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Psychophysical and neurophysiological investigations from three approaches to understanding 

human speech processing 
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Jonathan Henry Venezia 
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Professor Gregory Hickok, Chair 
 
 

 

 Human speech processing (perception and in some cases production) is approached from 

three levels.  At the top level, I investigate the role of the motor system in top-down processing 

and decision-making during speech perception.  At the middle level, I investigate the 

mechanisms underlying integration of auditory and visual speech for both perception and 

production of speech.  At the bottom level, I investigate the organized representation of temporal 

modulations in sound, with an eye toward structure that may provide insight into how speech 

sound representations are built.  The primary investigative techniques throughout are auditory 

and visual psychophysics and functional MRI (sometimes combined).  The main findings of the 

investigations can be summarized briefly as follows.  First, the motor system does not participate 

meaningfully in speech perception.  Rather, speech motor activity is modulated by taxing 

decision-level mechanisms in laboratory speech tasks.  Second, discrete visual features appear to 

be extracted from visual speech signals and integrated with auditory speech representations in 

the superior temporal sulcus (STS).  Results are equivocal with respect to the level of processing 

at which this occurs, although speculation is provided.  Also, there are dedicated sensorimotor 
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integration networks for visual speech.  Third, slow temporal modulations in sound are 

represented in an auditory-cortical place code that magnifies the expression of modulations 

within the range that is most common in natural speech (4-16 Hz).



1 
 

INTRODUCTION 

 The chapters that follow contain a series of investigations into the computational and 

neural mechanisms underlying perception and production of speech.  The typical motivation for 

studying these mechanisms is that speech circuits are presumed to be highly specialized 

components of the human language system (Lenneberg, Chomsky, & Marx, 1967).  Language 

itself is of interest to anyone who wishes to understand the human mind and brain.  Namely, 

language is a uniquely human capacity – it allows the user of any specific language to produce 

and understand an unbounded number of expressions, whereas other organisms are simply not 

equipped with this level of flexibility (Petitto, 2005).   However, although speech and language 

are straightforwardly connected (speech is fundamentally involved in the externalization of 

language for communication), the nature of this connection is not clear.  Speech is not necessary 

for normally-functioning language, yet speech systems appear to be embedded within neural 

circuitry that is specialized for linguistic processing (Hickok, Bellugi, & Klima, 1998). 

 At this point, it may be useful to clarify exactly what is meant by ‘language.’  From the 

perspective of cognitive science, language is an internal computational system that operates 

somewhere between transduction of external sensory signals (or production of actions) and 

construction of (or operation over) internal representations – namely, thoughts, ideas, beliefs, or 

concepts.  This definition, broad and somewhat vague as it is, contains a strong implication that 

there exists some degree of modularity in cognitive systems (Fodor, 1983) and the neural 

machinery unpinning them (Gall, 1835), a notion that I accept as a natural fact about the 

organization of the mind.  Having accepted this, it perhaps follows straightforwardly that the 

language system evolved as a means of externalizing thoughts, ideas, etc., for the purpose of 

communication (including, of course, the reverse process – i.e., mapping external communicative 
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messages back to internal representations).  Clearly language enables such functions.  To give an 

informal example, when I attend an academic talk I essentially extract the main idea of the talk 

from the speaker’s words, represent it internally, and I can then report it back (perhaps to other 

colleagues) in my own words.  This is not simply a matter of capturing and regenerating the 

message verbatim.  Rather, the message is transformed – the particular sequence of sounds is 

transduced, parsed, categorized, and ultimately abstracted to an efficient internal code (linguistic 

and conceptual structure are imposed); the message can then be recapitulated by applying the 

reverse transformation. 

 However, it need not be the case that language evolved with communication as its key 

function.  According to Chomsky and colleagues, the Faculty of Language (Hauser, Chomsky, & 

Fitch, 2002) amounts in the narrowest sense to a specialized combinatorial operation for merging 

two elements (roughly word-like at the lowest level)  into an unordered set containing the two 

original elements in unmodified form.  Further, while physical constraints on the sensorimotor 

systems that interface with the language faculty impose a sequential linear order on sensorimotor 

computations (e.g., the words composing a sentence must be pronounced one after the other 

rather than simultaneously), order does not enter into computations that construct internal 

conceptual representations (Chomsky, 2007).  As such, language is said to function primarily as 

an ‘instrument of thought’ (R. Berwick & Chomsky, 2011), i.e., linguistic computations are 

naturally structured to support internal mental operations., while externalization of language for 

communication is merely an ancillary function (R. C. Berwick, Friederici, Chomsky, & Bolhuis, 

2013).   

 What is the significance of all this?  I have spent the preceding paragraphs fleshing out a 

definition of language and briefly exploring its function in order to emphasize the (potential) 
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distinction between language (in the narrow sense) and the sensorimotor systems that support the 

externalization of language for communication.  This is because, as mentioned above, I study 

language at the sensorimotor interface (speech, in my case).  For many who study language at 

this level, there is (at least) an implicit belief that sensorimotor speech systems are no less a part 

of language than the highly specialized computations described by Chomsky.  This belief has 

merit.  As mentioned above, sensorimotor systems impose real computational constraints on the 

use of language for communication.  Following from this, we might learn something about 

language as a whole by first describing these constraints – including how and why they are 

imposed to solve computational problems – and later understanding how they govern interactions 

between external and internal linguistic representations at the sensorimotor interface.  Indeed, a 

great deal of what we know about the relationship between language and the brain has been 

inferred from language dysfunction caused by damage to sensorimotor speech systems 

(Goodglass, 1993).  Moreover, the first and perhaps most influential cognitive-neuroscientific 

model of language essentially describes a sensorimotor speech circuit specialized for interfacing 

with lexical-conceptual systems (Wernicke, 1969).  Recent incarnations of this model suggest 

that sensorimotor speech networks themselves have an intrinsic organization that is specialized 

to accommodate different linguistic levels of processing (Hickok, 2014). 

 I am sympathetic to the notion that, to state the program specifically, understanding 

sensorimotor speech circuits will contribute to a comprehensive understanding of language, and, 

to restate the program more broadly, that we can understand elements of higher-level cognitive 

systems by understanding their inputs and outputs.  However, as I asserted previously, cognitive 

systems are modular, so at some point this program will run out of room – specifically, if we 

assume that cognitive systems can be individuated on the basis of intrinsic specializations, it 
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would not make sense to begin to study language, for instance, by studying the structure of the 

inner ear, even though inner ear functions clearly interact with the language system via auditory 

speech.  A modular system is perhaps best understood using an approach in which the goal is to 

understand the fundamental structure and principles of the system in its own right.  How, then, 

should one choose a level at which to study language (or the brain, or cognition generally for that 

matter)?  Quite honestly, I am not strongly motivated to draw any hard lines when it comes to 

answering this particular question.  Whether my investigations on speech perception, for 

example, will ultimately reveal something about the organization of language or the organization 

of auditory perception is rather inconsequential to me.  Each system belongs equally to the 

matrix we call cognition, and to understand either of these systems, so distinguished, would be 

significant. 

 At the end of the day, I conceive of speech perception and production as processes 

embedded within a ‘sensorimotor speech’ system, specialized in its own right (at least at the 

interface with linguistic representations) (Hickok & Poeppel, 2007) and more or less part of the 

language system depending on the particular definition chosen.  At the very least, understanding 

the sensorimotor speech system should lead to tangible, real-world benefits in terms of diagnosis 

and treatment of clinical disorders ranging from peripheral auditory dysfunction (Frisina & 

Frisina, 1997) to high-level language disorders (Goodglass, 1993).  This practical thrust along 

with a loose faith in the bottom-up approach to studying language (i.e., through speech) and a 

strong conviction that I can study the sensorimotor speech system in its own right serve as the 

primary motivations for my research.  Having established this, I will now move on to describe 

my approach to studying sensorimotor speech. 
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 Essentially, I have taken a three-pronged approach to understanding the sensorimotor 

speech system.  There is an objective associated with each “prong,” described as follows: (1) 

clarify what speech perception is by establishing what speech perception is not; (2) establish how 

speech systems interface with signals from multiple sensory modalities; (3) establish the 

organization of central representations of auditory signals.  Chapters 1 and 2 focus on objective 

(1), and in particular attempt to distinguish computations related to speech perception from 

computations related to speech production and decision-making.  Chapters 3, 4, and 5 focus on 

objective (2) in the context of audiovisual speech – namely, these chapters identify some 

computational properties for integration of auditory and visual speech, describe where precisely 

in the brain this occurs, and determine whether and how visual speech signals interface with 

speech production systems.  Chapter 6 works toward objective (3) by mapping the intrinsic 

organization of cortical auditory systems, including evaluation of potential specializations that 

may benefit speech perception.  The included studies are a combination of literature review 

(Ch.1) and original investigations using psychophysical (Ch. 2 & 3) and neuroimaging (Ch. 2, 4, 

5, 6) techniques.  Each chapter is itself a standalone manuscript in publication format.  Chs. 1 

and 2 are published1, and the remaining chapters are prepared for submission.  I will provide a 

brief primer at the beginning of each chapter that links the chapter back to the overall approach, 

but only broadly.  In truth, the individual studies are not strongly related to each other at a 

detailed level (at least not across objectives), but I have chosen to include each investigation 

because they unite under the broad objective of understanding the sensorimotor speech system. 

 To conclude, I will briefly expand upon the motivation behind each objective in the 

three-pronged approach described immediately above.  Regarding objective (1), there has been 
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considerable debate over the form of the so-called ‘objects of speech perception’ (Diehl, Lotto, 

& Holt, 2004).  One set of theories asserts that articulatory gestures are the objects of speech 

perception (Fowler, 1986; Liberman & Mattingly, 1985; Liberman & Whalen, 2000), while 

another asserts that the objects of speech perception are fundamentally auditory in nature (Diehl 

& Kluender, 1989; Massaro, 1987; Stevens, 1989).  While gesture-based theories disagree over 

whether a perceiver’s own speech motor system is recruited in speech perception (Fowler, 1996), 

and even over whether speech perception requires any deep understanding of gestural sources 

(Fowler & Magnuson, 2012), these theories are frequently understood in terms of the dominant 

Motor Theory of Speech Perception (MT).  Under MT, speech perception proceeds by mapping 

incoming acoustic signals to internal motor representations via a vocal-tract synthesizer 

(Liberman & Mattingly, 1985).  When I began my own investigations in 2008, MT, which had 

previously been debunked in the eyes of many speech scientists (Pardo & Remez, 2006), was 

experiencing a resurgence due in part to the discovery of mirror neurons (Fadiga & Craighero, 

2006; Rizzolatti & Craighero, 2004).  In particular, while certain claims of MT appeared to be 

untestable using behavioral techniques (MacNeilage, 1991), modern neuroimaging provided at 

least circumstantial evidence for MT by demonstrating that brain regions involved in speech 

production are also active during perception of speech (Pulvermuller et al., 2006; Watkins, 

Strafella, & Paus, 2003; Wilson, Saygin, Sereno, & Iacoboni, 2004).  Chapter 1 examines these 

results in detail and establishes an alternative viewpoint – namely, perceiving speech activates 

the motor system because sensory speech representations are used to guide speech production.  

Chapter 2 is original work demonstrating that the speech motor system may be involved in top 

down components of speech perception engaged during typical laboratory tasks. 



7 
 

 Regarding objective (2), interest in multimodal (audiovisual) speech perception can be 

related back to the debate over the objects of speech perception.  First, let me establish that there 

is clear evidence that auditory and visual speech signals interact in speech perception (McGurk 

& MacDonald, 1976; Ross, Saint-Amour, Leavitt, Javitt, & Foxe, 2007; Sumby & Pollack, 

1954).  Given this fact, it would be informative to know precisely how these interactions occur 

and at what level of processing.  If the objects of speech perception are gestural, then the level of 

interaction between visual and auditory speech is straightforward – gestural information present 

in the visual signal (in the form of observable actions) is combined with gestural information 

recovered from the auditory signal.  If the objects of speech perception are auditory (the position 

I support), then the nature of the interaction between visual and auditory speech is less clear.  

While some information such as dynamic temporal patterns may be isomorphic across visual and 

auditory signals (Jiang, Auer, Alwan, Keating, & Bernstein, 2007), other complementary cues 

must somehow be extracted from the visual speech and combined with auditory speech 

representations (Summerfield, 1987).  The nature of these visual speech cues, including the 

information they carry and the level at which they interact with auditory speech cues, should 

provide general insight into the organization of speech processing.  Chapter 3 develops a new 

technique for identifying the visual speech cues extracted during perception, while Ch. 4 

examines where in the brain these cues are extracted and at which stage in the multisensory 

speech processing stream.  Chapter 5 examines whether visual speech information is integrated 

with the speech motor system during production and, if so, whether the circuits involved mirror 

auditory-motor speech circuits. 

