz, 2H), 6.76 (s, 1H), 3.00 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 141.1, 140.6, 138.2, 131.8, 130.1, 129.1, 128.9, 128.6, 

128.3, 128.2, 127.8, 127.6, 127.0, 31.1. 

HRMS: (EI+) calculated for [C16H14N2+Na]+ 257.1049, found 257.1038. 

FTIR (ATR, cm–1): 3056, 1490, 1371, 1256, 1058, 1006, 913, 812, 767, 700. 

 

 

 

N-(tert-Butyl)-5-(1-methyl-1H-imidazol-5-yl)pyridine-3-sulfonamide (A5).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 17% B, 17-57% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (250 mg, 0.85 mmol, 17% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 9.10 (s, 1H), 9.01 - 8.82 (m, 1H), 8.48 (s, 1H), 7.38 

(s, 1H), 7.09 (s, 1H), 3.85 (s, 3H), 1.14 (s, 9H). 
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13C NMR (101 MHz, DMSO-d6): δ 150.7, 146.0, 142.7, 141.1, 133.0, 128.7, 127.1, 125.1, 

53.9, 34.7, 30.2. 

HRMS: (EI+) calculated for [C13H18N4O2S+H]+ 295.1223, found 295.1247. 

FTIR (ATR, cm–1): 3063, 2955, 2922, 2851, 1625, 1543, 1494, 1442, 1394, 1364, 1315, 

1230, 1148, 1103, 1051, 1006, 928, 879, 820, 693. 

 

 

 

5-(2-fluorophenyl)-1-methyl-1H-imidazole (A7).  

Prepared according to the general procedure B. The title compound was isolated via flash 

chromatography (0 to 40% ethyl acetate in hexanes gradient with 5% triethylamine additive) as an 

orange oil (351 mg, 1.99 mmol, 40% yield).  

 

1H NMR (500 MHz, CDCl3): δ 7.56 (s, 1H); 7.30-7.44 (m, 2H); 7.13-7.25 (m, 2H); 7.11 

(d, J = 1.1 Hz, 1H); 3.59 (d, J = 1.4 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 160.0 (d, J = 247.8 Hz); 139.3; 132.1 (d, J = 2.9 Hz); 

130.5 (d, J = 8.2 Hz); 129.7; 127.8; 124.6 (d, J = 3.6 Hz); 117.9 (d, J = 15.5 Hz); 116.1 (d, J = 22.1 

Hz); 32.3 (d, J = 5.2 Hz). 

19F NMR (282 MHz, CDCl3): δ -113.1. 

HRMS: (EI+) calculated for C10H10FN2: 177.0823; found: 177.0824.  

FTIR (ATR, cm–1): 3278.1, 2930.2, 1640.0, 1556.0, 1488.9, 1477.2, 1447.6, 1419.4, 

1227.5, 1207.7, 1110.1, 916.4, 815.3, 758.4, 649.9, 543.0. 
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1-Benzyl-5-(1-methyl-1H-imidazol-5-yl)-1H-indole (A9).  

Prepared according to the general procedure A. The title compound was isolated via 

reversed phase chromatography (373 mg, 1.30 mmol, 26% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.64 (t, J = 1.6 Hz, 2H), 7.57 (d, J = 3.1 Hz, 1H), 7.52 

(d, J = 8.5 Hz, 1H), 7.36 – 7.28 (m, 2H), 7.28 – 7.21 (m, 3H), 7.19 (dd, J = 8.5, 1.7 Hz, 1H), 6.94 

(d, J = 1.2 Hz, 1H), 6.54 (dd, J = 3.2, 0.8 Hz, 1H), 5.45 (s, 2H), 3.64 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 137.2, 136.5, 133.5, 132.3, 128.4, 126.9, 126.9, 125.7, 

125.4, 125.0, 120.3, 119.2, 118.5, 108.8, 99.7, 47.6, 30.5. 

HRMS: (EI+) calculated for [C19H17N3+H] + 288.1495, found 288.1519. 

FTIR (ATR, cm–1): 3101, 3026, 1703, 1476, 1446, 1356, 1328, 1267, 1230, 1181, 1110, 

1028, 928, 894, 805, 767, 726, 700. 

 

 

 

3-(1-Methyl-1H-imidazol-5-yl)-5-(trifluoromethyl)pyridine (A10).  
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Prepared according to the general procedure A. The crude material was purified via 

preparative SFC with the following conditions: Column: Chiralpak IA, 250 mm x 30 mm, 5-μm 

particles; Mobile Phase: 10% Methanol / 90% CO2; Flow Rate: 85 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (689 mg, 3.04 mmol, 61% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 9.04 (br s, 1H), 8.95 (br s, 1H), 8.34 (br s, 1H), 7.83 

(s, 1H), 7.34 (s, 1H), 3.76 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 151.8, 144.6 (q, J=3.7 Hz), 141.2, 131.6 (q, J=3.7 

Hz), 129.8, 128.1, 126.3, 125.3 (q, J=32.3 Hz), 122.2, 32.4.  

19F NMR (376 MHz, DMSO-d6): δ -60.9. 

HRMS: (EI+) calculated for [C10H8F3N3+H] + 228.0743, found 228.0754. 

FTIR (ATR, cm–1): 2929, 1546, 1494, 1461, 1412, 1345, 1274, 1226, 1170, 1092, 916, 

820, 715, 685. 

 

 

B-Series 

 

 

Ethyl 1-ethyl-4-(1-isopropyl-1H-imidazol-5-yl)-1H-pyrrole-2-carboxylate (B1).  
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Prepared according to the general procedure B. The title compound was isolated via flash 

chromatography (5 to 30% acetone in hexanes gradient with 5% triethylamine additive) as a yellow 

oil (68.8 mg, 250 μmol, 5% yield). 

 

1H NMR (500 MHz, CDCl3): δ 7.62 (d, J = 1.1 Hz, 1H); 6.95 (d, J = 1.1 Hz, 1H): 6.95 (d, 

J = 2.0 Hz, 1H): 6.90 (d, J = 2.0 Hz, 1H); 4.47 – 4.36 (m, 3H); 4.31 (q, J = 7.1 Hz, 2H); 1.47 – 

1.42 (m, 9H); 1.37 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 160.9; 134.1; 127.4; 126.8; 126.4; 122.6; 117.6; 112.2; 

60.2; 46.9; 44.5; 24.1; 17.1; 14.6. 

HRMS: (EI+) calculated for [C15H21N3O2+H]+ 276.1706, found 276.1707.  

FTIR (ATR, cm–1): 3365; 3110; 2977; 2933; 2854; 1703; 1653; 1477; 1446; 1372; 1288; 

1229; 1114; 1096; 1075; 907; 812; 663. 

 

 

 

1-(5-(1-Isopropyl-1H-imidazol-5-yl)thiophen-2-yl)ethan-1-one (B2).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 11% B, 11-51% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 
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25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation. (406 mg, 1.74 mmol, 35% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.03 (s, 1H), 7.96 (d, J=3.9 Hz, 1H), 7.33 (d, J=3.9 

Hz, 1H), 7.24 (d, J=0.9 Hz, 1H), 4.60 (hept, J=6.7 Hz, 1H), 2.58 - 2.52 (s, 3H), 1.51 -1.35 (m, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 190.6, 143.1, 138.7, 137.3, 134.6, 130.0, 127.1, 124.4, 

47.3, 26.3, 23.2.   

HRMS: (EI+) calculated for [C12H14N2OS+H] + 235.0900, found 235.0915. 

FTIR (ATR, cm–1): 3116, 3049, 2978, 2881, 1714, 1640, 1565, 1438, 1356, 1282, 1230, 

1039, 965, 928, 808. 

 

 

 

5-(Benzofuran-5-yl)-1-isopropyl-1H-imidazole (B3).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 19% B, 19-59% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (237 mg, 1.05 mmol, 21% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.07 (d, J=2.2 Hz, 1H), 7.92 (s, 1H), 7.69 (d, J=8.2 

Hz, 1H), 7.67 (s, 1H), 7.31 (dd, J=8.5, 1.8 Hz, 1H), 7.02 (dd, J=2.2, 0.9 Hz, 1H), 6.92 (s, 1H), 4.36 

(dt, J=13.4, 6.7 Hz, 1H), 1.38 (d, J=6.7 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 153.9, 146.8, 135.0, 132.0, 127.7, 125.6, 125.0, 121.8, 

111.5, 106.8, 46.4, 23.5.   

HRMS: (EI+) calculated for [C14H14N2O+H] + 227.1179, found 227.1201. 

FTIR (ATR, cm–1): 3116, 2978, 1703, 1457, 1397, 1371, 1259, 1166, 1110, 1028, 931, 

812, 771, 738. 

 

 

 

5-([1,1'-Biphenyl]-2-yl)-1-isopropyl-1H-imidazole (B4).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 28% B, 28-68% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (124 mg, 0.47 mmol, 9% yield).  
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1H NMR (500 MHz, DMSO-d6): δ 7.68 (s, 1H), 7.58 - 7.44 (m, 3H), 7.40 (dd, J=7.6, 1.0 

Hz, 1H), 7.33 - 7.23 (m, 3H), 7.16 (d, J=7.0 Hz, 2H), 6.85 (s, 1H), 3.61 (hept, J=6.7 Hz, 1H), 0.86 

(d, J=6.7 Hz, 6H).  

13C NMR (126MHz, DMSO-d6): δ 141.5, 140.8, 134.7, 132.5, 131.2, 130.6, 129.7, 129.2, 

128.7, 128.6, 128.2, 128.1, 127.4, 46.8, 23.3. 

HRMS: (EI+) calculated for [C18H18N2+H] + 263.1543, found 263.1568. 

FTIR (ATR, cm–1): 2978, 2929, 1707, 1446, 1394, 1360, 1274, 1218, 1159, 1107, 1006, 

887, 834, 767, 741, 697. 

 

 

 

N-(tert-Butyl)-5-(1-isopropyl-1H-imidazol-5-yl)pyridine-3-sulfonamide (B5).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 14% B, 14-54% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (410 mg, 1.27 mmol, 25% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.97 (d, J=2.2 Hz, 1H), 8.85 (d, J=2.1 Hz, 1H), 8.18 

(t, J=2.1 Hz, 1H), 8.06 (s, 1H), 7.17 (d, J=1.0 Hz, 1H), 4.34 (hept, J=6.7 Hz, 1H), 1.40 (d, J=6.7 

Hz, 6H), 1.13 (s, 9H). 

13C NMR (101 MHz, DMSO-d6): δ 151.8, 145.7, 140.4, 137.0, 133.1, 129.3, 127.2, 126.5, 

53.8, 42.1, 29.7, 23.3.   

HRMS: (EI+) calculated for [C15H22N4O2S+Na] + 345.1356, found 345.1363.  

FTIR (ATR, cm–1): 3063, 2981, 2709, 1546, 1479, 1397, 1319, 1233, 1148, 1103, 1047, 

1006, 931, 834, 711, 663. 

 

 

 

5-(2-fluorophenyl)-1-isopropyl-1H-imidazole (B7).  

Prepared according to the general procedure B. The title compound was isolated via flash 

chromatography (5 to 30% ethyl acetate in hexanes gradient with 5% triethylamine additive) as a 

red oil (403 mg, 1.98 mmol, 40% yield).  

 

1H NMR (500 MHz, CDCl3): δ 7.71 (s, 1H); 7.46 – 7.36 (m, 1H); 7.32 (td, J = 7.5 Hz, 1.9 

Hz, 1H); 7.13 – 7.26 (m, 2H); 7.04 (d, J = 1.1 Hz, 1H); 4.18 (hept, J = 6.7 Hz, 1H); 1.42 (d, J = 

6.7 Hz, 6H). 
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13C NMR (126 MHz, CDCl3): δ 160.2 (d, J = 247.5 Hz); 135.1; 132.6 (d, J = 2.7 Hz); 

130.7 (d, J = 8.1 Hz); 129.0; 126.4; 124.6 (d, J = 3.8 Hz); 118.3 (d, J = 15.6 Hz); 116.0 (d, J = 21.9 

Hz); 47.6 (d, J = 2.6 Hz); 24.1 

19F NMR (282 MHz, CDCl3): δ -112.8. 

HRMS: (EI+) calculated for [C12H13FN2+H]+ 205.1133; found: 205.1136.  

FTIR (ATR, cm–1): 3397; 2980; 2937; 1639.5; 1580; 1556; 1486; 1453; 1372; 1220; 1114; 

919; 816; 762; 662. 

 

 

 

1-Benzyl-5-(1-isopropyl-1H-imidazol-5-yl)-1H-indole (B9). 

 Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 32% B, 32-72% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (305 mg, 0.97 mmol, 19% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 7.87 (s, 1H), 7.58 (d, J=3.2 Hz, 1H), 7.54 (m, 2H), 

7.36 - 7.29 (m, 2H), 7.29 - 7.20 (m, 3H), 7.09 (dd, J=8.4, 1.7 Hz, 1H), 6.84 (d, J=0.9 Hz, 1H), 6.54 

(d, J=2.8 Hz, 1H), 5.45 (s, 2H), 4.35 (hept, J=6.7 Hz, 1H), 1.36 (d, J=6.7 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 138.1, 135.3, 134.5, 133.1, 130.1, 128.6, 128.5, 127.4, 

127.1, 126.4, 122.5, 121.1, 121.0, 110.4, 101.3, 49.2, 46.2, 23.6.   

HRMS: (EI+) calculated for [C21H21N3+H] + 316.1808, found 316.1831. 

FTIR (ATR, cm–1): 3090, 2974, 2929, 1476, 1442, 1390, 1356, 1263, 1181, 1110, 1028, 

890, 812, 775, 730, 697. 

 

 

 

3-(1-Isopropyl-1H-imidazol-5-yl)-5-(trifluoromethyl)pyridine (B10).  

Prepared according to the general procedure A. The title compound was isolated via 

reversed phase chromatography (106 mg, 0.42 mmol, 8% yield).  

 

1H NMR (500 MHz, DMSO-d6): δ  9.14 - 9.03 (m, 2H), 8.37 (s, 1H), 7.63 (s, 1H), 7.17 

(s, 1H), 4.59 (hept, J=6.7 Hz, 1H), 1.47 (d, J=6.7 Hz, 6H). 

13C NMR (126 MHz, DMSO-d6): δ 153.0, 146.1, 142.2, 133.6, 129.8, 128.0, 125.7 (q, 

J=32.7 Hz), 123.9 (q, J=1.0 Hz), 119.1, 48.7, 23.8. 

19F NMR (470 MHz, DMSO-d6): δ -61.29.  

HRMS: (EI+) calculated for [C12H12F3N3+H]+ 256.1056, found 256.1078. 

FTIR (ATR, cm–1): 3108, 1666, 1427, 1345, 1297, 1177, 1125, 1021, 913, 831, 797, 715. 



 

199 
 

 

 

C-Series 

 

Ethyl 4-(4-cyano-1-methyl-1H-imidazol-5-yl)-1-ethyl-1H-pyrrole-2-carboxylate (C1).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with 0.1% trifluoroacetic acid; Mobile 

Phase B: 95:5 acetonitrile: water with 0.1% trifluoroacetic acid; Gradient: a 0-minute hold at 16% 

B, 16-56% B over 20 minutes, then a 2-minute hold at 100% B; Flow Rate: 40 mL/min; Column 

Temperature: 25 °C. Fraction collection was triggered by MS signals. Fractions containing the 

desired product were combined and dried via centrifugal evaporation (209 mg, 0.77 mmol, 15% 

yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.85 (s, 1H), 7.69 (s, 1H), 7.21 (s, 1H), 4.39 (q, J=7.1 

Hz, 2H), 4.27 (q, J=7.1 Hz, 2H), 3.76 (s, 3H), 1.38 - 1.26 (m, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 159.7, 140.4, 136.2, 128.0, 122.2, 116.6, 116.1, 108.9, 

108.2, 59.9, 43.9, 33.1, 16.8, 14.2.   

HRMS: (EI+) calculated for [C14H16N4O2+H] + 273.1346, found 273.1358. 

FTIR (ATR, cm–1): 3138, 3101, 2978, 2221, 1695, 1599, 1509, 1449, 1379, 1282, 1248, 

1207, 1174, 1080, 965, 924, 834, 752. 
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5-(5-Acetylthiophen-2-yl)-1-methyl-1H-imidazole-4-carbonitrile (C2).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 1% B, 1-41% B over 

20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 25 °C. 

Fraction collection was triggered by UV signals. Fractions containing the desired product were 

combined and dried via centrifugal evaporation (125 mg, 0.54 mmol, 11% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.27 (d, J=3.9 Hz, 1H), 7.23 (s, 1H), 6.87 (d, J=4.0 

Hz, 1H), 3.11 (s, 3H), 1.88 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 191.7, 146.8, 142.8, 134.8, 134.4, 134.3, 130.9, 115.8, 

113.3, 33.9, 26.6.   

HRMS: (EI+) calculated for [C11H9N3OS+H] + 232.0539, found 232.0547. 

FTIR (ATR, cm–1): 3104, 2228, 1654, 1498, 1442, 1371, 1323, 1274, 1185, 1092, 1043, 

965, 935, 849, 820. 
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5-(Benzofuran-5-yl)-1-methyl-1H-imidazole-4-carbonitrile (C3). 

 Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile 

Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: a 0-minute hold at 

11% B, 11-51% B over 20 minutes, then a 2-minute hold at 100% B; Flow Rate: 40 mL/min; 

Column Temperature: 25 °C. Fraction collection was triggered by MS signals. Fractions containing 

the desired product were combined and dried via centrifugal evaporation (538 mg, 2.41 mmol, 

48% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.14 (s, 1H), 7.99 (s, 1H), 7.90 (s, 1H), 7.82 (d, J=8.6 

Hz, 1H), 7.51 (d, J=8.6 Hz, 1H), 7.09 (s, 1H), 3.65 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 154.7, 147.4, 141.7, 140.8, 127.9, 125.4, 122.5, 120.9, 

116.1, 112.1, 110.8, 106.9, 32.8.   

HRMS: (EI+) calculated for [C13H9N3O+H] + 224.0818, found 224.0827. 

FTIR (ATR, cm–1): 3116, 3041, 2225, 1509, 1457, 1382, 1263, 1203, 1159, 1028, 872, 

820, 775, 685. 
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5-([1,1'-Biphenyl]-2-yl)-1-methyl-1H-imidazole-4-carbonitrile (C4).  

Prepared according to the general procedure A. The title compound was isolated via 

reversed phase chromatography (174 mg, 0.67 mmol, 13% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.81 (s, 1H), 7.74 - 7.64 (m, 1H), 7.64 - 7.48 (m, 3H), 

7.42 - 7.26 (m, 3H), 7.20 - 7.00 (m, 2H), 3.17 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 142.5, 141.6, 140.6, 139.9, 132.1, 131.4, 130.9, 129.0, 

128.9, 128.5, 128.0, 124.8, 116.0, 112.6, 32.6.  

HRMS: (EI+) calculated for [C17H13N3+H] + 260.1182, found 260.1188. 

FTIR (ATR, cm–1): 3056, 2228, 1505, 1446, 1304, 1241, 1200, 1118, 998, 831, 779, 749, 

704, 678. 

 

 

 

N-(tert-Butyl)-5-(4-cyano-1-methyl-1H-imidazol-5-yl)pyridine-3-sulfonamide (C5).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 
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95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 7% B, 7-47% B over 

20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 25 °C. 

Fraction collection was triggered by MS signals. Fractions containing the desired product were 

combined and dried via centrifugal evaporation (960 mg, 3.01 mmol, 60% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 9.12 (s, 1H), 9.03 (s, 1H), 8.42 (s, 1H), 8.10 (s, 1H), 

7.97 (s, 1H), 3.73 (s, 3H), 1.15 (s, 9H). 

13C NMR (101 MHz, DMSO-d6): δ 151.9, 147.6, 142.0, 140.7, 137.0, 134.3, 123.0, 115.3, 

112.3, 54.0, 32.9, 29.7.   

HRMS: (EI+) calculated for [C14H17N5O2S+H] + 320.1176, found 320.1186. 

FTIR (ATR, cm–1): 3138, 2967, 2862, 2232, 1509, 1468, 1442, 1367, 1323, 1207, 1148, 

1103, 995, 853, 808, 752, 700, 663. 

 

 

 

5-(2-Fluorophenyl)-1-methyl-1H-imidazole-4-carbonitrile (C7).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 250 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 11.5-minute hold at 20% B,; Flow 

Rate: 40 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by MS signals. 
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Fractions containing the desired product were combined and dried via centrifugal evaporation (271 

mg, 1.35 mmol, 27% yield).  

 

1H NMR (600 MHz, DMSO-d6): δ 8.03 (s, 1H), 7.67 - 7.64 (m, 1H), 7.59 (td, J = 7.5, 1.8 

Hz, 1H), 7.46 - 7.44 (m, 1H), 7.42 (td, J = 7.5, 1.1 Hz, 1H), 3.58 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 159.3 (d, J = 248.1 Hz), 141.6, 135.6, 133.1 (d, J = 

8.5 Hz), 132.1 (d, J = 1.6 Hz), 125.5 (d, J = 3.6 Hz), 116.6 (d, J = 21.3 Hz), 115.5, 114.0 (d, J = 

15.0 Hz), 112.6, 32.8. 

19F NMR (376 MHz, CDCl3): δ 113.0. 

HRMS: (EI+) calculated for [C11H8FN3+H] + 202.0775, found 202.0781. 

FTIR (ATR, cm–1): 31116, 2225, 1502, 1478, 1379, 1304, 1274, 1215, 1189, 1107, 1051, 

1002, 946, 872, 820, 764. 

 

 

 

5-(1-Benzyl-1H-indol-5-yl)-1-methyl-1H-imidazole-4-carbonitrile (C9).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 27% B, 27-67% B 
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over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation. (665 mg, 2.13 mmol, 43% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.93 (s, 1H), 7.78 (d, J=1.3 Hz, 1H), 7.68 - 7.66 (m, 

1H), 7.65 (s, 1H), 7.38 - 7.18 (m, 6H), 6.62 (d, J=3.2 Hz, 1H), 5.49 (s, 2H), 3.65 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 142.9, 140.5, 137.9, 136.0, 130.7, 128.6, 128.4, 127.5, 

127.1, 121.9, 121.7, 116.8, 116.5, 110.9, 110.2, 101.7, 49.2, 32.8.   

HRMS: (EI+) calculated for [C20H16N4+H] + 313.1448, found 313.1454. 

FTIR (ATR, cm–1): 3116, 2225, 1505, 1472, 1379, 1334, 1285, 1203, 1174, 1080, 879, 

812, 734, 700. 

 

 

 

1-Methyl-5-(5-(trifluoromethyl)pyridin-3-yl)-1H-imidazole-4-carbonitrile (C10).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 9% B, 9-49% B over 

20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 25 °C. 

Fraction collection was triggered by MS signals. Fractions containing the desired product were 

combined and dried via centrifugal evaporation (779 mg, 3.09 mmol, 62% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 9.16 (d, J=1.2 Hz, 1H), 9.12 (d, J=1.8 Hz, 1H), 8.55 

(s, 1H), 8.11 (s, 1H), 3.74 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 153.2, 147.2 (q, J=3.7 Hz), 142.0, 136.7, 134.0 (q, 

J=3.7 Hz), 125.4 (q, J=32.8 Hz), 124.6, 123.1, 121.9, 115.3, 112.5, 32.9.  

19F NMR (376 MHz, DMSO-d6): δ -60.9. 

HRMS: (EI+) calculated for [C11H7F3N4+H] + 253.0696, found 253.0706. 

FTIR (ATR, cm–1): 3108, 3056, 2225, 1509, 1461, 1349, 1256, 1148, 1121, 1054, 1010, 

916, 857, 827, 749, 711. 

 

 

D-Series 

 

 

Ethyl 1-ethyl-4-(2-isopropyl-1-methyl-1H-imidazol-5-yl)-1H-pyrrole-2-carboxylate 

(D1).  

Prepared according to the general procedure A. The title compound was isolated via 

reversed phase chromatography (152 mg, 0.53 mmol, 11% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.37 (d, J=2.0 Hz, 1H), 6.95 (d, J=2.1 Hz, 1H), 6.78 

(s, 1H), 4.33 (q, J=7.1 Hz, 2H), 4.23 (q, J=7.1 Hz, 2H), 3.54 (s, 3H), 3.14 - 2.98 (m, 1H), 1.32 (t, 

J=7.1 Hz, 3H), 1.28 (t, J=7.1 Hz, 3H), 1.21 (d, J=6.8 Hz, 6H). 
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13C NMR (101 MHz, DMSO-d6): δ 160.0, 152.4, 126.7, 123.8, 121.3, 116.2, 112.4, 59.6, 

48.6, 43.5, 30.5, 25.5, 21.4, 16.9, 14.3.   

HRMS: (EI+) calculated for [C16H23N3O2+H] + 290.1863, found 290.1875. 

FTIR (ATR, cm–1): 2974, 1699, 1461, 1401, 1282, 1233, 1095, 1017, 801, 760. 

 

 

 

1-(5-(2-Isopropyl-1-methyl-1H-imidazol-5-yl)thiophen-2-yl)ethan-1-one (D2). 

 Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge Phenyl, 250 mm x 19 mm, 

5-μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase 

B: 95:5 acetonitrile: water with trifluoroacetic acid; Gradient: a 13-minute hold at 25% B; Flow 

Rate: 40 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by MS signals. 

Fractions containing the desired product were combined and dried via centrifugal evaporation (551 

mg, 2.22 mmol, 44% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.94 (d, J=4.0 Hz, 1H), 7.34 (d, J=3.9 Hz, 1H), 7.18 

(s, 1H), 3.41 (s, 3H), 3.14 (hept, J=6.8 Hz, 1H), 2.58 - 2.52 (m, 3H), 1.24 (d, J=6.8 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 190.9, 156.0, 142.5, 140.2, 135.2, 128.6, 126.2, 126.1, 

31.6, 26.8, 26.0, 21.8.   

HRMS: (EI+) calculated for [C13H16N2OS+H] + 249.1056, found 249.1062. 
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FTIR (ATR, cm–1): 2976, 2929, 2870, 1654, 1565, 1513, 1461, 1360, 1315, 1282, 1077, 

1036, 991, 939, 827, 797. 

 

 

 

5-(Benzofuran-5-yl)-2-isopropyl-1-methyl-1H-imidazole (D3).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 15% B, 15-55% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (588 mg, 2.45 mmol, 49% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.04 (d, J=2.1 Hz, 1H), 7.69 (s, 1H), 7.66 (d, J=8.6 

Hz, 1H), 7.35 (dd, J=8.5, 1.8 Hz, 1H), 6.99 (dd, J=2.2, 0.9 Hz, 1H), 6.86 (s, 1H), 3.54 (s, 3H), 3.11 

(hept, J=6.8 Hz, 1H), 1.26 (d, J=6.8 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 153.4, 152.9, 146.5, 132.5, 127.4, 125.1, 124.9, 120.9, 

111.2, 106.6, 30.4, 25.5, 21.2.  

HRMS: (EI+) calculated for [C15H16N2O+H] + 241.1335, found 241.1345. 

FTIR (ATR, cm–1): 3086, 3045, 2974, 1457, 1312, 1129, 1069, 1021, 954, 905, 812, 782, 

749. 
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5-([1,1'-Biphenyl]-2-yl)-2-isopropyl-1-methyl-1H-imidazole (D4).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile 

Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: a 0-minute hold at 

26% B, 26-66% B over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 45 mL/min; 

Column Temperature: 25 °C. Fraction collection was triggered by MS signals. Fractions containing 

the desired product were combined and dried via centrifugal evaporation (940 mg, 3.41 mmol, 

68% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.53 (d, J=4.9 Hz, 2H), 7.49 - 7.35 (m, 2H), 7.35 - 

7.20 (m, 3H), 7.20 - 7.04 (m, 2H), 6.71 (s, 1H), 2.90 - 2.78 (m, 1H), 2.74 (s, 3H), 1.09 (d, J=6.7 

Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 152.6, 140.7, 140.5, 131.8, 131.7, 129.9, 129.0, 128.5, 

128.5, 128.1, 127.6, 126.9, 125.8, 29.7, 25.4, 21.2. 

HRMS: (EI+) calculated for [C19H20N2+H] + 277.1699, found 277.1710. 

FTIR (ATR, cm–1): 2970, 243, 1707, 1449, 1364, 1285, 1159, 1073, 1006, 954, 883, 834, 

745, 704.  
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N-(tert-Butyl)-5-(2-isopropyl-1-methyl-1H-imidazol-5-yl)pyridine-3-sulfonamide 

(D5).  

Prepared according to the general procedure A. The crude material was purified via 

preparative SFC with the following conditions: Column: Chiralpak, 250 mm x 21 mm, 5-μm 

particles; Mobile Phase: 12% Methanol/ CO2; Flow Rate: 45 mL/min 150 Bar; Column 

Temperature: 40 C. Fraction collection was triggered by MS signals. Fractions containing the 

desired product were combined and dried via centrifugal evaporation (970 mg, 2.89 mmol, 58% 

yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.91 (d, J=2.1 Hz, 1H), 8.89 (d, J=2.0 Hz, 1H), 8.22 

(t, J=2.1 Hz, 1H), 7.84 (br s, 1H), 7.14 (s, 1H), 3.62 (s, 3H), 3.15 (hept, J=6.8 Hz, 1H), 1.26 (d, 

J=6.8 Hz, 6H), 1.14 (s, 9H). 

13C NMR (101 MHz, DMSO-d6): δ 155.3, 151.0, 144.9, 140.4, 132.1, 128.1, 127.5, 126.7, 

53.8, 31.0, 29.8, 25.6, 21.3.  

HRMS: (EI+) calculated for [C16H24N4O2S+Na] + 359.1512, found 359.1516. 

FTIR (ATR, cm–1): 2967, 2795, 2672, 1543, 1490, 1394, 1323, 1140, 1102, 1006, 834, 

704. 
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5-(2-Fluorophenyl)-2-isopropyl-1-methyl-1H-imidazole (D7).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 16% B, 16-56% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (318 mg, 1.46 mmol, 29% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.53 - 7.38 (m, 2H), 7.38 - 7.23 (m, 2H), 6.88 (s, 1H), 

3.44 (d, J=1.5 Hz, 3H), 3.12 (hept, J=6.8 Hz, 1H), 1.25 (d, J=6.8 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 161.4 (d, J=184.9 Hz), 158.0, 153.7, 131.8 (d, J=2.9 

Hz), 130.3 (d, J=8.8 Hz), 126.8 (d, J=1.5 Hz), 124.8 (d, J=2.9 Hz), 118.1 (d, J=15.4 Hz), 115.9 

(d, J=22.0 Hz), 30.5, 25.6, 21.4. 

19F NMR (376 MHz, DMSO-d6): δ -113.8. 

HRMS: (EI+) calculated for [C13H15FN2+H]+ 219.1292, found 219.1303. 

FTIR (ATR, cm–1): 2970, 2929, 1707, 1673, 1464, 1386, 1259, 1159, 1099, 946, 816, 760, 

678. 
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1-Benzyl-5-(2-isopropyl-1-methyl-1H-imidazol-5-yl)-1H-indole (D9).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 31% B, 31-71% B 

over 15 minutes, then a 0-minute hold at 100% B; Flow Rate: 45 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (938 mg, 2.85 mmol, 57% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.58 (s, 1H), 7.56 (d, J=3.1 Hz, 1H), 7.51 (d, J=8.4 

Hz, 1H), 7.35 - 7.28 (m, 2H), 7.28 - 7.19 (m, 3H), 7.14 (dd, J=8.5, 1.7 Hz, 1H), 6.78 (s, 1H), 6.53 

(d, J=3.1 Hz, 1H), 5.45 (s, 2H), 3.52 (s, 3H), 3.09 (hept, J=6.8 Hz, 1H), 1.25 (d, J=6.7 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 152.6, 138.2, 135.1, 133.8, 129.9, 128.5, 128.5, 127.4, 

127.0, 124.5, 122.2, 121.4, 120.5, 110.3, 101.3, 49.2, 30.6, 25.7, 21.5. 

HRMS: (EI+) calculated for [C22H23N3+H] + 330.1965, found 330.1973. 

FTIR (ATR, cm–1): 2967, 2929, 2870, 1703, 1449, 1390, 1356, 1326, 1259, 1181, 1073, 

883, 801, 775, 723, 697. 
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3-(2-Isopropyl-1-methyl-1H-imidazol-5-yl)-5-(trifluoromethyl)pyridine (D10).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 16% B, 16-56% B 

over 15 minutes, then a 0-minute hold at 100% B; Flow Rate: 45 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by UV signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (755 mg, 2.8 mmol, 56% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.99 (d, J=1.0 Hz, 1H), 8.93 (d, J=1.22 Hz, 1H), 8.29 

(s, 1H), 7.17 (s, 1H), 3.62 (s, 3H), 3.16 (hept, J=6.8 Hz, 1H), 1.26 (d, J=6.7 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 155.2, 152.1, 144.3 (q, J=4.4 Hz), 131.9 (q, J=3.4 

Hz), 128.0, 127.8, 126.8, 125.3 (q, J=32.3 Hz), 122.2, 30.9, 25.6, 21.3.  

19F NMR (376 MHz, DMSO-d6): δ -60.9. 

HRMS: (EI+) calculated for [C13H14F3N3+H] + 270.1213, found 270.1225. 

FTIR (ATR, cm–1): 3034, 2985, 2940, 1546, 1494, 1326, 1274, 1230, 1177, 1121, 1095, 

1047, 950, 820, 711. 

 

 

E-Series 
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Ethyl 4-(1-benzyl-2,4-dimethyl-1H-imidazol-5-yl)-1-ethyl-1H-pyrrole-2-carboxylate 

(E1).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 250 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 11-minute hold at 41% B; Flow Rate: 

80 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by UV signals. 

Fractions containing the desired product were combined and dried via centrifugal evaporation (192 

mg, 0.55 mmol, 11% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.34 - 7.22 (m, 3H), 7.10 (d, J=1.7 Hz, 1H), 6.90 (br 

d, J=7.3 Hz, 2H), 6.64 (d, J=1.7 Hz, 1H), 5.06 (s, 2H), 4.31 - 4.13 (m, 4H), 2.16 (s, 3H), 2.07 (s, 

3H), 1.29 - 1.19 (m, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 159.9, 142.9, 137.9, 132.3, 128.7, 128.0, 127.1, 125.7, 

121.9, 121.2, 117.3, 111.9, 59.5, 46.4, 43.4, 16.8, 14.2, 13.4, 13.1.   

HRMS: (EI+) calculated for C21H25N3O2+H] + 352.2020, found 352.2041. 

FTIR (ATR, cm–1): 2981, 2933, 1699, 1449, 1416, 1375, 1278, 1237, 1203, 1121, 1017, 

857, 797, 760. 
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1-(5-(1-Benzyl-2,4-dimethyl-1H-imidazol-5-yl)thiophen-2-yl)ethan-1-one (E2).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 250 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 10-minute hold at 35% B; Flow Rate: 

80 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by UV signals. 

Fractions containing the desired product were combined and dried via centrifugal evaporation (553 

mg, 1.78 mmol, 36% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.88 (d, J=3.9 Hz, 1H), 7.39 - 7.29 (m, 2H), 7.29 - 

7.21 (m, 1H), 7.03 (d, J=3.9 Hz, 1H), 6.91 (d, J=7.5 Hz, 2H), 5.23 (s, 2H), 2.24 (s, 3H), 2.20 (m, 

6H). 

13C NMR (101 MHz, DMSO-d6): δ 190.5, 145.8, 143.4, 139.4, 137.0, 136.6, 134.3, 128.8, 

128.1, 127.3, 125.6, 120.6, 46.8, 26.3, 13.8, 13.1.   

HRMS: (EI+) calculated for [C18H18N2OS+H] + 311.1213, found 311.1236. 

FTIR (ATR, cm–1): 3063, 2914, 1647, 1584, 1498, 1453, 1412, 1356, 1274, 1107, 1073, 

1032, 991, 954, 898, 812, 738, 693. 
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5-(Benzofuran-5-yl)-1-benzyl-2,4-dimethyl-1H-imidazole (E3).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 22% B, 22-62% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (384 mg, 1.27 mmol, 25% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.03 - 7.93 (m, 1H), 7.65 - 7.54 (m, 1H), 7.54 - 7.46 

(m, 1H), 7.35 - 7.22 (m, 2H), 7.22 - 7.16 (m, 1H), 7.16 - 7.08 (m, 1H), 6.97 - 6.88 (m, 1H), 6.88 - 

6.78 (m, 2H), 5.10 - 4.93 (m, 2H), , 2.23 - 2.13 (m, 3H), 2.10 - 1.98 (m, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 153.8, 146.8, 143.5, 137.6, 132.6, 128.8, 128.3, 127.7, 

127.3, 126.4, 125.9, 125.3, 122.9, 111.6, 107.0, 45.3, 13.2, 13.1.   

HRMS: (EI+) calculated for [C20H18N2O+H] + 303.1492, found 303.1512. 

FTIR (ATR, cm–1): 2914, 1707, 1412, 1353, 1263, 1162, 1129, 1021, 875, 812, 767, 738. 
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5-([1,1'-biphenyl]-2-yl)-1-benzyl-2,4-dimethyl-1H-imidazole (E4). 

We could not synthesize this product in sufficient amount for characterizations. No 

reactivity was observed in HTE with any of the 24 ligands.  

 

 

 

5-(1-Benzyl-2,4-dimethyl-1H-imidazol-5-yl)-N-(tert-butyl)pyridine-3-sulfonamide 

(E5).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 35% B, 35-72% B 

over 30 minutes, then a 0-minute hold at 100% B; Flow Rate: 20 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (414 mg, 1.04 mmol, 21% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.84 (d, J=2.0 Hz, 1H), 8.59 (s, 1H), 7.97 (s, 1H), 7.29 

- 7.12 (m, 3H), 6.76 (br d, J=7.1 Hz, 2H), 5.11 (s, 2H), 2.27 (s, 3H), 2.06 (s, 3H), 1.00 (s, 9H). 

Ph

Me

MeN

NPh
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13C NMR (101 MHz, DMSO-d6): δ 152.5, 146.0, 145.9, 141.1, 137.0, 135.6, 134.8, 129.2, 

127.9, 127.2, 126.1, 123.8, 54.0, 47.2, 30.2, 13.3, 13.1.   

HRMS: (EI+) calculated for [C21H26N4O2S+H] + 399.1849, found 399.1869. 

FTIR (ATR, cm–1): 3052, 2967, 2840, 1595, 1550, 1446, 1394, 1326, 1148, 1002, 902, 

801, 745, 700. 

 

 

1-Benzyl-5-(2-fluorophenyl)-2,4-dimethyl-1H-imidazole (E7) 

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 250 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 17.5-minute hold at 35% B; Flow 

Rate: 80 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by MS signals. 

Fractions containing the desired product were combined and dried via centrifugal evaporation (103 

mg, 0.37 mmol, 7% yield).  

 

1H NMR (500 MHz, DMSO-d6): δ 7.47 - 7.39 (m, 1H), 7.31 - 7.18 (m, 6H), 6.84 (d, J=7.2 

Hz, 2H), 5.01 (br s, 2H), 2.24 (s, 3H), 2.01 (s, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 161.1, 159.2, 144.8, 137.7, 134.8, 133.0, 131.0 

(d, J=8.4 Hz), 129.0, 127.6, 126.3, 125.1 (br d, J=4.2 Hz), 122.0, 118.6, 118.5, 116.4 (d, J=23.0 

Hz), 47.2, 13.6, 13.4. 
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19F NMR (470 MHz, DMSO-d6): δ -113.28. 

HRMS: (EI+) calculated for [C18H17FN2+H] + 281.1449, found 281.1472. 

FTIR (ATR, cm–1): 2922, 1703, 1572, 1490, 1453, 1408, 1356, 1252, 1215, 1013, 879, 

816, 760, 693. 

 

 

 

1-Benzyl-5-(1-benzyl-2,4-dimethyl-1H-imidazol-5-yl)-1H-indole (E9).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 35% B, 35-72% B 

over 30 minutes, then a 0-minute hold at 100% B; Flow Rate: 20 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (413 mg, 1.06 mmol, 21% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 7.53 (d, J=3.1 Hz, 1H), 7.47 (d, J=8.6 Hz, 1H), 7.44 

- 7.36 (m, 1H), 7.36 - 7.13 (m, 8H), 6.94 (dd, J=8.4, 1.5 Hz, 1H), 6.85 (d, J=7.2 Hz, 2H), 6.46 (d, 

J=3.1 Hz, 1H), 5.40 (s, 2H), 5.02 (s, 2H), 2.15 (s, 3H), 2.04 (s, 3H). 
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13C NMR (101 MHz, DMSO-d6): δ 142.7, 138.1, 137.8, 135.0, 132.0, 129.8, 129.2, 128.6, 

128.5, 128.3, 127.4, 127.2, 127.0, 125.7, 123.2, 122.0, 121.3, 110.2, 101.2, 49.2, 46.3, 13.2, 13.2.   

HRMS: (EI+) calculated for [C27H25N3+H] + 392.2121, found 392.2140. 

FTIR (ATR, cm–1): 2933, 1572, 1408, 1356, 1252, 1177, 1077, 1028, 805, 723, 693. 

 

 

 

3-(1-Benzyl-2,4-dimethyl-1H-imidazol-5-yl)-5-(trifluoromethyl)pyridine (E10).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with 0.05% trifluoroacetic acid; Mobile 

Phase B: 95:5 acetonitrile: water with 0.05% trifluoroacetic acid; Gradient: a 0-minute hold at 13% 

B, 13-50% B over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 20 mL/min; Column 

Temperature: 25 °C. Fraction collection was triggered by MS signals. Fractions containing the 

desired product were combined and dried via centrifugal evaporation (171 mg, 0.52 mmol, 10% 

yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.88 (s, 1H), 8.69 (s, 1H), 7.89 (s, 1H), 7.37 - 7.11 (m, 

3H), 6.84 (d, J=7.2 Hz, 2H), 5.11 (s, 2H), 2.30 (s, 3H), 2.08 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 153.6, 145.3, 144.7 (q, J=4.4 Hz, 1C), 137.1, 135.4, 

133.4 (q, J=3.7 Hz, 1C), 128.7, 127.3, 127.1, 125.8, 125.0 (q, J=32.3 Hz, 1C), 123.1, 122.0, 46.9, 

13.1, 13.0. 
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19F NMR (376 MHz, DMSO-d6): δ -61.1. 

HRMS: (EI+) calculated for [C18H16F3N3+H] + 332.1369, found 332.1369. 

FTIR (ATR, cm–1): 2926, 1707, 1453, 1408, 1334, 1308, 1252, 1177, 1129, 909, 823, 715. 

 

 

F-Series 

 

 

5-(1-(difluoromethyl)-2-phenyl-1H-imidazol-5-yl)-1-ethyl-1H-pyrrol-2-ylpropionate 

(F1).  

Prepared according to the general procedure B. The title compound was isolated via flash 

chromatography (gradient 0%-20% EtOAc/hexane) as a reddish oil (68.6 mg, 0.19 mmol, 4% 

yield).  

 

TLC (SiO2) Rf = 0.17 in 4:1 hexanes/EtOAc. 

1H NMR (500 MHz, CDCl3): δ 7.77 – 7.63 (m, 2H), 7.53 (dd, J = 4.8, 2.1 Hz, 2H), 7.23 

(d, J = 9.5 Hz, 1H), 7.17 – 7.06 (m, 2H), 7.07 – 6.95 (m, 1H), 6.86 (d, J = 2.0 Hz, 1H), 4.42 (q, J 

= 7.2 Hz, 2H), 4.32 (qd, J = 7.2, 2.5 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H), 1.38 (td, J = 7.1, 3.3 Hz, 

3H). 

13C NMR (126 MHz, CDCl3): δ 163.27, 160.67, 130.36 (d, J = 9.6 Hz), 129.23 (d, J = 2.3 

Hz), 129.03, 128.50, 127.87 (d, J = 6.5 Hz), 126.86, 122.76, 120.71 (d, J = 6.6 Hz), 117.55, 109.59 

(t, J = 251.3 Hz), 95.38, 60.23, 44.55, 16.94, 14.42. 
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19F NMR (282 MHz, CDCl3): δ -90.59. 

HRMS: (EI+) calculated for [C19H19F2N3O2 +H] + 360.1518, found 360.1518. 

FTIR (ATR, cm–1): 3119, 2978, 2929, 1699, 1446, 1379, 1323, 1271, 1237, 1066, 924, 

823, 764, 697. 

 

 

 

1-(5-(1-(difluoromethyl)-2-phenyl-1H-imidazol-5-yl)thiophen-2-yl)ethan-1-one (F2).  

Prepared according to the general procedure B. The title compound was isolated via flash 

chromatography (gradient 0%-20% EtOAc/hexane) as a light yellow solid (515 mg, 1.62 mmol, 

32% yield).  

 

TLC (SiO2) Rf = 0.10 in 4:1 hexanes/EtOAc. 

1H NMR (500 MHz, CDCl3): δ 7.67 (dd, J = 5.5, 3.6 Hz, 3H), 7.59 – 7.50 (m, 3H), 7.40 

(s, 1H), 7.33 (d, J = 3.9 Hz, 1H), 7.29 – 6.99 (m, 1H), 2.58 (s, 3H). 

13C NMR (126 MHz, CDCl3): δ 190.49, 150.27, 144.56, 137.29, 132.76, 131.45, 130.68, 

129.23, 129.22, 128.32, 128.21 (t, J = 2.9 Hz), 125.49, 109.70 (t, J = 252.1 Hz), 26.72. 

19F NMR (282 MHz, CDCl3): δ -89.76. 

HRMS: (EI+) calculated for [C16H12F2N2OS+H] + 319.0711, found 319.0736. 

FTIR (ATR, cm–1): 3063, 1651, 1435, 1364, 1278, 1174, 1095, 1043, 972, 939, 812. 
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5-(Benzofuran-5-yl)-1-(difluoromethyl)-2-phenyl-1H-imidazole (F3).  

Prepared according to the general procedure B. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 28% B, 28-68% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 20 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (456 mg, 1.47 mmol, 29% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.10 (d, J = 2.2 Hz, 1H), 7.83 (d, J = 1.7 Hz, 1H), 7.78 

– 7.65 (m, 3H), 7.62 – 7.51 (m, 4H), 7.49 (dd, J = 8.5, 1.9 Hz, 1H), 7.29 (s, 1H), 7.07 (dd, J = 2.2, 

1.0 Hz, 1H).  

13C NMR (101 MHz, DMSO-d6): δ 154.3, 148.1, 147.1, 133.4, 129.8, 129.7, 129.1, 128.8, 

128.8, 127.7, 125.4, 123.5, 121.8, 111.7, 110.0 (t, J = 249.8 Hz) 106.9. 

19F NMR (376 MHz, DMSO-d6): δ -88.71, -88.86. 

HRMS: (EI+) calculated for [C18H12F2N2O+H] + 311.0990, found 311.0999. 

FTIR (ATR, cm–1): 3026, 1461, 1367, 1308, 1244, 1185, 1129, 1095, 1043, 946, 890, 816, 

771, 734, 700. 
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5-([1,1'-biphenyl]-2-yl)-1-(difluoromethyl)-2-phenyl-1H-imidazole (F4).  

Prepared according to the general procedure B. The title compound was isolated via flash 

chromatography (gradient 0%-20% EtOAc/hexane) as a light yellow oil (799 mg, 2.31 mmol, 46% 

yield).  

 

TLC (SiO2) Rf = 0.25 in 4:1 hexanes/EtOAc 

1H NMR (500 MHz, CDCl3): δ 7.66 – 7.56 (m, 3H), 7.56 – 7.49 (m, 3H), 7.49 – 7.39 (m, 

3H), 7.35 – 7.28 (m, 3H), 7.25 – 7.21 (m, 2H), 6.93 (s, 1H), 6.73 (t, J = 58.6 Hz, 1H). 

13C NMR (126 MHz, CDCl3): δ 147.95, 142.40, 140.18, 132.10, 131.95, 130.54, 130.08, 

129.85, 129.83, 129.51, 129.25, 129.03, 128.60, 128.32, 127.51, 127.42, 126.61, 109.10 (t, J = 

251.3 Hz). 

19F NMR (282 MHz, CDCl3): δ -89.80 

HRMS: (EI+) calculated for [C22H16F2N2+H] + 347.1354, found 347.1354. 

FTIR (ATR, cm–1): 3049, 1479, 1341, 1252, 1177, 1988, 1054, 943, 834, 738, 697. 
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N-(tert-butyl)-5-(1-(difluoromethyl)-2-phenyl-1H-imidazol-5-yl)pyridine-3-

sulfonamide (F5).  

Prepared according to the general procedure B. The title compound was isolated via flash 

chromatography (gradient 0%-50% EtOAc/hexane) as white solid (491 mg 1.21 mmol, 24% yield).  

 

TLC (SiO2) Rf = 0.43 in 1:1 hexanes/EtOAc 

1H NMR (500 MHz, CDCl3): δ 9.13 (d, J = 2.2 Hz, 1H), 8.96 (d, J = 2.1 Hz, 1H), 8.41 (t, 

J = 2.1 Hz, 1H), 7.69 (dd, J = 6.7, 2.9 Hz, 2H), 7.63 – 7.45 (m, 3H), 7.40 (s, 1H), 7.12 (t, J = 58.5 

Hz, 1H), 5.11 (s, 1H), 1.28 (s, 9H). 

13C NMR (126 MHz, CDCl3): δ 151.82, 150.66, 147.62, 139.92, 134.64 (t, J = 2.4 Hz), 

131.04, 130.98, 129.40, 129.30, 128.02, 127.77, 125.62, 110.04 (t, J = 252.1 Hz), 55.45, 30.16. 

19F NMR (282 MHz, CDCl3): δ -88.11. 

HRMS: (EI+) calculated for [C19H20F2N4O2S+H] + 407.1348, found 407.1366. 

FTIR (ATR, cm–1): 3071, 2970, 2855, 1550, 1468, 1323, 1252, 1196, 1140, 1099, 1066, 

1043, 1002, 831, 771, 704. 
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1-(difluoromethyl)-5-(2-fluorophenyl)-2-phenyl-1H-imidazole (F7).  

