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Abstract

Purpose: While mammography has excellent sensitivity for the detection of breast lesions, its
specificity is limited. Adjunct screening with ultrasound may partially alleviate this issue but also
increases false positives, resulting in unnecessary biopsies. Our study investigated the use of
Google AutoMLVision (Mountain View, California), a commercially available machine learning
service, to both identify and characterize indeterminate breast lesions on ultrasound.

Approach: B-mode images from 253 independent cases of indeterminate breast lesions sched-
uled for core biopsy were used for model creation and validation. The performances of two sub-
models from AutoML Vision, the image classification model and object detection model, were
evaluated, while also investigating training strategies to enhance model performances. Pathology
from the patient’s biopsy was used as a reference standard.

Results: The image classification models trained under different conditions demonstrated areas
under the precision–recall curve (AUC) ranging from 0.85 to 0.96 during internal validation.
Once deployed, the model with highest internal performance demonstrated a sensitivity of
100% [95% confidence interval (CI) of 73.5% to 100%], specificity of 83.3% (CI ¼ 51.6%

to 97.9%), positive predictive value (PPV) of 85.7% (CI ¼ 62.9% to 95.5%), and negative pre-
dictive value (NPV) of 100% (CI non-evaluable) in an independent dataset. The object detection
model demonstrated lower performance internally during development (AUC ¼ 0.67) and dur-
ing prediction in the independent dataset [sensitivity ¼ 75% (CI ¼ 42.8 to 94.5), specificity ¼
80% (CI ¼ 51.9 to 95.7), PPV ¼ 75% (CI ¼ 50.8 to 90.0), and NPV ¼ 80% (CI ¼ 59.3% to
91.7%)], but was able to demonstrate the location of the lesion within the image.

Conclusions: Two models appear to be useful tools for identifying and classifying suspicious
areas on B-mode images of indeterminate breast lesions.

© 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.7.5.057002]
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1 Introduction

Breast cancer remains a primary health concern with 271,270 new cases diagnosed and more
than 42,260 deaths in 2019 in the United States alone.1 When the patient presents with meta-
stases, the five-year survival rate is only 26%.2 However, early detection along with appropriate
therapy can reduce mortality significantly.3 Screening mammography remains the best modality
for breast cancer detection with an overall sensitivity >85%. However, in women with dense
breasts, which make up more than 40% of women in the United States, the sensitivity reduces to
as low as 48%.4 While adjunct screening with ultrasound imaging improves the sensitivity for
cancer detection, the cost is reduced specificity: increased non-cancer recalls and more benign
biopsies.5

The Breast Imaging Reporting and Data System (BI-RADS®) is used by radiologists to clas-
sify breast lesions into several risk categories with different expected probabilities of malig-
nancy. The course of clinical management is based on risk categories,6 with malignancy
confirmed by biopsy. Nonetheless, even with using the BI-RADS data, interobserver and intra-
observer variability exist in classifying lesions, and over 70% of all breast biopsy results are
benign.7 Thus, a better approach to differentiate between benign and malignant lesions from
ultrasound images is needed.

The use of artificial intelligence (AI) in radiology has the potential to reduce costs, save time,
and improve diagnostic accuracy.8 Multiple studies have shown that deep learning algorithms
(one type of AI) outperform experienced radiologists in the diagnosis of breast lesions with 5%
to 13% larger area under the receiver operating characteristic (ROC) curves.9–11 However, using
deep learning algorithms requires a large amount of data (e.g., 5000 to 10,000 training images),
and training a new deep learning algorithm is both time-consuming and expensive. Several com-
mercially AI programs are available providing an opportunity to overcome these barriers. Google
AutoMLVision (Google, Mountain View, California) is a machine learning service from Google
Cloud Platform that runs deep learning algorithms online and performs image-classification and
image-recognition tasks on cloud services, reducing the need for expensive hardware. It enables
a customized model to be created quickly by leveraging transfer learning and neural architecture
search technologies, which can lead to more accurate results with less misclassifications than
other generic machine learning services.12,13 In addition, due to the transfer learning component,
which takes the advantages of lower-level features from pre-trained convolutional neural net-
works (CNN), significantly fewer images are required for algorithm training.11