 Finally, objective (3) is based on the assumption that, if speech perception is carried out 

by general auditory mechanisms (Holt & Lotto, 2008), there should be a mechanism by which 
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complex speech objects are constructed out of lower-level auditory features, similar to 

hierarchical object processing in vision (Riesenhuber & Poggio, 1999).  Recent evidence from 

neuroimaging suggests that visual cortical areas are organized into clusters of visual field maps, 

which may help to provide a common reference frame between nodes in the visual processing 

hierarchy (Brewer & Barton, 2012).  I have recently been involve in research demonstrating that 

auditory cortical areas are also organized into clusters of auditory field maps (Barton, Venezia, 

Saberi, Hickok, & Brewer, 2012).  Chapter 6 examines the detailed organization of these 

auditory field maps with respect to low-level temporal auditory features that may be crucial 

extraction of speech objects (Poeppel, 2003). 
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CHAPTER 1 

 

Primer 

 As mentioned in the Introduction, there is a long-standing debate in speech science 

concerning the so-called ‘objects of speech perception.’  One camp holds that the objects of 

speech perception are articulatory gestures, while another camp holds that the objects of speech 

perception are fundamentally auditory.  Of the gestural accounts, The Direct Realist Theory 

(DRT) asserts that articulatory gestures produce specifiers or invariants in the acoustic signal that 

allow gestures to be perceived directly from the speech signal (Fowler, 1994).  This seems to 

render the DRT essentially an auditory theory.  The most influential gestural account, the Motor 

Theory of Speech Perception (MT) (Liberman & Mattingly, 1985), asserts that gestures must be 

recovered from the acoustic signal using the listener’s own motor system.  However, MT has 

failed, throughout its various iterations, to account for well-known neuropsychological evidence 

demonstrating that speech perception is unaffected by damage to the speech motor system (see 

below).  Despite this, gestural theories (MT in particular) have seen a recent resurgence in 

popularity thanks to the recent discovery of mirror neurons (among other factors reviewed 

below).  In short, gestural theories have become a nuisance to serious (auditory-based) research 

programs that aim to understand speech perception.  To return to the objectives listed in the main 

Introduction, the current chapter aims to establish definitively what speech perception is not.  In 

short, speech perception is not perception of articulatory gestures. 
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Mirror neurons, the motor system and language: from the motor theory to 

embodied cognition and beyond 

Jonathan H. Venezia and Gregory Hickok 

 

Introduction – The Motor Theory of Speech Perception 

 A major problem in speech perception research is the lack of invariance in the relation 

between acoustic patterns and the speech sound percepts they generate; that is, the same 

phoneme may have a very different acoustic pattern in one context compared to another 

(Liberman, Delattre, & Cooper, 1952; Liberman, Delattre, Cooper, & Gestman, 1954).  This 

results from coarticulation of speech gestures: the vocal tract gestures for successive speech 

sounds overlap temporally (Browman & Goldstein, 1986).  Liberman (1957) noticed, however, 

that the gestures that produced a given phonemic percept were always similar even if the 

resulting acoustic pattern wasn’t.  In other words, perception tracks articulation.  This 

observation lead to the development of the motor theory of speech perception (Liberman, 1957; 

Liberman, Cooper, Shankweiler, and Studdert-Kennedy, 1967; Liberman & Mattingly, 1985).  

There are three central tenets of the classic motor theory spanning its several iterations (outlined 

by Galantucci, Fowler, & Turvey, 2006): (1) that speech processing is special, (2) that perceiving 

speech is perceiving vocal tract gestures, and (3) that speech perception involves access to the 

motor system.  According to the most recent version of the motor theory, we perceive phonetic 
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segments in terms of motor commands in the brain that control speech production (Liberman & 

Mattingly, 1985). 

In the decades following its introduction, intensive investigation of the major tenets of the 

motor theory led to empirical challenges and the theory fell out of favor among speech scientists.  

(Thorough reviews including summaries of the arguments for and against the motor theory can 

be found elsewhere in the literature–see Galantucci et al., 2006; Massaro & Chen, 2008; Lotto, 

Hickok, & Holt, 2009).  However, the discovery of mirror neurons has thrust the motor theory 

once again to the forefront of the discussion on the neural implementation of speech perception.  

Therefore, our focus will be on mirror neurons and the studies they have inspired, and more 

specifically on the contribution of these studies to the current understanding of speech 

comprehension.  Such inspiration is welcome as, indeed, descriptions of the neural computations 

underlying speech comprehension are often ambiguous and sorely underspecified.  Nevertheless, 

we will show that human studies stemming from the mirror neuron literature have done little to 

resolve the problems in speech comprehension research, particularly within the framework of the 

motor theory of speech perception.  

From here, we will review the proposed function of mirror neurons and their possible role 

in language processing. This will lead us to examine the motor system’s role in speech 

comprehension, along with the contribution of recent evidence to a motor-based interpretation of 

speech perception.  Such an interpretation stands in contrast to alternative views, which focus 

more heavily on the role of sensory representations in speech recognition.  For example, the 

fuzzy logical model of speech perception (Massaro, 1987; Massaro, 1998) describes speech 

perception as a feed-forward process of pattern recognition where multiple sources of 

information (e.g., auditory, visual, tactile) influence speech perception directly – signals from 
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bottom-up perceptual processes are evaluated and integrated to provide an overall degree of 

support for possible speech alternatives, and feedback after perception can be used to tune the 

prototypical values used by the evaluation process.  The dual stream model of speech perception 

(Hickok & Poeppel, 2000/2004/2007) postulates the existence of a dorsal processing stream that 

maps acoustic speech information onto motor speech representations to guide speech production 

(see discussion below).  We will argue that tight sensory-motor coupling – the most common 

observation in research that seeks to link the motor system with speech perception – is consistent 

with these “sensory first” theories of speech comprehension, and that such theories provide the 

best explanation of evidence concerning the role of the motor system in speech comprehension. 

 

Mirror Neurons 

The discovery of mirror neurons in the monkey frontal cortex has lead to renewed interest 

in the motor theory of speech perception and indeed has been taken as evidence in support of the 

model (di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Rizzolatti & Arbib, 1998; 

Rizzolatti & Craighero, 2004; Iacoboni, 2008).  In the following sections, we discuss the 

proposed function of mirror neurons, their response properties, and a potential role for the human 

mirror system in action understanding. 

 

The Discovery of Mirror Neurons 

 Mirror neurons were discovered during single-cell recording from macaque monkey 

(macaca nemestrina) area F5 in the inferior prefrontal cortex (di Pellegrino et al., 1992).  
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Previous studies in area F5 revealed sub-populations of cells with sensory, motor, and sensory-

motor properties – most cells in the region respond during execution of motor acts such as 

grasping, holding, and tearing, and a fraction of these also respond to passive somatosensory 

(~40%) or visual (~17%) stimulation in the absence of action (Rizzolatti et al., 1988).  The key 

finding in seminal work on mirror neurons was that a number of the cells responsive during both 

sensory stimulation and motor production were congruent with respect to object-directed action; 

that is, these cells respond to production and observation of the same action (e.g., when the 

monkey grasps a raisin from a tray or watches another individual grasp a raisin from the same 

tray; see Figure 1.1).  Such congruency is the defining aspect of mirror neurons, and the property 

for which they are named.  Mirror neurons are often cited as playing a role in action 

understanding (e.g., Gallese et al., 1996, Rizzolatti & Craighero, 2004), likely due to the 

aforementioned congruity in sensory and motor activation for the same action.  Interestingly, 

canonical (non-mirror) F5 neurons, which are active during action production and perception of 

objects, are not typically implicated in object identification or understanding, but rather in 

visuomotor transformation for sensory access to motor acts (Nelissen, Luppino, Vanduffel, 

Rizzolatti, & Orban, 2005).  
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Figure 1.1. An example of a single unit selectively discharging to observation of the experimenter grasping an object (a) 
and the monkey grasping the same object (b). Arrowheads indicate the approximate onset of the grasping motion (from di 
Pellegrino et al. 1992). 

 

Properties of Mirror Neurons 

Mirror neurons do not respond to visual stimulation other than that generated by 

observation of goal-directed action, and do not exhibit movement preparation activity: they 

discharge when the monkey observes an action, stop firing when the action terminates, and 

remain quiet even if the object is moved toward the monkey, firing again only when the monkey 

initiates its own action (Gallese et al., 1996).  This is an important fact as this property 

distinguishes mirror neurons from “set-related” neurons in monkey area 6 that discharge before 

movement onset (Weinrich, Wise, & Mauritz, 1984; Wise & Mauritz, 1985).  As important 

controls for the possibility that “mirror activity” reflected some form of covert movement, 

Gallese, Fadiga, Fogassi, and Rizzolatti (1996) recorded from the hand area of primary motor 
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cortex (F1 or M1), and recorded muscle activity (via electromyography or EMG) from several 

hand and mouth muscles during action observation.  No M1 cells fired, and no EMG activity was 

elicited in response to action observation.  Mirror neurons have subsequently been discovered in 

the rostral part of the inferior parietal cortex (Gallese, Fogassi, Fadiga & Rizzolatti, 2002) and, 

contrary to initial studies, in area M1 (Tkach, Reimer, & Hatsopoulos, 2007).  Critical to the 

discussion of mirror neurons in language processing is the observation that monkey area F5 is 

considered by some to be the homolog of Broca’s region in humans (Nishitani, Martin, 

Schürmann, Amunts & Hari, 2005), and that auditory mirror neurons – neurons that respond to 

producing an action and hearing the sound associated with that action – have been discovered in 

this area (Kohler et al., 2002). 

 Though work with monkeys reveals no direct evidence concerning the role of mirror 

neurons in action understanding (Hickok, 2009), there has been great interest in probing for a 

human analog to mirror neurons that might serve such a function.  Several studies have identified 

mirror-like responses in the human central nervous system (e.g., Fadiga, Fogassi, Pavesi, & 

Rizzolatti, 1995; Iacoboni et al., 1999), and subsequent studies have attempted to establish a 

more direct connection between motor systems and action processing (Urgesi, Candidi, Ionta & 

Aglioti, 2007; Urgesi, Calvo-Merino, Haggard & Aglioti, 2007; Pazzaglia et al., 2008).  In all, 

however, evidence of mirror activity in human primary and peripheral motor cortices is at best 

weakly consistent with a mirror theory of action understanding, and in no way does the available 

evidence indicate that the human mirror system is directly involved in coding the meaning of 

actions (we refer the interested reader to the thorough set of arguments presented by Hickok, 

2009). Nonetheless, the notion of embodied semantics has inspired a host of studies seeking to 

investigate the role of the putative human mirror system in language processing. Many such 
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studies seek to investigate a proposed connection between the motor system and action-

semantics in language tasks (e.g., Buccino, Riggio, Melli, Binkofski, Gallese, & Rizzolatti, 2005; 

Pulvermuller, Hauk, Nikulin, & Ilmoniemi, 2005; Boulenger, Roy, Paulignan, Deprez, 

Jeannerod, & Nazir, 2006; Glenberg, Sato, Cattaneo, Riggio, Palumbo, & Buccino, 2008), 

though these studies will not be our focus as they are subject to similar problems as the mirror 

system literature reviewed above (Hickok, in press).  Instead, we will highlight studies that bear 

directly on the discussion of motor involvement in speech processing, and we will discuss this 

evidence within the framework of the motor theory of speech perception. Thus, in the upcoming 

sections we review behavioral and neurophysiological evidence concerning the role of the motor 

system in speech processing. 

 

The Motor System and Language 

 Let us return now to the motor theory of speech perception.  If the resolution of discrete 

phonological units and the mapping of those units onto semantic representations were critically 

associated with activation of invariant speech production codes, then we would expect to see 

activation in motor regions during speech comprehension.  We would further expect to see 

activation related to more than just preparatory motor activity since, as established above, speech 

comprehension is often paired closely in time with speech production, and such a pairing should 

clearly lead to motor activation simply on the basis of learned association.  We will show that the 

evidence for motor activation specific to speech perception itself is ambiguous at best.  In 

addition, it will be informative to review behavioral evidence for the involvement of motor 

systems in speech perception.  If the motor system is indeed active during speech perception, and 
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the motor theory of speech perception is accurate, we should expect to find behavioral evidence 

that confirms a functional role for motor activation during speech perception.  Such behavioral 

evidence should be the foundation on which neurophysiological investigation of motor 

involvement in speech is built, though we will demonstrate that the behavioral evidence is sparse 

and at best weakly supportive of the motor theory.  Finally, if speech perception is indeed 

critically dependent on the motor system, we should expect to see neuropsychological evidence 

demonstrating that damage to frontal speech production networks impairs speech comprehension 

ability.  In fact, we will show that the evidence supports the opposite conclusion – specifically, 

damage to frontal motor regions does not impair speech comprehension, and speech 

comprehension can be impaired with frontal motor regions intact.  