Prepared according to the general procedure B (2.5 mmol scale). The title compound was 

isolated via flash chromatography (gradient 0%-20% EtOAc/hexane) as a beige solid (110 mg, 

0.38 mmol, 15%).  

 

TLC (SiO2) Rf = 0.28 in 4:1 hexanes/EtOAc 

1H NMR (500 MHz, CDCl3): δ 7.75 (dd, J = 6.5, 2.9 Hz, 2H), 7.52 (hept, J = 2.8 Hz, 4H), 

7.45 (dtt, J = 11.1, 5.5, 2.7 Hz, 1H), 7.37 – 7.14 (m, 3H), 6.99 (t, J = 58.6 Hz, 1H). 

13C NMR (126 MHz, CDCl3): δ 161.04, 159.05, 149.29, 132.07 (d, J = 1.7 Hz), 131.13 

(d, J = 8.1 Hz), 130.92, 130.20, 130.10, 129.37, 129.26, 128.87, 124.30 (d, J = 3.8 Hz), 116.02 (d, 

J = 21.9 Hz), 109.53 (t, J = 251.4 Hz). 

19F NMR (282 MHz, CDCl3): δ -90.12 (d, J = 6.2 Hz), -112.70 (t, J = 6.3 Hz). 

HRMS: (EI+) calculated for [C16H11F3N2+H] + 289.0947, found 289.0972. 

FTIR (ATR, cm–1): 3056, 1681, 1565, 1468, 1356, 1252, 1174, 1058, 1028, 827, 764, 700. 

 

 

 

1-benzyl-5-(1-(difluoromethyl)-2-phenyl-1H-imidazol-5-yl)-1H-indole (F9).  
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Prepared according to the general procedure B (2.5 mmol scale). The title compound was 

isolated via flash chromatography (gradient 0%-20% EtOAc/hexane) as a red oil (20 mg, 0.05 

mmol, 2% yield).  

 

TLC (SiO2) Rf = 0.20 in 4:1 hexanes/EtOAc 

1H NMR (500 MHz, CDCl3): δ 7.89 – 7.73 (m, 3H), 7.66 – 7.57 (m, 1H), 7.59 – 7.46 (m, 

3H), 7.42 – 7.36 (m, 1H), 7.37 – 7.27 (m, 3H), 7.25 – 7.19 (m, 2H), 7.18 – 7.12 (m, 2H), 7.00 (dd, 

J = 59.3, 17.4 Hz, 1H), 6.64 (dd, J = 3.2, 0.8 Hz, 1H), 5.37 (s, 2H). 

13C NMR (126 MHz, CDCl3): δ 137.06, 136.43, 135.20, 130.22, 130.15, 129.91, 129.65, 

129.16, 128.97, 128.91, 128.73, 127.87, 127.59, 126.83, 123.01, 122.09, 115.58, 110.19, 109.64 – 

105.92 (m), 102.28, 50.35. 

19F NMR (282 MHz, CDCl3): δ -89.21. 

HRMS: (EI+) calculated for [C25H19F2N3+H] + 400.1620, found 400.1617. 

 

 

 

3-(1-(difluoromethyl)-2-phenyl-1H-imidazol-5-yl)-5-(trifluoromethyl)pyridine (F10).  

Prepared according to the general procedure B (2.5 mmol scale). The title compound was 

isolated via flash chromatography (gradient 0%-33% EtOAc/hexane) as a white solid (359 mg, 

1.06 mmol, 42% yield).  

 

TLC (SiO2) Rf = 0.09 in 4:1 hexanes/EtOAc 
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1H NMR (500 MHz, CDCl3): δ 9.03 (d, J = 2.1 Hz, 1H), 8.99 – 8.87 (m, 1H), 8.16 (d, J = 

2.2 Hz, 1H), 7.85 – 7.64 (m, 2H), 7.66 – 7.47 (m, 3H), 7.37 (s, 1H), 7.12 (t, J = 58.6 Hz, 1H). 

13C NMR (126 MHz, CDCl3): δ 152.33, 150.74, 146.35 (q, J = 4.0 Hz), 133.05 (d, J = 3.5 

Hz), 131.43, 130.81, 129.36, 129.23, 128.17, 128.06, 125.70, 124.29, 122.12, 110.01 (t, J = 251.8 

Hz). 

19F NMR (282 MHz, CDCl3): δ -62.55, -82.22. 

HRMS: (EI+) calculated for [C16H10F5N3+H] + 340.0868, found 340.0874. 

FTIR (ATR, cm–1): 3034, 1558, 1476, 1371, 1285, 1244, 1196, 1148, 1095, 1054, 834, 

775, 700. 

 

 

G-Series 

 

 

Ethyl 4-(1-(4-cyanophenyl)-1H-imidazol-5-yl)-1-ethyl-1H-pyrrole-2-carboxylate (G1).  

Prepared according to the general procedure A. The title compound was isolated via 

reversed phase chromatography (23 mg, 0.07 mmol, 1% yield).  
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1H NMR (400 MHz, CDCl3): δ 7.92 – 7.86 (m, 1H), 7.87 – 7.81 (m, 1H), 7.77 (s, 1H), 

7.66 – 7.59 (m, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.36 (d, J = 1.8 Hz, 1H), 6.75 (d, J = 2.0 Hz, 1H), 

6.66 (d, J = 2.0 Hz, 1H), 4.36 (dq, J = 10.4, 7.2 Hz, 4H), 1.42 (dt, J = 9.6, 7.2 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6): δ 159.8, 140.2, 135.8, 134.2, 133.6, 130.6, 126.5, 120.4, 

118.4, 117.7, 116.2, 110.9, 109.0, 59.6, 43.5, 16.9, 14.2. 

HRMS: (EI+) calculated for [C19H18N4O2+H] + 335.1503, found 335.1508. 

FTIR (ATR, cm–1): 3116, 2989, 2225, 1699, 1606, 1513, 1371, 1300, 1263, 1226, 1185, 

1099, 1054, 957, 902, 831, 730. 

 

 

4-(5-(5-Acetylthiophen-2-yl)-1H-imidazol-1-yl)benzonitrile (G2).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 12% B, 12-52% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (197 mg, 0.66 mmol, 13% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.11 (s, 1H), 8.08 - 7.98 (m, 2H), 7.80 (d, J=4.0 Hz, 

1H), 7.69 - 7.58 (m, 2H), 7.54 (s, 1H), 6.93 (d, J=3.9 Hz, 1H), 2.47 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 190.6, 143.3, 140.8, 139.2, 137.7, 134.3, 133.9, 131.0, 

127.5, 127.2, 125.8, 118.0, 111.8, 26.3.   

HRMS: (EI+) calculated for [C16H11N3OS+H] + 294.0696, found 294.0698. 

FTIR (ATR, cm–1): 3101, 3049, 2228, 1651, 1561, 1505, 1464, 1435, 1271, 1218, 1114, 

950, 834, 808. 

 

 

 

4-(5-(Benzofuran-5-yl)-1H-imidazol-1-yl)benzonitrile (G3).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 21% B, 21-61% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (344 mg, 1.21 mmol, 24% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.10 (s, 1H), 8.02 (d, J=2.1 Hz, 1H), 7.97 - 7.87 (m, 

2H), 7.56 (d, J=8.6 Hz, 1H), 7.51 (s, 1H), 7.48 - 7.40 (m, 2H), 7.28 (s, 1H), 7.04 (dd, J=8.6, 1.5 

Hz, 1H), 6.95 (s, 1H). 

13C NMR (101 MHz, DMSO-d6): δ 153.7, 146.9, 140.0, 139.1, 133.7, 132.3, 129.2, 127.6, 

126.1, 124.9, 123.8, 121.2, 118.1, 111.6, 110.4, 106.8.   

HRMS: (EI+) calculated for [C18H11N3O+H] + 286.0975, found 286.0983. 

FTIR (ATR, cm–1): 3090, 1606, 1509, 1457, 1375, 1274, 1207, 1032, 920, 820, 775. 

 

 

 

4-(5-([1,1'-Biphenyl]-2-yl)-1H-imidazol-1-yl)benzonitrile (G4).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 30% B, 30-70% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (267 mg, 0.83 mmol, 17% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.57 (s, 1H), 8.33 - 8.22 (m, 3H), 8.22 - 8.12 (m, 2H), 

7.99 - 7.90 (m, 1H), 7.89 (s, 1H), 7.87 - 7.79 (m, 1H), 7.74 (t, J=7.5 Hz, 2H), 7.34 (d, J=8.4 Hz, 

2H), 7.27 (d, J=7.5 Hz, 2H). 

13C NMR (101 MHz, DMSO-d6): δ 140.2, 139.7, 139.2, 137.8, 133.0, 131.4, 131.3, 130.4, 

130.1, 129.4, 128.0, 128.0, 127.9, 127.1, 126.6, 123.9, 118.2, 109.2.   

HRMS: (EI+) calculated for [C22H15N3+H] + 322.1339, found 322.1346. 

FTIR (ATR, cm–1): 3104, 3063, 2228, 1602, 1505, 1271, 1107, 1069, 913, 842, 820, 767, 

745, 700. 

 

 

 

N-(tert-Butyl)-5-(1-(4-cyanophenyl)-1H-imidazol-5-yl)pyridine-3-sulfonamide (G5).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 14% B, 14-54% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 45 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (251 mg, 0.66 mmol, 13% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.92 (d, J=2.0 Hz, 1H), 8.75 (d, J=1.8 Hz, 1H), 8.08 

- 7.89 (m, 3H), 7.73 (s, 1H), 7.62 (d, J=8.4 Hz, 2H), 7.34 (s, 1H), 1.05 (s, 9H). 

13C NMR (101 MHz, DMSO-d6): δ 151.3, 146.4, 141.9, 141.0, 140.1, 134.0, 133.1, 130.0, 

127.0, 126.3, 124.6, 118.0, 111.4, 53.7, 29.7.   

HRMS: (EI+) calculated for [C19H19N5O2S+H] + 382.1332, found 382.1332. 

FTIR (ATR, cm–1): 3302, 3145, 3093, 3034, 2974, 2228, 1602, 1561, 1505, 1472, 1427, 

1315, 1222, 1140, 1107, 1025, 991, 853, 764, 697, 667. 

 

 

 

4-(5-(2-Fluorophenyl)-1H-imidazol-1-yl)benzonitrile (G7).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile 

Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: a 0-minute hold at 

15% B, 15-55% B over 20 minutes, then a 4-minute hold at 100% B; Flow Rate: 20 mL/min; 

Column Temperature: 25 °C. Fraction collection was triggered by MS signals. Fractions containing 

the desired product were combined and dried via centrifugal evaporation (48 mg, 0.18 mmol, 4% 

yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.18 (s, 1H), 7.92 (d, J=8.4 Hz, 2H), 7.43 (br d, J=8.4 

Hz, 3H), 7.38 - 7.32 (m, 1H), 7.30 (s, 1H), 7.28 - 7.21 (m, 1H), 7.21 - 7.13 (m, 1H).  

13C NMR (101 MHz, DMSO-d6): δ 159.0 (d, J=246.5 Hz), 140.6, 139.8, 134.2, 133.6, 

131.9 (d, J=2.2 Hz), 131.3 (d, J=8.1 Hz), 126.5, 125.4 (br d, J=3.7 Hz), 118.5, 117.3 (d, J=14.7 

Hz), 116.4 (d, J=21.3 Hz), 112.1, 110.9. 

19F NMR (376 MHz, DMSO-d6): δ -73.8. 

HRMS: (EI+) calculated for [C16H10FN3+H] + 264.0932, found 264.0945. 

FTIR (ATR, cm–1): 3071, 1658, 1602, 1505, 1446, 1274, 1196, 1133, 1107, 1062, 913, 

827, 771, 723. 

 

 

4-(5-(1-Benzyl-1H-indol-5-yl)-1H-imidazol-1-yl)benzonitrile (G9). 

 Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 33% B, 33-73% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation. (358 mg, 0.96 mmol, 19% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.04 (s, 1H), 7.89 (d, J=8.6 Hz, 2H), 7.53 (d, J=3.2 

Hz, 1H), 7.47 - 7.35 (m, 4H), 7.35 - 7.27 (m, 2H), 7.27 - 7.13 (m, 4H), 6.83 (d, J=8.6 Hz, 1H), 

6.45 (d, J=3.1 Hz, 1H), 5.40 (s, 2H). 

13C NMR (101 MHz, DMSO-d6): δ 140.3, 138.6, 138.0, 135.2, 133.6, 133.3, 130.1, 128.6, 

128.5, 128.3, 127.4, 127.1, 126.0, 121.9, 120.5, 119.8, 118.2, 110.4, 110.1, 101.4, 49.1.  

HRMS: (EI+) calculated for [C25H18N4+H] + 375.1604, found 375.1609. 

FTIR (ATR, cm–1): 3060, 2228, 1606, 1505, 1461, 1382, 1330, 1267, 1177, 1110, 920, 

842, 801, 767, 726, 697. 

 

 

 

4-(5-(5-(Trifluoromethyl)pyridin-3-yl)-1H-imidazol-1-yl)benzonitrile (G10).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with 0.05% trifluoroacetic acid; Mobile 

Phase B: 95:5 acetonitrile: water with 0.05% trifluoroacetic acid; Gradient: a 0-minute hold at 5% 

B, 5-45% B over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 20 mL/min; Column 

Temperature: 25 °C. Fraction collection was triggered by MS signals. Fractions containing the 



 

236 
 

desired product were combined and dried via centrifugal evaporation (165 mg, 0.53 mmol, 11% 

yield).  

 

1H NMR (600 MHz, DMSO-d6): δ 8.98 (br d, 1H, J = 1.7 Hz), 8.76 (br d, 1H, J = 1.7 

Hz), 8.08 (br t, 1H, J = 1.7 Hz), 8.02 (br d, 2H, J = 8.6 Hz), 7.86 (d, 1H, J = 1.4 Hz), 7.65 (br d, 

2H, J = 8.6 Hz), 7.53 (d, 1H, J = 1.4 Hz). 

13C NMR (150 MHz, DMSO-d6): δ 158.5 (q, J = 35.6 Hz), 152.6, 146.3 (q, J = 4.0 Hz), 

141.5, 140.3, 134.0, 133.3 (q, J = 3.6 Hz), 128.2, 127.2, 124.9, 124.8, 123.2 (q, J = 272.7 Hz), 

117.9, 111.8.  

19F NMR (376 MHz, DMSO) δ -61.37. 

HRMS: (EI+) calculated for [C16H9F3N4+H] + 315.0852, found 315.0862. 

FTIR (ATR, cm–1): 3056, 2228, 1606, 1509, 1461, 1405, 1341, 1315, 1207, 1118, 1069, 

1021, 909, 849, 760, 708. 

 

 

I-Series 

 

 

Ethyl 1-ethyl-4-(1-(4-nitrophenyl)-2-phenyl-1H-imidazol-5-yl)-1H-pyrrole-2-

carboxylate (I1).  
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Prepared according to the general procedure A. The title compound was isolated via 

reversed phase chromatography (203 mg, 0.47 mmol, 9% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.35 - 8.30 (m, J=8.8 Hz, 2H), 7.63 - 7.58 (m, J=8.8 

Hz, 2H), 7.32 - 7.26 (m, 6H), 6.83 (d, J=1.8 Hz, 1H), 6.49 (d, J=1.8 Hz, 1H), 4.22 - 4.11 (m, 4H), 

1.18 (br t, J=7.0 Hz, 3H), 1.19 (br t, J=7.0 Hz, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 159.7, 147.4, 146.4, 142.7, 130.2, 130.1, 129.7, 128.3, 

128.2, 126.7, 124.8, 121.2, 116.1, 111.1, 59.6, 43.4, 16.8, 14.1.  

HRMS: (EI+) calculated for [C24H22N4O4+H] + 431.1714, found 431.1734. 

FTIR (ATR, cm–1): 2987, 2937, 1701, 1597, 1522, 1498, 1481, 1466, 1410, 1379, 1349, 

1326, 1312, 1287, 1246, 1216, 1194, 1170, 1123, 1099, 1075, 1011, 963, 929, 903, 855, 825. 

 

 

 

1-(5-(1-(4-Nitrophenyl)-2-phenyl-1H-imidazol-5-yl)thiophen-2-yl)ethan-1-one (I2).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 26% B, 26-66% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 



 

238 
 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (92 mg, 0.24 mmol, 5% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.36 (d, J=8.8 Hz, 2H), 7.80 - 7.72 (m, 4H), 7.37 - 

7.28 (m, 5H), 6.94 (d, J=3.9 Hz, 1H), 2.45 (s, 3H). 

13C NMR (101 MHz, DMSO-d6): δ 190.5, 148.9, 147.9, 143.1, 141.6, 137.9, 134.2, 130.7, 

130.3, 129.4, 129.0, 128.5, 128.4, 126.9, 125.1, 26.3.   

HRMS: (EI+) calculated for [C21H15N3O3S+H] + 390.0907, found 390.0907. 

FTIR (ATR, cm–1): 3108, 3067, 1662, 1595, 1565, 1520, 1442, 1349, 1233, 1177, 110, 

1073, 965, 857, 801, 771, 689. 

 

 

5-(Benzofuran-5-yl)-1-(4-nitrophenyl)-2-phenyl-1H-imidazole (I3).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 33% B, 33-73% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 45 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (380 mg, 1.00 mmol, 20% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 8.22 (d, J=8.8 Hz, 2H), 8.00 (d, J=2.1 Hz, 1H), 7.59 

- 7.44 (m, 4H), 7.38 (s, 1H), 7.36 - 7.23 (m, 5H), 7.03 (dd, J=8.5, 1.4 Hz, 1H), 6.91 (s, 1H). 

13C NMR (101 MHz, DMSO-d6): δ 153.7, 147.2, 146.9, 146.9, 142.4, 135.1, 130.2, 130.0, 

128.6, 128.5, 128.3, 128.3, 127.4, 125.4, 124.7, 123.9, 121.8, 111.3, 106.8.   

HRMS: (EI+) calculated for [C23H15N3O3+H] + 382.1186, found 382.1188. 

FTIR (ATR, cm–1): 3090, 3063, 2929, 2855, 1595, 1520, 1464, 1394, 1237, 1189, 1136, 

1021, 946, 857, 805, 775, 693. 

 

 

 

5-([1,1'-Biphenyl]-2-yl)-1-(4-nitrophenyl)-2-phenyl-1H-imidazole (I4).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 0-minute hold at 41% B, 41-81% B 

over 20 minutes, then a 0-minute hold at 100% B; Flow Rate: 40 mL/min; Column Temperature: 

25 °C. Fraction collection was triggered by MS signals. Fractions containing the desired product 

were combined and dried via centrifugal evaporation (793 mg, 1.90 mmol, 38% yield).  
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1H NMR (400 MHz, DMSO-d6): δ 7.86 (d, J=8.8 Hz, 2H), 7.62 - 7.52 (m, 1H), 7.52 - 

7.40 (m, 2H), 7.37 - 7.21 (m, 5H), 7.21 - 7.01 (m, 5H), 6.76 (br d, J=7.3 Hz, 2H), 6.51 (br d, J=8.4 

Hz, 2H). 

13C NMR (101 MHz, DMSO-d6): δ 146.5, 146.0, 141.4, 140.8, 140.0, 134.2, 132.5, 130.1, 

130.0, 129.8, 129.8, 128.8, 128.7, 128.5, 128.4, 128.4, 128.0, 127.9, 127.2, 124.0, 45.3. 

HRMS: (EI+) calculated for [C27H19N3O2+H] + 418.1550, found 418.1550. 

FTIR (ATR, cm–1): 3056, 1595, 1520, 1498, 1446, 1379, 1338, 1174, 110, 1073, 849, 767, 

697. 

 

 

 

N-(tert-Butyl)-5-(1-(4-nitrophenyl)-2-phenyl-1H-imidazol-5-yl)pyridine-3-

sulfonamide (I5).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 200 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 10.5-minute hold at 43% B; Flow 

Rate: 80 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by MS signals. 
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Fractions containing the desired product were combined and dried via centrifugal evaporation 

(1070 mg, 2.24 mmol, 45% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.86 (d, J=2.1 Hz, 1H), 8.78 (d, J=2.0 Hz, 1H), 8.28 

(d, J=8.9 Hz, 2H), 7.76 (br s, 1H), 7.69 - 7.60 (m, 3H), 7.57 (t, J=2.0 Hz, 1H), 7.39 - 7.20 (m, 5H), 

0.94 (s, 9H). 

13C NMR (101 MHz, DMSO-d6): δ 151.5, 148.7, 147.3, 145.9, 141.6, 140.0, 132.5, 130.3, 

130.1, 130.0, 129.6, 128.9, 128.7, 128.4, 125.4, 125.1, 53.5, 29.6.   

HRMS: (EI+) calculated for [C24H23N5O4S+H] + 478.1544, found 478.1530. 

FTIR (ATR, cm–1): 3265, 3067, 2974, 2870, 1595, 1520, 1349, 1308, 1148, 1107, 1025, 

857, 767, 689. 

 

 

 

5-(2-Fluorophenyl)-1-(4-nitrophenyl)-2-phenyl-1H-imidazole (I7).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge Phenyl, 250 mm x 30 mm, 

5-μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase 

B: 95:5 acetonitrile: water with ammonium acetate; Gradient: a 12.5-minute hold at 48% B; Flow 

Rate: 80 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by MS signals. 
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Fractions containing the desired product were combined and dried via centrifugal evaporation (615 

mg, 1.71 mmol, 34% yield)  

 

1H NMR (400 MHz, DMSO-d6): δ 8.20 (d, J=8.9 Hz, 2H), 7.46 - 7.27 (m, 10H), 7.23 - 

7.12 (m, 2H). 

13C NMR (101 MHz, DMSO-d6): δ 160.4, 157.9, 147.6, 146.9, 142.1, 132.1, 132.1, 131.0, 

131.0, 129.9, 129.2, 128.7, 128.7, 128.6, 128.4, 124.6, 124.6, 116.9, 116.7, 115.8, 115.6. [We could 

not easily identify doublets from C-F couplings] 

19F NMR (376 MHz, DMSO-d6): δ 112.55.  

HRMS: (EI+) calculated for [C21H14FN3O2+H] + 360.1143, found 360.1148. 

FTIR (ATR, cm–1): 3067, 1595, 1520, 1479, 1390, 1349, 1222, 1174, 1110, 1077, 1028, 

857, 760, 704. 

 

 

1-Benzyl-5-(1-(4-nitrophenyl)-2-phenyl-1H-imidazol-5-yl)-1H-indole (I9).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 250 mm x 30 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 11.5-minute hold at 60% B; Flow 

Rate: 80 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by MS signals. 
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Fractions containing the desired product were combined and dried via centrifugal evaporation (847 

mg, 1.80 mmol, 36% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.20 (d, J=8.8 Hz, 2H), 7.58 - 7.43 (m, 3H), 7.38 (s, 

1H), 7.36 (d, J=8.6 Hz, 1H), 7.34 - 7.13 (m, 11H), 6.83 (d, J=8.6 Hz, 1H), 6.42 (d, J=3.1 Hz, 1H), 

5.37 (s, 2H). 

13C NMR (101 MHz, DMSO-d6): δ 146.8, 146.7, 142.7, 138.0, 136.2, 135.1, 130.3, 130.0, 

130.0, 128.6, 128.5, 128.3, 128.3, 128.2, 127.7, 127.4, 127.1, 124.6, 122.3, 121.1, 119.9, 110.2, 

101.4, 49.1.   

HRMS: (EI+) calculated for [C30H22N4O2+H] + 471.1816, found 471.1804. 

FTIR (ATR, cm–1): 3063, 1595, 1520, 1476, 1345, 1267, 1185, 1095, 946, 857, 801, 775, 

700. 

 

 

 

3-(1-(4-Nitrophenyl)-2-phenyl-1H-imidazol-5-yl)-5-(trifluoromethyl)pyridine (I10).  

Prepared according to the general procedure A. The crude material was purified via 

preparative LC/MS with the following conditions: Column: XBridge C18, 250 mm x 19 mm, 5-

μm particles; Mobile Phase A: 5:95 acetonitrile: water with ammonium acetate; Mobile Phase B: 

95:5 acetonitrile: water with ammonium acetate; Gradient: a 11.5-minute hold at 43% B; Flow 
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Rate: 80 mL/min; Column Temperature: 25 °C. Fraction collection was triggered by MS signals. 

Fractions containing the desired product were combined and dried via centrifugal evaporation (694 

mg, 1.69 mmol, 34% yield).  

 

1H NMR (400 MHz, DMSO-d6): δ 8.86 (s, 1H), 8.63 (s, 1H), 8.38 - 8.23 (m, J=8.8 Hz, 

2H), 7.85 (s, 1H), 7.72 (s, 1H), 7.67 - 7.55 (m, J=8.8 Hz, 2H), 7.42 - 7.20 (m, 5H). 

13C NMR (101 MHz, DMSO-d6): δ 152.7, 149.2, 147.8, 145.3 (q, J=4.4 Hz), 142.1, 132.9 

(q, J=3.7 Hz), 130.9, 130.7, 130.6, 130.1, 129.4, 129.2, 128.9, 126.0, 125.5, 125.4, 125.2, 123.7 

(q, J=272.9 Hz). 

