UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Validating Storage System Instrumentation

Permalink
https://escholarship.org/uc/item/4sv4k8tq

ISBN
9780769551029

Authors

Adams, lan F
Storer, Mark W
Wildani, Avani

Publication Date
2013-08-01

DOI
10.1109/mascots.2013.73

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4sv4k8tg
https://escholarship.org/uc/item/4sv4k8tg#author
https://escholarship.org
http://www.cdlib.org/

Validating Storage System Instrumentation

lan F. Adams*, Mark W. Storert, Avani Wildani*, Ethan L. MillerBrian A. Madden*
*University of California, Santa Cruz tNetApp

Abstract—There is a large body of work—such as resulting set of differences between the expected and
system administration and intrusion detection—that relies real state to identify logging omissions from crashed
upon storage system logs and shapshots. These solutions |ogging processes or unrecorded system activities.
rely on accurate system records; however, little effort Using ExDiff, we can accomplish three key valida-
has been made to verify the correctness of logging in- tion tasks. First, ExDiff can identify both when and for

strumentation and log reliability. We present a solution, h | I h d d entri S d
called ExDiff, that uses expectation differencing to validate ow long a logger may have dropped entries. second,

storage system logs. Our solution can identify development it €an highlight when there may be activity that hast
errors such as the omission of a logging point and runtime ~ P€€en captured. Third, it can aid in identifying the spe-
errors such as log crashes. cific actions, such as a file creation, that may have been
ExDiff uses metadata snapshots and activity logs to dropped from a log or not captured in the first place.
predict the expected state of the system and compares Note however, that ExDiff imota logging infrastructure
that with the system’s actual state. Mismatches between by design. As we discuss more in Section lll, the capture
the expected and actual metadata states can then be of metadata snapshots and logs is separate from ExDiff.
used to highlight gaps in log coverage, as well as aid Using a variety of simulated workloads and snap-
n identifying specific types of missing entries. We show g e demonstrate ExDiff's ability to retroactively

that ExDiff provides valuable insight to system designers, identi iod h | tri bei d d
administrators and researchers by accurately identifying d€ntify periods where log entries are being droppe

gaps in log coverage, providing clues useful in isolating Put the underlying system is still functioning. We show
specific types of missing log entries, and highlighting EXDiff can accurately identify gaps in logs with as many
potential misunderstandings in logged action. as 500,000 actions. Additionally, we analyze how log
Lo duration and the density of actions affect ExDiff's ac-
- INTRODUCTION . curacy. We also detail how ExDiff can identify specific

Storage system activity logs are used in a numbeg pes of dropped entries, such as an entry noting a
of diverse areas, from system administration and desigi)e permission change, and how the same issues that
to security audmng. _Unfo_rtqnately, a latent problem in jhfuence accuracy in recognizing gaps in log coverage
such approaches is identifying teeverageof the col- 41 impact the ability to identify missing entries.
lected logs; it is critical to know which events have been The remainder of the paper is organized as follows
captured and which have been omitted. With no form,, gection 11, we discuss background and related work
of validation or understanding of a log's coverage, it 'Sfor ExDiff and provide further motivation. Section l1lI

easy to form incorrect_conclusions from Iog analysis. describes our workflow and methodology. We describe
For example, consider a system that silently drops,r experimental methods and evaluation in Sections IV

entries due to a logging-buffer overflow or 109ging- 4nq v and discuss future work directions in Section VI.
process crash. A security or performance audit of th&ye conclude in Section VIL.

system may mistakenly conclude that the system is Il BACKGROUND
behaving correctly, as no warning messages have been ') .
logged. Similarly, unless the developers who instru- [N order to accurately present ExDiff, we begin
mented the system are present, it can be difficult Y det_eulmg the terminology used in our discussions.
identify precisely which activities are and are not beingollowing that, we present several use-case examples
captured. The latter can be a particularly vexing problemf© further motivate our work. Finally, we place ExDiff
for debugging a system, as well as for anyone trying ton the context of existing work.
analyze a system from captured traces. A. Terminology

To address this issue, we have developed a method- In our discussion, we borrow terminology from
ology we callExDiff, that usesxpectation differencing earlier work [4]. ExDiff works at the level of individual
to determine when the true state of a system divergefiles or objects. Each file hasetadataassociated with
from the expected state. ExDiff uses an initial file orit, such as the time of last modification and user ID.
object-level metadata snapshot [5,10] and an activityThe set of all files that can be operated upon is the
log to derive theexpectedstate of a system. This ex- corpus The corpus exists on systema combination
pected state is compared to a second metadata snapsiedthardware and software.
capturing the system'’s currergality. ExDiff uses the ExDiff uses two types of captured data: activity