 

Motor Involvement in Speech Perception – Behavioral Evidence 

 Most behavioral evidence for involvement of the motor system in speech perception 

focuses on the identification of perceptual-motor links, i.e., evidence that acoustic stimuli affect 

performance in a speech production task or vice versa.  However, evidence of this sort is not a 

clear indication that the motor system is directly involved in speech perception.  Take as an 

example the finding of selective adaptation in speech production (Cooper, 1979).  In a perceptual 

selective adaptation paradigm (Eimas & Corbit, 1973), repeated presentations of a syllable, e.g. 

/pa/, lead to fewer identifications of that syllable along an ambiguous continuum, e.g. /ba/-to-

/pa/.  In the speech production version of the paradigm, repeated auditory presentations of a 

syllable lead to reductions in voice onset times when subjects are asked to produce the same 

syllable.  Thus, the motor system is being “primed” for production of a given speech sound when 
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that sound is repeatedly heard.  Such perceptual “priming” of the motor system is to be expected 

if we (reasonably) assume the presence associative links between perceptual and motor systems, 

but this does not necessarily indicate that speech perception is carried out by the motor system. A 

similar finding indicates that individual differences in a vowel production task replicate when 

subjects are asked to discriminate the same vowels (Bell-Berti, Raphael, Pisoni,  & Sawusch, 

1979).  In this study, subjects first produced a series of vowels that differed in height.  Consistent 

with the phonetic distinction in height, 4 of 10 speakers showed a gradual decrease in activity of 

a tongue muscle (the genioglossus muscle, which affects tongue height) as the height of vowels 

decreased.  In a later perception test of the same vowels, the 4 speakers who had shown a height 

distinction in production showed larger anchoring effects when asked to discriminate the vowels 

on a continuum (decreased identifications of the vowel sound at the end of the continuum).  The 

other 6 subjects did not show such large anchoring effects, demonstrating that subjects grouped 

in the perceptual task as they had in the production task.  A possible explanation of such a 

finding is that the way an individual produces speech influences the way speech is perceived by 

the same individual.  However, the opposite position is equally tenable, namely that the way an 

individual perceives speech influences the way speech is produced by that individual.  The 

direction of the relationship is ambiguous given the result and, again, we find no conclusive 

evidence of motor involvement in speech perception. 

 Perhaps a more compelling finding comes in a variant of the McGurk effect (McGurk & 

MacDonald, 1976).  The typical effect occurs when audio and visual speech information are 

mismatched (hearing “ba” while watching someone articulate “ga”), which can induce a 

perceptual illusion (“da”).  A recent study found that a McGurk-like effect can be induced not 

only by viewing incongruent speech gestures, but by the listener’s own incongruent speech 
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gestures (Sams et al., 2005).  Listeners silently articulated speech sounds that were either 

congruent or incongruent with the syllables they were listening to.  The incongruent condition 

led to significantly more misperceptions of the heard speech (32% correct) than the congruent 

condition (95% correct) suggesting that motor representations of speech can influence sensory 

perception of speech sounds (Sams, Mottonen, & Sihvonen, 2005).  It is important to note that 

such a finding is not inconsistent with sensory-first theories of speech perception.  In fact, it has 

been suggested that the source of this influence is via efferent copies of motor commands that are 

transmitted to auditory regions, and that this process may form a kind of predictive (forward 

model) mechanism that modulates the analysis of sensory input (Sams et al., 2005; Poeppel, 

Idsardi, & van Wassenhove, 2008; Okada & Hickok, 2009).  Thus, there is behavioral evidence 

of motor involvement in speech perception, but we should not conclude that speech perception 

per se is a charge of the motor system.  The neural evidence for motor involvement in speech 

perception likewise should not lead us to draw such a conclusion. 

 

Mirror Neurons, Broca’s Region, and Premotor Cortex – A New Motor Theory? 

 As mentioned above, the resurgence of interest in the motor theory of speech perception 

stems in large part from the discovery of mirror neurons and the analogous human mirror system.  

In the realm of language, it has been proposed that the human mirror system is at the center of an 

evolutionary development from a primitive gestural communication system to a more advanced 

system capable of supporting language production and comprehension. Rizzolatti and Arbib 

(1998) thoroughly outline the theory behind this proposed evolutionary connection.  Noting 

activation of Broca’s area during action observation (Grafton, Arbib, Fadiga, Rizzolatti, 1996; 
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Rizzolatti et al., 1996)1, they suggest a tight coupling between a pre-human gestural 

communication system, mediated by mirror system activity, and speech production in humans, 

mediated by Broca’s area.  However, the theory makes no claim as to the coevolution of a speech 

perception system in frontal motor networks.  Nonetheless, this theory, along with the discovery 

of auditory mirror neurons in monkey area F5 (Kohler et al., 2002), has motivated researchers to 

investigate the neurophysiological role of frontal motor systems in speech perception.  Can we 

find any direct evidence that the motor system is active during speech perception in humans? 

 Fadiga, Craighero, Buccino and Rizzolatti (2002) used TMS to test the excitability of 

tongue muscles during speech comprehension.  They reasoned that, according to the motor 

theory of speech perception, muscles involved in the articulation of speech sounds should be 

more excited when those sounds are more taxing to produce.  Fadiga and colleagues used TMS 

to stimulate the sector of motor cortex that controls tongue muscles while recording MEPs 

directly from the tongue.  Subjects listened to words through headphones, where one group of 

words required strong tongue movements and the other group required only slight tongue 

movements.  Motor-evoked potentials revealed increased activity in the tongue muscles when 

words were the type that required strong tongue movements.  Thus, while listening to others 

speak, the comprehender tracks incoming speech sounds with movements of the tongue.  

Combining positron emission tomography (PET) and TMS, Watkins and Paus (2004) were able 

to show that increased excitability in speech production areas of motor cortex is correlated with 

activity in the posterior part of the LIFG (Broca’s region).  The authors proposed that activity in 

Broca’s region “primes” the motor system for language production in response to spoken speech, 

whether or not output is required.  Such an explanation is consistent with the account given 
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above – that perceptual priming of the motor system or, likewise, motoric “priming” (e.g., 

forward models) of perceptual systems is what we should expect given the tight coupling of 

speech perception with speech production.  The directionality of this relationship is ambiguous, 

and thus there is no evidence here to suggest a direct role for the motor system in the perception 

of speech sounds or the decoding of their meaning. 

 Following the lead of these studies, two fMRI experiments showed activation in similar 

premotor areas during both speech perception and speech production (Wilson, Saygin, Sereno, & 

Iacoboni, 2004; Pulvermuller et al., 2006).  Later, Wilson, Molnar-Szakacs, and Iacoboni (2008) 

used inter-subject correlational analyses in fMRI to test whether premotor areas were responsive 

to time-varying characteristics of linguistic input.  They argued that such an analysis would 

identify active voxels across subjects that were sensitive to neural activity that varies in time 

with stimulus properties (cf. Hasson, Nir, Levy, Fuhrmann, & Malach, 2004).  Results indicated 

that a premotor area responded to time-varying characteristics of the input during continuous 

narrative speech, which may be construed as evidence that the motor system directly tracks the 

incoming acoustic input.  Again, however, these results are not inconsistent with feed-forward 

sensory models of speech perception where sensory speech representations are fed to motor areas 

in order to guide speech production.  Indeed, if the processes that subserve speech perception and 

production are critically dependent on proper timing, as they are during natural verbal 

exchanges, we should expect processing in one domain to track processing in the other, either 

directly or via executive function capable of influencing processing in either domain (or both).  

This is not evidence that speech representations are fundamentally motoric.  Such a necessary 

role for the motor system can only be established by demonstrating a disruption of speech 

perception abilities when the motor system is disabled. 
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  Just such a demonstration was attempted by Meister and colleagues (Meister, Wilson, 

Debleck, Wu, & Iacoboni, 2007) in a study entitled The Essential Role of Premotor Cortex in 

Speech Perception.  Subjects were asked to discriminate voiceless stop consonants in single 

syllables presented in noise (i.e., the task is relatively hard) while repetitive TMS was applied to 

premotor cortex.  Relative to tone and color discrimination controls, TMS caused a small but 

significant disruption in discrimination performance in the speech task (discrimination 

performance dropped by 8% from 78.9% correct in a baseline task).  A possible mechanism for 

the observed effect was proposed: “premotor cortex generates forward models... that are 

compared within the superior temporal cortex with the results from initial acoustic-speech 

analysis... Premotor cortex provides top-down information that facilitates speech perception in 

circumstances such as when the acoustic signal is degraded....” (p. 1694).  Again, this 

explanation is not inconsistent with sensory-first theories of speech perception.  Though it is 

clear that frontal systems can play a role in speech recognition, the results do not support the 

conclusion that these systems are the primary mechanism or ‘essential’ for perceiving speech. 

 A more recent study acknowledged the failure of Meister et al. (2007) to provide 

convincing proof of a causal role for the motor system in speech perception (D’Ausilio, 

Pulvermuller, Salmas, Bufalari, Begliomini, & Fadiga, 2009, p. 381), and reported a stronger 

finding demonstrating that stimulation of human motor cortex via TMS directly affects the 

perception of speech sounds.  Stimulation pulses were applied to lip and tongue areas of primary 

motor cortex while participants were asked to identify speech sounds involved in prominent lip 

articulation, [b] and [p], or prominent tongue articulation, [d] or [t].  A double-dissociation was 

observed in the reaction time data: relative to a non-stimulation baseline, participants were faster 

to identify tongue-related sounds when the tongue area was stimulated, and faster to identify lip-
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related sounds when lip areas were stimulated.  The authors claimed this as evidence that speech 

perception is grounded in motor circuits.  However, there are several alternative explanations 

that describe the data equally well.  First, it may be that stimulation of primary motor cortex 

results in motor-to-sensory feedback (see previous discussion of forward models), effectively 

priming perceptual phonemic categories.  Indeed, the error pattern observed in the data confirms 

a perceptual bias in favor of speech sounds concordant with the stimulation site (D’Ausilio et al., 

2009, p.383).  In addition, the task used in this experiment involved a difficult phoneme 

identification task (stimuli were degraded in noise to hold baseline performance at 75%), which 

is known engage a set of processes not necessarily involved in natural speech comprehension 

(see discussion below; Blumstein, 1995; Miceli, Gainotti, Caltagirone, & Masullo, 1980).  Thus, 

there appears to be a role for the motor system in facilitating the perception of individual speech 

sounds under degraded perceptual conditions, but we have yet to see convincing evidence that 

the motor system is the seat of speech processing generally. 

 Overall, we see clear evidence that the motor system can influence speech perception, 

perhaps in a top-down fashion, but there is nothing to indicate that speech perception is a motor 

process by nature. As such, now is a good time to review evidence that runs strictly counter to 

the motor theory of speech perception. 

 

Why Motor Theory Cannot Explain Speech Perception 

 As mentioned above, we can only make statements about the necessity of motor 

processing in speech comprehension if disabling motor regions results in some deficit in speech 

comprehension.  This sort of evidence would be essential in confirming the major tenets of the 



26 
 

motor theory of speech perception, and, by the same token, evidence to the contrary would 

cripple it.   Thus we turn to the lesion literature, the major source of evidence concerning 

impairment to productive regions in speech processing – evidence that is almost unanimously in 

opposition to the motor theory.   

Damage to speech production areas is often characterized by large frontal lesions typical 

of those seen in Broca’s aphasia, which involve most of the lateral frontal lobe, motor cortex, 

and anterior insula, but often also extend posteriorly to include the parietal lobe (A. R. Damasio, 

1992; H. Damasio, 1991; Dronkers, Redfern, & Knight, 2000).  If the motor theory of speech 

perception holds, such lesions should result in severe disruption of speech comprehension 

abilities.  However, this prediction is not borne out, as little if any comprehension deficits are 

seen at the single word level in Broca’s aphasia (H Goodglass, 1993; H. Goodglass, Kaplan, & 

Barresi, 2001).  For example, a recent study reported that Broca’s aphasics (n=9) were 

indistinguishable from control subjects on an auditory word comprehension test involving 236 

items (Moineau, Dronkers, & Bates, 2005). It is true that Broca’s aphasics can be impaired on 

syllable discrimination tasks, i.e., the ability to judge whether pairs of non-sense syllables are the 

same (/ba/ - /ba/) or different (/ba/ - /da/) (Blumstein, 1995) but these tasks double-dissociate 

from more ecologically valid auditory comprehension task, even when contextual information 

that might cue word meaning are removed (Miceli, Gainotti, Caltagirone, & Masullo, 1980; see 

Hickok & Poeppel, 2000,2004, 2007 for extensive discussion of this issue). It has been suggested 

that deficits on syllable discrimination tasks result from damage to frontal lobe-dependent 

working memory and/or executive systems rather than to systems supporting speech recognition. 