19F NMR (376 MHz, DMSO-d6): δ -61.3. 

HRMS: (EI+) calculated for [C21H13F3N4O2+H] + 411.1063, found 411.1062. 

FTIR (ATR, cm–1): 3112, 1595, 1524, 1464, 1386, 1345, 1308, 1129, 1092, 909, 857, 775, 

697. 

 

2.5.2 Amidation dataset experimentation details 

High-throughput experimentation procedure  

To 1 mL vials were added solid amide coupling reagents (26 μmol, 1.3 equiv.) by an 

automated solid dispensing robot. To the remaining 1 mL vials was added diphenylphosphinic 

chloride (5 μL, 6.2 mg, 26 μmol, 1.3 equiv.). To each vial was added a 0.2 M stock solution of 

indomethacin (7.2 mg, 20 μmol, 1.0 equiv.) in the desired reaction solvent (100 μL). The reactions 

were stirred for 5 minutes then treated with organic bases (60 μmol, 3.0 equiv.) and stirred for 30 

minutes. The reaction mixtures were then treated with a 0.3 M stock solution of desired amine (30 

μmol, 1.5 equiv.) in the desired reaction solvent (100 μL). The reactions stirred overnight at 25 °C 
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and were diluted with a 0.1 M solution of (4,4’)-di-t-butylbiphenyl in dimethylformamide (600 μL) 

and stirred for 5 min. A 10 μL sample of each reaction was diluted into 500 μL 80% 

acetonitrile/water, filtered, and submitted for UPLCMS analysis. 

 

Authentic product synthesis: procedure and characterization 

 

General Procedure: To a 40 mL vial containing indomethacin (1.0 g, 2.8 mmol, 1.0 equiv.) 

was added TCFH (0.95 g, 3.4 mmol, 1.2 equiv.) followed by THF (16 mL, 0.175 M). The reaction 

mixture was treated with 1-methylimidazole (0.79 mL, 9.8 mmol, 3.5 equiv.) and stirred for 20 

min. To the reaction mixture was added the desired aryl amine (3.6 mmol, 1.3 equiv.). The reaction 

was stirred for 24 h and concentrated. The resulting crude was crystallized from 3:1 

isopropanol/water unless otherwise specified.  

Aniline Substrate scope: Amide product labels (amide #x) corresponds to aniline labels 

(nx). 
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Amide products synthesis and characterization 

 

 

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(4-cyano-3-

(trifluoromethyl)phenyl)acetamide (amide #1). 

Prepared according to the general procedure. Isolated the product as white solids (641 mg, 

1.22 mmol) in 44% yield. 

 

1H NMR (500 MHz, DMSO-d6): δ 10.98 (s, 1H), 8.30 (d, J=2.0 Hz, 1H), 8.09 (d, J=8.5 

Hz, 1H), 8.00 (dd, J=8.5, 2.0 Hz, 1H), 7.70 - 7.62 (m, 4H), 7.14 (d, J=2.4 Hz, 1H), 6.93 (d, J=8.9 

Hz, 1H), 6.72 (dd, J=9.0, 2.6 Hz, 1H), 4.34 (br s, 1H), 3.85 (s, 2H), 3.78 (s, 1H), 3.78 - 3.69 (m, 

4H), 2.28 (s, 3H), 1.04 (d, J=6.1 Hz, 8H). 
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13C NMR (126 MHz, DMSO-d6): δ 169.9, 167.9, 155.6, 143.6, 137.7, 136.5, 135.7, 134.1, 

131.6, 131.2, 130.7, 130.2, 129.1, 122.0 (q, J=273.8 Hz, 1C), 122.0, 116.4 (q, J=4.2 Hz, 1C), 115.7, 

114.6, 113.1, 111.2, 101.9, 101.6, 55.4, 32.1, 13.3 

HRMS (ESI-TOF): calculated for C27H18ClF3N3O3 ([M-H]-): 524.0994, found: 524.0997. 

 

 

 

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(4-((N-

methylsulfamoyl)methyl)phenyl)acetamide (amide #2). 

Prepared according to the general procedure. Isolated the product as yellow solids (469 mg, 

0.87 mmol) in 31% yield. 

 

1H NMR (500 MHz, DMSO-d6): δ 10.30 (s, 1H), 7.72 - 7.67 (m, 2H), 7.67 - 7.63 (m, 2H), 

7.63 - 7.59 (m, 2H), 7.38 - 7.25 (m, J=8.7Hz, 2H), 7.20 (d, J=2.6 Hz, 1H), 6.94 (d, J=9.0 Hz, 1H), 

6.85 (q, J=4.8 Hz, 1H), 6.72 (dd, J=9.0, 2.4 Hz, 1H), 4.25 (s, 2H), 3.80 - 3.72 (m, 5H), 2.60 - 2.52 

(m, 3H), 2.29 (s, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 168.5, 167.8, 155.5, 138.9, 137.6, 135.4, 134.2, 131.1, 

131.1, 130.9, 130.2, 129.0, 125.1, 119.0, 114.5, 114.1, 111.1, 102.0, 55.4, 55.4, 32.0, 28.8, 13.4.  

HRMS (ESI-TOF): calculated for C27H25ClN3O5S ([M-H]-): 538.1209, found: 538.1210. 
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2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(1,3-diphenyl-1H-

pyrazol-5-yl)acetamide (amide #3). 

Prepared according to the general procedure. Isolated the product as white solids (955 mg, 

1.66 mmol) in 59% yield. 

 

1H NMR (500 MHz, DMSO-d6): δ 10.10 (s, 1H), 7.86 (d, J=7.2 Hz, 2H), 7.72 - 7.56 (m, 

4H), 7.51 (d, J=6.2 Hz, 2H), 7.43 (t, J=7.2 Hz, 2H), 7.39 - 7.29 (m, 4H), 7.12 (d, J=2.4 Hz, 1H), 

6.97 (d, J=9.0 Hz, 1H), 6.91 (s, 1H), 6.75 (dd, J=9.0, 2.4 Hz, 1H), 3.83 - 3.70 (m, 5H), 2.21 (s, 

3H). 

13C NMR (126 MHz, DMSO-d6): δ 169.2, 167.8, 155.6, 150.1, 138.4, 137.6, 137.1, 135.6, 

134.1, 132.7, 131.1, 130.7, 130.3, 129.0, 129.0, 128.7, 128.0, 127.4, 125.1, 123.4, 114.5, 113.2, 

111.3, 101.9, 100.2, 55.4, 31.0, 13.3. 

HRMS (ESI-TOF): calculated for C34H26ClN4O3 ([M-H]-): 537.1699, found: 537.1705. 
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N-(2-bromo-4,6-dimethylphenyl)-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-

indol-3-yl)acetamide (amide #4): Prepared according to the general procedure. Isolated the 

product as off-white solids (1080 mg, 2.00 mmol) in 72% yield. 

 

1H NMR (500 MHz, DMSO-d6): δ 9.53 (s, 1H), 7.74 - 7.67 (m, 2H), 7.67 - 7.61 (m, 2H), 

7.32 (s, 1H), 7.22 (d, J=2.6 Hz, 1H), 7.05 (s, 1H), 6.99 (d, J=9.0 Hz, 1H), 6.73 (dd, J=8.9, 2.5 Hz, 

1H), 3.77 (s, 3H), 3.74 (s, 2H), 2.29 (s, 3H), 2.25 (s, 3H), 2.08 (s, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 168.2, 167.9, 155.5, 138.1, 138.1, 137.9, 137.5, 135.4, 

134.3, 132.6, 131.1, 130.9, 130.3, 130.2, 129.0, 122.6, 114.5, 113.9, 111.5, 101.8, 55.4, 30.9, 20.1, 

18.4, 13.5. 

HRMS (ESI-TOF): calculated for C27H23BrClN2O3 ([M+H]+): 539.0732, found: 

539.0736. 
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N-(2-chloro-5-cyanophenyl)-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-

yl)acetamide (amide #5). 

Prepared according to the general procedure. Isolated the product as white solids (438 mg, 

0.89 mmol) in 32% yield. 

 

1H NMR (500 MHz, DMSO-d6/THF-d8): δ 9.80 (s, 1H), 8.37 (d, J=1.8 Hz, 1H), 7.76 - 

7.68 (m, 3H), 7.67 - 7.57 (m, 3H), 7.28 (d, J=2.4 Hz, 1H), 6.98 (d, J=9.0 Hz, 1H), 6.69 (dd, J=9.0, 

2.4 Hz, 1H), 3.97 (s, 2H), 3.81 (s, 3H), 2.37 (s, 3H). 

13C NMR (126 MHz, DMSO-d6/THF-d8): δ 169.5, 168.1, 156.2, 138.2, 136.6, 135.9, 

134.7, 131.5, 131.2, 131.1, 130.9, 130.0, 129.2, 129.0, 127.9, 117.9, 114.7, 113.9, 111.5, 110.9, 

102.0, 55.5, 31.8, 13.3. 

HRMS (ESI-TOF): calculated for C26H18Cl2N3O3 ([M-H]-): 490.0731, found: 490.0737. 

 

 

 

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(2-methyl-4-

nitrophenyl)acetamide (amide #6). 

Prepared according to the general procedure. Isolated the product as off-white solids (858 

mg, 1.74 mmol) in 62% yield. 
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1H NMR (500 MHz, DMSO-d6/THF-d8): δ 9.70 (s, 1H), 8.13 (s, 1H), 8.04 (d, J=1.4 Hz, 

2H), 7.75 - 7.70 (m, 2H), 7.66 - 7.60 (m, 2H), 7.29 (d, J=2.4 Hz, 1H), 6.98 (d, J=8.9 Hz, 1H), 6.69 

(dd, J=9.0, 2.6 Hz, 1H), 3.96 (s, 2H), 3.88 - 3.82 (m, 1H), 3.82 - 3.77 (m, 3H), 2.40 (s, 3H), 2.37 

(s, 3H).  

13C NMR (126 MHz, DMSO-d6/THF-d8): δ 169.0, 167.7, 155.8, 143.3, 143.1, 137.9, 

135.5, 134.3, 131.1, 131.0, 130.9, 130.5, 128.9, 125.2, 123.0, 121.4, 114.4, 113.8, 111.1, 101.7, 

55.2, 31.7, 17.7, 13.1. 

HRMS (ESI-TOF): calculated for C26H21ClN3O5 ([M-H]-): 490.1175, found: 490.1183. 

 

 

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(6-methylquinolin-5-

yl)acetamide (amide #7): Prepared according to the general procedure and isolated by 

crystallization of the crude from 1:1 heptane/ethyl acetate. Isolated the product as white solids 

(1180 mg, 2.37 mmol) in 85% yield. 

 

1H NMR (500 MHz, DMSO): δ 9.88 (s, 1H), 8.84 (dd, J = 4.1, 1.7 Hz, 1H), 8.23 (ddd, J 

= 8.5, 1.7, 0.9 Hz, 1H), 7.88 (d, J = 8.6 Hz, 1H), 7.74 – 7.70 (m, 2H), 7.67 – 7.62 (m, 3H), 7.48 
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(dd, J = 8.5, 4.2 Hz, 1H), 7.32 (d, J = 2.6 Hz, 1H), 7.02 (d, J = 8.9 Hz, 1H), 6.76 (dd, J = 9.0, 2.6 

Hz, 1H), 3.94 (s, 2H), 3.80 (s, 3H), 2.35 (s, 3H), 2.30 (s, 3H). 

13C NMR (126 MHz, DMSO): δ 169.2, 167.9, 155.7, 149.6, 146.9, 137.6, 135.6, 134.3, 

133.2, 132.0, 131.6, 131.4, 131.2, 130.9, 130.4, 129.0, 127.6, 125.5, 121.3, 114.7, 114.0, 111.5, 

101.7, 55.5, 31.1, 18.1, 13.5. 

HRMS (ESI-TOF): calculated for C29H23ClN3O3 ([M-H]-): 496.1433, found: 496.1447. 

 

 

 

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(2,6-

diisopropylphenyl)acetamide (amide #8): Prepared according to the general procedure. Isolated 

the product as white solids (780 mg, 1.51 mmol) in 54% yield. 

 

1H NMR (500 MHz, DMSO): δ 9.20 (s, 1H), 7.72 – 7.68 (m, 2H), 7.66 – 7.61 (m, 2H), 

7.27 (d, J = 2.5 Hz, 1H), 7.22 (dd, J = 8.1, 7.2 Hz, 1H), 7.11 (d, J = 7.7 Hz, 2H), 7.03 (d, J = 9.0 

Hz, 1H), 6.75 (dd, J = 9.0, 2.6 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 2H), 3.01 (p, J = 6.9 Hz, 2H), 2.29 

(s, 3H), 1.03 (br s, 12H). 

13C NMR (126 MHz, DMSO): δ 169.3, 167.9, 155.6, 146.0, 137.5, 135.3, 134.3, 132.6, 

131.1, 130.9, 130.4, 129.0, 127.5, 122.7, 114.5, 114.2, 111.4, 101.8, 55.4, 31.2, 27.9, 23.4, 13.4 
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HRMS (ESI-TOF): calculated for C31H32ClN2O3 ([M-H]-): 515.2107, found: 515.2100. 

 

 

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-(6-chloropyridazin-3-

yl)acetamide (amide #9): Prepared according to the general procedure and isolated from the crude 

by crystallization from 1:1 heptane/ethyl acetate. Isolated the product as white solids (900 mg, 

1.92 mmol) in 69% yield. 

 

1H NMR (500 MHz, DMSO-d6): δ 11.63 (s, 1H), 8.36 (d, J=9.3 Hz, 1H), 7.86 (d, J=9.5 

Hz, 1H), 7.74 - 7.62 (m, 4H), 7.22 (d, J=2.6 Hz, 1H), 6.93 (d, J=9.0 Hz, 1H), 6.72 (dd, J=9.0, 2.6 

Hz, 1H), 3.93 (s, 2H), 3.77 - 3.73 (m, 3H), 2.30 (s, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 170.3, 167.8, 155.6, 155.2, 151.1, 137.6, 135.7, 134.1, 

131.1, 130.8, 130.2, 130.2, 129.0, 121.4, 114.5, 113.3, 111.2, 101.9, 55.4, 31.6, 13.4. 

HRMS (ESI-TOF): calculated for C23H17Cl2N4O3 ([M-H]-): 467.0683, found: 467.0701. 
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Methyl 5-chloro-2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-

yl)acetamido)benzoate (amide #10). 

Prepared according to the general procedure. Isolated the product as yellow solids (380 mg, 

0.72 mmol) in 26% yield. 

 

1H NMR (500 MHz, DMSO-d6/THF-d8): δ 10.79 (s, 1H), 8.65 (d, J=9.2 Hz, 1H), 7.87 

(d, J=2.6 Hz, 1H), 7.83 (d, J=7.6 Hz, 2H), 7.69 - 7.63 (m, 3H), 7.10 (d, J=2.6 Hz, 1H), 6.87 (d, 

J=9.0 Hz, 1H), 6.68 (dd, J=9.0, 2.6 Hz, 1H), 3.91 (s, 2H), 3.76 (s, 3H), 3.75 (s, 3H), 2.39 (s, 3H).  

13C NMR (126 MHz, DMSO-d6/THF-d8): δ 169.0, 167.8, 166.5, 155.8, 139.2, 138.0, 

136.6, 134.1, 133.8, 131.3, 130.6, 130.4, 129.7, 128.9, 126.5, 121.8, 117.4, 114.6, 112.0, 111.4, 

101.1, 55.1, 52.4, 33.0, 12.7.  

HRMS (ESI-TOF): calculated for C27H21Cl2N2O5 ([M-H]-): 523.0833, found: 523.0830. 

 

2.5.3 Phenol alkylation reaction condition optimization and experimentation details 

Optimization substrate and condition scope.  
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We selected 6 phenols and 6 mesylates as the substrate scope. These starting materials are 

all commercially available and cheap to acquire. The other criteria of selection are structural 

diversity and synthesizability of the authentic product standards. One phenol (p5) and one phenol 

(m1) were randomly left out as external test substrates and are not included in the optimization. 

Six bases (inorganic and organic), two solvents, and three temperatures commonly investigated in 

similar reactions are also defined. Overall, 900 experiments (25 substrate pairings, 36 conditions) 

are available to sample from. The remaining 11 substrate pairings are tested with the algorithm-

optimized conditions and benchmark conditions identified from historical dataset at BMS (vide 

infra)  

 
Reaction set up procedure 

Stock Solution Preparation. On the benchtop, 4-mL vials containing 400 µmol of 

mesylate were dissolved in N,N-dimethylformamide (DMF, 800 µL) or tert-amyl alcohol (800 µL) 

and stirred for 5 min. Similarly, 4-mL vials containing 400 µmol of phenol were dissolved in N,N-

dimethylformamide (DMF, 800 µL) or tert-amyl alcohol (800 µL) and stirred for 5 min. The vials 

were sealed and stored in the freezer until time of use.  

 

Base Plate Preparation. In a glovebox, cesium carbonate (39.1 mg, 0.12 mmol)/well, 

potassium carbonate (16.6 mg, 0.12 mmol)/well, or potassium phosphate tribasic (25.5. mg, 0.12 
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mmol)/well was dispensed to each well in a 96 well plate using CHRONECT XPR Solid 

Dispensing instrument immediately prior to use.  

 

Reaction Execution. In the fume hood, 80 µL of phenol stock solution was dispensed to 

the appropriate well. Subsequently, liquid bases, including 2-tert-butyl-1,1,3,3-

tetramethylguadinine (BTMG, 24.2 µL, 0.12 mmol)/well, N,N-diisopropylethylamine (DIPEA, 

20.9 µL, 0.12 mmol)/well, or DBU (17.9 µL, 0.12 mmol)/well was added. The resultant reaction 

mixtures were sealed and stirred on a shaker block for 5 min. Then, 80 µL of mesylate stock 

solution was dispensed to the reaction mixture vials. The reactions were then sealed and stirred at 

the desired temperature (20, 40, or 60 °C) for 20 h in the fume hood. The plate was removed from 

the shaker, cooled to room temperature, and diluted to an 800 µL total volume with DMF 

containing 4,4’-di-tert-butylbiphenyl (1.07 mg, 4 µmol). The plate was stirred for 5 min and a 20 

µL sample was taken and filtered into a UPLC analysis plate. The filter was rinsed with 500 µL 

acetonitrile/water (4:1) solution and analyzed by UPLC-MS.  

 

Calibration Curve. A solution of 4,4’-di-tert-butylbiphenyl (19.18 mg) in 700 µL of DMF 

was prepared as the internal standard stock solution. 8 µL of the internal standard stock solution 

was dispensed into five 4-mL vials followed by addition of 3900 µL of DMF. A solution of the 

product marker (30 µmol) in 300 µL of DMF was prepared. The following volumes of product 

marker solution (16, 32, 48, 64, and 80 µL) were dispensed into the 4-mL vials to generate 

solutions that contain 20%, 40%, 60%, 80%, and 100% of the original product marker vs the 

consistent amount of 4,4’-di-tert-butylbiphenyl internal standard. The samples were transferred to 

UPLC vials for analysis.  



 

257 
 

 

UPLC-MS Method. 

Solvent A: Water with 5% acetonitrile and 0.05% TFA 

Solvent B: Acetonitrile with 5% water and 0.05% TFA 

Gradient: 95% A/B to 0% A/B over 1.2 min, hold 0.8 min at 100% B, 0% A/B to 95% A/B 

over 0.01 min, hold 0.99 min at 95% A/B, 95% A/B to 0% A/B over 0.1 min 

Stop Time: 2.0 min 

Flow Rate: 0.8 mL/min 

Wavelength1: 220 nm 

Wavelength2: 254 nm 

Column: Agilent Poroshell C18 2.7 µm 2.1x50 mm 

 

Experimental history and data analysis 

Four rounds of optimization were conducted, with batch sizes of 36, 18, 18 and 18. UCB1-

Tuned was used as the bandit algorithm due to its generally high performance and the lack of 

tunable parameters. A random forest model is used as the prediction model for batch proposal (vide 

supra). Mesylate and phenol substrates were encoded with Morgan fingerprints using RDKit’s 

default settings (radius=2, 2048 bits). All other parameters except temperature (used directly as 

normalized values) are one-hot encoded. A Jupyter notebook for all the optimization and analysis 

for this reaction is included in the GitHub repository.  

Since UCB1-Tuned (or any UCB algorithms) requires a uniform exploration of every arm 

once, the first 36 experiments are therefore proposed sequentially to sample every condition. This 

is the normal behavior of the algorithm. After the first round, we used a smaller batch size of 18, 
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which helps the algorithm to converge faster. We also planned to explore 10% of the scope (90 out 

of 900 reactions) in total, so a batch size of 18 allows us to do exactly three rounds of experiments 

after the initial round. All 90 experiments, their parameters and the experimental and predicted 

yields are listed in Table 3.  

 

Experiment Round Base Mesylate ID Phenol ID Solvent Temperature Yield Predicted Yield 
1 1 BTMG m2 p2 DMF t20 0.0649 1 
2 1 BTMG m6 p6 DMF t40 0.1944 1 
3 1 BTMG m5 p6 DMF t60 0.1435 1 
4 1 BTMG m5 p2 tAmOH t20 0.0000 1 
5 1 BTMG m2 p3 tAmOH t40 0.0457 1 
6 1 BTMG m3 p6 tAmOH t60 0.4584 1 
7 1 Cs2CO3 m3 p2 DMF t20 0.0220 1 
8 1 Cs2CO3 m2 p2 DMF t40 0.1100 1 
9 1 Cs2CO3 m6 p3 DMF t60 0.0050 1 

10 1 Cs2CO3 m3 p6 tAmOH t20 0.0440 1 
11 1 Cs2CO3 m5 p4 tAmOH t40 0.0000 1 
12 1 Cs2CO3 m4 p2 tAmOH t60 0.0467 1 
13 1 K3PO4 m3 p1 DMF t20 0.0104 1 
14 1 K3PO4 m3 p4 DMF t40 0.0561 1 
15 1 K3PO4 m3 p3 DMF t60 0.0000 1 
16 1 K3PO4 m3 p3 tAmOH t20 0.0000 1 
17 1 K3PO4 m6 p6 tAmOH t40 0.0733 1 
18 1 K3PO4 m2 p1 tAmOH t60 0.0000 1 
19 1 DBU m3 p4 DMF t20 0.0035 1 
20 1 DBU m3 p2 DMF t40 0.0283 1 
21 1 DBU m6 p1 DMF t60 0.0352 1 
22 1 DBU m3 p1 tAmOH t20 0.0000 1 
23 1 DBU m2 p3 tAmOH t40 0.0061 1 
24 1 DBU m6 p1 tAmOH t60 0.1243 1 
25 1 K2CO3 m3 p1 DMF t20 0.0000 1 
26 1 K2CO3 m4 p3 DMF t40 0.0305 1 
27 1 K2CO3 m2 p4 DMF t60 0.0452 1 
28 1 K2CO3 m2 p4 tAmOH t20 0.0223 1 
29 1 K2CO3 m4 p4 tAmOH t40 0.0826 1 
30 1 K2CO3 m6 p1 tAmOH t60 0.0000 1 
31 1 DIPEA m5 p1 DMF t20 0.0000 1 
32 1 DIPEA m5 p3 DMF t40 0.0000 1 
33 1 DIPEA m4 p1 DMF t60 0.0000 1 
34 1 DIPEA m2 p2 tAmOH t20 0.0060 1 
35 1 DIPEA m5 p6 tAmOH t40 0.0000 1 
36 1 DIPEA m6 p3 tAmOH t60 0.0000 1 
37 2 BTMG m2 p6 tAmOH t60 0.6057 0.224301104 
38 2 BTMG m4 p2 DMF t40 0.0137 0.075508922 
39 2 BTMG m3 p6 DMF t60 0.3731 0.369240211 
40 2 DBU m5 p6 tAmOH t60 0.0269 0.083135403 
41 2 Cs2CO3 m6 p2 DMF t40 0.0916 0.053144102 
42 2 K2CO3 m6 p6 tAmOH t40 0.0098 0.081170802 
43 2 K3PO4 m5 p4 tAmOH t40 0.0000 0.019488365 
44 2 BTMG m5 p6 DMF t20 0.0000 0.136733756 
45 2 K3PO4 m5 p6 DMF t40 0.0851 0.062798968 
46 2 BTMG m2 p4 tAmOH t60 0.2471 0.084519205 
47 2 Cs2CO3 m6 p4 tAmOH t60 0.0032 0.05532184 
48 2 BTMG m3 p4 tAmOH t40 0.1264 0.211952683 
49 2 K2CO3 m5 p2 DMF t60 0.0200 0.03243837 
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50 2 Cs2CO3 m5 p4 tAmOH t20 0.0000 0.009830195 
51 2 DBU m5 p4 DMF t60 0.0404 0.020542455 
52 2 K2CO3 m4 p6 DMF t40 0.0955 0.096261114 
53 2 DBU m4 p3 DMF t40 0.0000 0.030476834 
54 2 K2CO3 m6 p2 tAmOH t20 0.0518 0.030985792 
55 3 Cs2CO3 m5 p4 DMF t20 0.0555 0.007267339 
56 3 BTMG m3 p2 tAmOH t60 0.1025 0.291007177 
57 3 K3PO4 m3 p3 DMF t20 0.0000 0.00426861 
58 3 DBU m6 p4 tAmOH t40 0.0970 0.060313346 
59 3 DIPEA m4 p3 tAmOH t20 0.0000 0.011677747 
60 3 Cs2CO3 m4 p6 DMF t60 0.0383 0.070863802 
61 3 DBU m6 p1 DMF t20 0.0000 0.047302658 
62 3 BTMG m6 p1 tAmOH t20 0.0000 0.093006574 
63 3 Cs2CO3 m4 p6 tAmOH t40 0.2851 0.057506405 
64 3 K3PO4 m6 p3 DMF t60 0.0200 0.006561152 
65 3 K3PO4 m3 p6 tAmOH t20 0.0169 0.107335222 
66 3 K3PO4 m2 p2 tAmOH t60 0.0887 0.054641507 
67 3 DBU m6 p2 tAmOH t20 0.0000 0.061513926 
68 3 K2CO3 m4 p3 DMF t20 0.0000 0.020984125 
69 3 K2CO3 m2 p6 tAmOH t60 0.4033 0.115517229 
70 3 DIPEA m3 p3 DMF t20 0.0000 0.003372499 
71 3 DIPEA m3 p6 DMF t40 0.0000 0.085207617 
72 3 DIPEA m2 p3 DMF t60 0.0361 0.008809454 
73 4 DIPEA m3 p2 tAmOH t40 0.0000 0.042749176 
74 4 DIPEA m3 p1 tAmOH t60 0.0000 0.017095519 
75 4 BTMG m6 p2 DMF t60 0.1301 0.126297472 
76 4 K2CO3 m5 p1 tAmOH t60 0.0000 0.015120335 
77 4 Cs2CO3 m2 p1 tAmOH t40 0.1321 0.041671988 
78 4 BTMG m5 p4 tAmOH t60 0.1075 0.114965938 
79 4 BTMG m5 p6 DMF t40 0.1833 0.095352737 
80 4 Cs2CO3 m2 p3 DMF t40 0.0470 0.031703813 
81 4 BTMG m4 p4 tAmOH t40 0.0792 0.0992472 
82 4 BTMG m5 p4 DMF t60 0.1523 0.11163743 
83 4 DBU m5 p1 tAmOH t60 0.0138 0.042679326 
84 4 K3PO4 m5 p2 DMF t40 0.0900 0.040615479 
85 4 K2CO3 m2 p4 DMF t40 0.0502 0.059810674 
86 4 DBU m6 p1 tAmOH t40 0.0385 0.072366704 
87 4 K2CO3 m2 p2 tAmOH t40 0.0234 0.070843946 
88 4 K3PO4 m6 p1 tAmOH t60 0.0256 0.02905323 
89 4 Cs2CO3 m5 p2 DMF t20 0.0993 0.03385356 
90 4 DBU m6 p2 DMF t60 0.0392 0.056816471 

Table 3 Proposed experiments for phenol alkylation reactions. 