Several sub-models are currently available for beta testing including an image classification
mode and an object detection model. These models may provide distinct but useful roles within
the field of radiology. The image classification model can train models to classify images (in this
example, cancer versus not cancer), whereas the object detection model can be used to detect
objects within an image and then assign a confidence score for a specific classification (in this
example, the likelihood of lesion being cancerous). Each of these sub-models performs self-
validation and self-testing during the training process and generates model performance reports
based on the training data (Fig. 1).

While this technology has been used for a variety of product management applications, its
use in radiological applications is relatively unexplored.12,13 Thus, the purpose of this study was
to evaluate the performance of both AutoMLVision’s image classification and object detection
models for the characterization of intermediate breast masses imaged with B-mode ultrasound.
Specifically, we strove to identify the performance of AutoML’s image classification and object
detection mass for classifying breast masses as cancerous or non-cancerous in a population of
suspicious masses scheduled for tissue biopsy. The influence of category balancing and image
cropping on model performance was also investigated.

2 Material and Methods

2.1 Clinical Studies

To create training datasets for the AI image classification and object detection models, ultra-
sound images were extracted from two previous clinical studies. The first study was a
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multi-center clinical trial that was approved by the Institutional Review Boards of Thomas
Jefferson University (TJU) and The University of California, San Diego (UCSD) and conducted
between January 2011 and December 2015, in which contrast-enhanced ultrasound was used to
characterize indeterminate breast masses scheduled for biopsy.14,15 The second study was
approved by the Institutional Review Boards of TJU and conducted between May 2014 and
February 2016, in which a contrast-enhanced ultrasound technique was used to predict the
response of breast cancer to neoadjuvant chemotherapy.16 All patients from both studies
provided written informed consent before participating. The imaging data for both studies
were acquired using a commercially available Logiq 9 scanner (GE Healthcare, Waukesha,
Wisconsin) equipped with a 4D10L probe, and imaging parameters were optimized on an indi-
vidual basis according to good clinical practice. There were 236 women enrolled in the first
clinical study with an average age of 52� 13 years. The average lesion cross-sectional areas
for malignant and benign lesions were 190.1� 35.7 mm2 and 124.1� 15.5 mm2, respectively.
The second clinical study enrolled 17 participants who had invasive ductal carcinomas with an
average age of 53� 10 years and an average lesion cross-sectional area of 604.6� 460.7 mm2.
In total, there were 253 cases. For this AI processing study, 242 patient cases with available
biopsy results (reference standard) were selected. Within these 242 cases, 21 cases were then
excluded by a blinded radiologist due to poor image quality resulting in 154 unique patients with
benign breast lesions and 67 unique patients with malignant breast lesions (221 in total).

2.2 Data Preprocessing

The B-mode ultrasound data were originally stored in DICOM format. A radiologist (S.N.) with
more than 10 years of experience in breast ultrasound who was blinded to pathology results
selected representative views from each cine loop for the 221 cases. The DICOM data were
viewed with RadiAnt DICOM Viewer (4.6.9, Medixant, Poznan, Poland) software and selected
images were stored into JPG format to meet the input format requirements for Google AutoML
Vision. Images were further cropped using Matlab (2016a, The Mathworks Inc., Natick,
Massachusetts) to generate three different groups of training data: annotated (A; with black
and white scale, depth scale, GE label, and ultrasound image), de-annotated (deA; scales and
GE label were removed, ultrasound images only), and lesion only (LO; lesions were extracted
from the ultrasound images). Example images for each three training groups are shown in
Fig. 2.