The important observation, though, is that even extensive disruption to motor speech systems 
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does not result in commensurate disruption of speech recognition abilities in contrast to the 

prediction of the motor theory.  

In addition to the fact that lesions to motor speech areas do not disrupt speech 

comprehension, we find that speech comprehension can be impaired while motor regions are 

intact.  This is evidenced by patients who present with mixed transcortical aphasia 

(Bogousslavsky, Regli, & Assal, 1988; Geschwind, Quadfasel, & Segarra, 1968).  This 

syndrome is characterized by a severe deficit in comprehension of speech and is associated with 

damage to left frontal and posterior parietal regions, sparing perisylvian speech-related areas 

such as Broca’s area, superior temporal gyrus, and the tissue in between.  Sensory-motor 

functions of speech are left intact, as evidenced by the fact the patients are able to repeat heard 

speech.  Thus, the motor system appears to have no direct involvement in speech comprehension, 

as damage to the motor system does not impair speech comprehension abilities, and damage that 

results in speech comprehension deficits spares the motor system.  

 

An Alternative Perspective – A Sensory Theory of Speech Production 

 We have repeatedly noted a tight coupling of sensory and motor activity in the evidence 

reviewed thus far.  According to proponents of the motor theory, such a coupling is indicative of 

motor involvement in speech perception.  While we will not argue the fact that the motor system 

can be involved in speech perception, we propose that speech perception is fundamentally a 

sensory process, and that sensory representations of speech in the superior temporal lobe are 

projected to frontal motor networks in order to guide speech production.  This is the reverse 

relation of the one proposed in motor theories of speech perception, and as such accounts equally 
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well for close sensory-motor links in speech (Guenther, Hampson, & Johnson, 1998; Guenther, 

Ghosh, Tourville, 2006; Hickok  & Poeppel, 2000, 2004, 2007). 

 The context of this proposal is the dual stream model of speech processing set forth by 

Hickok and Poeppel (2000, 2004, 2007), which holds that there are two speech processing 

pathways, a ventral pathway that maps acoustic speech information onto conceptual semantic 

representations for speech comprehension, and a dorsal pathway that maps acoustic speech 

information onto motor speech representations. Independent evidence from developmental 

considerations, articulatory decline in late-onset deafness, delayed or altered speech feedback, 

and other sources (reviewed in Hickok & Poeppel 2000, 2004, 2007) suggests that auditory 

speech information is critically involved in speech production behaviors.  It is proposed that the 

dorsal, sensory-motor stream is the pathway responsible for this interaction. On this view, 

sensory representations are used to guide motor-articulatory processes, and this can be 

accomplished via feed-forward or feedback mechanisms (cf., Guenther, 2006).  Thus, the dual 

stream model accommodates bidirectional interaction between sensory and motor systems, and 

has no trouble accounting for motor involvement in speech perception (e.g., via forward models 

and efferent copies of motor commands). 

  Lesion studies (Damasio, 1991; 1992) further support the role of sensory areas in 

speech production, evidenced by the fact that damage to auditory-related areas in the left 

temporal lobe result in speech production deficits.  Conduction aphasia is particularly interesting 

in this respect because the deficit appears to be specific to phonological-level aspects of speech 

production (Wilshire & McCarthy, 1996), and has been interpreted as a breakdown of the 

speech-related sensory-motor integration system (Hickok et al. 2003, Hickok & Poeppel, 2004).  

Conduction aphasia is associated with lesions to left superior temporal gyrus and the 
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temporoparietal junction (Damasio & Damasio, 1980; Goodglass, 1992; Baldo, Klostermann, & 

Dronkers, 2008), that is, classic auditory-related cortical areas (see Figure 1.2).  

 

Figure 1.2. Lesion overlap of patients with conduction aphasia (left group) versus left-hemisphere damaged controls 
(right group). Note the location of overlap in the aphasic patients. Damage to these classic auditory-related cortical areas 
results in disruption of speech production. From Baldo et al. (2008). 

 In addition, functional imaging studies have revealed a network of regions thought to 

support these sensory-motor interactions. This network of cortical regions show sensory-motor 

response properties, and includes area Spt at the temporal-parietal boundary, which is squarely 

within the lesion distribution of conduction aphasia. Area Spt appears to be connected both to 

sensory speech areas in the superior temporal sulcus (STS), and motor speech areas in the left 

inferior frontal gyrus and left premotor cortex (Buchsbaum, Hickok & Humphries, 2001; 

Hickok, Buchsbaum, Humphries & Muftuler, 2003).  Hickok and Poeppel (2000; 2004; 2007) 

argue that STS (bilaterally) is responsible for sensory coding of speech, while area Spt is 

responsible for sensory-motor integration (its activation is tightly coupled to activation in inferior 

frontal gyrus). By this logic, activity in Broca’s region or motor cortex associated with language 
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comprehension can be explained in terms of sensory-motor associations projecting from STS to 

Spt and finally to LIFG (Figure 1.3). 

 

Figure 1.3. Colored regions demonstrated sensorimotor responses: they were active during both the perception of speech 
and the sub-vocal production of speech. Note the bilateral activation in STS and left-lateralized activation in Spt and 
frontal regions. According to the dual stream model, bilateral sensory ⁄ phonological representations in STS project 
through Spt to frontal production networks. From Hickok and Buchsbaum (2003). 

 Given that the dual steam model is consistent with both lesion and functional imaging 

evidence, we propose that it gives a much stronger account of the current empirical literature.  

However, motor theories are attractive and often easy to accept at first glance, and the 

intermediate temporal resolution of functional imaging studies often leads to results that are 

ambiguous with respect to directionality of interactions between sensory and motor brain 

regions.  An example will provide clarification in this case.  A recent study (Wilson & Iacoboni, 

2006) had subjects rate the producibility of non-native phonemes.  In a subsequent fMRI scan, 

the same subjects were presented native phonemes along with the non-native phonemes from the 

earlier behavioral session.  Brain regions were identified with activations that a) were more 

active during perception of phonemes than at rest, b) discriminated native from non-native 

phonemes, and c) were correlated with the producibility of nonnative phonemes.  Bilateral 
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superior temporal, premotor, and primary motor cortices were active to the perception of 

phonemes compared to rest.  In addition, both motor areas and superior temporal areas 

discriminated native from non-native phonemes (though motor areas demonstrated this 

distinction only in an ROI analysis, while temporal regions did so in the group and ROI 

analyses).  Interestingly, a functional connectivity analysis demonstrated equivalent functional 

connectivity between premotor and superior temporal areas regardless of which area was used as 

the ‘seed’ area.  At first glance, this appears to be strong evidence for motor involvement in 

speech perception.  However, further examination of the results demonstrates that the dual 

stream model provides a more accurate account of the data.  Namely, only superior temporal 

areas displayed activation that correlated with difficulty of producibility of the non-native 

phonemes, in addition to one other focus of such activation – area Spt (Figure 1.4).  According to 

the authors, the “…findings suggest that superior temporal auditory areas bilaterally are crucial 

for the transformation of acoustic speech input to a phonetic code, since only in these areas, and 

not in motor areas, did signal change correlate with producibility.” (p.322).  Further, the 

observed activation in Spt is a clear indication of its function in integration between phonetic 

(and sensory) speech representations in superior temporal regions and motor representations in 

productive networks.  It is likely that Spt plays some role in the transformation of phonological 

code to motor code (Goodglass, 1992), which is why activation in Spt varied with producibility, 

while activation in frontal production regions did not.  These observations are exactly what the 

dual stream model would predict.  Again, the authors focused on the role of motor activation in 

producing forward models of phonemic categorization that are, at some point, compared with 

sensory representations in superior temporal cortex.  Indeed, it will be important for future 

research to resolve the role of the motor system in speech comprehension, but for now we can 
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remain confident that the representation of speech in cortex is fundamentally a sensory process. 

 

Figure 1.4. Colored regions were negatively correlated with producibility of non-native phonemes. Note the bilateral 
activation of superior temporal regions and unilateral activation of area Spt, and compare with Figure 1.3 above. This is 
an identical sensory-motor integration network (note that activation was observed in frontal regions during listening 
relative to rest, completing the network). We would not expect to see activation in frontal regions in the correlation 
analysis, where negative correlation with producibility indicates a role in transformation from sensory to phonological 
and motor codes. From Wilson and Iacoboni (2006). 

  

Conclusion 

 There is a bevy of evidence that supports a link between motor processing and language 

perception.  This connection is often interpreted as evidence for a motor theory of speech 

perception.  However, there is strong evidence against this view and there is an alternative 

explanation for the association between sensory and motor speech systems, namely the reverse 

relation, a sensory theory of speech production, that more accurately describes the role of the 

motor system in speech processing.  The discovery of mirror neurons in the macaque, as well as 

the human studies they have inspired, do nothing to change this conclusion.  
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CHAPTER 2 

 

Primer 

 The previous chapter established (or reiterated, at least) that a functioning speech motor 

system is not necessary for normal speech perception.  However, it also described an emerging 

body of evidence demonstrating that speech-motor brain regions are active during passive 

perception of speech sounds.  This pattern was easily explained once a fundamental link between 

perception and production was accounted for – specifically, sensory speech representations 

function to guide speech production (for an expansion on this see (Hickok, 2012)).  Chapter 1 

also reviewed evidence suggesting that the speech motor system may play a top-down role in 

perception, especially when the signal is degraded or during difficult (and unnatural) laboratory 

tasks.  In assessing top-down contributions to speech perception, it is important to distinguish the 

contributions of domain-general processes (attention, working memory, decision-making, etc.) 

from speech-specific mechanisms (e.g., motor predictions as described in Ch. 1).  The current 

chapter contains an original investigation designed to: (a) manipulate domain-general top-down 

processes (decision-making) in the context of a typical laboratory speech task, and (b) assess 

whether (and in which) speech-related brain regions activity varies in accordance with the 

manipulation.  Not surprisingly, activity in speech motor brain regions (but not perceptual 

regions) was modulated by shifts in the decision criterion (see below for details).  While this 

result does not rule out motor contributions to perception via a domain-specific top-down 

mechanism (e.g., motor prediction), it does provide positive evidence that speech motor brain 

regions are recruited by domain-general processes.  This calls into question many laboratory 
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findings that implicate the speech motor system in perception, and reinforces the conclusion that 

speech perception is not a motoric process. 

 

Response bias modulates the speech motor system during syllable 
discrimination 

Jonathan H. Venezia, Kourosh Saberi, Charles Chubb & Gregory Hickok 

 

Introduction 

Recent research and theoretical discussion concerning speech perception have focused 

considerably on the language production system and its role in perceiving speech sounds.  More 

specifically, it has been suggested – in varying forms and with claims of variable strength – that 

the cortical speech motor system supports speech perception directly (Galantucci, Fowler & 

Turvey, 2006; Hasson, Skipper, Nusbaum & Small, 2007; Pulvermuller & Fadiga, 2010; 

Rizzolatti & Craighero, 2004).  Classic support for this position comes from studies involving 

patients with large frontal brain lesions (i.e., Broca’s aphasics), which demonstrate that these 

patients are impaired on syllable discrimination tasks (Blumstein, 1995; Miceli, Gainotti, 

Caltagirone & Masullo, 1980), including worse performance when discriminating place of 

articulation versus voicing (Baker, Blumstein & Goodglass, 1981), and perhaps mildly impaired 

(and significantly slowed) in auditory word comprehension (Moineau, Dronkers & Bates, 2005).  

Indeed, more recent evidence demonstrates unequivocally that the cortical motor system is active 

during speech perception (Fadiga, Craighero, Buccino & Rizzolatti, 2002; Hickok, Buchsbaum, 

Humphries & Muftuler, 2003; Pulvermuller et al., 2006; Skipper, Nusbaum & Small, 2005; 
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Watkins, Strafella & Paus, 2003; Wilson, Saygin, Sereno & Iacoboni, 2004). Perhaps the 

strongest evidence for motor system involvement comes from recent transcranial magnetic 

stimulation (TMS) studies.  For example, one study demonstrated that repetitive TMS applied to 

a speech region of premotor cortex impaired syllable identification but not color discrimination 

(Meister et al. 2007), while another found that TMS of primary motor areas for different vocal 

tract articulators selectively facilitated identification of phonemes relying on those articulators 

(D’Ausilio et al., 2009).  Additional TMS studies demonstrated that disruptive TMS applied to 

motor/premotor cortex significantly altered performance in discrimination of synthesized 

syllables (Mottonen & Watkins, 2009) and phoneme discrimination (Sato, Tremblay & Gracco, 

2009). 