 

Other than the visualization in Fig. 13, we also plotted several condition components and 

their average yields based on the experiments conducted during optimization (Fig. 126). A 

significant base and temperature effect was observed, while the two solvents performed similarly. 

Overall, BMTG–t-AmOH–60 °C achieved the highest average yield.  
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Fig. 126 Average yields of each reaction components from four optimization rounds.  

 
Analysis of historical phenol alkylation data at Bristol Myers Squibb.   

A common strategy for the design of HTE studies for the identification of hits for further 

reaction development and optimization centers around selecting conditions that are prevalent in 

the chemical literature, offer processing advantages, or present sustainability and cost advantages. 

Under this scenario, the design of each study is isolated from previous efforts of the same reaction 

type and historical data is not effectively utilized to inform reagent selection. Thus, ineffective 

designs propagate over time and the HTE campaigns can become inefficient and resource intensive. 

The 2016 BMS phenol alkylation screening data demonstrates an example of this scenario. Three 

separate reactions totaling 288 experiments were investigated during this time period and in 2019 

these data were aggregated and statistically evaluated (Fig. 127). The central conclusion was that 

around 60% of the bases selected for these studies showed below average performance across the 

board and should have been excluded from evaluation in future studies. Furthermore, the high-

level analysis showed that the third most effective base, MTBD, had only been utilized in a single 
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study despite its effectiveness and overall, there was a severe lack of chemical diversity for strong 

amine bases in the sample set. It became clear through this study that a systematic approach to 

identifying globally optimal reaction conditions across a chemically diverse pool of reaction 

conditions could accelerate hit identification through HTE efforts. 

For the benchmark conditions, we selected K3PO4 and Cs2CO3, with DMF as solvent. 

K3PO4–DMF and Cs2CO3–DMF achieved the highest Z-scores of product peak area percentage 

(AP) and have been extensively investigated in these datasets. These two conditions represent 

conditions chosen with expert knowledge and ones that have demonstrated success in past 

investigations. 

 

 

Fig. 127 Bases and solvents investigated in phenol alkylation reactions at BMS. Base is ranked by 
the highest Z-score of product peak area percentage (AP) achieved. 
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Authentic product synthesis: procedure and characterization 

 

General procedure:  

On the benchtop, to a 20 mL vial was added the phenol (1.0 equiv., 2 mmol) followed by 

4 mL DMF, and 2-tert-butyl-1,1,3,3-tetramethylguadinine (3.0 equiv., 6 mmol, 98 mass%). The 

mixture stirred at room temperature for 2 min and was then treated with a solution of mesylate (1.0 

equiv., 2 mmol) in DMF (2 mL). The mesylate vial was rinsed with DMF 2 x 1 mL and the contents 

added to the reaction vial. The reaction was heated to 60 °C and stirred no less than 16 h. UPLC/MS 

was used to analyze reaction progress. The reaction was split in to a second 20 mL vial (~ 3 mL in 

each vial) and each vial was treated with 500 µL water and 400 µL glacial acetic acid. Note that 

the vial will get warm, and some vapor will be generated. The vials were cooled to room 

temperature and then evaporated on the Biotage V-10 Touch vial evaporator using the very high 

boil setting. The concentrated mixtures were each dissolved in 20 mL EtOAc and recombined in a 

separatory funnel, rinsing each vial with 5 mL EtOAc. The organic solution was washed 1 x 1M 

KHCO3, 2 x 1 M LiCl, 2 x water, 2 x 1M K2CO3, and brine (~ 50 mL each). The crude was purified 

by silica gel chromatography (80 - 220 g ISCO RediSep-RfGold column; 10% to 50% 

EtOAc/heptane gradient) or preparative SFC.  

 

Product labeling: phenols are labeled from p1-6, mesylates are labeled from m1-6. The 

resulting product from the reaction are labeled m#-p# accordingly. m1 and p5 were selected as 

out-of-sample test substrates. 
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Product synthesis and characterization:  

 

m1 series 

 

 

tert-butyl 4-([1,1'-biphenyl]-4-yloxy)piperidine-1-carboxylate (m1-p1): Prepared 

according to the general procedure. The title compound was isolated via flash column 

chromatography (silica gel, 40-63 μm, Silicycle, 0-40% EtOAc/hexane) as a white solid (160 mg, 

453 µmol, 23% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.57 – 7.49 (m, 4H), 7.44 – 7.38 (m, 2H), 7.33 – 7.27 (m, 

1H), 7.01 – 6.95 (m, 2H), 4.51 (tt, J = 7.2, 3.5 Hz, 1H), 3.72 (ddd, J = 13.5, 7.7, 3.8 Hz, 2H), 3.36 

(ddd, J = 13.5, 7.7, 3.8 Hz, 2H), 1.95 (ddt, J = 11.8, 8.0, 3.9 Hz, 2H), 1.79 (dtd, J = 13.4, 7.4, 3.8 

Hz, 2H), 1.48 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 156.92, 155.01, 140.89, 134.30, 128.87, 128.41, 126.89, 

116.52, 79.75, 72.44, 40.81, 30.71, 28.61. 

HRMS (ESI-TOF): calculated for [C22H27NO3+Na]+: 376.1883, Found: 376.1890. 

 

 

 

Ph
NBoc

O

NBoc

O

N
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tert-butyl 5-((1-(tert-butoxycarbonyl)piperidin-4-yl)oxy)-1H-indole-1-carboxylate 

(m1-p2): Prepared according to the general procedure on 6.00 mmol scale. The title compound 

was isolated via preparative SFC with the following conditions: Column: Diacel ChiralPak IC, 30 

x 250 mm; Temperature: 35 °C; Mobile Phase: 30% EtOH with CO2; Flow rate: 85 mL/min; Back 

Pressure: 100 bar; UV Wavelength: 250 nm. The collected fraction was dried in vacuo at ~30°C 

without any co-solvent (444 mg, 1.07 mmol, 18% yield). 

 

1H NMR (500 MHz, CDCl3): δ 7.95 (br d, J=5.2 Hz, 1H), 7.54 - 7.44 (m, 1H), 6.99 (d, 

J=2.4 Hz, 1H), 6.86 (dd, J=9.0, 2.4 Hz, 1H), 6.41 (d, J=3.4 Hz, 1H), 4.41 - 4.35 (m, 1H), 3.70 - 

3.61 (m, 2H), 3.25 (ddd, J=13.4, 7.9, 3.7 Hz, 2H), 1.90 - 1.81 (m, 2H), 1.74 - 1.61 (m, 2H), 1.59 

(s, 9H), 1.40 (s, 9H). 

13C NMR (126 MHz, CDCl3): δ 155.0, 153.1, 149.0, 131.5, 130.1, 126.7, 115.9, 115.1, 

107.4, 107.0, 79.6, 73.3, 41.0, 30.6, 28.5, 28.2. 

HRMS (ESI-TOF): calculated for [C23H32N2O5+Na]+: 439.2203, Found: 439.2250. 

 

 

 

tert-butyl 4-(4-cyano-2-(trifluoromethyl)phenoxy)piperidine-1-carboxylate (m1-p3): 

Prepared according to the general procedure on 8.00 mmol scale. The title compound was isolated 

via preparative SFC with the following conditions: Column: Diacel ChiralPak IC, 30 x 250 mm; 

Temperature: 35 °C; Mobile Phase: 30% EtOH with CO2; Flow rate: 85 mL/min; Back Pressure: 

NC

CF3

NBoc

O
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100 bar; UV Wavelength: 250 nm. The collected fraction was dried in vacuo at ~30°C without any 

co-solvent (1.872 g, 5.05 mmol, 63% yield).  

 

1H NMR (500 MHz, DMSO-d6): δ 8.16 (d, J =2.0 Hz, 1H), 8.12 (dd, J =8.8, 2.1 Hz, 1H), 

7.55 (d, J =8.9 Hz, 1H), 4.83 (tt, J=8.3, 3.9 Hz, 1H), 3.65 - 3.56 (m, 1H), 3.47 - 3.41 (m, 1H), 3.38 

(br s, 1H), 3.17 (br dd, J =9.1, 2.2 Hz, 1H), 1.96 - 1.85 (m, 2H), 1.61 (dtd, J =13.0, 8.7, 4.0 Hz, 

2H), 1.44 - 1.36 (m, 9H). 

13C NMR (126 MHz, DMSO-d6): δ 158.7, 154.3, 154.3, 139.1, 132.1 (q, J=4.2 Hz), 123.2 

(q, J=269.6 Hz), 119.2 (q, J=37.6 Hz), 116.1, 103.3, 79.4, 73.6, 38.3, 31.7, 28.5. 

19F NMR (471 MHz, DMSO-d6): δ -61.76. 

HRMS (ESI-TOF): calculated for [C18H21F3N2O3+Na]+: 393.1396, Found: 393.1444. 

 

 

  

tert-butyl 4-((4-methylpyridin-3-yl)oxy)piperidine-1-carboxylate (m1-p4): Prepared 

according to the general procedure on a 4.00 mmol scale. The title compound was isolated via 

silica gel chromatography (silica gel, 40-63 μm, Silicycle, 1-10% methanol/dichloromethane) as a 

yellow oil (433mg, 1.48 mmol, 37% yield). 

 

1H NMR (400 MHz, CDCl3): δ 8.15 (s, 1H), 8.08 (d, J = 4.7 Hz, 1H), 7.06 (d, J = 4.7 Hz, 

1H), 4.55 (tt, J = 7.0, 3.4 Hz, 1H), 3.64 (ddd, J = 13.5, 7.9, 3.8 Hz, 2H), 3.37 (ddd, J = 13.5, 7.4, 

N

Me

NBoc

O
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3.9 Hz, 2H), 2.22 (s, 3H), 1.92 (ddt, J = 11.7, 7.6, 3.7 Hz, 2H), 1.78 (dtd, J = 13.6, 7.1, 3.7 Hz, 

2H), 1.45 (s, 9H).	

13C NMR (101 MHz, CDCl3): δ 154.88, 152.32, 142.54, 136.98, 135.51, 125.92, 79.79, 

73.01, 40.65, 30.66, 28.53, 15.88.	

HRMS (ESI-TOF): calculated for [C16H24N2O3+H]+: 293.1860, Found: 293.1862. 

 

 

  

tert-butyl 4-(quinolin-6-yloxy)piperidine-1-carboxylate (m1-p5): Prepared according to 

the general procedure on 7.00 mmol scale. The title compound was isolated via flash column 

chromatography (silica gel, 40-63 μm, Silicycle, 30-70% EtOAc/hexane) as an orange solid (656 

mg, 2.00 mmol, 29% yield). 

 

1H NMR (400 MHz, CDCl3): δ 8.78 (dd, J = 4.3, 1.6 Hz, 1H), 8.09 – 7.99 (m, 2H), 7.37 

(td, J = 8.8, 3.5 Hz, 2H), 7.11 (d, J = 2.8 Hz, 1H), 4.64 (tt, J = 7.2, 3.5 Hz, 1H), 3.74 (ddd, J = 12.3, 

7.6, 3.8 Hz, 2H), 3.40 (ddd, J = 12.7, 7.5, 3.8 Hz, 2H), 2.03-1.96 (m, 2H), 1.89 – 1.77 (m, 2H), 

1.48 (s, 9H).	

13C NMR (101 MHz, CDCl3): δ 155.38, 154.97, 148.27, 144.49, 134.88, 131.27, 129.40, 

123.20, 121.54, 108.14, 79.82, 72.57,  40.61, 30.51, 28.59.	

HRMS (ESI-TOF): calculated for [C19H24N2O3+H]+: 329.1860, Found: 329.1866. 
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N

O
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tert-butyl 4-(3-(ethoxycarbonyl)phenoxy)piperidine-1-carboxylate (m1-p6): Prepared 

according to the general procedure. The title compound was isolated via flash column 

chromatography (silica gel, 40-63 μm, Silicycle, 20-40% EtOAc/hexane) as a colorless oil (162 

mg, 464 µmol, 23% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.64 (dt, J = 7.7, 1.4 Hz, 1H), 7.57 (dd, J = 2.7, 1.5 Hz, 

1H), 7.34 (t, J = 7.9 Hz, 1H), 7.09 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H), 4.54 (tt, J = 7.2, 3.5 Hz, 1H), 

4.41 – 4.32 (m, 2H), 3.70 (ddd, J = 13.5, 7.6, 3.8 Hz, 2H), 3.35 (ddd, J = 13.5, 7.7, 3.9 Hz, 2H), 

1.93 (ddt, J = 11.7, 7.6, 3.8 Hz, 2H), 1.75 (dtd, J = 13.6, 7.4, 3.8 Hz, 2H), 1.47 (s, 9H), 1.39 (td, J 

= 7.1, 0.5 Hz, 3H).	

13C NMR (101 MHz, CDCl3): δ 166.56, 157.34, 154.98, 132.11, 129.66, 122.40, 121.31, 

116.60, 79.77, 72.56, 61.23, 40.73, 30.58, 28.59, 14.47.	

HRMS (ESI-TOF): calculated for [C19H27NO5+Na]+: 372.1781, Found: 372.1796. 

 

 

m2 series: 

 

  

4-(hexyloxy)-1,1'-biphenyl (m2-p1): Prepared according to the general procedure on a 

10.00 mmol scale. The title compound was isolated via flash column chromatography (silica gel, 

40-63 μm, Silicycle, 5-15% EtOAc/hexane) as a white solid (863 mg, 3.93 mmol, 34% yield). 

NBoc

OEtO2C

Ph

O C5H11
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1H NMR (400 MHz, CDCl3): δ 7.57 – 7.49 (m, 4H), 7.44 – 7.38 (m, 2H), 7.32 – 7.27 (m, 

1H), 7.00 – 6.94 (m, 2H), 4.00 (t, J = 6.6 Hz, 2H), 1.81 (dq, J = 7.9, 6.6 Hz, 2H), 1.53 – 1.43 (m, 

2H), 1.36 (tt, J = 7.1, 3.3 Hz, 4H), 0.95 – 0.88 (m, 3H). 

13C NMR (101 MHz, CDCl3): δ 158.89, 141.06, 133.69, 128.84, 128.25, 126.86, 126.73, 

114.93, 68.26, 31.76, 29.43, 25.90, 22.77, 14.19. 

HRMS (ESI-TOF): calculated for [C18H22O+H]+: 255.1743, Found: 255.1735. 

 

 

  

tert-butyl 5-(hexyloxy)-1H-indole-1-carboxylate (m2-p2): Prepared according to the 

general procedure on a 5.00 mmol scale. The title compound was isolated via silica gel 

chromatography (silica gel, 40-63 μm, Silicycle, 15-50% EtOAc/hexane) as a colorless oil (1.317 

g, 4.15 mmol, 83% yield). 

 

1H NMR (400 MHz, CDCl3): δ 8.00 (d, J = 9.2 Hz, 1H), 7.55 (d, J = 3.7 Hz, 1H), 7.02 (d, 

J = 2.4 Hz, 1H), 6.92 (dd, J = 9.0, 2.5 Hz, 1H), 6.48 (dd, J = 3.7, 0.7 Hz, 1H), 3.99 (t, J = 6.6 Hz, 

2H), 1.80 (dq, J = 8.0, 6.7 Hz, 2H), 1.66 (s, 9H), 1.52 – 1.41 (m, 2H), 1.35 (dp, J = 7.0, 3.3 Hz, 

4H), 0.95 – 0.86 (m, 3H).	

13C NMR (101 MHz, CDCl3): δ 155.49, 149.90, 131.50, 130.01, 126.55, 115.90, 113.69, 

107.25, 104.59, 83.55, 68.74, 31.78, 29.51, 28.35, 25.93, 22.77, 14.19.	

HRMS (ESI-TOF): calculated for [C19H27NO3+H]+: 318.2064, Found: 318.2064. 

C5H11O

N
Boc
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4-(hexyloxy)-3-(trifluoromethyl)benzonitrile (m2-p3): Prepared according to the 

general procedure on a 5.00 mmol scale. The title compound was isolated via silica gel 

chromatography (silica gel, 40-63 μm, Silicycle, 10-30% EtOAc/hexane) as a pale yellow solid 

(577 mg, 2.13 mmol, 43% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.85 (d, J = 2.1 Hz, 1H), 7.77 (dd, J = 8.7, 2.1 Hz, 1H), 

7.05 (d, J = 8.7 Hz, 1H), 4.11 (t, J = 6.3 Hz, 2H), 1.81 (d, J = 6.3 Hz, 2H), 1.52 – 1.44 (m, 2H), 

1.38 – 1.30 (m, 4H), 0.94 – 0.87 (m, 3H). 

13C NMR (101 MHz, CDCl3): δ 160.39, 137.60, 131.50 (q, J = 5.4 Hz), 122.57 (q, J = 

272.9 Hz), 120.28 (q, J = 32.2 Hz), 118.11, 113.46, 103.62, 69.61, 31.43, 28.80, 25.47, 22.62, 

14.05. 

19F NMR (376 MHz, CDCl3): δ -63.35. 

HRMS (ESI-TOF): calculated for [C14H16F3NO+NH4]+: 289.1522, Found: 289.1522. 
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3-(hexyloxy)-4-methylpyridine (m2-p4): Prepared according to the general procedure on 

a 5.00 mmol scale. The title compound was isolated via silica gel chromatography (silica gel, 40-

63 μm, Silicycle, 30-70% EtOAc/hexane) as a pale yellow oil (444 mg, 2.30 mmol, 46% yield). 

 

1H NMR (400 MHz, CDCl3): δ 8.14 (s, 1H), 8.10 (d, J = 4.7 Hz, 1H), 7.05 (dt, J = 4.7, 

0.7 Hz, 1H), 4.05 (t, J = 6.4 Hz, 2H), 2.23 (s, 3H), 1.81 (ddt, J = 9.0, 7.8, 6.4 Hz, 2H), 1.54 – 1.41 

(m, 2H), 1.35 (tt, J = 7.1, 3.2 Hz, 4H), 0.97 – 0.83 (m, 3H).	

13C NMR (101 MHz, CDCl3): δ 154.10, 142.29, 135.75, 133.48, 125.49, 68.71, 31.65, 

29.42, 25.82, 22.71, 15.74, 14.12.	

HRMS (ESI-TOF): calculated for [C12H19NO_H]-: 192.1394, Found: 192.1363. 

 

 

  

6-(hexyloxy)quinoline (m2-p5): Prepared according to the general procedure on a 5.00 

mmol scale. The title compound was isolated via silica gel chromatography (silica gel, 40-63 μm, 

Silicycle, 30-70% EtOAc/hexane) as a red oil (507 mg, 2.21 mmol, 44% yield). 

 

1H NMR (400 MHz, CDCl3): δ 8.75 (dd, J = 4.3, 1.7 Hz, 1H), 8.05 – 7.94 (m, 2H), 7.35 

(ddd, J = 14.0, 8.7, 3.5 Hz, 2H), 7.05 (d, J = 2.8 Hz, 1H), 4.07 (t, J = 6.6 Hz, 2H), 1.90 – 1.79 (m, 

2H), 1.56 – 1.45 (m, 2H), 1.37 (dq, J = 6.7, 3.5 Hz, 4H), 0.96 – 0.84 (m, 3H).	

13C NMR (101 MHz, CDCl3): δ 157.42, 147.93, 144.47, 134.88, 130.90, 129.50, 122.74, 

121.42, 105.96, 68.47, 31.73, 29.28, 25.90, 22.75, 14.17.	

HRMS (ESI-TOF): calculated for [C15H19NO+H]+: 230.1539, Found: 230.1557. 
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ethyl 3-(hexyloxy)benzoate (m2-p6): Prepared according to the general procedure on a 

10.00 mmol scale. The title compound was isolated via silica gel chromatography (silica gel, 40-

63 μm, Silicycle, 10-25% EtOAc/hexane) as a colorless oil (1.43 g, 5.72 mmol, 57% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.62 (dt, J = 7.7, 1.3 Hz, 1H), 7.55 (dd, J = 2.7, 1.5 Hz, 

1H), 7.32 (t, J = 7.9 Hz, 1H), 7.08 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.00 (t, 

J = 6.6 Hz, 2H), 1.79 (dq, J = 7.9, 6.6 Hz, 2H), 1.51 – 1.42 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.37-

1.32 (m, 4H), 0.91 (td, J = 5.9, 2.6 Hz, 3H).	

13C NMR (101 MHz, CDCl3): δ 166.70, 159.25, 131.90, 129.41, 121.86, 119.85, 114.89, 

68.36, 61.13, 31.71, 29.31, 25.84, 22.74, 14.47, 14.16.	

HRMS (ESI-TOF): calculated for [C15H22O3+H]+: 251.1642, Found: 251.1640. 

 

 

m3 series 

 

 

4-(sec-butoxy)-1,1'-biphenyl (m3-p1): Prepared according to the general procedure on 2 

mmol scale. The title compound was isolated via silica gel column chromatography (80 g ISCO 

RediSep-RfGold column, 5-50% EtOAc/Heptane) as colorless oil (335 mg, 1480 µmol, 74% yield). 
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1H NMR (500 MHz, DMSO-d6): δ 7.61 - 7.53 (m, 4H), 7.41 (t, J=7.3 Hz, 2H), 7.33 - 

7.25 (m, 1H), 6.98 (d, J=7.7 Hz, 2H), 4.40 (sxt, J=6.0 Hz, 1H),1.71 - 1.54 (m, 2H), 1.23 (d, J=6.0 

Hz, 3H), 0.92 (t, J=7.5 Hz, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 157.4, 139.9, 132.2, 128.8, 127.7, 126.6, 126.1, 115.9, 

74.1, 28.5, 19.0, 9.5. 

HRMS (ESI-TOF): calculated for [C16H18O+H]+: 227.1430, Found: 227.1493. 