Based on model recommendations, 26 out of the 221 cases (19 malignant and 7 benign cases
corresponding to 11% of the patients) were reserved to form an independent prediction dataset to
evaluate the models’ performance. To augment our prediction dataset, a second radiologist
(E.Q.) with over 10 years of experience in breast ultrasound selected 5 to 7 image from each

Fig. 1 (a) A model performance report is generated after each training process and (b) parameter
descriptions and their equivalent ROC terminologies.
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of the 26 test cases. This resulted in a final prediction dataset of 154 images for prediction testing.
The same prediction dataset was used to evaluate all models from both image classification and
object detection. Additionally, findings were grouped on a lesion by lesion basis to evaluate
model intra-reader agreement (i.e., the ability to predict malignancy in separate images from
the same case).

2.3 Image Classification Model Training

The Google AutoML Vision Image Classification Model was first investigated for its ability to
differentiate benign (non-cancerous) from malignant (cancerous) breast lesions within the pop-
ulation of suspicious masses referred for biopsy. This model requires input training data of at
least 100 images from each outcome group for training. However, as there were only 48 unique
patients with malignant lesions remaining in the overall dataset after excluding the 19 malignant
cases that were used for independent testing, a radiologist (S.N.) selected at least two images
from the malignant lesion dataset. Consequently, the final training data for the image classifi-
cation model consisted of 147 images of benign breast lesions and 117 images of malignant
lesions (264 images in total).

The training data for the model were slightly unbalanced (UB) (with 147 in the benign group
and 117 in the malignant group), which may impact the performance of the model.17 Thus, 30
random benign images were removed from the data set to compare the impact of UB training
(147 benign lesion images versus 117 images of malignant lesions) relative to balanced (B)
training (117 benign lesion images versus 117 malignant lesion images) on the performance
of the model. Therefore, in addition to three different training groups (A, deA, and LO; Fig. 2),
six customized models were trained. These groups are summarized in Table 1.

2.4 Object Detection Model Training

The Google AutoMLVision Object Detection Model was investigated to determine the ability of
this algorithm to first identify the suspicious breast mass, then subsequently assign a risk score
on the likelihood of the image containing breast cancer. To train the object detection model, the
same training data (147 benign and 117 malignant breast lesion images) and the same prediction
images (154 breast images) described above were utilized. Data were first uploaded into Google
Cloud Storage and then an Excel file that contained pathways for importing each image was
generated from Python. The object detection model processes training image data within the
model using bounding boxes and labels to select objects that were important and intended
to be detected inside an image. Therefore, only the full annotated images were imported into
the model. Following the upload, the model was trained by a blinded radiologist to identify the
scale bars and manufacturer labels (as an algorithm validation check) and either malignant or

Fig. 2 Example of the varying degrees of image cropping showing (a) the annotated (A) image
containing the black and white scale bar, depth scale, GE label, and ultrasound image; (b) the
deAnnotated image (deA), in which the scales and GE label were removed leaving only the full
ultrasound image; and (c) the lesion only (LO) image consisting of only the cropped breast mass.
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benign masses within the three cropping approaches described above. An example of this train-
ing is provided in Fig. 3.

2.5 Evaluation of Model Performance

The performance of each model was evaluated using results from the participant’s tissue biopsy
as a reference standard. Performance reporting was separated by internal performance (self-
reported by the model during training) and external prediction within the dataset reserved for
testing. For internal validation, the areas under the precision–recall curve (AUC), sensitivity,
specificity, negative predictive value (NPV), and positive predictive value (PPV) were all

Fig. 3 Example figure showing image uploading and object identification training. Annotated
images were imported into the object detection model during training and image labeling per-
formed within the model. Labels were then manually added as shown on the left side by placing
rectangle bounding boxes to on the desired objects as shown on the right side.

Table 1 Summary of training data sets used for unbalanced (UB) and balanced
(B) conditions. A stands for annotated images, deA stands for de-annotated
images, and LO stands for lesion only images.