Despite the evidence listed above, neuropsychological data seem to dispel the notion that 

the speech motor system is critically involved in speech perception (Hickok, 2009; Venezia & 

Hickok, 2009). In short, Broca’s aphasics generally have preserved word-level comprehension 

(Damasio, 1992; Goodglass, 1993; Goodglass, Kaplan & Barresi, 2001; Hillis, 2007), as do 

patients with bilateral lesions to motor speech regions (Levine & Mohr, 1979; Weller, 1993).  

Further, two recent studies of patients with radiologically confirmed lesions to motor speech 

areas including Broca’s region and surrounds, failed to replicate earlier findings that Broca’s 

aphasics have substantial speech discrimination deficits (Hickok, Costanzo, Capasso & Miceli, 

2011; Rogalsky, Love, Driscoll, Anderson & Hickok, 2011).  Additionally, children that fail to 

develop motor speech ability (as a result of congenital or acquired anarthria) are able to develop 

normal receptive speech (Bishop, Brown & Robson, 1990; Christen et al., 2000; Lenneberg, 

1962).  Lastly, anesthesia of the entire left hemisphere, producing complete speech arrest 

(mutism), leaves speech sound perception proportionately intact (Hickok et al., 2008).   
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Nonetheless, it remains to explain why acute disruption and/or facilitation of speech 

motor cortex significantly performance on speech perception tasks.  First, the aforementioned 

TMS studies either utilized degraded or unusual (synthesized) speech stimuli (D’Ausilio et al., 

2009; Meister et al., 2007; Mottonen & Watkins, 2009), or failed to produce an effect unless the 

phonological processing load was unusually high (Sato et al., 2009).  Several studies indicate 

that speech motor areas of the inferior frontal cortex are more active with increasing degradation 

of the speech signal (Binder, Liebenthal, Possing, Medler & Ward, 2004; Davis & Johnsrude, 

2003; Zekveld, Heslenfeld, Festen & Schoonhoven, 2006).  Additionally, Broca’s aphasics 

showed poor auditory comprehension when stimuli were low-pass filtered and temporally 

compressed (Moineau et al., 2005).  Indeed, syllable identification (as in Meister et al., 2007 and 

D’Ausilio et al., 2009) was not impaired nor were reaction times facilitated in TMS studies using 

clear speech stimuli (D’Ausilio, Bufalari, Salmas & Fadiga, 2011; Sato et al., 2009). 

Second, the effects of applying TMS to speech motor cortex are often small (Meister et 

al., 2007) and/or confined to reaction time measures (D’Ausilio et al., 2009; Sato et al., 2009).  A 

recent functional magnetic resonance imaging (fMRI) study utilizing a two-alternative forced 

choice syllable identification task at varying signal-to-noise ratios demonstrated that 

hemodynamic activity correlated with identification performance (percent correct) in superior 

temporal cortex and decision load (reaction time) in inferior frontal cortex (Binder et al., 2004).  

Additionally, Broca’s aphasics exhibit increased reaction times on an auditory word 

comprehension task relative to older controls and patients with right hemisphere damage 

(Moineau et al., 2005).  Together these findings suggest that speech motor brain regions may be 

preferentially involved in decision-level components of speech perception tasks.   

An important component of decision-level processes in standard syllable- or single-word-
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level speech perception assessments is response bias – i.e., when changes in a participant’s 

decision criterion lead to a more liberal or conservative strategy that biases the participant toward 

a particular response (see discussion of signal detection theory below).  Response bias is not 

properly accounted for in standard measures of performance on speech perception tasks (percent 

correct, reaction time, error rates) such as those reported in the studies above that appear to 

implicate speech motor cortex in speech perception ability (D’Ausilio et al., 2009; Meister et al., 

2007).  For example, a recent study in which disruptive TMS was applied to the lip region of 

motor cortex reported that cross-category discrimination of synthesized syllables was impaired 

for lip-tongue place of articulation continua (/ba/-/da/, /pa/-/ta/) but not for voice onset time or 

non-lip place of articulation continua (/ga/-/ka/ and /da/-/ga/, respectively; Mottonen & Watkins, 

2009).  However, the performance measure in this study was simply the change in proportion of 

“different” responses in the same-different discrimination task after application of TMS.  This 

effect could simply be due to changes in response bias induced by application of TMS to speech 

motor cortex (there is no reason to believe that an effect on response bias, like an effect on 

accuracy, should not be articulator-specific).  Indeed, another recent study demonstrated that use-

induced motor suppression of the tongue resulted in a larger response bias toward the lip-related 

phoneme in a syllable identification task with lip- and tongue-related phonemes (/pa/ and /ta/, 

respectively; Sato et al., 2011).  The opposite effect held for use-induced suppression of the lips, 

while suppression had no effect on identification performance (d’) in any condition. 

Classic lesion data suggesting a speech perception deficit in Broca’s aphasics may also be 

contaminated by response bias.  A study by Miceli and colleagues (Miceli, et al., 1980) 

demonstrated that patients with a phonemic output disorder (POD+; fluent and nonfluent 

aphasics) were impaired on a same-different syllable discrimination task versus patients without 
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disordered phonemic output (POD-).  However, both groups made more false identities than 

false differences, and POD+ patients were more likely to make a false identity than POD- 

patients (see Miceli et al., 1980, their table 1), indicating the presence of a response bias toward 

“same.”  Similarly, a single word, minimal pair discrimination study conducted by Baker and 

colleagues (Baker et al., 1981) showed that Broca’s aphasics were more impaired at 

discriminating place of articulation than voicing, but this effect was driven by a higher error rate 

for “different” trials.  In other words, Broca’s aphasics were again more likely to make a false 

identity.  An informal analysis of the data (inferred from the error rates in same and different 

trials relative to the overall number of trials) indicates that overall performance on the 

discrimination task was quite good in Broca’s aphasics when response bias is accounted for (d’ = 

3.78; Hickok et al., 2011). 

In light of this information, we set out to determine whether changes in response bias 

modulate functional activity in speech motor cortex.  Thus, the present functional magnetic 

resonance imaging experiment was designed to produce specific, measureable changes in 

response bias in a speech perception task using degraded speech stimuli.  Minimal consonant-

vowel stimulus pairs were presented between volume acquisitions for same-different 

discrimination.  Speech stimuli were embedded in Gaussian noise at the threshold signal-to-noise 

ratio (SNR) as determined via 2-down, 1-up staircase.  We manipulated bias by changing the 

ratio of same-to-different trials: 1:3, 1:2, 1:1, 2:1, 3:1.  Ratios were blocked by run and subjects 

were cued to the upcoming ratio at the beginning of each run.  In order to measure response bias, 

we modeled the data using a modified version of signal detection theory (SDT).  Briefly, SDT 

attempts to disentangle a participant’s decision criterion from true perceptual sensitivity (which 

should remain constant under unchanging stimulus conditions, regardless of shifts in criterion).  
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In the classic case of a “yes-no” detection experiment, the participant is tasked with identifying a 

signal in the presence of noise (e.g., a tone in noise, a brief flash of light, or a tumor on an x-ray).  

Two conditional, Gaussian probability distributions – one for noise trials and another for 

signal+noise trials – are used to model the likelihood of observing a particular level of internal 

(sensory) response on a given trial.  The normalized distance between the means of the two 

distributions, known as d’, is taken to be the measure of perceptual sensitivity (i.e., ability to 

detect the signal), where this distance is an intrinsic (fixed) property of the sensory system.  

However, the participant must set a response criterion – a certain position on the internal 

response continuum – for which trials that exceed the criterion response are classified as 

“signal.”  The position of the criterion is referred to as c, and can change in response to a number 

of factors, both internal and/or external to the observer.  The values for d’ and c can be estimated 

from the proportion of response types.  We have extended this analysis to our same-different 

design.  In brief (see Materials and Methods below for an extended discussion), we have 

modeled the decision space as six separate conditional Gaussian distributions that represent each 

of the six possible stimulus pairs presented on a same-different trial.  The internal response 

continuum is a single perceptual statistic (standard normal units) that represents the stimulus 

pair, where negative values are more likely to be a “same” pair (e.g., ba-ba) and positive values 

are more likely to be a “different” pair (e.g., ba-da).  The listener sets a single criterion value on 

the internal response continuum, where trials that produce a response above the criterion yield a 

“different” response, while responses below the criterion yield a “same” response. 

Based on the properties of our design – in particular, the maintenance of a constant SNR 

and otherwise identical stimulus conditions across runs – we assumed that the distances between 

the means (analogous to d’) of the six stimulus distributions were fixed across bias ratio 
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conditions.  The criterion value, here called C, was allowed to vary across conditions. To be 

explicit, d’ would not be expected to change because the sensory properties of the stimuli 

remained constant across conditions, while C would be expected to change because the same-

different ratio was manipulated directly in each condition.  We expected changes in response 

bias to correlate with changes in the blood-oxygen level dependent (BOLD) signal in motor (i.e., 

frontal) brain regions, but not sensory (i.e., temporal) brain regions.  This is precisely what we 

observed – response bias, C, varied significantly across conditions and a group-level regression 

of overall bias on percent signal change revealed a network of motor brain regions correlated 

with response bias.  To the best of our knowledge, this is the first study to demonstrate a direct 

relationship between response bias and functional brain activity in a speech perception task.  The 

significance of this relationship is discussed below along with details of the particular network of 

brain areas that correlated with response bias. 

 

Materials and Methods 

 

Participants 

Eighteen (9 female) right-handed, native-English speakers between 18 and 32 years of 

age participated in the study.  All volunteers had normal or corrected-to-normal vision, no known 

history of neurological disease, and no other contraindications for MRI.  Informed consent was 

obtained from each participant in accordance with UCI Institutional Review Board guidelines. 
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Stimuli and Procedure 

Participants were presented with same-different discrimination trials involving 

comparison of 250ms-duration consonant-vowel syllables (/ba/, /da/, or /ga/) embedded in a 

broadband Gaussian noise masker (independently sampled) of equal duration.  Auditory stimuli 

were recorded in an anechoic chamber (Industrial Acoustics Company, Inc).  During recording, a 

male, native-English speaker produced approximately 20 samples of each syllable using natural 

timing and intonation, pausing briefly between each sample over the course of a single 

continuous session.  A set of four tokens was chosen for each syllable based on informal 

evaluation of loudness, clarity and quality of the audio recording (see Figure 2.1) for a 

representative member from each speech sound category).  Syllables were digitally recorded at a 

sampling rate of 44.1 kHz and normalized to equal root-mean-square amplitude.  The average A-

weighted level of the syllables was 66.3 dB SPL (sd = 0.5 dB SPL).  Since natural recordings 

were used, several tokens (i.e., from separate recordings) of each syllable were created so that no 

artifact of the recording process could be used to distinguish between speech sound categories.  

This also increased the difficulty of the task such that discrimination relied on subjects’ ability to 

distinguish between speech sound categories rather than identify purely acoustic differences in 

the stimuli (i.e., both within- and between-category tokens differed acoustically).  Throughout 

the experiment, the level of the noise masker was held constant at approximately 62 dB(A).  All 

sounds were presented over MR-compatible, insert-style headphones (Sensimetrics model S14) 

powered by a 15 watt-per-channel stereo amplifier (Dayton model DTA-1).  This style of 

headphone utilizes a disposable “earbud” insert that serves as both an earplug and sound delivery 

apparatus, allowing sounds to be presented directly to participants’ ear canals.  During scanning, 

a secondary protective ear cover (Pro Ears Ultra 26) was placed over the earbuds for additional 
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attenuation of scanner noise.  Stimulus delivery and timing were controlled using Cogent 

software (http://www.vislab.ucl.ac.uk/cogent 2000.php) implemented in Matlab R12 

(Mathworks, Inc, USA) running on a dual-core IBM Thinkpad laptop. 

 

Figure 2.1. (A) Representative tokens from each of the three syllable categories used in the discrimination task.  The top 
row contains the raw waveforms for each token with amplitude (y-axis) plotted against time (x-axis).  The bottom row 
contains the associated spectrograms for each token with frequency in Hz (y-axis) plotted against time (x-axis), where 
darker sections indicate greater sound energy.  During the experiment, auditory syllable stimuli were presented in 
broadband Gaussian noise at a constant level of 62 dB SPL.  Syllable amplitude was held constant at the psychophysically 
determined threshold level (mean SNR = -13.1 dB).  (B) The basic trial and block structure of the fMRI experiment.  Each 
block consisted of two same-different discrimination trials with 250ms auditory syllable presentations separated by a 
300ms ISI.  Subjects had 1800ms to respond.  Trials occurred in the silent period between 1630ms volume acquisitions, 
with a 400ms silent period at the beginning of each block of two trials. 