traces and metadatanapshots An activity trace is a the original system developers. ExDiff can also validate
log of events on the corpus. We use the terms log andrace replays, by comparing the expected end state after
trace inter-changeably. Individual entries in a log comea trace replay with the actual replay result.
from actions Actions are atomic events on a single file, C. Related Work
such as a read. We assume logged actions accurately To the best of our knowledge, there is no exist-
reflect changes in the system. A snapshot is a view ofng work aimed explicitly at verifying trace coverage
a corpus’s metadata at a single point in time. despite the number of utiliies used to capture OS
Any action that is not logged is &g omission behavior, such as strace [2] and ftrace [1]. TraceFS [7]
There are two types of omissionsissesanddrops An s a customizable tracing system existing in user-space
action that is not logged because it was never captureghat intercepts calls to the file system and systems such
is called a missed action. For example, a missing actios Magpie [8], Stardust [19] and //TRACE [13] are
results from a developer failing to add a call to the designed to gain end-to-end understanding of larger
logging system. A dropped entry is where an actionsystems. While these solutions are useful, none examine
that is normally logged does not produce a log entry. Athe coverage of the captured data.
contiguous period of dropped entries is referred to as a Aydit log used in transactional database systems
gap. For example, dropped entries and gaps can be thghare some similarity to ExDiff. A log can be replayed
result of a crashed logging process. A geglimation tg reproduce the current state of a system, and compared
is a pair of timestamps predicting the start and endg g running system for accuracy. Snodgrassal. took
times of a gap. When discussing gaps, it is important tGhjs jdea a step further by including a hashing and
distinguish between wall-clock time and the number of«notary” service to make log tampering evident, while
dropped entries; a gap in wall-clock time may involve gi5o validating the state of a system [18]. Similarly,
any number of actions. journaling filesystems use metadata journals to restore
B. Example Use-Cases a filesystem to a consistent state after a crash [17].
Log coverage verification is critical in a number of ExDiff differs as its goal is to identify gaps in coverage,
areas. In this subsection we highlight a few key areasather than validating or restoring the state of a running
where ExDiff can improve the confidence of results by system. However, techniques used in ExDiff could be
validating log correctness. used to verify the correctness of a metadata journal.
Intrusion Detection and Forensic Analysis:Intru- Intrusion detection systems (IDS) also rely on com-
sion detection systems often compare the state of thparing expected states to what is observed in a system.
system to a known “healthy” state, with mismatchesAbadet al’s work on log correlation for intrusion detec-
raising alarms [12]. In addition to providing log valida- tion uses multiple logs in concert to identify anomalies
tion, ExDiff can assist in detecting alterations in eitherthat may not be apparent from a single log [3]. While
the activity log or system metadata. By requiring andifferent in detail, there are similarities in the highé¢v
intruder to alter multiple data sources, the difficulty of approach of using multiple data sources in concert to
silent intrusions increases dramatically. Similarly, theimprove analysis. Tripwire detects modifications to a
field of forensic analysis depends heavily on the abilityfile system by periodically comparing the current state
to recreate activity accurately and detect when usersf a system to a database of file checksums [13§SI
have attempted to cover their tracks is a file system built around a Tripwire like integrity
System Management:Log analysis is common in checking system, but checks integrity on the fly, rather
storage system management [6]. ExDiff can identifythan at administratively defined times [14]. Hobgoblin is
when and where logs may be suspect, leading to ima language and interpreter that describes what properties
proved analysis accuracy. For example, ExDiff can helpa file system should have, such as permissions for a
eliminate false positives where a system may have beegiven user [15]. While ExDiff shares similarities in com-
running correctly, but is dropping log entries. It can alsoparing an expected state to realityF8, Tripwire and
identify scenarios where problems exist in the loggerHobgoblin rely on static rules, rather than comparing

itself, as opposed to the system being logged. state estimated from log entries.
Systems ResearchMany traces and snapshots are
available to researchers. Unfortunately, it is often im- [ll. EXDIFF DESIGN

possible to speak with the original source administrators ExDiff operates at the level of file or object meta-
and architects to understand their coverage. This is padata. We do not consider the raw data, although ExD-
ticularly challenging for research into archival storageiff could be extended to incorporate data capture by
systems where years of data may be required, along withapturing content hashes. Note that while the overall
changing log formats with little or no documentation. methodology is agnostic to the underlying trace and
Using a combination of snapshots and trace logs, resnapshot capture methods, the data that comes from
searchers can use ExDiff to derive an understanding othese captures will be specific to individual systems.
the log’s coverage without the need for expertise from There are four steps to ExDiff. The first iaput

Trace Log

READ Foo 1125
_READ Baz 1240

Reality Expected Snapshot

Snapshot

Initial Trace
‘Snapshot Log

1 I
h 4 v_I
2) tati
T o

%
Fig. 2: Expectation Calculation. In this example, the expectecestat
is derived by mapping file ATIME’s to read activities.

Fig. 1: An overview of ExDiff's workflow. Yellow entries are captute analyze_r may be mlsur.]derStandmg a |Og in addition to
data from input capture, while green (diff entries and exgpec |dent|fy|ng gaps and misses.

snapshot) are derived. While some file systems automatically provide snap-
shots through versioning [11, 16], capturing snapshots
'is not always atomic, such as a recursive and
stat to capture metadata. Actions may continue to

" . . mutate a system’s metadata state as a snhapshot is
where the initial snapshot and activity log are Comb'nedbeing captured, which in turn influences the diffing

to derive an expected snapshot. The third stiefing, is and analysis steps in difficult to predict ways. In our

where the expecteq snap;hot is g:ompared to the reali roof of concept, we assume snapshots are captured
snapshot, generating a list of differences. The fourt tomically, though we describe a method for dealing
and final step isanalysis where we utilize the list of i non_atomic snapshots in future work in Section VI.
differences, the activity trace, and sna.p§hots to analyzﬁ/letadata snapshot capture overhead is dependent on
log coverage. F|gure 1 |II_ustrates ExDiff’s kaf'?"_": system size, but the metadata itself is often quite small.
Input Capture: In the input capture step, the initial £, example, a dataset we obtained from LANL had

metadata snapshot, activity log and reality snapshot argyer 112 million metadata entries, but consumed only
gathered. Note that ExDiff itself does not capture thes s when compressed.

data, b.Ut relies on data produ_c_ed from othe_r SOUKEES, Expectation Calculation: ExDiff uses the activity
recursivel s andst at . The initial snapshot is a picture o'\ ,hdate the state of the initial snapshot and create
of the metadata state of the system immediately prior fhe expected snapshot, a prediction of the system’s
a trace log of actions. The reality snap;hot capiures t.h?netadata state. As illustrated in Figure 2, this process
state of the system at the end of a tracing period. Wh'leis straightforward: an action in a log may update one or
both snapshots represent the ground truth _of a systemg, .o parts of a file’s metadata. For example, in many
state (we assume the file system metadata is correct), We oy stems, a data modification will update the change
refer to them as the initial and reality snapshots to keeQime (CTIMé) the modification time (MTIME) and the
them notationally distinct. The log must capture actionSe ;e metadata. How, and which, actions should be
betweerthe initial and reality snapshots. Note that moremapped is specific to the snapshots and actions being

thalm ltvxt/o snapshots l;:atn be capture?, but Iixli)n‘f OnIycaptured. Though this is human driven, and potentially
caiculates coverage between pairs of Shapshots. error prone, errors in mapping can be caught in the