 

 

 

tert-butyl 5-(sec-butoxy)-1H-indole-1-carboxylate (m3-p2): Prepared according to the 

general procedure on 2 mmol scale. The title compound was isolated via silica gel column 

chromatography (80 g ISCO RediSep-RfGold column, 0-100% EtOAc/Heptane) as colorless oil 

(393 mg, 1360 µmol, 68% yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 7.90 (d, J=9.0 Hz, 1H), 7.61 (d, J=3.7 Hz, 1H), 7.12 

(d, J=2.6 Hz, 1H), 6.90 (dd, J=8.9, 2.4 Hz, 1H), 6.60 (dd, J=3.7, 0.6 Hz, 1H), 4.35 (sxt, J=6.0 Hz, 

1H), 1.69 - 1.54 (m, 11H), 1.25 - 1.20 (m, 3H), 0.93 (t, J=7.5 Hz, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 154.3, 149.5, 131.6, 129.3, 127.0, 115.8, 115.1, 107.8, 

106.9, 84.0, 75.3, 29.0, 28.1, 19.6, 10.0. 

HRMS (ESI-TOF): calculated for [C17H23NO3+H]+: 290.1751, Found: 290.1809. 
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4-(sec-butoxy)-3-(trifluoromethyl)benzonitrile (m3-p3): Prepared according to the 

general procedure on 2 mmol scale. The title compound was isolated via silica gel column 

chromatography (80 g ISCO RediSep-RfGold column, 5-50% EtOAc/Heptane) as colorless oil 

(329 mg, 1350 µmol, 68% yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 8.11 (d, J=2.0 Hz, 1H), 8.07 (dd, J=8.7, 2.1 Hz, 1H), 

7.47 (d, J=8.9 Hz, 1H), 4.75 (sxt, J=6.0 Hz, 1H), 1.72 - 1.57 (m, 2H), 1.26 (d, J=6.0 Hz, 3H), 0.91 

(t, J=7.4 Hz, 3H) 

13C NMR (126 MHz, DMSO-d6): δ 159.1, 138.6, 131.5 (q, J=4.2 Hz), 122.7 (q, J=272.9 

Hz), 118.3 (q, J = 32.2 Hz ), 118.0, 115.4, 102.3, 76.3, 76.2, 28.3, 27.9, 18.4, 8.9. 

19F NMR (471 MHz, DMSO-d6): δ -61.84. 

HRMS (ESI-TOF): calculated for [C12H12F3NO+NH4]+: 261.1209, Found: 261.1270. 

 

 

 

3-(sec-butoxy)-4-methylpyridine (m3-p4): Prepared according to the general procedure 

on 2 mmol scale. The title compound was isolated via silica gel column chromatography (80 g 

ISCO RediSep-RfGold column, 0-100% EtOAc/Heptane) as colorless oil (103 mg, 620 µmol, 31% 

yield). 
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1H NMR (500 MHz, DMSO-d6): δ 8.22 (s, 1H), 8.03 (d, J=4.6 Hz, 1H), 7.16 (d, J=4.6 

Hz, 1H), 4.49 (sxt, J=6.0 Hz, 1H), 2.15 (s, 3H), 1.70 - 1.56 (m, 2H), 1.24 (d, J=6.0 Hz, 3H), 0.93 

(t, J=7.5 Hz, 3H) 

13C NMR (126 MHz, DMSO-d6): δ 152.6, 141.6, 135.4, 125.5, 125.5, 75.2, 28.7, 19.1, 

15.3, 9.4. 

HRMS (ESI-TOF): calculated for [C10H15NO+H]+: 166.1226, Found: 166.1240. 

 

 

 

6-(sec-butoxy)quinoline (m3-p5): Prepared according to the general procedure on 2 mmol 

scale. The title compound was isolated via silica gel column chromatography (80 g ISCO RediSep-

RfGold column, 0-100% EtOAc/Heptane) as red oil (237 mg, 1178 µmol, 59% yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 8.71 (dd, J=4.3, 1.7 Hz, 1H), 8.22 (dt, J=7.6, 0.9 Hz, 

1H), 7.90 (d, J=8.9 Hz, 1H), 7.44 (dd, J=8.3, 4.2 Hz, 1H), 7.38 - 7.34 (m, 2H), 4.54 (sxt, J=6.0 Hz, 

1H), 1.77 - 1.59 (m, 2H), 1.30 (d, J=6.1 Hz, 3H), 0.95 (t, J=7.4 Hz, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 155.5, 147.8, 143.6, 134.6, 130.4, 129.1, 122.8, 121.5, 

107.6, 74.4, 28.4, 18.8, 9.5. 

HRMS (ESI-TOF): calculated for [C13H15NO+H]+: 202.1154, Found: 202.1314 
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ethyl 3-(sec-butoxy)benzoate (m3-p6): Prepared according to the general procedure. The 

title compound was isolated via silica gel column chromatography (80 g ISCO RediSep-RfGold 

column, 5-50% EtOAc/Heptane) as colorless oil (283 mg, 1273 µmol, 64% yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 7.52 (dt, J=7.8, 1.1 Hz, 1H), 7.47 - 7.37 (m, 2H), 7.21 

(ddd, J=8.2, 2.7, 1.0 Hz, 1H), 4.51 - 4.39 (m, 1H), 4.31 (q, J=7.0 Hz, 2H), 1.73 - 1.52 (m, 2H), 

1.32 (t, J=7.1 Hz, 3H), 1.24 (d, J=6.1 Hz, 3H), 0.93 (t, J=7.5 Hz, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 165.5, 157.8, 131.3, 129.9, 121.1, 120.5, 115.8, 74.5, 

60.7, 28.5, 18.8, 14.1, 9.4. 

HRMS (ESI-TOF): calculated for [C13H18O3+H]+: 223.1329, Found: 223.1355 

 

 

m4 series  

 

 

2-([1,1'-biphenyl]-4-yloxy)-2,3-dihydro-1H-indene (m4-p1): Prepared according to the 

general procedure with 2 mmol phenol limiting reagent. The title compound was isolated via silica 

gel column chromatography (80 g ISCO RediSep-RfGold column, 5-50% EtOAc/Heptane) as off-

white solids (92 mg, 321 µmol, 16% yield). 
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1H NMR (500 MHz, DMSO-d6): δ 7.66 - 7.52 (m, 4H), 7.43 (t, J=7.7 Hz, 2H), 7.33 - 

7.23 (m, 3H), 7.21 - 7.15 (m, 2H), 7.03 (d, J=7.8 Hz, 2H), 5.34 - 5.21 (m, 1H), 3.39 (dd, J=16.9, 

6.0 Hz, 2H), 3.05 (dd, J=16.9, 2.2 Hz, 2H). 

13C NMR (126 MHz, DMSO-d6): δ 157.1, 141.1, 140.1, 132.8, 129.2, 128.2, 127.0, 126.8, 

126.5, 125.0, 116.1, 77.6, 39.5. 

HRMS (ESI-TOF): calculated for [C21H18O+NH4]+: 304.1696, Found: 304.1756. 

 

 

 

tert-butyl 5-((2,3-dihydro-1H-inden-2-yl)oxy)-1H-indole-1-carboxylate (m4-p2): 

Prepared according to the general procedure on 4 mmol scale. The title compound was isolated via 

silica gel column chromatography (80 g ISCO RediSep-RfGold column, 5-50% EtOAc/Heptane) 

as colorless oil (200 mg, 780 µmol, 20% yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 7.93 (d, J=9.0 Hz, 1H), 7.64 (d, J=3.7 Hz, 1H), 7.26 

(dd, J=5.3, 3.2 Hz, 2H), 7.18 (td, J=5.6, 2.8 Hz, 3H), 6.90 (dd, J=9.0, 2.4 Hz, 1H), 6.64 (dd, J=3.7, 

0.6 Hz, 1H), 5.30 - 5.20 (m, 1H), 3.42 - 3.34 (m, 2H), 3.05 (dd, J=16.8, 2.4 Hz, 2H), 1.71 - 1.54 

(m, 9H). 

13C NMR (126 MHz, DMSO-d6): δ 153.6, 149.4, 141.1, 131.5, 129.5, 126.9, 126.8, 124.9, 

115.8, 114.4, 107.7, 106.0, 83.9, 77.9, 39.5, 28.0. 

HRMS (ESI-TOF): calculated for [C22H23NO3+H]+: 350.1751, Found: 350.1803. 
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4-((2,3-dihydro-1H-inden-2-yl)oxy)-3-(trifluoromethyl)benzonitrile (m4-p3): 

Prepared according to the general procedure. The title compound was isolated via silica gel column 

chromatography (80 g ISCO RediSep-RfGold column, 25% EtOAc/Heptane) as orange solid (237 

mg, 780 µmol, 39% yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 8.17 - 8.13 (m, 2H), 7.59 (d, J=8.7 Hz, 1H), 7.31 - 

7.23 (m, 2H), 7.23 - 7.14 (m, 2H), 5.56 - 5.49 (m, 1H), 3.51 - 3.44 (m, 2H), 3.04 (dd, J=17.1, 2.4 

Hz, 2H). 

13C NMR (126 MHz, DMSO-d6): δ 159.1, 140.4, 139.1, 132.1 (q, J =6.3 Hz), 127.2, 125.0, 

123.0 (q, J =271.7 Hz), 119.2 (q, J =31.4 Hz), 118.4, 116.2, 103.4, 80.1, 39.5. 

19F NMR (471 MHz, DMSO-d6): δ -61.78. 

HRMS (ESI-TOF): calculated for [C17H12F3NO+NH4]+: 321.1209, Found: 321.1212. 

 

 

 

3-((2,3-dihydro-1H-inden-2-yl)oxy)-4-methylpyridine (m4-p4): Prepared according to 

the general procedure on 4 mmol scale. The title compound was isolated via silica gel column 

chromatography (80 g ISCO RediSep-RfGold column, 0-100% EtOAc/Heptane) as colorless oil 

(68 mg, 301 µmol, 8% yield). 
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1H NMR (500 MHz, DMSO-d6): δ 8.34 (s, 1H), 8.09 (d, J=4.7 Hz, 1H), 7.27 (dd, J=5.4, 

3.3 Hz, 2H), 7.22 - 7.12 (m, 3H), 5.42 - 5.28 (m, 1H), 3.42 (dd, J=16.9, 6.3 Hz, 2H), 3.05 (dd, 

J=16.9, 2.6 Hz, 2H), 2.05 (s, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 152.4, 142.2, 140.7, 135.6, 135.1, 126.7, 125.7, 124.8, 

78.5, 39.5, 15.4. 

HRMS (ESI-TOF): calculated for [C15H15NO+H]+: 226.1154, Found: 226.1382. 

 

 

 

6-((2,3-dihydro-1H-inden-2-yl)oxy)quinoline (m4-p5): Prepared according to the 

general procedure. The title compound was isolated via silica gel column chromatography (80 g 

ISCO RediSep-RfGold column, 40% EtOAc/Heptane) as yellow oil (410 mg, 1.57 mmol, 78% 

yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 8.74 (dd, J=4.3, 1.5 Hz, 1H), 8.28 (d, J=8.0 Hz, 1H), 

7.91 (d, J=9.2 Hz, 1H), 7.52 - 7.43 (m, 2H), 7.36 - 7.25 (m, 3H), 7.22 - 7.15 (m, 2H), 5.46 - 5.32 

(m, 1H), 3.54 - 3.41 (m, 2H), 3.12 (dd, J=16.9, 2.3 Hz, 2H). 

13C NMR (126 MHz, DMSO-d6): δ 155.5, 148.4, 144.2, 141.1, 135.3, 131.0, 129.5, 127.0, 

125.1, 123.1, 122.1, 108.0, 78.2, 39.6. 

HRMS (ESI-TOF): calculated for [C18H15NO+H]+: 262.1226, Found: 262.1272. 
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ethyl 3-((2,3-dihydro-1H-inden-2-yl)oxy)benzoate (m4-p6): Prepared according to the 

general procedure. The title compound was isolated via silica gel column chromatography (80 g 

ISCO RediSep-RfGold column, 25% EtOAc/Heptane) as yellow oil (81.3 mg, 288 µmol, 14% 

yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 7.55 (dt, J=7.8, 1.1 Hz, 1H), 7.48 - 7.40 (m, 2H), 7.29 

- 7.16 (m, 5H), 5.34 - 5.28 (m, 1H), 4.31 (q, J=7.0 Hz, 2H), 3.39 (dd, J=16.9, 6.1 Hz, 2H), 3.03 

(dd, J=16.9, 2.2 Hz, 2H), 1.31 (t, J=7.2 Hz, 3H). 

13C NMR (126 MHz, DMSO-d6): δ 166.0, 157.7, 141.1, 131.8, 130.5, 127.0, 125.1, 121.8, 

120.8, 115.9, 78.1, 61.3, 39.5, 14.6. 

HRMS (ESI-TOF): calculated for [C18H18O3+H]+: 283.1329, Found: 283.1334. 

 

 

m5 series:  

  

(R)-5-(([1,1'-biphenyl]-4-yloxy)methyl)-3-(3-fluoro-4-morpholinophenyl)oxazolidin-

2-one (m5-p1): Prepared according to the general procedure on a 10.00 mmol scale. The title 

compound was isolated via silica gel chromatography (silica gel, 40-63 μm, Silicycle, 40-80% 

EtOAc/hexane) as a white solid (430 mg, 959 μmol, 10% yield). 
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1H NMR (400 MHz, CDCl3): δ 7.57 – 7.47 (m, 5H), 7.45 – 7.38 (m, 2H), 7.34 – 7.29 (m, 

1H), 7.17 (ddd, J = 8.8, 2.6, 1.2 Hz, 1H), 7.06 – 6.94 (m, 3H), 5.00 (dq, J = 10.4, 4.9 Hz, 1H), 4.30 

– 4.21 (m, 2H), 4.17 (t, J = 8.8 Hz, 1H), 4.05 (dd, J = 8.9, 5.9 Hz, 1H), 3.94 – 3.82 (m, 4H), 3.14 

– 3.02 (m, 4H).	

13C NMR (101 MHz, CDCl3): δ 157.64, 155.70 (d, J = 246.5 Hz), 154.37, 140.60, 136.57 

(d, J = 8.9 Hz), 135.10, 133.38 (d, J = 10.4 Hz), 128.91, 128.47, 127.06, 126.91, 119.03 (d, J = 4.2 

Hz), 115.05, 114.06 (d, J = 3.3 Hz), 107.65 (d, J = 26.3 Hz), 70.48, 68.15, 67.10, 51.19, 51.16, 

47.58. 

19F NMR (376 MHz, CDCl3): δ -120.20. 

HRMS (ESI-TOF): calculated for [C26H25FN2O4+H]+: 449.1871, Found: 449.1877 

 

 

  

tert-butyl (R)-5-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methoxy)-

1H-indole-1-carboxylate (m5-p2): Prepared according to the general procedure on a 6.00 mmol 

scale. The title compound was recrystallized with dichloromethane/hexane to provide a white solid 

(844 mg, 1.65 mmol, 28% yield). 

 

1H NMR (400 MHz, CDCl3): δ 8.03 (d, J = 9.0 Hz, 1H), 7.58 (d, J = 3.7 Hz, 1H), 7.50 

(dd, J = 14.4, 2.6 Hz, 1H), 7.17 (ddd, J = 8.9, 2.6, 1.2 Hz, 1H), 7.04 (d, J = 2.5 Hz, 1H), 6.96 (t, J 
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= 9.1 Hz, 1H), 6.91 (dd, J = 9.0, 2.6 Hz, 1H), 6.49 (d, J = 3.7 Hz, 1H), 5.03 – 4.96 (m, 1H), 4.30 

– 4.22 (m, 2H), 4.16 (t, J = 8.9 Hz, 1H), 4.06 (dd, J = 8.8, 5.9 Hz, 1H), 3.89 – 3.87 (m, 4H), 3.08 

– 3.06 (m, 4H), 1.66 (s, 9H).	

13C NMR (101 MHz, CDCl3): δ 155.71 (d, J = 246.5 Hz), 154.45, 154.33, 149.75, 136.51 

(d, J = 8.7 Hz), 133.47 (d, J = 10.6 Hz), 131.48, 130.74, 127.02, 119.03 (d, J = 4.2 Hz), 116.17, 

114.05 (d, J = 3.4 Hz), 113.43, 107.65 (d, J = 26.3 Hz), 107.12, 105.07, 83.83, 70.62, 68.79, 67.10, 

51.21, 51.18, 47.64, 28.33.	

19F NMR (376 MHz, CDCl3): δ -120.27.	

HRMS (ESI-TOF): calculated for [C27H30FN3O6+H]+: 512.2191, Found: 512.2201. 

 

 

  

(R)-4-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-yl)methoxy)-3-

(trifluoromethyl)benzonitrile (m5-p3): Prepared according to the general procedure on 6 mmol 

scale. The title compound was isolated via preparative SFC with the following conditions: Column: 

Diacel ChiralPak IC, 30 x 250 mm; Temperature: 35 °C; Mobile Phase: 30% EtOH with CO2; 

Flow rate: 85 mL/min; Back Pressure: 100 bar; UV Wavelength: 250 nm. The collected fraction 

was dried in vacuo at ~30°C without any co-solvent (672 mg, 1.44 mmol, 24% yield). 

 

1H NMR (500 MHz, DMSO-d6): δ 8.17 (d, J=8.6 Hz, 1H), 8.15 (s, 1H), 7.55 - 7.46 (m, 

2H), 7.19 (dd, J=8.9, 2.0 Hz, 1H), 7.07 (t, J=9.4 Hz, 1H), 5.12 (qd, J=5.8, 3.4 Hz, 1H), 4.59 (dd, 
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J=11.1, 2.3 Hz, 1H), 4.48 (dd, J=11.1, 3.7 Hz, 1H), 4.22 (t, J=9.3 Hz, 1H), 3.90 (dd, J=9.1, 5.6 Hz, 

1H), 3.78 - 3.70 (m, 4H), 3.03 - 2.93 (m, 4H). 

13C NMR (126 MHz, DMSO-d6): δ 159.5, 156.0, 154.3, 154.0, 139.3, 135.9 (d, J=8.4 

Hz), 133.8 (d, J=10.5 Hz), 131.9 (br q, J =4.2 Hz), 119.7 (q, J =273.8 Hz), 119.6 (br d, J=4.2 Hz), 

118.7 (q, J =31.4 Hz), 115.3, 114.4, 107.0 (d, J=26.3 Hz), 104.0, 70.5, 69.9, 66.6, 51.2, 46.5. 

19F NMR (471 MHz, DMSO-d6): δ -61.95, -121.44. 

HRMS (ESI-TOF): calculated for [C22H19F4N3O4+H]+: 466.1384, Found: 466.1400 

 

 

  

(R)-3-(3-fluoro-4-morpholinophenyl)-5-(((4-methylpyridin-3-

yl)oxy)methyl)oxazolidin-2-one (m5-p4): Prepared according to the general procedure on a 6.00 

mmol scale. The title compound was isolated via silica gel chromatography (silica gel, 40-63 μm, 

Silicycle, 0-10% methanol/dichloromethane) as a pale brown solid (551 mg, 1.42 mmol, 24% 

yield). 

 

1H NMR (400 MHz, CDCl3): δ 8.18 (s, 2H), 7.47 (dd, J = 14.4, 2.6 Hz, 1H), 7.15 (ddd, J 

= 8.8, 2.6, 1.2 Hz, 1H), 7.10 (s, 1H), 6.93 (t, J = 9.1 Hz, 1H), 5.01 (ddt, J = 9.0, 5.3, 3.6 Hz, 1H), 

4.37 (dd, J = 10.3, 3.6 Hz, 1H), 4.29 (dd, J = 10.3, 3.7 Hz, 1H), 4.20 (t, J = 8.9 Hz, 1H), 4.03 (dd, 

J = 8.8, 5.3 Hz, 1H), 3.89 – 3.82 (m, 4H), 3.08 – 3.01 (m, 4H), 2.15 (s, 3H). 
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13C NMR (101 MHz, CDCl3): δ 155.68 (d, J = 246.3 Hz), 154.34, 143.63, 136.59 (d, J = 

8.9 Hz), 136.20, 133.28 (d, J = 4.5 Hz), 133.16, 125.87, 119.01 (d, J = 4.2 Hz), 113.94 (d, J = 3.3 

Hz), 107.52 (d, J = 26.4 Hz), 70.41, 68.95, 67.08, 51.14, 51.11, 47.20, 15.60.	

19F NMR (376 MHz, CDCl3): δ -120.14.	

HRMS (ESI-TOF): calculated for [C20H22FN3O4+H]+: 388.1667, Found: 388.1670. 

 

 

  

(R)-3-(3-fluoro-4-morpholinophenyl)-5-((quinolin-6-yloxy)methyl)oxazolidin-2-one 

(m5-p5): Prepared according to the general procedure on a 6.00 mmol scale. The title compound 

was recrystallized with dichloromethane/hexane to provide a pale red solid (411 mg, 970 μmol, 

16 % yield). 

 

1H NMR (400 MHz, CDCl3) δ 8.80 (dd, J = 4.3, 1.7 Hz, 1H), 8.11 – 8.01 (m, 2H), 7.48 

(dd, J = 14.3, 2.6 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.17 (ddd, J = 8.8, 2.7, 1.1 Hz, 1H), 7.11 (d, J = 

2.8 Hz, 1H), 6.94 (t, J = 9.1 Hz, 1H), 5.05 (ddt, J = 8.9, 5.9, 4.6 Hz, 1H), 4.35 (d, J = 4.6 Hz, 2H), 

4.20 (t, J = 8.9 Hz, 1H), 4.06 (dd, J = 8.9, 5.9 Hz, 1H), 3.88 – 3.85 (m, 4H), 3.07 – 3.04 (m, 4H).	

13C NMR (101 MHz, CDCl3): δ 156.21, 155.67 (d, J = 246.6 Hz), 154.28, 148.41, 144.52, 

136.66 (d, J = 8.9 Hz), 135.32, 133.23 (d, J = 10.6 Hz), 131.19, 129.23, 122.22, 121.75, 119.01 (d, 

J = 4.3 Hz), 114.06 (d, J = 3.1 Hz), 107.64 (d, J = 26.3 Hz), 106.66, 70.33, 68.29, 67.07, 51.15, 

51.12, 47.54.	

19F NMR (376 MHz, CDCl3): δ -120.12.	
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HRMS (ESI-TOF): calculated for [C23H22FN3O4+H]+: 424.1667, Found: 424.1674. 

 

 

  

ethyl (R)-3-((3-(3-fluoro-4-morpholinophenyl)-2-oxooxazolidin-5-

yl)methoxy)benzoate (m5-p6): Prepared according to the general procedure on a 10.00 mmol 

scale. The title compound was isolated via silica gel chromatography (silica gel, 40-63 μm, 

Silicycle, 0-10% methanol/dichloromethane) as a white solid (173 mg, 390 μmol, 4% yield). 

 

1H NMR (400 MHz, CDCl3): δ 7.70 (dt, J = 7.7, 1.3 Hz, 1H), 7.56 (dd, J = 2.7, 1.5 Hz, 

1H), 7.49 (dd, J = 14.3, 2.6 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.16 (ddd, J = 8.8, 2.6, 1.1 Hz, 1H), 

7.10 (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), 6.99 (t, J = 9.0 Hz, 1H), 5.00 (ddt, J = 9.0, 5.9, 4.5 Hz, 1H), 

4.38 (q, J = 7.1 Hz, 2H), 4.30 – 4.25 (m, 2H), 4.17 (t, J = 8.9 Hz, 1H), 4.02 (dd, J = 8.9, 5.9 Hz, 

1H), 3.91 – 3.85 (m, 4H), 3.10 – 3.05 (m, 4H), 1.39 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3): δ 166.29, 158.05, 155.73 (d, J = 246.6 Hz), 154.30, 132.22, 

129.79, 123.22, 120.00, 119.12 (d, J = 3.5 Hz), 114.07 (d, J = 3.4 Hz), 107.68 (d, J = 26.4 Hz), 

70.38, 68.22, 67.08, 61.35, 51.23, 51.20, 47.47, 14.46.	

19F NMR (376 MHz, CDCl3): δ -120.14.	

HRMS (ESI-TOF): calculated for [C23H25FN2O6+H]+: 445.1697, Found: 445.1774. 
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Note: m6 series compounds exist as rotamers at room temperature. High temperature NMR 

was used to resolve rotameric peaks.  

 

 

benzyl (R)-3-([1,1'-biphenyl]-4-yloxy)pyrrolidine-1-carboxylate (m6-p1): Prepared 

according to the general procedure. The title compound was isolated via silica gel column 

chromatography (80 g ISCO RediSep-RfGold column, 25% EtOAc/Heptane) as orange solid (343 

mg, 920 µmol, 46% yield). 

 

1H NMR (700 MHz, 100 °C, DMSO-d6): δ 7.59 (dd, J=10.6, 8.1 Hz, 4H), 7.43 (t, J=7.8 

Hz, 2H), 7.38 - 7.35 (m, 4H), 7.34 - 7.27 (m, 2H), 7.03 (d, J=8.8 Hz, 2H), 5.12 (s, 2H), 5.06 (dt, 

J=4.4, 2.3 Hz, 1H), 3.69 (dd, J=12.1, 4.6 Hz, 1H), 3.59 - 3.49 (m, 3H), 3.00 (s, 1H), 2.21 (dtd, 

J=13.5, 8.9, 4.9 Hz, 1H), 2.15 - 2.08 (m, 1H). 

13C NMR (176 MHz, 100 °C, DMSO-d6): δ 156.2, 153.7, 139.4, 136.7, 132.9, 128.2, 

127.8, 127.3, 127.2, 126.9, 126.2, 125.7, 115.8, 75.7, 65.5, 51.0, 43.5, 30.1. 