Trials followed a two-interval same-different discrimination procedure.  Two response 

keys were operated by the index finger of the left hand.  Trials consisted of presentation of one 
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of the syllables, followed by a 300ms interstimulus interval, then presentation of a second 

syllable.  Participants pressed key 1 if the two syllables were from the same category (e.g., /ba/-

/ba/) and key 2 if the syllables were from different categories (e.g., /ba/-/da/).  During the period 

between responses, participants rested their index finger at a neutral center-point spaced 

equidistantly from each response key.  Participants were instructed to respond as quickly and 

accurately as possible.  Each participant took part in a behavioral practice session in a quiet room 

outside the scanner.  During this practice session, participants were asked to perform 24 practice 

trials, followed by 72 trials in a “2-down, 1-up” staircase procedure that tracks the participant’s 

71% threshold (Levitt, 1971). During the staircase procedure, syllable amplitude was varied with 

4 dB step size.  Participants then performed a second block of 72 trials following the same 

staircase procedure with a 2 dB step size.  Threshold level was determined by eliminating the 

first four reversals and averaging the amplitude of the remaining reversals (four minimum).  

Once the threshold level was determined participants performed additional blocks of 72 trials at 

threshold until behavioral performance stabilized between 65 and 75 percent correct.  Many 

subjects continued to improve over several runs, therefore the experimenter was instructed to 

make 1-2 dB adjustments to the syllable level in between runs in order to keep performance in 

the target range. All trials prior to scanning were presented back-to-back with a 500ms intertrial 

interval and a constant same-different ratio of 1:1.  Practice trials were self-paced (i.e., the next 

trial did not begin until a response was entered). 

During the scan session, participants were placed inside the MRI scanner and, following 

initial survey scans, the scanner was set to “standby” in order to minimize the presence of 

external noise due to cooling fans and pumps in the scan room.  Participants were then required 

to repeat the staircase procedure described above.  It was necessary to set threshold performance 
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inside the scanner because the level of ambient noise in the scan room could not be kept 

equivalent to our behavioral testing room.  The threshold level determined inside the scanner was 

used throughout the remainder of the experiment (mean = 48.9 dB, sd = 5.8 dB; mean SNR = -

13.1 dB).  After a short rest following threshold determination, the MRI scanner was set to 

“start” for fMRI data collection.  Volumes were acquired using a traditional sparse scanning 

sequence with a volume acquisition time of 1630ms and an interscan interval of 5600ms.  Blocks 

of two trials, each with a 1.8s response period, occurred in the silent period between single 

volume acquisitions (Figure 2.1b).  Rest blocks (no task) were included at random at a rate of 

one in every six blocks.  Each scanning run contained a total of 36 task blocks (72 trials) and six 

rest blocks.  Subjects performed a total of 10 runs (720 trials).  In order to manipulate response 

bias, subjects were cued to a particular ratio of same-different trials – 1:3, 1:2, 1:1, 2:1, or 3:1 – 

at the beginning of each run.  Each ratio appeared twice per subject and the order of ratios was 

randomized across subjects.  Crucially, during the practice, adaptive (pre-scan) and fMRI 

portions of the experiment, each run of 72 trials was designed so that the four tokens for each 

syllable (/ba/, /da/, /ga/) were presented 12 times.  For example, in the 1:1 ratio condition (all 

pre-scan runs were of this type) there were 36 “same” trials (12 ba-ba, 12 da-da, 12 ga-ga) and 

36 “different” trials (6 ba-da, 6 ba-ga, 6 da-ba, 6 da-ga, 6 ga-ba, 6 ga-da).  So, there were 48 

presentations of /ba/, 48 presentations of /da/, and 48 presentations of /ga/, where each group of 

48 was divided evenly between each of the four tokens available for that speech sound.  The 

order of trial type (same or different), speech sound identity of the stimulus pair (e.g., ba-ba, ba-

da, da-ga, etc), and token identity were drawn pseudorandomly to fit the run structure.  Thus, the 

actual physical stimuli presented in each run were identical and this was true of each bias ratio 

condition. 
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Scanning Parameters 

MR images were obtained in a Philips Achieva 3T (Philips Medical Systems, Andover, 

MA) fitted with an 8-channel SENSE receiver/head coil, at the John Tu and Thomas Yuen 

Center for Functional Onco-Imaging facility at the University of California, Irvine.  We collected 

a total of 430 echo planar imaging (EPI) volumes over 10 runs using single pulse Gradient Echo 

EPI (matrix = 76 x 76, repetition time [TR] = 7.23 s, acquisition time [TA] = 1630ms, echo time 

[TE] = 25 ms, size = 2.875 x 2.875 x 3.5 mm, flip angle = 90).  Thirty axial slices provided 

whole brain coverage.  Slices were acquired sequentially with a 0.5mm gap.  After the functional 

scans, a T1-weighted structural image was acquired (140 axial slices; slice thickness = 1 mm; 

field of view = 240 mm; matrix 240 × 240; repetition time = 11 ms, echo time = 3.55 ms; flip 

angle = 18°; SENSE factor reduction 1.5 × 1.5) 

 

Data analysis – Behavior 

We assume the participant extracts from the stimulus pair presented on a given trial a 

statistic (a random variable) that reflects the strength of the difference between the two 

substimuli in the pair. We further assume that the distribution of this difference-strength statistic 

is invariant with respect to the order of substimuli in a pair.  Thus, for example, the difference-

strength statistic characterizing a ba-da pair is assumed to be identically distributed to the 

statistic characterizing a da-ba pair.  Under these assumptions, there are six classes of stimuli, Sk, 

k=1,2,…,6, three in which the two substimuli are drawn from the same category and three in 

which the two substimuli are drawn from different categories.   We assume that the difference-
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strength statistic the participant extracts from a given presentation of Sk, k=1,2,…,6, is a 

normally distributed random variable Xk with standard deviation 1 and mean µk. .  In a bias 

condition with proportion q of “different” trials, we assume the participant judges stimulus Sk to 

be “different” just if  Xk > Cq, where Cq is the criterion adopted by the participant in the given 

bias condition.  Under this model, the probability of a correct response in the bias condition with 

proportion q of “different” responses given a stimulus Sk is 

 

€ 

Pk,q =
Φ(Cq −µ k ) if Sk  comprises substimuli from the same category
Φ(µ k −Cq ) if Sk  comprises substimuli from different categories
⎧ 
⎨ 
⎩ 

 (1) 

 

where Φ is the standard normal cumulative distribution function. 

 

This model has 11 parameters: µk, k = 1,2,…, 6, and Cq, for q ranging across the five 

ratios (1:3, 1:2, 1:1, 2:1, or 3:1) of same to different trials.  However, the model is 

underconstrained if all 11 parameters are free to vary as can be seen by considering Eq. (1).  

Note, in particular, that for any real number α, the probabilities Pk,q remain the same if we 

substitute Cq+α for each of the Cq’s and µk+α for each of the µk’s.  For current purposes it is 

convenient to insure that the model parameters are uniquely determined by imposing the 

additional constraint that the µk’s sum to 0.  Thus, the model actually has only 10 degrees of 

freedom. 
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For any values µk, k=1,2,…,6 and C1, C2,…, C5 (with the µk’s constrained to sum to 0), the log 

likelihood function is 

 

€ 

L(µ1,...,µ6,C1,...,C5 ) = Hk,q log Pk,q( )+ Mk,q log 1− Pk,q( )( )
q=1

5

∑
k=1

6

∑  

Where Pk,q is given by Eq. (1), Hk,q (Mq,k) is the number of correct (incorrect) responses given to 

stimulus Sk in the bias condition with proportion q of “different” trials. Data from trials for 

which no response was recorded were excluded from analysis (mean proportion dropped = 0.01, 

max = 0.057). 

In short, the values µk can be thought of as six “perceptual distances” (analogous to d’) that 

characterize the sensory representation of the stimulus pairs, where the model estimates of these 

distances are assumed to be constant across bias conditions.  The model is constrained such that 

the mean of the values µk is set to zero.  The values CQ are the five criterion values – one for each 

bias condition – and serve as a measure of response bias where negative values indicate a bias to 

respond “different,” positive values indicate a bias to respond “same,” and larger values indicate 

a stronger bias (standard normal units).  See Figure 2.2 for a visual representation of the 

parameter space based on a representative subject’s actual data. 
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Figure 2.2. Data in each panel are from a representative subject. (A) Schematic of the decision space including six 
conditional Gaussian distributions (one for each stimulus pair) representing the likelihood of observing a given sensory 
response, and five criterion values (one for each bias ratio condition), where C0.333, C0.5, …., C3, fall left to right on the 
graph.  The x-axis is the value of a difference-strength statistic representing the perceptual difference between two 
substimuli in a pair.  The y-axis is the probability of observing a given value of the difference-strength statistic. For a 
given bias ratio condition, values of the difference-strength stastistic that fall above (right of) the criterion line yield a 
“different” response, while values that fall below (left of) the criterion yield a “same” response.  The positions of the six 
stimulus-pair distributions remain fixed across conditions.  Note that the magenta (da-da) and teal (da-ga/ga-da) 
distributions fall roughly on top of one another, as do the criteria for the 1:3 and 1:2 bias ratio conditions. (B) Model 
estimates (over all q = proportion of different trials, k = stimulus pair) for Cq (criterion, left) and µk (distance, right) 
plotted as line graphs with the Bayesian 95% credible intervals plotted as error bars.  These values reflect the five 
criterion lines and the means of the six stimulus-pair distributions plotted in (A) above, respectively. 
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To estimate the parameter values, we used a Bayesian modeling procedure to fit the data 

for each participant.  This fitting procedure employs a Markov chain Monte Carlo (MCMC) 

algorithm that yields a sample of size 100,000 from the posterior density characterizing the joint 

distribution of the model parameters.  The prior density for each parameter was taken to be 

uniform on the interval (-10,10).  Model parameters were estimated from an initial run of 

100,000 with starting values of µk= 0 and CQ= 0 over all values of k and Q, where the first 

20,000 samples were discarded as burn-in and the remaining 80,000 were utilized for posterior 

estimation.  A second run of 100,000 was then executed with starting values of µk and CQ equal 

to the mean parameter estimates from the initial run.  Final parameter estimates and 95% credible 

intervals were derived from all 100,000 samples of the second run. A given parameter was 

estimated by the mean sample value for that parameter, and the 95% credible intervals were 

estimated by taking the 0.025 and 0.975 quantiles of the sample for that parameter.  Data from a 

representative subject are plotted in Figure 2.2b: five criterion values and six distance values are 

displayed as line graphs with the 95% credible interval as error bars.   

Since we were only interested in parameter differences induced by our same-different 

ratio manipulation, only the vector of estimated criterion values, C=(C0.333, C0.5, C1, C2, C3) were 

entered into second-level analyses.  The mean 95% credible interval across Cq, q = 0.333, 

0.5,1,2,3, was calculated for each subject as a means to determine the precision of the model fit.  

Three subjects with a mean 95% credible interval greater than 1 (and negligible variation in the 

Ck’s) were excluded from further analysis.  Individual subject parameter estimates for C were 

then entered in a multivariate analysis of variance (mANOVA) to test for differences in the 

group means across bias ratio conditions. 
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Data analysis – MRI 

 

Study-specific Template Construction and Normalization of Functional Images 

Group-level localization of function in fMRI, including identification of task-related 

changes in activation, can be highly dependent on accurate normalization to a group template.  

Surface-based (Argall, Saad & Beauchamp, 2005; Desai, Liebenthal, Possing, Waldron & 

Binder, 2005) and non-linear (Klein et al., 2009; Klein et al., 2010) warping techniques have 

recently been utilized to improve normalization by accounting for individual anatomical 

variability.  Here, we used a diffeomorphic registration method implemented within the 

Advanced Normalization Tools software (ANTS; Avants et al., 2008; Avants & Gee, 2004). 

Symmetric diffeomorphic registration (SyN) uses diffeomorphisms (differentiable and invertible 

maps with a differentiable inverse) to capture both large deformations and small shape changes.  

We constructed a study-specific group template using a diffeomorphic shape and intensity 

averaging technique and a cross-correlation similarity metric (Avants, Anderson, Grossman & 

Gee, 2007; Avants et al., 2010).  The resulting template was then normalized using SyN to the 

MNI space ICBM template (http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009; 

ICBM 2009a Nonlinear Symmetric).  A low-resolution (2x2x2mm) version of the study-specific 

template was constructed for alignment of the functional images.  Functional images for each 

individual subject were first motion-corrected, slice timing corrected and aligned to the 

individual subject anatomy in native space using AFNI software (http://afni.nimh.nih.gov/afni).  