Customized model
Training data information (number of benign lesion images,

number of malignant lesion images, and image group)

UB training

A_UB 147 Benign, 117 malignant, and A

deA_UB 147 Benign, 117 malignant, and deA

LO_UB 147 Benign, 117 malignant, and LO

B training

A_B 117 Benign, 117 malignant, and A

deA_B 117 Benign, 117 malignant, and deA

LO_B 117 Benign, 117 malignant, and LO
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reported with 95% confidence intervals (CIs). Model agreement was calculated for each of the
six image classification models and the object detection model by quantifying the rate of agree-
ment among images taken from the same lesion for each of the 26 external prediction cases.
All statistical analysis was performed in GraphPad Prism Version 8.0 (San Diego, California)
with comparisons across multiple groups performed using a one-way ANOVA and direct com-
parisons between individual groups determined using a Student’s t-test. Statistical significance
was determined using p < 0.05.

3 Results

3.1 Image Classification Model Performance

Following training of the image classification model, internal performance reports were gener-
ated for each of the training conditions summarized in Table 1. Model performance reports from
these six conditions are shown in Table 2. For external validation, the model was deployed and
the 154 independent images analyzed. Figure 4 shows one prediction example from a model

Table 2 Internal model performance reports obtained during model training from the six custom-
ized image classification models. AUC, area under the precision–recall curve; PPV, positive pre-
dictive value; NPV, negative predictive value; and 95% CI, 95% confidence interval.

Customized
models AUC Sensitivity (%) 95% CI Specificity (%) 95% CI PPV (%) 95% CI NPV (%) 95% CI

A_UB 0.871 63.6 (30.8 to 89.1) 83.3 (51.6 to 97.9) 77.8 (47.8 to 93) 71.5 (52.4 to 85.1)

A_B 0.882 72.7 (39 to 94) 80.0 (51.9 to 95.7) 72.7 (47.6 to 88.7) 80 (59.6 to 91.6)

deA_UB 0.955 100 (73.5 to 100) 86.7 (59.5 to 98.3) 85.7 (62.2 to 95.6) 100 non-evaluablea

deA_B 0.966 100.0 (73.5 to 100) 83.3 (51.6 to 97.9) 85.7 (62.9 to 95.5) 100 non-evaluablea

LO_UB 0.911 80 (44.4 to 97.5) 76.5 (50.1 to 93.2) 66.6 (44.5 to 83.2) 86.7 (64.7 to 98.9)

LO_B 0.853 81.8 (48.2 to 97.7) 76.9 (46.2 to 94.7) 75.0 (51.7 to 89.4) 83.4 (58.0 to 94.8)

aNPV non-evaluable due to lack of false-negative cases.

Fig. 4 Example result from the image classification model during the post-training prediction
phase of a benign mass. From the model’s perspective, it had 83.2% certainty that the lesion was
benign and 16.8% certainty that the lesion was malignant.
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providing confidence scores for different labels. To draw decisions from the prediction results, a
confidence score of 0.72 was utilized. This cutoff criterion was initially optimized by the model
software based on optimization of the ROC curve during training and adjusted to minimize the
number of cases in which a decision could not be made while also mimicking the prevalence of
malignancy in the prediction dataset. The decision for the prediction (either malignant or benign)
relied on the label that had a confidence score >0.72. If a prediction generated a confidence
scores lower than 0.72 or if it generated both malignant and benign labels higher than 0.72,
the prediction was considered as a not-applicable (N/A) case. The sensitivity, specificity, PPV,
NPV, and number of N/A cases for the 154 prediction images at a confidence score threshold of
0.72 are shown in Table 3.

3.2 Object Detection Model Performance

Annotated images from the training dataset were uploaded into the Google Cloud platform and
the object detection model trained as described above. The internal performance report during
training is given in Table 4.