HRMS (ESI-TOF): calculated for [C24H23NO3+H]+: 374.1751, Found: 374.1753. 

 

 

  

tert-butyl (R)-5-((1-((benzyloxy)carbonyl)pyrrolidin-3-yl)oxy)-1H-indole-1-

carboxylate (m6-p2): Prepared according to the general procedure. The title compound was 
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isolated via silica gel column chromatography (80 g ISCO RediSep-RfGold column, 25% 

EtOAc/Heptane) as orange solid (375 mg, 860 µmol, 43% yield). 

 

1H NMR (700 MHz, 100 °C , DMSO-d6): δ 7.97 (d, J=9.0 Hz, 1H), 7.61 (d, J=3.5 Hz, 

1H), 7.38 - 7.33 (m, 4H), 7.33 - 7.26 (m, 1H), 7.16 (d, J=2.5 Hz, 1H), 6.94 (dd, J=9.0, 2.5 Hz, 1H), 

6.60 (d, J=3.8 Hz, 1H), 5.14 - 5.09 (m, 2H), 5.01 (dt, J=4.6, 2.3 Hz, 1H), 3.66 (dd, J=12.0, 4.8 Hz, 

2H), 3.59 - 3.50 (m, 2H), 2.21 -2.08 (m, 2H), 1.64 (s, 9H). 

13C NMR (176 MHz, 100 °C, DMSO-d6): δ 153.7, 152.6, 148.6, 136.7, 130.8, 129.5, 

127.7, 127.1, 126.8, 126.2, 114.9, 113.9, 106.7, 106.4, 83.1, 76.3, 65.6, 51.0, 43.5, 30.1, 27.3. 

HRMS (ESI-TOF): calculated for [C25H28N2O5+H]+: 437.2071, Found: 437.2058. 

 

 

 

benzyl (R)-3-(4-cyano-2-(trifluoromethyl)phenoxy)pyrrolidine-1-carboxylate 

 (m6-p3): Prepared according to the general procedure. The title compound was isolated 

via silica gel column chromatography (80 g ISCO RediSep-RfGold column, 25% EtOAc/Heptane) 

as white solid (314 mg, 800 µmol, 40% yield). 

 

1H NMR (700 MHz, 100 °C , DMSO-d6): δ 8.05 - 8.03 (m, 2H), 7.49 (d, J=8.5 Hz, 1H), 

7.36 - 7.32 (m, 4H), 7.32 - 7.28 (m, 1H), 5.35 (br s, 1H), 5.10 (s, 2H), 3.71 (dd, J=12.5, 4.3 Hz, 

1H), 3.60 - 3.54 (m, 2H), 3.49 - 3.43 (m, 1H), 2.27 (dtd, J=13.9, 9.3, 4.8 Hz, 1H), 2.16 - 2.10 (m, 

1H). 
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13C NMR (176 MHz, 100 °C, DMSO-d6): δ 157.7, 153.7, 137.9, 136.7, 131.0, 127.8, 

127.2, 126.8, 122.1 (q, J=272.8 Hz), 119.0 (q, J =30.9 Hz), 117.1, 115.5, 103.3, 77.7, 65.6, 50.8, 

43.4, 39.9, 30.1. 

19F NMR (126 MHz, DMSO-d6): δ -61.90. 

HRMS (ESI-TOF): calculated for [C20H17F3N2O3+H]+: 391.1264, Found: 391.1266. 

 

 

 

benzyl (R)-3-((4-methylpyridin-3-yl)oxy)pyrrolidine-1-carboxylate (m6-p4): Prepared 

according to the general procedure. The title compound was isolated via silica gel column 

chromatography (80 g ISCO RediSep-RfGold column, 25% EtOAc/Heptane) as orange solid (193 

mg, 620 µmol, 31% yield). 

 

1H NMR (700 MHz, 100 °C,  DMSO-d6): δ 8.27 (s, 1H), 8.10 (d, J=4.8 Hz, 1H), 7.35 (d, 

J=4.5 Hz, 4H), 7.33 - 7.27 (m, 1H), 7.16 (d, J=4.8 Hz, 1H), 5.13 -5.10 (m, 3H), 3.66 (dd, J=12.0, 

4.5 Hz, 1H), 3.58 - 3.51 (m, 3H), 2.21 (dtd, J=13.6, 9.1, 4.8 Hz, 1H), 2.15 - 2.11 (m, 4H). 

13C NMR (176 MHz, 100 °C, DMSO-d6): δ 153.7, 151.5, 142.1, 136.7, 134.1, 130.2, 

127.8, 127.2, 127.1, 126.8, 125.0, 76.8, 65.5, 51.0, 43.5, 30.3, 14.3, 12.1. 

HRMS (ESI-TOF): calculated for [C18H20N2O3+H]+: 313.1547, Found: 313.1543. 
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benzyl (R)-3-(quinolin-6-yloxy)pyrrolidine-1-carboxylate (m6-p5): Prepared according 

to the general procedure. The title compound was isolated via silica gel column chromatography 

(80 g ISCO RediSep-RfGold column, 25% EtOAc/Heptane) as orange solid (395 mg, 1.140 mmol, 

57% yield). 

 

1H NMR (700 MHz, 100 °C, DMSO-d6): δ 8.75 (d, J=4.0 Hz, 1H), 8.20 (d, J=8.0 Hz, 

1H), 7.95 (d, J=9.0 Hz, 1H), 7.43 (dd, J=8.3, 4.3 Hz, 1H), 7.40 (dd, J=9.3, 2.8 Hz, 1H), 7.38 - 7.33 

(m, 5H), 7.32 - 7.27 (m, 1H), 5.18 (br s, 1H), 5.12 (s, 2H), 3.76 (dd, J=12.0, 4.8 Hz, 1H), 3.62 (d, 

J=12.3 Hz, 1H), 3.60 - 3.52 (m, 2H), 2.27 (dtd, J=13.6, 9.0, 4.9 Hz, 1H), 2.23 - 2.13 (m, 1H). 

13C NMR (176 MHz, 100 °C, DMSO-d6): δ 154.4, 153.7, 147.6, 143.7, 136.7, 134.1, 

130.2, 128.5, 127.8, 127.1, 126.9,121.8, 121.0, 108.2, 76.0, 65.5, 51.0, 43.5, 30.1. 

HRMS (ESI-TOF): calculated for [C21H20N2O3+H]+: 349.1547, Found: 349.1550. 

 

 

 

benzyl (R)-3-(3-(ethoxycarbonyl)phenoxy)pyrrolidine-1-carboxylate(m6-p6): 

Prepared according to the general procedure. The title compound was isolated via silica gel column 

chromatography (80 g ISCO RediSep-RfGold column, 25% EtOAc/Heptane) as clear colorless oil 

(240 mg, 650 µmol, 33% yield). 
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1H NMR (700 MHz, 100 °C, DMSO-d6): δ 7.58 (d, J=7.8 Hz, 1H), 7.47 (s, 1H), 7.43 (t, 

J=8.0 Hz, 1H), 7.35 (d, J=4.3 Hz, 4H), 7.34 - 7.28 (m, 1H), 7.22 (dd, J=8.3, 2.3 Hz, 1H), 5.12 - 

5.08 (m, 3H), 4.33 (q, J=7.0 Hz, 2H), 3.69 (dd, J=12.1, 4.6 Hz, 1H), 3.58 - 3.48 (m, 3H), 2.21 (dtd, 

J=13.6, 9.0, 4.9 Hz, 1H), 2.13 - 2.07 (m, 1H), 1.34 (t, J=7.0 Hz, 3H). 

13C NMR (176 MHz, 100 °C, DMSO-d6): δ 165.0, 156.6, 153.7, 136.7, 131.4, 129.4, 

127.8, 127.1, 126.9, 121.4, 120.0, 115.8, 76.0, 65.5, 60.2, 50.9, 43.5, 30.0, 13.5. 

HRMS (ESI-TOF): calculated for [C21H23NO5+H]+: 370.1649, Found: 370.1659. 
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Chapter 3. Diversification of acridinium photocatalysts: property tuning and 

reactivity in model reactions 

3.1 Introduction 

In photoredox catalysis, late transition-metal (e.g., iridium, ruthenium) polypyridyl 

complexes have been commonly employed as photocatalysts, due to their favorable excited redox 

properties, enhanced photostability and excited state lifetime. However, the high cost and low 

abundance of these metals have prompted the discovery and application of organic photocatalysts. 

Organic photocatalysts (OPCs) usually have extended conjugated systems and absorb visible light 

to reach excited states that can also engage in photoredox catalysis. 9-Mesityl-3,6-di-tert-butyl-

10-phenylacridinium salt (1) and its derivatives have found wide applications in synthetic 

transformations such as nucleophilic arene and alkene functionalization.1 A modular synthesis that 

is amenable to late-stage functionalization2–8 has enabled access to diverse acridinium derivatives. 

However, studies on the comparison of their catalytic performances under various reduction and 

oxidation manifolds have been limited. Using 1 as a template structure, we set out to examine the 

effects of structural changes on the photophysical properties and various reactivities of acridinium 

photocatalysts.  

3.2 Results and discussions 

3.2.1 Underexplored N-substitutions for acridinium photocatalysts  

Our investigation started by identifying underexplored structural motifs for derivatives of 

1. Prior reports suggest that modifications to the acridinium core do not significantly change the 

redox potentials of the catalysts (vide infra). On the other hand, modifications to the N-substituent, 

while also having little effect on redox potentials, can lead to meaningful changes in excited state 
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lifetimes. Based on these observations, we synthesized a library of previously unknown catalysts 

with various N-substituents (aryl, heteroaryl, benzyl, alkyl) from xanthylium salts and 

commercially available amines (Fig. 128b).  

 

Fig. 128 Syntheses of acridinium photocatalysts and the comparison of photophysical properties.  

 

We characterized the photophysical properties of the synthesized catalysts (Table 4), 

focusing on excited-state reduction potential (E*red = E0,0 + Ered, vs. SCE) and excited-state lifetime 

(τ). For comparison, we also compiled properties of acridinium catalysts in three prior reports 

2,6,8 that can also be accessed via the same synthetic procedure. To visualize the effect of structural 

modifications on E*red and τ, we also defined a structural difference score. This score is calculated 

as 1 minus the Tanimoto similarity9 of RDKit fingerprints10 for a synthesized catalyst and 1. The 

higher the structural difference score, the more different a given catalyst structure is compared to 

1. Both synthesized and reported acridinium catalysts are shown as comparison (Fig. 128c). 

Compared to 1 (E*red = +2.10 V, τ = 13.8 ns2), structural modifications have little impact on E*red 

(± 0.2 V), while significant changes to excited state lifetimes of over ±10 ns can often be observed. 
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Compared to derivatives reported in literature, our library features simple changes of N-

substituents but cover a broad range of property differences.  

*Detailed characterizations and methods of determination can be found in the Supplementary 
Information. Ered: ground state reduction potential, or E1/2(C/C-), vs. SCE; E0,0: Excited-state 
energy; E*red: excited-state reduction potential, or E1/2(C*/C-), vs. SCE; τ: fluorescence lifetime. 
a Catalyst properties extracted from prior report.2  
b Catalyst properties extracted from prior reports.11,12  

 

To examine the effect of various N-substituents on the excited-state nature of acridinium 

photocatalysts, we performed time-dependent density functional theory (TD-DFT) calculations on 

optimized S1 geometry of synthesized acridiniums (see Section 3.4 for more details). These 

calculations indicate electron transitions from mesityl group or the N-substituent to the acridinium 

core in the excited state. These orbitals have minimal spatial orbital overlap, suggesting that S1 is 

an intramolecular charge-transfer (CT) state. We also observed a significant increase in dipole 

moments from S0 to S1 optimized geometries, further supporting the characterization of S1 as a CT 

state.  

 

Catalyst label* Ered (V) E0,0 (eV) E*red (V) τ (ns) 
1a -0.56 +2.66 +2.10 13.8 
2b -0.49 +2.37 +1.88 6.4 
A1 -0.61 +2.64 +2.03 15.09 
A2 -0.59 +2.73 +2.14 0.11, 4.41, 15.02 
A3 -0.61 +2.64 +2.03 23.52 
A4 -0.64 +2.63 +1.99 26.91 
A5 -0.63 +2.66 +2.03 23.18 
A6 -0.63 +2.67 +2.04 0.15, 4.93, 18.93 
A7 -0.45 +2.68 +2.23 0.3, 8.53, 16.85 
A8 -0.59 +2.68 +2.09 0.26, 8.85, 18.45 
A9 -0.56 +2.66 +2.10 12.38 
A10 -0.62 +2.65 +2.03 6.14 
A11 -0.56 +2.66 +2.10 12.58 

Table 4 Experimentally determined photophysical properties of synthesized acridinium 
photocatalysts. 
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3.2.2 Acridiniums in a SNAr reaction 

Established acridinium photocatalysts such as 1 and 2 are often employed as strong excited-

state oxidants. Thus, we decided to test our library of novel acridinium photocatalysts under an 

oxidative manifold, in the SNAr reaction of anisoles, as reported by Nicewicz and coworkers.13 

Given that the coupling combination of anisole with 1,3-imidazole was reported to occur in a 

modest 39% yield with 1, we were curious to observe how our library of catalysts with modified 

N-substitutions would perform (Fig. 129a). Unsurprisingly, catalyst A10, being most structurally 

and electronically like 1, enabled the reaction to proceed with similar yields. Surprisingly, 

photocatalysts A4 and A5 with alkyl substitution performed the next highest out of our acridinium 

library, though did not outperform 1. 

 

Fig. 129 SNAr reaction of anisoles with imidazole catalyzed by various acridinium 
photocatalysts. 

Thus, we were interested to observe whether we could exploit the significantly longer 

lifetime of N-alkyl substituted acridiniums by lowering the catalyst loading required. We 

performed a head-to-head comparison between A5 and 1 in the reaction of imidazole with ortho-

chloroanisole, which was reported to proceed with high yield. We found that at a decreased 2 mol% 

catalyst loading, both acridinium photocatalysts performed comparably to each other (Fig. 129b). 
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Although the overall yield was much lower than with the standard reaction conditions, our results 

imply that the longer excited state lifetime of N-alkyl acridinium photocatalysts could potentially 

be leveraged in other reactions. 

It is also worth noting that all our tested acridinium photocatalysts were competent in this 

reaction. This finding led us to wonder about the significance of the N-phenyl substitution 1. 

Therefore, we decided to next screen our library in a different reaction that mechanistically 

emphasizes its importance (vide infra). 

 

3.2.3 Acridiniums in photo-debromination reaction 

Nicewicz and coworkers also reported 1 to be a highly competent photocatalyst in a series 

of dehalogenation reactions, in which the catalyst acts as a super-reductant capable of reducing 

various aryl halides (E*ox = -3.36 V).14 Mechanistically, the acridine radical (generated from single 

electron reduction of the excited state acridinium) can be further irradiated to a twisted 

intramolecular charge transfer (TICT) state that is a potent reductant. This TICT state was proposed 

to involve the radical anion being localized on the N-phenyl ring, highlighting the importance of 

this substitution.  
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Fig. 130 Reductive debromination reaction catalyzed by various acridinium photocatalysts. 

We decided to screen our library of novel acridinium photocatalysts in the dehalogenation 

of 4-(trifluoromethyl)phenyl bromide (Fig. 130). Our initial hypothesis was that N-aryl 

acridiniums would be competent in this reaction, while N-alkyl acridiniums, being unable to access 

the TICT state due to the lack of π-conjugation, would give comparatively lower or no yield. As 

expected, N-aryl substituted acridiniums were competent catalysts in this reaction (A6, A8, A9). 

However, to our surprise, N-heterocyclic (A7), N-benzyl (A1, A2), and N-alkyl (A3) 

photocatalysts were similarly competent in this reaction, with N-cyclohexyl acridinium A3 giving 

a yield within error of that reported for 1. This finding suggests that either the ground state acridine 

radical of this photocatalyst is itself the reductant, or that its most accessible TICT state would 

involve the radical anion localized on the mesityl ring of the acridinium core. To test our hypothesis, 

we performed preliminary TD-DFT calculations on the optimized ground state (D0) geometry of 

acridine radical to explore the nature of electronic transitions for the low-lying excited state (D1). 

For N-alkyl acridiniums (A3, A4, A5), the electronic transition occurs from πcore to π*core with high 

orbital overlap, indicating that the D1 is a locally excited state. The character of D1 in N-aryl 

acridiniums, however, depends on the aryl substituent. Acridiniums with electron-rich aryl 

substituents (A1, A2, A6, A8, A10) exhibit electronic transition from πcore to an orbital localized 
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on the core and N-substituent, suggesting that D1 is a mixed local and charge-transfer-state. 

Conversely, acridiniums with electron-poor aryl substituents (A7, A9, A11), shows electronic 

transitions from πcore to π*N-substituent and have minimal orbital overlap, indicating that the D1 is an 

intramolecular charge-transfer state. Details on the vertical absorption energy and orbitals are 

available in Section 3.4. Further photophysical studies are still needed to elucidate the nature of 

the photocatalysts in the photo-reduction reaction.   

 

3.2.4 Acridiniums in C–H amination 

The Doyle lab previously reported a novel cyanoarene photocatalyst, CF3-4-CzIPN, that 

can engage in oxidative radical-polar crossover (ORPC) to achieve nucleophilic amination of 

primary and secondary benzylic C(sp3)–H bonds.15 Compared to commonly employed 4-CzIPN 

(E*red = +1.43 V), cyanoarenes with a high E*red, represented by CF3-4-CzIPN (E*red = +1.91 V), 

are most beneficial for this reaction by more readily oxidizing the benzylic radical to a carbocation 

in the radical-polar crossover step. In addition to an extensive screening of cyanoarenes, we have 

also previously screened acridinium catalyst 2 (E*red = +1.88 V) with a high throughput 

photoreactor set up and found that it is effective in catalyzing the amination reaction.15 Based on 

these observations, we hypothesized that more optimal acridinium catalysts could be identified for 

this reaction. 
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Fig. 131 Nucleophilic C-H amination reaction catalyzed by various acridinium photocatalysts, 
including two benchmark catalysts CF3-4-CzIPN and 1. 

On the hypothesis that longer excited state lifetimes will also be beneficial to the reactivity 

of Ritter amination reaction, we tested N-alkyl and N-benzyl acridinium catalysts and compared 

their reactivities with the previously reported best cyanoarene catalyst, CF3-4-CzIPN, and the 

commonly used acridinium catalyst 1 (Fig. 131). We started first by switching light source from 

the originally reported 456 nm to a 390 nm Kessil lamp to better match the maximum absorption 

wavelength of our synthesized acridiniums. Under otherwise identical reaction conditions, we 

found that N-alkyl and N-benzyl acridinium catalysts with longer excited-state lifetimes 

significantly outperformed both 1 (68% yield) and CF3-4-CzIPN (77% yield). Through this 

optimization we identified catalyst A5 as most optimal, which provides the desired product in a 

near-quantitative 98% yield. As a test of our hypothesis, we also screened N-aryl catalyst A10, 

which has a relatively short excited-state lifetime of 6.1 ns and found that the yield decreased 

significantly.   
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Fig. 132 Mechanistic study on HAT reagent consumption with acridinium photocatalyst A5 and 
proposed catalytic cycle. 

Following a previously-reported protocol,12 we subjected a solution of catalyst A5 to an 

excess of single-electron reductant cobaltocene to generate its reduced acridine species, A5•– (Fig. 

132a, step 1). Upon addition of this reduced photocatalytic intermediate to a solution of HAT 

reagent in the absence of light, two signals are observed in the 19F NMR (Fig. 132a, step 3). The 

right peak indicates residual HAT reagent in the reaction mixture. Notably, formation of a new 

peak (Fig. 132a, step 3, left) is observed, consistent with formation and fragmentation of the 

reduced HAT species, generating a new HAT-derived byproduct. Moreover, when this mixture is 

then irradiated with a 390 nm light source, we observe further conversion of the HAT reagent to 

its fragmented byproduct (Fig. 132a, step 4). These experiments indicate the photocatalyst is likely 
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undergoing a reductive quenching cycle to generate the reduced acridine radical species, which is 

then responsible for single electron transfer (SET) to the HAT reagent, prompting mesolytic 

fragmentation. Increased conversion of the HAT reagent upon irradiation also suggests that a 

conPET mechanism may be in effect, wherein the reduced acridine radical undergoes a second 

photoexcitation event to promote the subsequent SET to the HAT reagent from its photoexcited 

state (Fig. 132b). We hypothesize that the increased excited-state lifetimes of the N-alkyl and N-

benzyl acridiniums increases the kinetic efficiency of the SET steps in the catalytic cycle. 

Moreover, the high conformational flexibility of catalyst A5 may help to prevent back-electron 

transfer from the acridine radical intermediate, a common challenge of many ORPC reactions.16,17 

More in-depth mechanistic and computational studies of these novel photocatalysts are needed to 

elucidate the exact nature of their increased reactivity. 

3.3 Conclusions and outlooks 

We have synthesized a library of acridinium photocatalysts featuring underexplored N-

(hetero)aryl, N-benzyl and N-alkyl substitutions. We observed a significant effect of N-

substitutions on the excited-state lifetimes of acridinium photocatalysts. In addition to being 

competent catalysts in test reactions featuring various oxidative and reductive pathways, the 

extended excited-state lifetimes have been shown to improve the reactivities of an ORPC reaction, 

providing new mechanistic insights and future directions in acridinium photocatalyst design.  

We have also conducted preliminary studies that might serve as possible directions to 

explore novel organic photocatalysts further. Previously, we have targeted cyanoarenes as a class 

of widely used and versatile organic photocatalysts. Cyanoarenes, represented by 4CzIPN, have 

more balanced excited-state redox properties than acridiniums and can serve as both excited-state 

oxidant and excited-state reductant. We planned to explore cyanoarenes by the following in silico 
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workflow: 1) Generate virtual libraries of cyanoarene photocatalysts that have not been 

synthesized by enumerating substituents on the arene core; 2) Calculate photophysical properties 

(ground state and excited state redox potentials) via TD-DFT; 3) Use calculated photophysical 

properties to select and synthesize candidate molecules; 4) Test synthesized catalysts in model 

reactions and determine the correlation between photophysical properties and reactivities; 5) Select 

additional catalysts from the virtual catalyst library to synthesize and test.  

We ran into several challenges with this proposal. First off, TD-DFT cannot reliably and 

accurately calculate photophysical properties for cyanoarenes. Many calculations time out after 

days and errors +/- 0.5 V in redox potentials can typically be observed. One potential solution to 

this problem might be to take a machine learning approach and train a prediction model (on a small 

dataset of catalysts and their TD-DFT-calculated properties) that can more accurately predict redox 

potentials faster without relying on TD-DFT. The second issue is that TD-DFT cannot calculate 

other properties that might also influence reactivities, such as excited-state lifetime. A machine 

learning approach can also be used in this case to mitigate this issue, although sufficient training 

data is required and can be difficult to obtain. The last issue is that cyanoarenes can be difficult to 

synthesize via the traditional SNAr approach with fluoroarenes and amines. Even simple 

substituent changes can sometimes significantly alter the reactivity and result in a complex mixture 

of various products. The proposed approach is not practical without the ability to reliably 

synthesize selected candidate catalyst molecules, and better synthetic methods to access 

cyanoarenes (and other organic photocatalysts) are still in need of development.  
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3.4 Experimental section 

3.4.1 General information  

1H nuclear magnetic resonance (NMR) characterization was performed on 400, 500, and 

600 MHz spectrometers (101 and 126 MHz for 13C NMR). Chemical shifts for protons are reported 

in parts per million (ppm) downfield from tetramethylsilane and are referenced to residual protium 

in the NMR solvent (CHCl3 = 7.26 ppm). Chemical shifts for carbon are reported in parts per 

million downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent 

peak (CDCl3 = 77.16 ppm). NMR data are represented as follows: chemical shift (δ ppm), 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, hept = heptet, m = multiplet, 

br = broad), coupling constant (J) in Hertz (Hz). All NMR spectra were taken at 25 °C. High 

resolution mass spectra were obtained using a Thermo Scientific Thermo Exactive Plus MSD 

(DART-MS) equipped with an ID-CUBE ion source and a Vapur Interface (Ion Sense Inc.) 