Following this step, the series of diffeomorphic and affine transformations mapping each 

individual subject’s anatomy to the MNI-space, study-specific template was applied to the 
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aligned functional images, using the low-resolution template as a reference image.  The resulting 

functional images were resampled to 2x2x2mm voxels and registered to the study-specific group 

template in MNI space. 

 

fMRI Analysis 

Preprocessing of the data was performed using AFNI software.  For each run, motion 

correction, slice timing correction, and coregistration of the EPI images to the high resolution 

anatomical were performed in a single interpolation step.  Normalization of the functional 

images to the group template was performed as described above.  Images were then high pass 

filtered at .008 Hz and spatially smoothed with an isotropic 6-mm full-width half-maximum 

(FWHM) Gaussian kernel.  Each run was then mean scaled in the temporal domain.  The global 

mean signal was calculated at each time point and entered as a regressor of no interest in the 

individual subject analysis along with motion parameter estimates. 

A Generalized Least Squares Regression analysis was performed in individual subjects in 

AFNI (3dREMLfit).  To create the regressors of interest, a stimulus-timing vector was created 

for each bias ratio condition by modeling each sparse image timepoint as “on” or “off” for that 

condition.  The resulting regression coefficients for each bias ratio represented the mean percent 

signal change (PSC) from rest.  A linear contrast representing the average activation (versus rest) 

across all bias ratio conditions was also calculated for each subject. 
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Group Analysis 

First, a mask of “active” voxels was created by entering the individual subject contrast 

coefficients for average activation across bias ratio conditions (relative to rest) in a Mixed-

Effects Meta-Analysis (AFNI 3dMEMA) at the group level.  This procedure is similar to a 

standard group level t-test but also takes into account the level of intra-subject variation by 

accepting t-scores from each individual subject analysis.  A voxel-wise threshold was applied 

using the false discovery rate (FDR) procedure at q < 0.05.  Voxels surviving this analysis 

demonstrated a mean level of activity that was significantly greater than baseline across all bias 

conditions and all subjects at the chosen threshold.  All further analyses were restricted to this set 

of voxels. 

To evaluate whether voxels were sensitive to changes in behaviorally measured response 

bias, we performed an orthogonal linear regression with absolute value of the bias score as the 

predictor variable and percent signal change as the dependent variable (orthogonal regression 

accounts for measurement error in both the predictor and dependent variables).  We chose to use 

the absolute value of our bias measure because the sign of Cq reflects the direction of response 

bias (toward “same” or “different”), and we wanted to assess the effect of overall bias magnitude 

on percent signal change, without respect to direction.  As such, we will subsequently refer to the 

vector of bias values entered in the group fMRI analysis as |C|=(|C0.333|, |C0.5|, |C1|, |C2|, |C3|).  

Individual subject vectors |C| and PSC=(PSC0.333, PSC0.5, PSC1, PSC2, PSC3) were concatenated 

across subjects and entered in the group regression.  To account for between subject variability in 

|C| and PSC, measures in each individual subject vector were converted to z-scores prior to 

regression.  Thus, the ratio of error variances in the orthogonal regression was assumed to be 1, 

such that the equation for the slope of the regression line (y = mx + b) took the form 
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where Ui = xi – mean(x) and Vi = yi – mean(y).  A one-out jackknife procedure was used to 

estimate the standard error of the slope estimator.  Jackknife t-statistics were constructed in the 

form 

 

where m is the slope estimator,  is the mean of the jackknife distribution of slope estimators, 

and  is the standard deviation of the jackknife distribution of slope estimators.  Hypothesis 

testing was performed against values from a student’s t distribution with N-2 degrees of freedom. 

In sum, our group analysis consisted of orthogonal linear regression of 75 bias scores on 

their corresponding 75 PSC measures (five bias ratio conditions, 15 subjects; three subjects were 

excluded on the basis of our criterion on the maximum allowable mean 95% Bayesian credible 

interval for C).  Voxels were deemed to be significant at an FDR-corrected threshold of q < 0.01 

with a minimum cluster size of 20 voxels.  
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Results 

 

Behavioral Results 

During the fMRI session, subjects performed a total of 144 same-different discrimination 

trials in each of five bias ratio conditions: 1:3, 1:2, 1:1, 2:1, 3:1.  Consonant vowel pairs were 

presented in a background of Gaussian noise at a constant SNR based on a behaviorally 

determined threshold performance (see methods).  Subjects were expected to make use of same-

different ratio information to bias their response patterns – e.g., in the 1:3 ratio condition, 

subjects would be expected to respond “different” more often on uncertain trials, and in the 3:1 

ratio condition subjects would be expected to respond “same” more often.  As such, our 

behavioral measure of response bias, C, was expected to vary significantly across bias ratio 

conditions.  The results bear out this expectation: group mean C varied significantly (Λ = 0.170, 

F(4,11) = 13.461, p < 0.001) and in the expected direction (larger negative values for ratio 

conditions with a greater number of different trials and larger positive values for ratio conditions 

with a greater number of same trials (Figure 2.3).  This result confirms that our treatment 

succeeded in manipulating response bias while holding the physical stimuli constant across 

conditions.  For completeness, we also calculated a summary d’ measure for each condition by 

tabulating the overall hit rate and false alarm rate across all trial types and entering these values 

in the standard signal detection formula for same-different designs (Independent Observation 

model; see Macmillan & Creelman, 2005).  Indeed, group mean d’ values did not vary 

significantly across conditions (Λ = 0.757, F(4,14) = 1.125, p = 0.384). 
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Figure 2.3. Group behavioral results for our bias measure, C. The data are plotted as a line graph where the x-axis is the 
same-different ratio and the y-axis is the group mean value of C.  Error bars reflect ± one standard error of the mean.  
The zero criterion value (no bias) is plotted as a dotted line in red. Clearly, C varies significantly in the expected direction 
(negative values indicate bias toward responding “different” and positive values indicate bias toward responding “same”).  
Also, the mean criterion value in the 1:1 bias ratio condition is closest to zero (and contains zero within ± 1SE), as 
expected. 

 

fMRI Results 

Overall activation to speech discrimination versus rest was measured on the basis of a 

linear contrast modeling mean activation across bias ratio conditions (see Methods).  The group 

result for this contrast (Figure 2.4) reveals a typical perisylvian language network including 

activation in bilateral auditory cortex, anterior and posterior superior temporal gyrus (STG), 

posterior superior temporal sulcus (STS), and planum temporale.  Activation was also observed 

in speech motor brain regions including left inferior frontal gyrus (IFG) and insula, bilateral 

motor/premotor cortex and bilateral supplementary motor area (SMA).  Other active areas 

include bilateral parietal lobe (including somatosensory cortex), thalamus and basal ganglia, 

cerebellum, prefrontal cortex, and visual cortex.  All activations are reported at FDR-corrected P 



60 
 

< 0.05.  Subsequent analyses were restricted to suprathreshold voxels in this task versus rest 

analysis. 

 

Figure 2.4. Group (n=15) t-map for the contrast corresponding to mean activation in the syllable discrimination task 
(versus rest) across all five bias ratio conditions.  The statistical image was thresholded at FDR-corrected q < 0.05.  The 
set of voxels identified in this contrast were used as a mask for all subsequent analyses. 

In order to isolate active voxels for which activity was modulated significantly by 

changes in response bias, we carried out a group level regression of |C| against measured percent 

signal change (PSC).  Each measure was converted to a z-score prior to regression in order to 

account for between-subject variability in |C| and PSC.  In other words, we wanted to identify 

voxels for which changes in response bias (regardless of direction) were associated with changes 

in PSC in individual subjects.  We hypothesized that voxels in speech motor brain regions would 

be most strongly modulated by changes in response bias.  Indeed, significant voxels were almost 

exclusively restricted to motor and/or frontoparietal sensory-motor brain regions.  Clusters 

significantly modulated by response bias were identified in left ventral precentral gyrus 
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bordering on IFG, a more dorsal aspect of the left ventral precentral gyrus, left insula, bilateral 

SMA, left ventral postcentral gyrus extending into frontosylvian cortex, right superior parietal 

lobule, left inferior parietal lobule, and bilateral superior frontal cortex including middle frontal 

gyrus, superior frontal gyrus, and dorsal precentral gyrus (see Table 2.1 for MNI coordinates).  

One additional cluster was identified in right peri-calcarine visual cortex.  Each of these clusters 

demonstrated a strong negative relationship between |C| and PSC (i.e., signal was generally 

stronger when participants exhibited less response bias (Figure 2.5).  The significance of this 

relationship is discussed at length below but, briefly, we believe that signal increases were 

produced by more effortful processing when, 1) probabilistic information was not available to 

subjects (in the 1:1 condition), or 2) subjects chose to ignore available probabilistic information 

(low measured response bias in the 1:3, 1:2, 2:1, or 3:1 conditions), leading to increased 

recruitment of the sensory-motor network elaborated previously.  Indeed, no clusters were found 

to demonstrate a positive relationship between response bias and PSC, and activity in temporal 

lobe structures was not correlated with response bias.   
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Figure 2.5. Group results (z-maps, where FDR q values are converted to z-scores) for the orthogonal regression of 
response bias (|C|) on BOLD percent signal change (PSC).  Each region pictured was significant at FDR-corrected q < 
0.01 with a minimum cluster size of 20 voxels.  Next to each significant cluster is a scatter plot of normalized bias score (x-
axis) against normalized percent signal change (averaged across all voxels in the region).  Each plot contains five data 
points from each of the 15 subjects (blue) corresponding to the five same-different ratio conditions in the syllable 
discrimination experiment.  The orthogonal least squares fit is plotted in red.  There is a strong negative relationship 
between response bias and percent signal change in every region of this fronto-parietal network. 
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Table 2.1 

MNI coordinates of the center of mass in activated cluster (thresholded FDR q < 0.01, minimum 

20 voxels, group analysis) 

 

  

Number of Voxels Hemisphere 
  

 

  x y z 

Correlated with Bias (|C|)      

Superior Frontal Gyrus 434 Left -30 -1 60 

Supplementary Motor Area 287 Bilateral -1 2 56 

Ventral Postcentral Gyrus 255 Left -62 -10 14 

Superior Parietal Lobule/Post-Central Gyrus 125 Right 51 -31 59 

Superior Frontal Gyrus 95 Right 34 -4 65 

Inferior Parietal Lobule 48 Left -48 -43 51 

Peri-Calcarine Cortex 47 Right 28 -65 6 

Insula 37 Left -35 22 9 

Ventral Pre-central Gyrus 37 Left -58 7 18 

Dorsal Pre-Central Gyrus 26 Left -62 -1 40 

Insula 24 Left -42 16 2 

Inferior Parietal Lobule 23 Left -59 -30 54 

 

 

Discussion 

Performance on a speech sound discrimination task involves at least two processes, 

perceptual analysis and response selection.  In the present experiment we effectively held 

perceptual analysis (signal-to-noise ratio) constant while biasing response selection (probability 
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of same vs. different trials).  Our behavioral findings confirmed that this manipulation was 

successful, as our measure of bias, C, changed significantly across conditions as expected. This 

allowed us a means for identifying the brain regions involved in the response selection 

component of the task.  When the discrimination task was compared against baseline (rest) we 

found a broad area of activation including superior temporal, frontal, and parietal regions 

bilaterally, implicating auditory as well as motor and sensory-motor regions in the performance 

of the task.  However, when we tested for activation that was correlated with changes in response 

bias, only the motor and sensory-motor areas were found to be significantly modulated; no 

temporal lobe regions were identified.  This finding is consistent with a model in which auditory-

related regions in the temporal lobe are performing perceptual analysis of speech, while the 

motor-related regions support (some aspect of) the response selection component of the task.   