For ExDiff to function, the captured data needs two giffing step and highlight misunderstandings of a trace’s
characteristics. First, one or more action entries in thg.gverage and the semantics of its actions,

log should reflect changes to the system’s underlying \y,an deriving the expected snapshuzrtial entries

metaglat_a. For 3xan|1p|e, g a ?napshtot car?tures Ei f”tﬁﬁway be created. A partial entry is created when attempt-
permissions and a logged action notes changes 1o (Eg to map an activity to a file that is not known to exist

1)Input CaptureJ

TFile Foo ATIME 1125
File Bar ATIME 1000
+p-File Baz ATIME 1240

capture where aninitial metadata snapshot is taken
followed by activity tracing, and then reality snapshot
is captured. The second stepeigpectation calculation

1t‘|rl]e’s perrrllsj[smrfls{hvxﬁ_lcgn then use that tenotlng toSpred|c ased on the log and expected state, so ExDiff populates
€ hew state of that ile s permission metadata. SeConGys m ch metadata as possible for that particular file.

in order to estimate gaps, we require one or more meta- Diffing: After the expected snapshot is created,

data timestamps that can be accurately (within >OMGe compare it to the reality snapshot and collect the

bound) mapped to activity log entries. For example, Adifferences between the two for analysis. As shown in
read gntry th_at can be_ mapp(_aq toa f||<.e.s ATIME. Figure 3, ExDiff does a file by file comparison of the
With ExDiff, we avoid requiring specific snapshot or " snanshots, comparing each piece of metadata to
log formats. While a rigid format may aid in automating g5y gther, An,y time there is a mismatch, either from
the process, it has two major pitfalls. First, standards, g0 peing missing in one of the snapshots, or a piece
are notoriously difficult to be applied consistently, even ¢t~ 4ata not matching as expected, we F;U” the files
when they have been in existence for many years Iegut and create anetadata diff entr.yEa{ch diff entry

alone new ones being proposed to the community, s, yacks which metadata came from the expected
Second, requiring a standardized input distances huma apshot, and which came from the reality snapshot

from the process. Wevant humans to be a part of the Each diff entry is categorized as one of three types
ExDiff process as we want to identity where a humansummarized in Table I. Aeality drop entry is where

DBSCAN has two parametersy (neighborhood
size) andeps(shape parameter). Clusters are produced
when a datapoint has at ledd$tother datapoints within
a distance ok ps Any datapoint that is withire psof an
already identified cluster is merged into that cluster, and
Fig. 3: Diffing. File Foo's expected ATIME does not match reality, all others are discarded as noise. As with most clustering
S0 an 'V'Dtgj'sgsgcghi’t‘”go'Saﬁrgi“gggt;'r’]‘“g%'y'e‘?;]‘;‘rz 'iss:é’rt;gf” intechniques, DBSCAN’s parameter choice can influence
ex?stesxggcexpecteg, so produces r?o diff entry. P e its accuracy. We discuss how varying DBSCAN param-

eters influences gap identification in detail in Section V,

Expected Snapshot 4 Reality Snapshot
File Foo ATIME 1125 <<-F——>&—— File Foo ATIME 1200
File Bar ATIME 1000 File Bar ATIME 1000
2 File Baz ATIME 1130

Expectation Drop
X

Diff Type Description . .

Reality drop File is in expected, but not reality snapshot but relegate automating parameter choice to future work.

Expectation drop || File is in reality, but not expected snapshot DBSCAN'’s primary bottleneck is in its use of a

MD mismatch File exists as predicted, but metadata does not match distance matrix, with a memory and run time overhead
TABLE I: Metadata diff entry types. of O(n?). With large datasets we can use DBSCAN with

L asliding window approach on the input timestamps. For
a file is found in the expected snapshot but is missiNgeyample, if we have a 30 day log of actions, but can
from the reality snapshot. Aexpectation droentry is — ony it one day’s worth of diffs into memory at a time,
the reverse of the reality entry; a file exists in the reality\ye"can use a 24 hour window moving it 12 hours at a

snapshot but is not in the expectednfetadataor MD (ime. The windowing will not impact estimate accuracy
mismatch is where a file exists in both the reality and ,jjess a gap is longer than the window.

expected snapshots, but one or more metadata fields do It is possible, however, tanask omissions, and

not match. , , , . subsequently gaps. Consider a file with one timestamp
Analysis: ExDiff now diverges into two distinct hat js updated every time it is read or acted upon.
types of analysis. The first is identifying gaps in 109 |t he |ast action to a file is dropped, it will not be
coverage. The second focuses on classifying log omisiefiected in the expected snapshot and will show up
sions to provide clues as to which specific actions were;g 2 MD mismatch entry. However, if another action
omitted from the log. _ occurs after the dropped one, the expected and reality
Gap lIdentification: Given the requirement that at comparison will not trigger any diffs, as the expected
least some logged actions update timestamps, ExDifand reality timestamps will match by both reflecting the
can leverage mismatches between expected and realifgsuylt of the second action. This same sort of masking
timestamps to identify gaps. When an action that Upcan occur with other metadata as well, for example
dates a timestamp is dropped from the log, it will lead tofjle permissions changes. We examine what influences
an MD mismatch as the expected and reality snapshotgasking in greater detail in our evaluation in Section V.
will not match on one or more timestamps. These omjgsions Identificationin classification of omis-
mismatched timestamps can be used to identify likelygions ExDiff examines the metadata diffs for clues
log gaps. Consider the example shown in Figure 3. Theg 1o the specific types of actions that were omitted
metadata mismatch notes that file Foo has an acceggither a drop or a miss) in the log. The key to clas-
time of 1200, while the expected entry gave Foo angifing an omission is recognizing isrop signature
access time of 1125. This te_IIs ExDiff that an action yne set of diffs and mismatched metadata produced by
that occurred at 1200 was missed or dropped. a particular omitted action. Signatures are specific to
When identifying gaps, ExDiff pulls out all of photh the snapshot metadata and the actions explicitly
the diff entries that come from the reality snapshotcaptured in the trace, and thus may vary from system
which have mismatched timestamps. A density basegp system. If one already has detailed knowledge of the
clustering algorithm is then run to group timestampsexpected operations within the system (whether or not
together based on their temporal distance; large numbetgey are captured in a given trace), and how they are
of similar timestamps from diff entries are indicative of expected to modify metadata, signature identification
a gap. After clustering, the earliest and latest timestampfs straightforward. However, even if the details of the
from each cluster are presented as a gap estimate. ynderlying system are not perfectly understood, there
We use DBSCAN (density based spatial cluster-are many common operations that will leave predictable
ing of applications with noise) for creating gap esti- signatures when missed, such as a delete which always
mates [9]. We chose DBSCAN due to its simplicity, leaves a reality diff entry. Missed actions (those that
the fact that it does not require detailed knowledge ofare not captured but otherwise modify metadata) still
the underlying data distribution, and its ability to deal generate diffs, which in the worst case still alerts the
with noise data points. Its ability to automatically handle analyzing party that their log is missing actions. Signa-
noise is relevant because we have run into situationsures will vary depending on the underlying system and
where loggers periodically drop random individual en-trace methodology so we describe signatures specific to
tries in addition to full coverage gaps. our evaluation in Sections IV and V.