(atmospheric-pressure chemical ionization, APCI). Ultraviolet-Visible spectroscopy (UV-Vis) was 

performed with a Shimadzu UV-3101PC spectrophotometer at a sample concentration of 100 μM 

(MeCN). Fluorescence emission spectra were obtained with a Photon Technologies International 

QuantaMaster Spectrofluorimeter with 420 nm excitation lights at a sample concentration of 10 

μM (MeCN). Time-correlated Single Photon Counting was done via a Horiba FluoroMax Plus 

Spectrofluorometer at a sample concentration of 5 μM (MeCN). All spectrophotometric samples 

were prepard in a N2 glovebox with degassed solvent into a FireflySci Type 41 UV quartz macro 

cuvette with screw cap (lightpath=10 mm). Cyclic voltammetry (CV) experiments were obtained 

with a Gamry Interface 1010 Potentiostat/Galvanostat/ZRA instrument and processed using 

Gamry Echem FrameworkTM and AnalystTM software (working electrode: glassy carbon; 

reference electrode: Ag/Ag+; counter electrode: Pt wire; scan rate: 0.1 V/s; sample concentration: 
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1 mM). All measurements were taken in degassed MeCN with NBu4PF6 (0.1 M) as electrolyte at 

298 K. Ground state reduction potentials (Ered) were identified as half of the absolute maximum 

current value during the reduction event. Ferrocene (Fc) was used as an internal standard or an 

external standard. When Fc was used as an internal standard, ferrocene was added into the sample 

solution and one CV was performed. When Fc was used as an external standard, cyclic 

voltammetry (CV) was performed with ferrocene only under the same experimental conditions, 

and its E1/2 (vs. Ag/AgCl) was recorded. E1/2 = 0.4 V (vs. SCE) for Fc/Fc+ is used for conversion 

in this paper.  
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3.4.2 Syntheses and characterization of acridinium photocatalysts 

All acridinium photocatalysts were prepared from xanthylium and amine according to 

literature precedent.18 Photocatalysts A7, A8, A9, and A11 were synthesized using 1,2-

dichloroethane as the solvent, at a temperature of 80 °C. All acridinium photocatalysts were bright 

yellow solids. 

 

 

3,6-di-tert-butyl-10-(4-(tert-butyl)benzyl)-9-mesitylacridin-10-ium tetrafluoroborate 

(A1). 

1H NMR (400 MHz, CD3CN): δ 8.28 (d, J = 1.6 Hz, 2H), 7.93 (dd, J = 9.0, 1.6 Hz, 2H), 

7.76 (d, J = 9.1 Hz, 2H), 7.53 – 7.40 (m, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.24 (s, 2H), 6.55 (s, 2H), 

2.48 (s, 3H), 1.75 (s, 6H), 1.40 (s, 18H), 1.29 (s, 9H). 

13C NMR (151 MHz, CD3CN): δ 165.0, 162.4, 152.8, 142.9, 141.1, 136.9, 132.4, 130.6, 

129.7, 129.7, 128.4, 127.3, 127.2, 125.4, 115.0, 54.9, 37.6, 35.2, 31.4, 30.6, 21.3, 20.0. 

19F NMR (376 MHz, CD3CN): δ -151.77, -151.82. 

HRMS (APCI): calculated for C41H50N ([M]+): 556.3938, found 556.4026. 
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3,6-di-tert-butyl-9-mesityl-10-(4-methoxybenzyl)acridin-10-ium tetrafluoroborate 

(A2). 

1H NMR (400 MHz, CD3CN): δ 8.27 (d, J = 1.6 Hz, 2H), 7.93 (dd, J = 9.1, 1.6 Hz, 2H), 

7.75 (d, J = 9.0 Hz, 2H), 7.35 – 7.28 (m, 2H), 7.24 (s, 2H), 7.01 – 6.93 (m, 2H), 6.51 (s, 2H), 3.78 

(s, 3H), 2.47 (s, 3H), 1.75 (s, 6H), 1.41 (s, 18H). 

13C NMR (151 MHz, CD3CN) δ 165.0, 162.4, 160.8, 142.9, 141.1, 136.9, 130.6, 129.7, 

129.7, 128.7, 128.4, 127.1, 125.4, 115.6, 114.9, 56.0, 54.7, 37.6, 30.6, 21.3, 20.0. 

19F NMR (376 MHz, CD3CN): δ -151.81, -151.87. 

HRMS (APCI): calculated for C38H44NO ([M]+): 530.3417, found 530.3502. 

 

 

3,6-di-tert-butyl-10-cyclohexyl-9-mesitylacridin-10-ium tetrafluoroborate (A3). 

1H NMR (500 MHz, CDCl3): δ 8.46 (s, 2H), 7.79 – 7.70 (m, 4H), 7.12 (s, 2H), 5.75 (tt, J 

= 12.7, 3.8 Hz, 1H), 2.84 (qd, J = 12.6, 3.8 Hz, 2H), 2.46 (s, 3H), 2.25 (d, J = 13.4 Hz, 2H), 2.05 

(d, J = 13.8 Hz, 1H), 1.85 (qt, J = 13.2, 3.6 Hz, 2H), 1.74 (s, 6H), 1.54 (s, 18H), 1.52 – 1.46 (m, 

1H). 

13C NMR (126 MHz, CDCl3) δ 162.66, 161.57, 142.05, 140.26, 136.06, 129.51, 129.06, 

127.14, 125.00, 114.76, 67.07, 37.11, 31.72, 30.62, 26.70, 25.72, 21.46, 20.24. 

19F NMR (376 MHz, CD3CN): δ -151.84, -151.90. 

HRMS (APCI): calculated for C36H46N ([M]+): 492.3625, found 492.3699. 
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3,6-di-tert-butyl-9-mesityl-10-neopentylacridin-10-ium tetrafluoroborate (A4). 

1H NMR (500 MHz, CDCl3): δ 8.58 (d, J = 1.5 Hz, 2H), 7.75 (dd, J = 9.0, 1.4 Hz, 2H), 

7.71 (d, J = 9.0 Hz, 2H), 7.18 – 7.11 (m, 2H), 5.72 (s, 2H), 2.48 (s, 3H), 1.74 (d, J = 36.9 Hz, 6H), 

1.53 (s, 18H), 1.09 (s, 9H). 

13C NMR (126 MHz, CDCl3) δ 162.76, 160.33, 142.68, 140.19, 136.48, 135.38, 129.86, 

129.21, 128.95, 128.48, 127.16, 124.34, 116.35, 77.16, 57.36, 37.22, 36.08, 30.73, 30.04, 21.43, 

20.25, 20.04. Peaks split due to the presence of N–C rotamers, compound was unstable to high 

temperature NMR.  

19F NMR (282 MHz, CD3CN): δ -151.82, -151.87. 

HRMS (APCI): calculated for C35H46N ([M]+): 480.3625, found 480.3697.  

 

 

3,6-di-tert-butyl-10-cycloheptyl-9-mesitylacridin-10-ium tetrafluoroborate (A5). 

1H NMR (500 MHz, CDCl3): δ 8.38 – 8.32 (m, 2H), 7.80 – 7.71 (m, 4H), 7.12 (s, 2H), 

6.02 (tt, J = 10.3, 4.7 Hz, 1H), 2.85 (m, 2H), 2.50 (m, 2H), 2.46 (s, 3H), 2.13 (m, 2H), 2.02 – 1.80 
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(m, 6H), 1.54 (s, 18H). Peaks broad and split due to the presence of N–C rotamers, compound was 

unstable to high temperature NMR. 

13C NMR (MHz, CDCl3) δ 164.23, 161.56, 161.37, 142.37, 140.26, 136.10, 129.51, 

129.36, 129.15, 129.06 (corresponds to C–H mesityl), 127.39, 126.95, 124.97, 124.96, 115.88, 

113.08, 66.90, 37.14, 33.91, 30.75, 30.60, 28.49, 27.68, 21.40, 20.25. Peaks broad and split due to 

the presence of N–C rotamers, compound was unstable to high temperature NMR. 

19F NMR (282 MHz, CD3CN): δ -151.83, -151.89. 

HRMS (APCI): calculated for C37H48N ([M]+): 506.3781, found 506.3865. 

 

 

3,6-di-tert-butyl-9-mesityl-10-(3,4,5-trimethoxyphenyl)acridin-10-ium 

tetrafluoroborate (A6). 

1H NMR (600 MHz, CD3CN): δ 7.93 (dd, J = 9.1, 1.7 Hz, 2H), 7.76 (d, J = 9.1 Hz, 2H), 

7.56 (d, J = 1.7 Hz, 2H), 7.27 (s, 2H), 7.04 (s, 2H), 3.96 (s, 3H), 3.85 (s, 6H), 2.49 (s, 3H), 1.81 (s, 

6H), 1.33 (s, 18H). 

13C NMR (151 MHz, CD3CN): δ 164.1, 162.6, 156.1, 143.4, 141.2, 141.0, 137.0, 133.3, 

130.5, 129.7, 128.9, 128.6, 125.0, 116.1, 106.6, 61.4, 57.3, 37.3, 30.3, 21.3, 20.1. 

19F NMR (282 MHz, CD3CN): δ -151.85, -151.90. 

HRMS (APCI): calculated for C39H46NO3 ([M]+): 576.3472, found 576.3562. 
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3,6-di-tert-butyl-10-(4,5-dimethylthiazol-2-yl)-9-mesitylacridin-10-ium 

tetrafluoroborate (A7). 

1H NMR (600 MHz, CD3CN): δ 7.96 (dd, J = 9.0, 1.7 Hz, 2H), 7.79 (d, J = 9.1 Hz, 2H), 

7.51 (d, J = 1.6 Hz, 2H), 7.25 (s, 2H), 2.65 (s, 3H), 2.55 (s, 3H), 2.48 (s, 3H), 1.79 (s, 6H), 1.36 (s, 

18H). 

13C NMR (151 MHz, CD3CN): δ 165.8, 150.7, 149.5, 143.7, 141.4, 137.0, 135.1, 130.2, 

129.7, 129.6, 128.9, 125.1, 114.8, 37.5, 30.4, 21.3, 20.1, 14.9, 12.1. 

19F NMR (282 MHz, CD3CN): δ -151.86, -151.90. 

HRMS (APCI): calculated for C35H41N2S ([M]+): 521.2985, found 521.3065. 

 

 

3,6-di-tert-butyl-9-mesityl-10-(2-methoxy-6-methylphenyl)acridin-10-ium 

tetrafluoroborate (A8). 
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1H NMR (500 MHz, CD3CN): δ 7.96 (dd, J = 9.1, 1.7 Hz, 2H), 7.80 (d, J = 8.8 Hz, 3H), 

7.42 (d, J = 1.7 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.27 (s, 2H), 3.63 (s, 3H), 2.49 (s, 3H), 1.82 (s, 3H), 

1.79 (s, 6H), 1.29 (s, 18H). 

 13C NMR (126 MHz, CD3CN): δ 165.49, 163.08, 155.23, 142.38, 141.26, 137.61, 136.77, 

136.68, 133.90, 130.32, 129.74, 129.70, 129.43, 128.98, 125.16, 124.84, 124.71, 114.28, 112.21, 

57.15, 37.24, 30.27, 21.30, 20.00, 16.81. Peaks split due to the presence of N–C rotamers, 

compound was unstable to high temperature NMR. 

19F NMR (282 MHz, CD3CN): δ -151.84, -151.89. 

HRMS (APCI): calculated for C38H44NO ([M]+): 530.3417, found 530.3498. 

 

 

3,6-di-tert-butyl-9-mesityl-10-(quinoxalin-6-yl)acridin-10-ium tetrafluoroborate (A9). 

1H NMR (600 MHz, CD3CN): δ 9.18 (d, J = 1.8 Hz, 1H), 9.11 (d, J = 1.8 Hz, 1H), 8.64 

(d, J = 8.7 Hz, 1H), 8.53 (d, J = 2.3 Hz, 1H), 8.09 (dd, J = 8.7, 2.3 Hz, 1H), 7.95 (dd, J = 9.1, 1.6 

Hz, 2H), 7.83 (d, J = 9.1 Hz, 2H), 7.40 (d, J = 1.6 Hz, 2H), 7.29 (s, 2H), 2.50 (s, 3H), 1.86 (s, 6H), 

1.22 (s, 18H). 

13C NMR (126 MHz, CD3CN): δ 164.7, 163.5, 149.2, 148.6, 144.6, 144.2, 143.4, 141.3, 

138.5, 137.1, 137.0, 134.4, 131.2, 131.2, 130.8, 130.4, 129.7, 129.3, 128.7, 125.2, 115.8, 37.3, 

30.3, 21.3, 20.1. 

19F NMR (282 MHz, CD3CN): δ -151.86, -151.91. 
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HRMS (APCI): calculated for C38H40N3 ([M]+): 538.3217, found 538.3304. 

 

 

3,6-di-tert-butyl-10-(4-(tert-butyl)phenyl)-9-mesitylacridin-10-ium tetrafluoroborate 

(A10). 

1H NMR (500 MHz, CD3CN): δ 7.98 – 7.88 (m, 4H), 7.76 (d, J = 8.8 Hz, 2H), 7.60 (d, 

2H), 7.41 (s, 2H), 7.25 (s, 2H), 2.49 (s, 3H), 1.80 (s, 6H), 1.50 (s, 9H), 1.34 – 1.23 (m, 18H). 

13C NMR (126 MHz, CD3CN) δ 163.90, 162.44, 156.29, 143.50, 141.13, 137.02, 135.51, 

130.44, 129.69, 129.04, 128.97, 128.49, 128.38, 125.11, 115.90, 37.17, 35.91, 31.41, 30.25, 21.28, 

20.08. 

19F NMR (282 MHz, CD3CN): δ -151.81, -151.87. 

HRMS (APCI): calculated for C40H48N ([M]+): 542.3781, found 542.3867. 

 

 

3,6-di-tert-butyl-9-mesityl-10-(4-(trifluoromethyl)phenyl)acridin-10-ium 

tetrafluoroborate (A11).  
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1H NMR (500 MHz, CD3CN): δ 8.27 (d, J = 8.1 Hz, 2H), 7.98 – 7.91 (m, 4H), 7.80 (d, J 

= 9.1 Hz, 2H), 7.31 (d, J = 1.6 Hz, 2H), 7.29 – 7.25 (m, 2H), 2.49 (s, 3H), 1.82 (s, 6H), 1.28 (s, 

18H). 

13C NMR (126 MHz, CD3CN) δ 164.6, 163.5, 143.1, 141.3 (q, J = 1.3 Hz), 141.2, 137.0, 

133.8 (q, J = 32.9 Hz), 130.3, 130.3, 129.7, 129.6 (q, J = 3.9 Hz), 129.3, 128.6, 125.1, 124.7 (q, J 

= 271.7 Hz), 115.5, 37.3, 30.3, 21.3, 20.1. 

19F NMR (282 MHz, CD3CN): δ -63.34, -151.82, -151.87. 

HRMS (APCI): calculated for C37H39NF3 ([M]+): 554.3029, found 554.3113. 

3.4.3 Representative procedure for C–H Ritter amidation with MeCN/H2O 

Prepared according to a modified literature procedure.19 In a nitrogen filled glovebox, a 0.5 

dram vial was filled with 0.002 mmol photocatalyst, 0.10 mmol HAT reagent (structure shown 

below), flea-sized stir bar, and MeCN (0.5 mL, 0.2 M). 0.2 mmol of ethylbenzene and H2O (3.6 

μL, 0.20 mmol) were added, and the vial was capped with a screw-cap septa and sealed with 

parafilm. The vials were brought out of the glovebox and placed on stir plate equipped with a 

390nm Kessil lamp (set to 100% intensity) approximately 2cm to the side of the vial. After stirring 

for 20 hours, a solution of 1,3,5-trimethoxy benzene in CDCl3 (8.4 mg, 0.05 mmol in 1 mL of 

CDCl3) was added and the yield was determined by 1H NMR relative to the 1,3,5-

trimethoxybenzene standard. For 2 vials run on a single stir plate, 1 Kessil lamp was used. For 4 

vials run on a single plate, 2 Kessil lamps were used on either side of the stir plate.   

N
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S O
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3.4.4 Mechanistic experiments to generate PC•– in a photocatalytic quenching cycle 

Reduced photocatalysts were prepared in situ using a modified literature procedure.6  

 

NMR characterization of PC•– for Mes-Acr-Ph-BF4 (catalyst 1) 

1. In a nitrogen-filled glovebox, a 10 mM stock solution of catalyst 1 (Mes-Acr-Ph-BF4) was 

prepared in CD3CN. 

2. Separately, a 10 mM stock solution of CoCp2 was prepared in CD3CN. 

3. In a 1-dram vial, 300 μL of the photocatalyst solution was added. 

4. To this solution was slowly added 600 μL of the CoCp2 stock solution while stirring gently. 

Upon addition, the solution turned from pale yellow to dark pink/red immediately. 

5. The vial was capped and stirred for 10 min. to ensure complete mixing. 

6. Following this, the total reaction volume (~900 μL) was passed through a small pad of 

alumina and added to a J. Young NMR tube. The alumina plug was washed with 1 mL 

CD3CN to ensure complete transfer. 

7. Separately, a 20 mM stock solution of HAT reagent was prepared in CD3CN. 

8. 150 μL of the HAT reagent stock solution was added to the J. Young NMR tube and the 

tube was sealed and inverted 3x to ensure complete mixing. 

9. The J. Young tube was then brought out of the glovebox and subjected to NMR analysis 

(step 3, Fig. 133). 

10. The J. Young tube was then irradiated with a 390nm Kessil lamp for 10 min and then 

subjected again to NMR analysis (step 4, Fig. 133). % conversion of the HAT reagent was 

quantified using 19F NMR analysis. 
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11. Separately, 500 μL of the HAT reagent solution was also dispensed into a regular NMR 

tube and subjected to NMR analysis as a reference (step 1, Fig. 133). 

 

NMR characterization of PC•– for Mes-Acr-cycloheptyl-BF4 (catalyst A5) 

1. In a nitrogen-filled glovebox, a 10 mM stock solution of catalyst A5 (Mes-Acr-

cycloheptyl-BF4) was prepared in CD3CN. 

2. Separately, a 10 mM stock solution of CoCp2 was prepared in CD3CN. 

3. In a 1-dram vial, 300 μL of the photocatalyst solution was added. 

4. To this solution was slowly added 600 μL of the CoCp2 stock solution while stirring gently. 

Upon addition, the solution turned from pale yellow to dark pink/red immediately. 

5. The vial was capped and stirred for 10 min. to ensure complete mixing. 

6. Following this, the total reaction volume (~900 μL) was passed through a small pad of 

alumina and added to a J. Young NMR tube. The alumina plug was washed with 1 mL 

CD3CN to ensure complete transfer. 

7. Separately, a 20 mM stock solution of HAT reagent was prepared in CD3CN. 

8. 150 μL of the HAT reagent stock solution was added to the J.Young NMR tube and the 

tube was sealed and inverted 3x to ensure complete mixing. 

9. The J.Young tube was then brought out of the glovebox and subjected to NMR analysis 

(step 3, Fig. 133). 

10. The J. Young tube was then irradiated with a 390nm Kessil lamp for 10 min and then 

subjected again to NMR analysis (step 4, Fig. 133). % conversion of the HAT reagent was 

quantified using 19F NMR analysis. 
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11. Separately, 500 μL of the HAT reagent solution was also dispensed into a regular NMR 

tube and subjected to NMR analysis as a reference (step 1, Fig. 133). 

 
 

 

19F NMR spectra of HAT reagent before addition of PC•– (step 1) and after addition of PC•– 

(step 3). After addition of PC•– to the HAT reagent (step 3), two signals are observed in the 19F 

NMR. The right peak indicates residual HAT reagent in the reaction mixture. Notably, formation 

of a new peak (left) is observed, consistent with formation and fragmentation of the HAT•– species, 

generating a new HAT-derived byproduct and supporting the mechanistic hypothesis that PC•– 

performs a single-electron reduction on the HAT reagent, prompting mesolytic fragmentation. 

Moreover, the amount of HAT reagent remaining further decreases after irradiation of the mixture 

(step 4), demonstrating that the reduced photocatalyst can undergo a second photoexcitation event 

which increases conversion of the HAT reagent to the fragmentation byproduct. Taken together, 
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Fig. 133 Mechanistic experiments to generate and investigate the role of acridine radical.  
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these experiments suggest that for these acridinium photocatalysts a consecutive photoinduced 

electron transfer (conPET) mechanism may be operative to generate product. 

3.4.5 Quantum mechanical calculations 

Theoretical calculations with density functional theory (DFT) and time-dependent DFT 

(TD-DFT) were carried out on the Gaussian 16, Revision B.01 package. Conformers were obtained 

by performing a conformational search using the Conformer-Rotamer Ensemble Sampling Tool 

(CREST) at the tight-binding level with GFN-xTB, incorporating explicit solvation and an implicit 

solvent model (GBSA with acetonitrile).21  This was followed by single-point energy calculations 

using N12-SX/6-311+G(d,p),22,23 re-ranking and full optimization of the 10 lowest-energy 

conformers with N12-SX/6-311+G(d,p) and implicit solvation with the polarizable continuum 

model (PCM) using the integral equation formalism variant IEFPCMMeCN.24  Single point energy 

calculation was performed to determine the lowest energy conformer. Then optimization 

calculations with the lowest energy conformer were performed for S1 and D0 with IEFPCMMeCN. 

Frequency calculations were performed to verify the absence of an imaginary frequency for the 

optimized geometry and confirm that they are a minimum on their potential energy surfaces.  

 

Full Gaussian16 reference: 

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. 

A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, 

M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. 

Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. 

Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. 

Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. 
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Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, 

K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. 

N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. 

Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, 

M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, 

J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. 

 
XYZ coordinates of optimized structures and output files   

All optimized structures and output files are available at 

https://doi.org/10.6084/m9.figshare.28346972.v1. 

 
S1 Vertical emission energy, nature of transition, S1 character, orbitals and S0 and S1 Dipole  

Molecule 
S1 

Emission 
Energy (eV) 

Nature of 
Electronic transition 

S1 
Character 

A1 2.23 πMes → πcore CT* 
A2 1.87 πR → πcore CT 
A3 2.30 πMes → πcore CT 
A4 2.34 πMes → πcore CT 
A5 2.33 πMes → πcore CT 
A6 1.54 πR → πcore CT 
A7 2.21 πMes → πcore CT 
A8 2.27 πMes → πcore CT 
A9 2.29 πMes → πcore CT 
A10 2.27 πMes → πcore CT 
A11 2.22 πMes → πcore CT 

Table 5 Vertical emission energies, nature of electronic transition with largest coefficient, and 
character at N12-SX/6-311+G(d,p) for the optimized geometry of S1 of synthesized acridiniums. 

*CT: charge transfer. 
 

https://doi.org/10.6084/m9.figshare.28346972.v1
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Fig. 134 Orbitals involved emission from S1 → S0 for the S1 optimized geometry with the largest 
coefficients in the CI expansion. Orbitals are shown with an isosurface value of 0.03 and with 
mesityl group on the top. 

 
Molecule S0 Dipole (D) S1 Dipole (D) 

A1 3.37 19.5 
A2 1.55 22.9 
A3 2.66 15.1 
A4 3.16 14.4 
A5 1.98 15.7 
A6 4.15 20.7 
A7 2.92 15.8 
A8 2.69 15.2 
A9 0.67 18.4 
A10 0.08 18.0 
A11 5.02 22.9 

Table 6 Dipole of optimized S0 and S1 geometry at N12-SX/6-311+G(d,p) for the synthesized 
acridiniums. 

   TD-DFT calculations were performed on the optimized S1 geometry of the synthesized 

acridinium to investigate the nature of electronic transition for S1 → S0 (Table 5). In this transition, 

an electron transition from an orbital predominantly localized in the mesityl groups of most 

molecules. Exceptions are noted in A2 and A6, where the orbital is localized in the N-substituent. 

The electron transition to an orbital localized in the acridinium core, which exhibits minimal spatial 
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overlap with the initial orbital. This indicates that the S1 excited state is an intramolecular charge-

transfer (CT) state (Fig. 134). Dipole moments were computed for both the S0 and S1 optimized 

geometries. For S0, the dipole moment ranged from 0.08 to 5.02 D for the, while for the S1 state, 

it ranged significantly higher, from 14.4 to 22.9 D (Table 6). This substantial increase in charge 

separation in the S1 state compared to S0 further supports the characterization of S1 as a CT state.  

 
Acridine vertical absorption energy, nature of transition, D1 character and orbitals  

Molecule 
D0 → D1 
Absorption 
Energy (eV) 

Oscillator 
Strength 

Nature of Electronic 
transition 

D1 
Character 

 A1 2.34 0.0145 πcore  →  π*core /π*N-substituent HLCT* 
A2 2.34 0.0147 πcore  →  π*core / π*N-substituent HLCT 
A3 2.23 0.0059 πcore  →  π*core LE** 
A4 2.14 0.0069 πcore  →  π*core LE 
A5 2.19 0.0057 πcore  →  π*core LE 
A6 2.30 0.0163 πcore  →  π*core / π*N-substituent HLCT 
A7 2.18 0.0048 πcore  →  π*N-substituent CT*** 
A8 2.32 0.0139 πcore  →  π*core / π*N-substituent HLCT 
A9 0.93 0.0004 πcore  →  π*N-substituent CT 
A10 2.26 0.0220 πcore  →  π*core / π*N-substituent HLCT 
A11 1.98 0.0000 πcore  →  π*N-substituent CT 

Table 7 Vertical absorption energies, nature of electronic transition with largest coefficient, and 
character at N12-SX/6-311+G(d,p) for the optimized geometry of acridine on ground state (D0) 
of synthesized acridiniums.  

*HLCT: hybridized local and charge-transfer. 
**LE: local excited 
***CT: charge transfer  
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Fig. 135 Orbitals involved absorption from D0 → D1 for the D0 acridine optimized geometry with 
the largest coefficients in the CI expansion. Orbitals are shown with an isosurface value of 0.03 
and with Mesityl group on the top. 
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