Following training, the 154 prediction images were uploaded into the model and the pre-
dictions showed three distinct behaviors. In the first behavior, the model detected the lesions
as well as the area where the lesion was located using the bounding boxes and provided con-
fidence scores [Figs. 5(a) and 5(b)]. In the second behavior, the model detected no distinct lesion
but predicted either benign or malignant areas within the image [Fig. 5(c)]. In the third behavior,
the model detected lesions but assigned both malignant and benign labels to the lesions with
different confidence scores [Fig. 5(d)]. The performance metrics of the object detection model
within the independent prediction dataset are given in Table 5.

3.3 Rate of Prediction Agreement

The presence of multiple images and predictions (5 to 7) from each independent case (n ¼ 26)
allowed for quantification of intra-reader agreement of each model. This data are summarized in
Table 6. All models demonstrated a reasonably high rate of agreement, with no statistical differ-
ence observed across models (p ¼ 0.8).

Table 3 The calculated sensitivity, specificity, PPV, and NPV for all customized image classi-
fication models and number of N/A cases in the prediction (post-training) dataset. 95% CI,
95% confidence interval.

Models Sensitivity(%) 95% CI Specificity(%) 95% CI PPV(%) 95% CI NPV(%) 95% CI # of N/A

A_UB 75.2 (66.4 to 82.7) 51.5 (33.5 to 69.2) 80.8 (74.4 to 85.8) 43.6 (32.7 to 54.8) 4

A_B 70.4 (61.2 to 78.6) 63.9 (46.2 to 79.2) 84.1 (77.1 to 89.2) 44.2 (35.5 to 53.7) 3

deA_UB 83.1 (75 to 89.3) 36.1 (20.8 to 53.8) 77.9 (73.1 to 82.0) 44.1 (30.4 to 58.7) 0

deA_B 81.9 (73.7 to 88.4) 36.1 (20.8 to 53.8) 77.6 (72.8 to 81.8) 42.5 (29.2 to 56.9) 2

LO_UB 78.9 (70.3 to 86.0) 76.5 (58.8 to 89.3) 90.1 (83.1 to 94.4) 57.3 (47.4 to 66.7) 6

LO_B 87.8 (80.4 to 93.2) 12.9 (3.63 to 29.8) 73.2 (70.1 to 76.0) 28.2 (12.2 to 52.5) 8

Table 4 Internal performance report from the object detection model during training. AUC, area
under the precision–recall curve; PPV, positive predictive value; NPV, negative predictive value;
95% CI, 95% confidence interval.

Score
threshold AUC Sensitivity (%) 95% CI Specificity (%) 95% CI PPV (%) 95% CI NPV (%) 95% CI

0.47 0.667 75.0 (42.8 to 94.5) 80.0 (51.9 to 95.7) 75.0 (50.8 to 90.0) 80.0 (59.3 to 91.7)
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Table 5 The calculated sensitivity, specificity, PPV, and NPV for the object detection model in
the prediction (post-training) dataset. 95% CI, 95% confidence interval.

Score
threshold Sensitivity (%) 95% CI Specificity (%) 95% CI PPV (%) 95% CI NPV (%) 95% CI # of N/A

0.72 78.8 (70.3 to 85.8) 69.4 (51.9 to 83.7) 87.5 (80.9-92.0) 54.8 (44.6 to 64.6) 0

Table 6 Average percentage of model prediction agree-
ment with standard deviation across the 26 cases for all
models.