Field Name [[Description
BTIME File birth (creation) time

erwise specified, we use a fixed corpus size of 100,000

ATIVE st read fime files. We chose to do most (not all, however) of our
MTIME Data modification time experiments without creating or deleting files as they
CTIME Metadata change time added book-keeping overhead to the experiments with-
e S out meaningfully influencing results specific to vali-
Permissions || Text string denoting permissions dating our log failure identification method. Omitted
Name Unique numeric identifier for the file CREATE actions make ExDiff’s job easier as it triggers
Size File size in bytes ; i
an unmaskable expectation drop enDELETE actions
TABLE II: Metadata tracked in our simulations. pr(_)VIde no information either way abOL.It quger gaps
using our method, and when dropped will simply show
IV. EXPERIMENTAL DES.IGN up as a reality drop entry.
Workload and Snapshot Generation:We chose to To examine how the number of actions between

generate synthetic workloads and metadata for ExDiff'she jnitial and reality snapshots influences ExDiff's
vaI|dat|on. We to_ok this route for two reasons. First, accuracy, every experiment is run with workload lengths
we require a variety of snapshots and workloads withranging from 50 to 500-thousand actions, respectively.
verifiable ground truth in order to check the accuracy of\yie refer to these as 50k through 500k workloads. This
our methods. With real world traces we ourselves wouldyodels how increasing the duration between snapshots
not know their coverage, weakening our evaluatlon.might impact ExDiff. For each workload length, we
Second, we need the ability to fine tune the workload togenerate 10base workloads that each have 10 sets
ex_amine how various actions impact_ ExDiff’s accuracy. of randomly generated gaps for a total of 100 runs,
With real world traces we would be limited to educated ith results averaged across all runs. In each workload,
guessing in how various workloads influence ExDiff. 51 action is generated every 1 to 10 time units, with
Each file in our workload corpus has common, the type of action selected based upon the experiment
POSIX-like metadata, described in Table Il, and isgpecific parameters. Each base workload also has an
uniquely identified by its filename; in our simulations jnjtjial snapshot and reality snapshot associated with it.
this is a numeric identifier. Generated activity logs are gqr each action there is a 1 in 15,000 (.00006%)
comprised of timestamped actions based on commoryhance of a gap occurring. This means a 50k length
POSIX commands. We summarize these actions iRyorkload averages 3 gaps per run, while a 500k length
Table Ill. Timestamps are integers, and all actions have g,,rkioad averages 32 gaps. Each generated gap drops
unique timestamp. Currently, log timestamps and metapetween 100 and 1000 entries. We chose this rapid rate
data trace timestamps match, though we discuss how 1§t gap generation for two reasons. First, the number
address metadata and log time skew in Section VI. ot gaps has little impact on ExDiff’s ability to identify
Activity log entries consist of two elements: an gaps, rather as we discuss later, it is the number of
action, and a file to perform the action upon. Actions actions and masking that have influence. Second, this
are randomly picked based on experiment-specific pagllows us to stress test the cluster based approach
rameters. Files are either picked randomly or selectegg larger numbers of gaps increase the likelihood of
with locality, based on the experiment. We use randomestimations erroneously grouping distinct gaps.
picking as a control group as it is easy to understand and For most experiments, we use fixed DBSCAN pa-
analyze, while picking with locality is representative of rameters, with arN value of 10 and arepsvalue of
real workloads; people often work on specific subsets)gng time units. TheN value is set low to encourage
of a storage system for varying amounts of time. aggressive clustering as a worst case scenario. The
We simulate locality of access by dividing the corpuseps value was chosen as a simple visual inspection
into locality groups of a fixed size. When generatingof the logs showed periods of no actions typically
the workload, a locality group is picked, and a tunablepetween 1000 and 10000 time units. This is an intuitive
number of actions, which we call the locality action measure that could realistically be obtained withaut
count occur within that locality group; each action is priori knowledge of the gaps, and is far from perfect.
applied to a file selected at random from the locality|n section V we examine how varying the DBSCAN
group. This process is repeated until the action count iarameters influences accuracy.
reached, and then another locality group is picked. Metrics: Recall that a gap is a contiguous period of
The workloads we generate act on either a fixeddropped entries, and an estimate is the predicted start
or dynamic corpus, depending on the needs of thesnd end of that gap. We use two metrics to evaluate
experiment. In a fixed corpus, all files are present priofexpiff's ability to identify a gap:gap coverageand
to the trace, and no files will be created or deleted. In stimate utilizationGap coverage is the fraction of all
dynamic corpus, files can be created and deleted duringap durations that are covered by one or more estimates.
the course of the trace. For example, in Figure 4A, there are two gaps running
Common Experimental Parameters: Unless oth- from times 0 to time 2 and 4 to 5, for a total gap length

[Action Name [[Description [[Metadata Impact Notes [[Drop Signature |
CREATE Creates new file in corpus Randomized, times initialized to create time Exp. drop
READ Read of a file Updates ATIME MD mis: ATIME mismatch
MODI FY Update of file data Changes MTIME, CTIME and size MD mis: MTIME,CTIME, size mismatch
DELETE Removes a file from the corpug| - Rlty. drop
CHVOD Updates a file’s permissions Changes CTIME and permissions MD mis: CTIME, permissions mismatch
CHOMN Change the user ID of a file Changes CTIME and UID MD mis: CTIME, UID mismatch
CHGRP Change the user ID of a file Changes CTIME and GID MD mis: CTIME, GID mismatch
RENAVE Change the file name Changes the file name to a new number RIt and Exp drop simultaneously
TABLE Ill: Actions we simulate and their impact on metadata as well as ¢hep signature.
of 3. There is one estimate covering the earlier gap vertoct Eotmate Gap Coverage 066
. . . . Gap Miss Estimate Utilization 1.0
entirely, and the latter gap isnaissas no estimate covers — i Sum GapLengh(@)3
any portion. 2 of the 3 gaps’ time units are covered by L S N NN S B @
estimates, having a total gap coverage of 0.66. imo)
Estimate utilization is the fraction of all estimates Estimate Estimate Gap Coverage0.75
. . | — T — CEstimate | m Gap Length(s)
combined that cover gap durations. For example, an — = S et Longthe 5
estimate of length 5 that completely covers a gap of ety (B)
length 3 would have an estimate utilization of 0.6. We W y
call this anestimate overshooas the estimate is too Estimate Overtiting Estrmare Uttt 10
N (Estmate] (Estimate] [(Estimate] Sum Gap Length(s) 6
long. An estimate of length 1 that only covers a part of , = ‘ Sim Estmate Longihs 3
a longer gap would still have a utilization of 1.0, but ——————— @
the coverage for that individual gap would be below 1.0. Lone —
We call this second case astimate undershoas the i Eainai Uilaton 00
estimated time is shorter than the actual gap. Figure 4 B , L, e
illustrate these concepts. ————

To provide greater granularity in our examination of
estimates, we alsp look at hc.lwerfltor aggressivehey Fig. 4: These examples (A through D) illustrate our metrics and
are. _The former_v illustrated in _Flgure 4C, occurs Whenterminology. The white rectangles are gaps and the shad&thgées
multiple estimations cover a single gap. In other wordsare estimations. Gap coverage denotes the fraction of all gayered
there are multiple undershooting estimates for a singléy an estimate. Estimate utilization refers to the fractioestfmates
gap. The latter, illustrated in Figure 4D, is when a Singlethat cover a gap. Bolded terms are used to discuss types ofatss.
estimate covers multiple gaps. We also discuss whether
or not a gap has bednit or missed A gap hit occurs V. EVALUATION
when an estimate covers any portion of a gap, while a Our evaluation is broken up into two sections. First,
gap miss is one that is not covered by any estimates. We quantitatively demonstrate ExDiff's ability to au-

In all cases, high values for both gap coverage andomatically identify gaps in log coverage, and explore
estimate utilization are desired, as this means that gapdhat can influence its accuracy. Second, we provide
and their duration are identified with high levels of @ qualltat|ye d|scus§|on of omission classification and
accuracy, with little or no under or overshot estimates. Awhat can influence its accuracy.
high gap coverage value with a low estimate utilizationA. Identifying Logger Gaps
value suggests large numbers of overshot or agressive proof of Concept: In this experiment, we run a
clusters. A low gap coverage with high estimate utiliza-workload that has all actions described in Table Il
tion suggest gap misses and undershot estimates. including creates and deletes with the goal of demon-

As mentioned in Section Ill, we are concerned with strating ExDiff's ability to identify gaps. We demon-
masking, where later actions remove evidence of prioktrate that ExDiff can accurately identify log gaps and
gaps. For example, a dropped ATIME update would betheir duration with high estimate utilization and gap
evident as a MD mismatch, but if a later ATIME update coverage values. This initial experiment uses a dynamic
that was not dropped overwrites that files ATIME, it is corpus as locality type accesses. Later experiments
not apparent that an entry was dropped. To examingitilize micro-analysis to explore the bounds of ExDiff's
masking, any file that is acted on during a gap isgap identification accuracy.
categorized as one of three types. First,Laimasked Using the action probabilities described in Table IV,
file, is a file where no later actions cover up evidencethis workload uses locality group sizes of 25 with action
of a gap. The second ispartial mask where some, but counts between 10 and 50. The initial corpus size is
not all, evidence of the gap was overwritten.tétal 100,000 files. We find that ExDiff is able to accurately
mask is where all evidence of a prior gap has beendentify gaps with a gap coverage consistently around
overwritten. Masking influences both gap identification 97.98% for all lengths. Estimate utilized shows a slight
and omission analysis. decrease in accuracy, and increase in variability as

Exp. Name [Create | Delete | Rename [Read | Data Update [Metadata Update |

Simple 0 0 0 34 33 33
Reads+Meta 0 0 0 95 0 5
Read-Only 0 0 0 95 0 5
POC 5 2 3 45 35 10

TABLE IV: Base workload parameters. All experiments are small varigitam these parameters, with the variations described in thg bo
text. Each number represents the percent chance of that begng chosen when generating an action. Meta update refettseetchance of
picking a UID, GID or permissions change action. POC refertheoproof of concept workload.