Models Prediction agreement

OBJ 88� 18.2%

A_B 82� 18.1%

A_UB 87� 16.7%

deA_B 88� 13%

deA_UB 90� 13%

LO_B 86� 22%

LO_UB 89� 16.5%

Fig. 5 (a) Example case where the model detected both lesion and suspicious areas in the image
with confidence scores of 0.97, 0.98, and 0.9. The position of the malignant lesion was marked by
the green color bounding box drawn by the model. (b) Example case where the model detected
both lesion and suspicious areas in the image with confidence scores of 0.96, 0.98, and 0.8 for the
lesion and areas to be benign. The position of the benign lesion was marked by the yellow bound-
ing box drawn by the model. (c) Example case where the model detected no lesions but malignant
areas with confidence scores of 0.98 and 0.87. (d) The model detected the lesion but assigned
both malignant and benign labels. The model provided a confidence score of 0.55 for the lesion to
be benign and a confidence score of 0.53 for the lesion to be malignant. The model also indicated
malignant areas with confidence score of 0.82 and 0.57.
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4 Discussion

Ultrasound is a nonionizing, readily available, low-cost, and real-time imaging modality that has
shown good diagnostic performance in breast cancer detection and diagnosis. In recent years,
radiologists have explored the potential of AI technology to improve clinical practice, including
the accuracy of ultrasound for breast cancer diagnosis.9–11 Google AutoML Vision, released in
2018, may aid in the characterization of indeterminate breast masses by building of customized
image-classification and image-recognition models on cloud services. Thus, this study explored
the potential of AutoMLVision to classify and evaluate breast ultrasound images, using its image
classification and object detection model.

Within the image classification model, six different training data setups were investigated.
Performance during internal testing from these methods was similar with AUC ranging from
0.85 to 0.96, indicating the influence of label balancing and image cropping were negligible
in this dataset. The object detection model had an AUC of 0.67 during internal validation.
While this performance is less encouraging than the classification model, the object detection
could locate the position of lesion in the image. It is anticipated that this will enable radiologist
adoption by providing a clear rationale for diagnosis while also streamlining workflow.

Comparing the performance of LO_UB with prior studies on classifying B-mode ultrasound
breast mass using deep learning algorithms, the 91.1% AUC was similar to the 89.6% AUC from
Cheng et al.18 and 93.6% from Byra et al.10 but lower than the 96% from Han et al.19or the 99%
reported by Yap et al.20 Importantly, however, studies that have reported exceptional overall
AUCs have employed datasets consisting of large numbers of lesions that were clearly benign
(BI − RADS < 3) or highly likely to be malignant (BI-RADS 5).19,20 Data from our study
primarily consisted of indeterminate breast masses scheduled for biopsy in which lower perfor-
mance is expected, but this scenario more closely resembles the clinical need for improved
diagnosis. Therefore, we believe the image classification model provides acceptable diagnostic
performance under the appropriate training setups.

While encouraging, several limitations exist and should be addressed in the future. Within the
object detection model, the input regions of interest are required to be in rectangular shape. The
result of this is that all LO images will contain surrounding tissue. Based on the size and shape of
the lesion, the amount of surrounding tissues could vary, which may introduce unwanted vari-
ability. Thus, potential improvement maybe achieved by allowing customize-shaped input
images for the model or automatic segmentation prior to image upload. Meanwhile, more train-
ing images could be added to increase the model performance as only 264 training images were
used in study. Finally, while the AutoML program stresses ease of use and off-the-shelf capa-
bilities, its limited flexibility also results in limitations compared to traditional AI platforms.21,22

For example, traditional methods of sample size augmentation and testing such as leave-one-out
cross-validation methods cannot be used in applications where multiple images/lesion are gen-
erated without compromising independence. Additionally, once the model is deployed, it pro-
vides a binary decision on images used for prediction, which prohibits traditional performance
evaluations, such as areas under the ROC and precision–recall curves. Despite these limitations,
results to date are encouraging and the platform should be further explored moving forward.

5 Conclusion

The Google AutoMLVision platform showed an acceptable performance to classify breast ultra-
sound images under appropriate training setups and the use of both the image classification and
object detection models should be further explored. The platform also showed cost-effective
advantage as all customized models were run on cloud services minimizing local hardware
requirements. Our results indicated the platform could potentially be a useful tool in assisting
radiologists in the characterization of indeterminate breast masses identified during screening.
Ultimately, this approach could reduce the number of unnecessary biopsies.
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