workload length increases, with a mean of 92% andn the read only workload, all actions are reads, subse-
standard deviation around 10% at 500k actions. This iguently ATIME is the only timestamp updated. As we
because longer workloads have a higher likelihood ofshow in the center plot of Figure 5, this has a strong
gaps being close enough together to cause an aggressivepact on the consistency and accuracy of our method
estimate. We omit the graph as all values are quiteas the workload increases in size, because total masking
consistent, making visual comparison difficult. becomes much more prevalent as shown in the center
Corroborating this, we find that less than 15% of theplot of Figure 6. This is due to only a single timestamp
50k runs had aggressive estimates, and never more thdi¢ing used and updated relatively more frequently.
one, while over 25% of the 500k runs had aggressive The final experiment looks purely at timestamps
estimates, maxing out at 4. With the parameters weainder thereads+metadatavorkload to examine how
used, we saw no over-fit estimates for any workloadeven a small chance of a second timestamp being
length, and surprisingly we only entirely missed gapsupdated can influence gap estimates. In this workload,
in less than 5% of the 500k length runs, and missedeach action has a 95% chance of being a read and
zero gaps for any of the shorter workloads. This furthersubsequent ATIME update, while the other 5% may be
demonstrates ExDiff's accuracy in gap identification. a metadata action that updates CTIME. Interestingly,
Varying Timestamp Updates: In this set of experi- even this relatively low chance of CTIME change has a
ments, we explore how changing the number of distinctsignificant impact on masking relative to the read only
timestamps influences ExDiff’s ability to produce ac- workload as shown in the center plot of Figure 6, and
curate gap estimates. First, we find that masking has aubsequently has significantly higher gap coverage than
strong effect on accuracy, and longer durations betweethe read only workload as shown in the right plot of
snapshots increase masking likelihoods. Second, largdrigure 5. Note that there is a significant increase in
numbers of timestamps can markedly improve ExDiff's coverage variability with a decrease in mean coverage
accuracy by reducing total masking. at the 500k length. While there is less masking than
The first experiment uses th@mple workload. In the read-only workload, there is still quite a bit of
this workload, we have a fixed size corpus of 100,000total masking occurring. As in prior tests, we saw
files, and the workload picks each file to act on uni-No overfitting estimates, and the number of aggressive
formly at random. Each action has an equal chance ofstimates decreased with workload size.
being a data modification, a read, or a metadata update One thing to note across all the timestamp varying
such as a permissions or GID/PID change. experiments is that unless two gaps were covered by an
As shown in the leftmost plot of Figure 5, there aggressive estimation, we never observed any estimate

is only a small decrease in accuracy as the workloa@®vershoot a gap and completely subsume it. At most
length increases. This is because we are uniformljhey perfectly matched the end points of a gap. This is
picking both files and actions, resulting in equal oddsbecause in our simulations we have perfect knowledge,
of modifying the three timestamps in the file's metadataand the logger is either perfectly functioning, or not
(CTIME, MTIME, and ATIME). This makes it difficult ~ at all, eliminating the possibility of extra diff entries
for arbitrary gaps in coverage to be totally masked bycausing false positives or estimate overshooting.
later actions overwriting timestamps, corroborated by Locality Influence: In our next set of experiments
the very low amount of total masking illustrated in we examine how spatial-temporal locality of access, in
Figure 6. We did see a small, but consistent amountontrast to purely random accesses, influences EXxDiff.
of aggressive estimates for the longer workloads. Thédur experiments show that strong, focused locality
500k workload saw 50% of runs with at least one groups in a workload have little impact in recognizing a
aggressive estimate, 75% saw over two and maxed out @ap occurred, but make accurately identifying duration
five aggressive estimates per run. However, the numbenore difficult with wider variation in gap coverage.
markedly decreased with the shorter workloads, with the For these experiments, we use a locality group size
50k workload only showing 5% of runs with one or two of 25. For theweak locality workload, we use an
aggressive estimates. We observed no overfit estimatexction count between 10 and 50. In tsieong locality
under this workload. workload, the action count is picked between 100 and
The next experiment used tlmead onlyworkload. 200. Both workloads are otherwise identical to the

Simple Read-Only Reads+Metadata

Workload Length
XX 50k 20000f
EEE 100k
N 250k
I 500k

20000 1 20000}

15000 150001 1 15000}

Count
Count
Count

10000 10000 10000

5000 5000 5000

S
aes o

0
S)
G® r\ma‘“\‘e patt: W’S\‘ wxa\ N‘as\‘

3 " X ° ed " X
e 2! 25! . Ga? O 25! WS
e patt: W <o w aes™ N e Pt W o

s K

!

Fig. 6: Here we show how varying the number of timestamps being updatkences masking. Error bars are standard deviations.

Simple Workload Read Only Workload Reads+Metadata Workload Weak Locality Strong Locality

o=

ot

K]

.w...u
SRR
XXZXXY
L
S xx]
K]

-
2

.,.
R
2R
RRXRZ
—
S5

R

X
X
XX

O !

&
&
o
&
of
o8
o
&
of
&
o
o8
o
&
of

3%

%

%
S

totetete!

oz
0%

x5
otole
-
AL
Fraction
Fraction
o
2R

toteeles
b0
°
eTe
2XRRK

x>

RRRRRIZ,

XRIXRXTLS

X

T

ZS

S5
338

2

%
T

2ol

e
L
%S
%
55

3
BRI
X2

02000200020 % %0 %20 %20 %20 %20 %20 % %4 % 20 % 4%

BX

XXX

E

&
232585

3
N- -
Ga? co 1329 !

N- ™
GaP co st V!

%

3%

0288

Fig. 5: A breakdown of how coverage and estimates are influenced
by varying timestamp updates. Error bars are standard dmviati
Note the read only workload leads to much higher variationgam Fig. 7: Gap coverage and estimate utilization under the localitykwor
coverage as workload length increases. loads. Note strong locality has much greater variation inecage.

st et . o oV et e

simple workload, where metadata update, data updat&xDiff, we take the simple and read only workloads
and read actions are all equally likely. and add noise in the form of randomly dropped entries
In the weak locality workload we observe the samein addition to the full gaps. We show that small amounts
trends and amount of masking as the simple workloadf noise do not seem to have a large impact on gap hit
shown in Figure 5. Interestingly, the strong locality hasand miss rates, but can have a very strong influence on
25% less partially masked and 25% more unmaske@stimates as noise makes aggressive and overshooting
files than the weak locality workload. This is becauseestimates more common.
fewer total files were accessed in the strong locality All entries in the workload for these experiments
test as more activities were done per locality group.have a 1 in 1500 chance of being dropped. This can
However, this means that within each locality groupinfluence ExDiff's accuracy as there are now points that
there was a higher probability of actions temporally nearmay be erroneously considered a part of a gap, thus
one another causing maskimgthin a gap which our changing the length of an estimation.
metric does not measure. As we show in Figure 8, the gap coverage is not
When examining gap coverage, shown in Figure 7 appreciably different than the original baseline tests.
we see that the strong locality test has a much greatddowever, the estimations are significantly less accurate.
variation in its coverage and estimate utilization thanThis is due to the fact that the noise makes it very easy
the weak locality. This is because with stronger locality,for a gap estimation to overestimate the duration. This
we see maskingwithin a gap as described above, can be mitigated by tuning the DBSCAN parameters,
which in turn leads to significant amounts of estimateas we discuss in the next section. In terms of gap hits
undershooting. This is reinforced when we see that irand misses, as well as the incidence of aggressive and
both the strong and weak locality tests over 95% ofover-fit clusters, there were no significant differences
gaps were a part of at least one estimate, but coverageom the simple, read-only and reads+metadata tests.
noticeably decreases with workload length. We alsowe omit the masking charts as they are not noticeably
looked at the locality workloads under a reads+metadatalifferent from the timestamp varying tests.
access pattern and found it followed the same trends as Varying DBSCAN Parameters: In this set of ex-
shown in the initial reads+metadata workload. periments, we examine how sensitive our results are to
Adding Noise: To explore how noise influences varying DBSCAN parameters. We see that gap coverage

Simple Noise Read-0nly Noise environment. In both cases, we leave a quantitative
evaluation to future work, and focus on discussing issues
in identifying omitted entries.

Perfect Knowledge: The same set of actions and
signatures described in Table Il are used in our discus-
sion. Note that we use signatures from our workloads
for illustrative purposes, and that signatures may vary
from system to system.

A perfect knowledge scenario is likely when logging
is included as a first class entity in a system. Even with
perfect knowledge, periodic validation of the logs and

Fig. 8: Coverage and estimate utilization under the noise workloads metadata is useful in many scenarios, such as intrusion
Note drastic increase in variability relative to the otherkioads. detection and debugging

and estimate utilization is generally improved with Basic signature detection is a straightforward com-
lower values ofN andepsin noisy environments. parison of known signatures versus observed diff en-
We take the same parameters used for our testfies. For example, a missing group ID change entry
with noise, as these are a worst case scenario in ternigads to an MD mismatch entry, with the expected and
of difficulty for estimations; they are likely to lead to reality snapshots not matching on both the timestamp
significant overshoots estimations in failure durations.2nd the GID fields. Similarly, a missing data update
We omit the graphs from the read-only noise workloadaction would cause an MD mismatch entry with mis-
as their trends were similar. matches on the MTIME, CTIME, and possibly the file
The general trend we notice, illustrated in Figure 9 isSiZze. In short, in many cases a perfect signature match
that smallele psandN values tend to increase estimation ¢&n point to a specific omitted action.
accuracy for our workloads, keeping in mind we are Masking persists as an issue in the perfect knowl-
micro-benchmarking. We see fewer aggressive cluster£dge case, in addition to masking whole prior actions
and contrary to our expectations, little impact on theit can cause a signature to be less clear. Consider
number of over-fit estimates. Highét values tend to @ dropped GID change entry, followed by dropped
increase how likely we are to miss a small gap that haglropped UID change entry. While the diffs may note
many masked entries, however. Higlepsvalues tend the mismatch between CTIME, GID and UID, EXxDiff
to cause more aggressive estimations with estimate!9ses information regarding the time of the GID change
merging distinct gaps. It is important to note that theseentry.
trends will not be universal across all workloads. For Actions that change file identifiers (renames) can
example, we found an outlier case in the read-only noisgnake signatures ambiguous. A rename causes both
workload where increasing the value fdractually led — expectation and reality diff entries, as the missed rename
to a small increase in overfitting. This was because thameans in the expected a file will exist that doesn't
the noise was causing the density of the perceived gapatch to a file in the reality snapshot, and vice versa.
to be inconsistent. Similarly, a dropped delete leads to a reality drop
Based on our observations, smaller parameters tgntry, and a dropped create causes an expectation drop
DBSCAN tend to improve ExDiffs estimate accuracy, Which superficially overlaps with the signature from the
with the caveat that they be adjusted for the rate offéname.
activity and potential masking in a given log. Second, = The ambiguities caused by a rename can be ad-
despite having a noticeable impact on gap coveragejressed by comparing reality diff entries to all files in
even widely varying parameters rarely miss a gapithe reality snapshot. A match on a large fraction of fields
Third, while these trends in general hold, gaps may suother than name may indicate what file it actually is/it
perficially have multiple timestamp clusters of varying was renamed to. When this match is found, it can be
density, leading to overfitting. Visualization may help in used to discard expectation drop entries that map to the
some of these cases, as it is often readily apparent teame file, as they are now known and can be removed
human observers when multiple overfit clusters are irfo prevent them being classified as another action.

>
%a%!
X

TR
0

_—
S

2
RS

S

bt

e
2K

S
XX

.3

<X
%%
X
23
o
SRR

TRKS
%6%%%

>

P

v

S

XS
L

%5

X
55

[

RS
%6%%%

2
e
BEEL

XK

25

XK
1 %%
<
X
>
o202

v
%
=
b

%

55

X
R
3

0a%%a%

%
e
25255
X

o

%S

‘v

R
X

o

OO
SRR
%S

%

X%
—
2K
REXX
RS

be%

(2
g
-
K2
=
%

et \3{\\. cov - 0(\\ .

GoP ©

reality a single large cluster. Partial Knowledge: Partial knowledge is less
o o straightforward to work with as omitted actions may
B. Omission Classification be modifying metadata. Thus, the signatures of such

We also explore how diff entries can help identify actions may be unknown. Despite this, ExDiff has
the type of entries that may be missing or dropped fromhe ability to provide significant benefit. Unexpected
a log. We begin by assuming we have perfect knowledgeliffs are at the very least indicative that something

of all possible activities in the system, and follow up is omitted from the log. Further, actions that change
with a discussion on operating in a limited knowledge

Simple Noise Eps 600 N 5 Simple Noise Eps 600 N 30 Simple Noise Eps 3600 N 5 Simple Noise Eps 3600 N 30

29
%5

o

2288
e
2
XXX

X

o
%
o2

X

%
8

33338
202!

o

R
2
TOTOsess
22X
22
02

et

RS

TTTF
<z
o0l

oo

R
g
X%
ot
335
OO

3
o
20

IR
5
x>
%%
SRR T35

200X

%
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

X
2T
%
te%e%e

X

%
RRRRR
030293

%

RO
SR
%
X
%

038

%

K

5%
22
o
oLy
o
oo
RRES
3
XX

o2
%
%
o
o

&
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
%
¢
¢

%5

%
%
be%e%e

%3
oo
02029,
2
e
&
058

%

X

R I ITLR]

20000S
200
SRR
o
X
<000
RRRX
s

22
%
%X

o

3
X
-
X
botees

o2

%
IR

X
X

058

%

%

3%
X
%3

X

%
oo

2
=z
K

2
g2
%

3

B
KX

639%;

X
s

fa%a%
W

g e

o
N-
4 <o st

Fig. 9: Here we show how varying the parameters to DBSCAN influencedcgaerage and estimate utilization under the simple noisé&loend.
Note smaller parameter values tend to produce better results.

identifiers, add or remove files—such as creates, deletebave dropped entries while the underlying system is
and renames—will likely be obvious given the blatant functioning. ExDiff’s accuracy is strongly influenced by
mismatch between the expected and reality snapshotsthe number of actions that occur between snapshots, as
well as the number of timestamps that are available to
VI FUTURE WORK work with. We also discussed how ExDiff can provide

~ We need to acquire verified, real-world workloads jnsight into specific actions that have been omitted
in order to extensively understand the bounds of ExDifffrom a log, and in certain situations may be able to

as logs scale up to millions of actions. Further, suchreconstruct missing log entries.

workloads would likely exhibit non-uniform file mod-
ifications; most “real-world” systems have a subset of [y
popular files that may change over time, providing us 2]
greater insight in ExDiff’s behavior. 3]
We also need to explore cases where log entries may
have inaccurate timestamps and semantic information.[4]
For example, the clock used in generating log entries
may not perfectly match the timestamps used in the
metadata. ExDiff may be able to handle this case by [5]
allowing for some “wiggle” room when creating diff
entries. An expected and reality snapshot’s timestamps[e]
that nearly match may be considered close enough to
be considered a match. 7]
Actions may continue to update metadata state asyg
the snapshot is being captured, so we need to investigate
ways to handle non-atomic snapshots. In this situation, g
a diff entry may be produced even if the log is accurate.
One approach is to add an additional timestamp tq10]
each file’s metadata when it is captured. In expectation
calculation, we can prevent actions made after metadatidil
capture from updating our expected state, thus prevent-
ing accidental diff entries from being produced. [12]
Quantitative investigation of signature detection is
also needed. We wish to explore how different work- [13]
loads and levels of information can change our ability to
accurately recognize what types of actions are missing 4
from the log. We could also examine reconstructing log
entries; certain signatures provide enough informatiornzis;
to re-create missing log entries.
16
VIlI. CONCLUSION 1ol
We have explored the problem of identifying log [17]
coverage; what is and is not being captured in a given
trace. To address this issue, we have developed ExDiff18]
a methodology that uses a combination of activity logs
and metadata snapshots to validate log coverage. Wa°
show that ExDiff can identify where a logger may

REFERENCES
ftrace. http://linux.die.net/man/1/ftrace.
strace. http://linux.die.net/man/1/strace.

ABAD, C. et al. Log correlation for intrustion detection: A
proof of concept. IPACSAC 2003

ADAMS, |. F. et al. Analysis of workload behavior in scientific
and historical long-term data repositorie&dCM TOS (8) 2
2012.

AGRAWAL, N. et al. A five-year study of file-system metadata.
In FAST 2007

ANDERSON E. et al. Hippodrome: running circles around
storage administration. IRAST 2002

ARANYA, A. et al. Tracefs: A file system to trace them all. In
FAST 2004

BARHAM, P.et al. Using Magpie for request extraction and
workload modeling. INOSDI 2004

ESTER M. et al. A density-based algorithm for discovering
clusters in large spatial databases with noiseKIDDM 1996
GIBSON, T. et al. Long-term file activity and inter-reference
patterns. INCMG 1998

HiTz, D. et al. File system design for an NFS file server
appliance. InWinter USENIX 1994

Kim, G. H.,AND SPAFFORD, E. H. The design and implemen-
tation of Tripwire: A file system integrity checker. Bomputer
and Communications Security 1994

MESNIER, M. P.et al. //[TRACE: Parallel trace replay with
approximate causal events. FAST 2007

PaTIL, Set al. I8FS: An in-kernel integrity checker and
intrusion detection file system. IbISA 2004

RICH, K., AND LEADLEY, S. Hobgoblin: A file and directory
auditor. InLISA 1991

SANTRY, D. S.et al. Deciding when to forget in the Elephant
file system. INSOSP 1999

SELTZER, M. et al. Journaling versus soft updates: Asyn-
chronous meta-data protection in file system3J8S8ENIX 2000
SNODGRASS R. T.et al. Tamper detection in audit logs. In
VLDB 2004(2004).

THERESKA, E. et al. Stardust: Tracking activity in a distributed
storage system. ISIGMETRICS 2006