A similar dissociation has been observed in monkeys performing vibrotactile frequency 

discrimination (VTF).  In a VTF experiment, monkeys must compare the frequency of vibration 

of two tactile stimuli, f1 and f2, separated by a time gap.  The monkey must decide whether the 

frequency of vibration was greater for f1 or f2, communicating its answer by pressing a button 

with the nonstimulated hand.  Single-unit recordings taken from neurons in primary 

somatosensory cortex (S1) indicate that, for many S1 neurons, the average firing rate increases 

monotonically with increasing stimulus frequency (Hernandez, Zainos & Romo, 2000).  It has 

been argued that this rate code serves as sensory evidence for the discrimination decision (Romo, 

Hernandez, Zainos & Brody, 2000; Romo, Hernandez, Zainos & Salinas, 1998; Salinas, 

Hernandez, Zainos & Romo, 2000).  However, S1 firing rates do not dissociate on the basis of 

trial type – that is, there is no difference in the mean firing rate (across frequencies) during the 

comparison (f2) period for trials of type f1>f2 versus f2>f1, so S1 responses strictly reflect f1 
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frequency in the first interval and f2 frequency in the second interval, not their relation (cf., Gold 

& Shadlen, 2005).  However, neurons in several areas exhibit activity patterns that do reflect a 

comparison between f1 and f2.  In particular, neurons in the ventral and medial premotor cortices 

persist in firing during the delay period between f1 and f2, and discriminate trial type on the 

basis of mean firing rate during the comparison period (Romo, Hernandez & Zainos, 2004).  This 

indicates that these neurons are likely participating in maintenance and comparison of sensory 

representations (Hernandez, Zainos & Romo, 2002; Romo et al., 2004). 

In the case of our syllable discrimination paradigm, it is unclear exactly what aspect(s) of 

response selection is (are) being performed by the motor and sensory-motor brain regions 

identified in our fronto-parietal network. Beyond perceptual analysis of the stimuli, a 

discrimination task involves short-term maintenance of the pair of stimuli and some evaluation 

and decision process.  Given that our bias measure was negatively correlated with BOLD signal 

in the fronto-parietal network, i.e., that activation was higher with less bias, the following 

account is suggested.  Bias can simplify a response decision by providing a viable response 

option in the absence of strong evidence from a perceptual analysis.  In our case, knowledge of 

the same versus different trial ratio provides a probabilistically determined response option in the 

case of uncertainty. So when subjects were in doubt based on the perceptual analysis, a simple 

decision, go with the most likely response, was available and if used would tend to decrease 

activation in a neural network involved in response selection.   

Although our experiment cannot determine which aspects of the response selection 

process are driving activation in the fronto-parietal network, the location of some of the 

activations suggest some likely possibilities.  For example, the involvement of lower-level motor 

speech areas such as ventral and dorsal premotor cortex, regions previously implicated in 
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phonological working memory (Buchsbaum et al., 2011; Buchsbaum, Olsen Koch et al., 2005; 

Buchsbaum, Olsen, Koch, Kohn, et al., 2005; Hickok et al., 2003), suggest that these regions 

support response selection via short-term maintenance of phonological information.  One 

possibility, therefore, is that in the absence of either decisive perceptual information or a strong 

decision bias, subjects will work harder to come to a decision and as part of this effort will 

maintain short-term activation of the stimuli in working memory for a longer period of time 

resulting in more activation in regions supporting articulatory rehearsal.   

An alternative view of the role of the motor system is that it is particularly involved in 

speech perception during degraded listening conditions, such as in the current experiment in 

which stimuli were presented in noise and near psychophysical threshold (Binder et al., 2004; 

Callan, Jones, Callan & Akahane-Yamada, 2004; D’Ausilio et al., 2011; Shahin, Bishop & 

Miller, 2009; Zekveld et al., 2006).  This view is not inconsistent with the present findings, at 

least broadly.  For example, the motor system may assist in perception via its role in 

phonological working memory.  In this case, the explanation of our findings proposed above 

would hold equally well as this “alternative.”  However, most motor-oriented theorists promote a 

more powerful role for the motor system in speech perception, holding that it contributes 

substantively to the perceptual analysis.  Some of these authors have argued for a strong version 

of the motor theory of speech perception by which motor representations themselves must be 

activated in order for perception to occur (Fadiga & Craighero, 2006; Gallese, Fadiga, Fogassi & 

Rizzolatti, 1996).  Others hold a more moderate view in which the motor system is able to 

modulate sensory analysis of speech, for example, via predictive coding (Bever & Poeppel, 

2010; Callan et al., 2004; Skipper, van Wassenhove, Nusbaum & Small 2007; Wilson & 

Iacoboni, 2006).  The present data do not provide strong support for either of these possibilities 
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because if the motor system were contributing to perceptual analysis, then modulating motor 

activity, as we successfully achieved in our study would have been expected to result in a 

modulation of perceptual discrimination, which it did not. 

The above argument, that modulation of the motor system did not result in a 

corresponding modulation of perceptual discrimination and therefore the motor system is not 

contributing to perception, is dependent on whether we modulated the relevant components of 

the motor system.  To assess this, we examined the relation between our biased-induced 

modulation and two prominent previous TMS studies that have targeted the motor speech system 

and found modulatory effects on (potentially biased) measures of performance.  Figure 2.6 shows 

that the regions that are correlated with our measure of bias overlap those regions that were 

stimulated in previous TMS studies of motor involvement in speech perception.  This suggests 

that we were successfully able to modulate activity in these same regions and yet still failed to 

observe an effect on perceptual discrimination. 
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Figure 2.6. Left hemisphere activations that were sensitive to changes in response bias are plotted in blue (current study). 
MNI coordinates used to target rTMS in Meister et al. (2007; listed in their table 1)  are plotted as 2mm radius spheres in 
yellow.  Motor ROIs from Pulvermüller et al. (2006) are plotted in red as 3mm radius spheres around the MNI peak 
activation foci (8mm radius ROIs were used in the original study).  Depth is represented faithfully – activations nearest to 
the displayed cortical surface are increasingly bold in color, while activations farthest from the displayed surface are 
increasingly transparent.   Targets in Meister et al. were peak activations from an fMRI localizer experiment involving 
perception of auditory speech.  Disruptive stimulation of these targets resulted in a slight decrement in syllable 
identification performance.  The motor ROIs from Pulvermüller et al. were identified on the basis of activation to lip and 
tongue movements in a motor localizer experiment.  The motor somatotopy established therein is also shown (lip foci are 
circled in orange and tongue foci are circled in green).  The two posterior foci (one in the lip region and one in the tongue 
region) were chosen to target TMS stimulation in d’Ausilio et al. (2009), which demonstrated that excitatory stimulation 
to lip and tongue motor cortex selectively facilitated identification of phonemes relying on those articulators. 

What might explain the discrepancy between our finding, that the motor speech system is 

modulated by manipulations of bias (and not perceptual discrimination), and TMS findings, 

which show that stimulation of portions of the motor speech system affect measures of speech 

perception? Given that none of the previous TMS studies used an unbiased dependent measure, it 

is a strong possibility that what is being affected by TMS to motor speech areas is not speech 

perception ability but response bias.  An alternative possibility is consistent with our proposed 

interpretation of what is driving the bias correlation in our experiment, namely that motor speech 

regions support speech perception tasks only indirectly via articulatory rehearsal.  This could 

explain Meister et al.’s (2007) result that stimulation to premotor cortex caused a decline in 

performance on the assumption that active maintenance of the stimulus provides some benefit to 
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performance.  It could also explain the somatotopic-specificity result of d’Ausilio et al. (2009) on 

the assumption that stimulating lip or tongue areas biased the contents of phonological working 

memory.  Further TMS studies using unbiased measures will be needed to sort out these 

possibilities. 

To review, we specifically modulated response bias in a same-different syllable 

discrimination task by cueing participants to the same-different ratio, which was varied over five 

values (1:3, 1:2, 1:1, 2:1, 3:1).  We used the measure C from our modified signal detection 

analysis to evaluate performance, where this measure is taken to represent behavioral response 

bias.  Our experimental manipulation was successful in that response bias varied significantly 

across conditions while the physical stimuli remained constant, and we demonstrated that overall 

magnitude of response bias (|C|) correlated significantly with BOLD percent signal change in a 

frontoparietal network of motor and sensory-motor brain regions.  We had predicted that we 

would observe a significant relationship between response bias and BOLD activity in frontal but 

not temporal brain structures.  Indeed, eight of twelve clusters demonstrating a significant 

relationship between bias and percent signal change were entirely confined to frontal cortex or 

contained voxels in frontal cortex.  None of the clusters contained voxels in temporal cortex.  In 

each region there was a strong negative relationship between response bias and BOLD activation 

level, which we argued was due to our sensory-motor network participating in response selection 

components of the syllable discrimination task.  In particular, we argued that the load on 

response selection was reduced when a probabilistically determined response option was 

available, resulting in lower activation levels.  We also demonstrated that several of our clusters 

in the vicinity of the left premotor cortex overlap quite well with premotor foci previously 

implicated in modulation of speech perception ability.  However, our results undermine claims 
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that speech perception is supported directly by premotor cortex since our manipulation of 

response bias successfully modulated activity in these regions without modulating speech 

discrimination performance.  
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CHAPTER 3 

 

Primer 

 The preceding chapters worked toward the conclusion that speech perception is 

fundamentally carried out within sensory (as opposed to motor) brain regions.  This supports a 

broader conclusion, albeit indirectly, that the objects of speech perception are auditory as 

opposed to gestural.  However, speech perception is inherently multisensory.  While sound is the 

primary medium for speech, different parameters of the speech signal can be estimated from 

visual or even haptic (Boothroyd, Kishon-Rabin, & Waldstein, 1995; Fowler & Dekle, 1991) 

signals.  Chapters 3 and 4 will explore the computational and neural mechanisms underlying 

audiovisual integration of speech.  In particular, the focus will shift from describing what speech 

perception is not as in Chs. 1 and 2, to what speech perception is: a set of computations capable 

of integrating information across multiple sensory channels.  The broad assumption is that we 

can learn something about the speech perceptual mechanism by understanding how speech 

information is differentially encoded within, and subsequently integrated across, these sensory 

channels.  This may be relatively simple for certain low-level temporal parameters (e.g., onset 

and offset of voicing (K. G. Munhall, Jones, Callan, Kuratate, & Vatikiotis-Bateson, 2004)) that 

can be estimated from temporal co-modulation between auditory and visual speech signals (and 

thus processed by general mechanisms).  The case is more complex for integration of visual cues 

that specify phonetic information – i.e., information about the shape of the vocal tract conveyed 

through a variety of facial configuration and motion cues over time.  These cues are often 

complementary to (rather than redundant with) the auditory signal (Q. Summerfield, 1987).  The 
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current chapter begins to work on this problem by developing a method to identify the particular 

visual cues that are integrated with the auditory signal for a given audiovisual speech stimulus.  

The technique allows a high degree of temporal precision and I exploit this precision to reveal 

exactly which visual cues are integrated in different temporal contexts.  The results inform 

current models of audiovisual integration in speech. 

 

The temporal dynamics of audiovisual fusion in speech 

Jonathan H. Venezia, Steven Thurman, William Matchin, Sahara George, and Gregory Hickok 

 

Introduction 

 It has been argued that processing of visual speech gestures proceeds in two distinct 

modes – a correlated mode in which dynamic visual features partially duplicate the spectro-

temporal patterns in heard speech, and a complementary mode in which visual speech provides 

reliable cues that can disambiguate underspecified parts of the auditory speech stream 

(Campbell, 2008; Q. Summerfield, 1987).  Recent evidence suggests these modes are related to 

two stages of processing in audiovisual integration of speech – an early binding stage in which 

coherent auditory and visual speech signals are bound (or not) to a single processing stream, and 

a late fusion stage in which auditory and visual speech signals are integrated, per se, into a 

unified percept (Berthommier, 2004; Nahorna, Berthommier, & Schwartz, 2012).  More 

generally, it has been pointed out that perceptual systems must solve a problem of causal 

inference in order to determine whether multiple signals originate from a single source, and once 
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this problem has been solved the nervous system must further determine how to integrate these 

signals (Shams & Kim, 2010).  Binding and fusion of auditory and visual speech, as described 

above, likely correspond to mechanisms for solving these general problems of multisensory 

integration. 

 Fusion is essentially conditional on binding – fusion should occur only when auditory 

and visual speech signals are bound, and fusion strength may be partially a function of some 

continuous measure of audiovisual coherence, perhaps expressed as a probability (Magnotti, Ma, 

& Beauchamp, 2013).  Recent evidence indicates that binding is sensitive (at least) to temporal 

and phonetic coherence (Nahorna et al., 2012), the latter of which rules out temporal 

comodulation between the visual and auditory speech signals (Chandrasekaran, Trubanova, 

Stillittano, Caplier, & Ghazanfar, 2009; Grant, 2001; Grant & Seitz, 2000) as the primary or sole 

cue for binding.  Nonetheless, it is instructive to examine the effects of temporal coherence on 

audiovisual speech binding, if for no other reason than the fact that it is simple to examine the 

limits of binding with respect to temporal synchrony – one can simply ask subjects to make 

explicit synchrony judgments for a range of audiovisual temporal offsets.   A line of research 

utilizing this technique has yielded consistent results: auditory and visual speech signals are 

judged to be synchronous over a relatively long temporal window ranging from ~50ms audio-

lead to ~200ms visual-lead (where “lead” is relative to natural timing), and this holds for 

connected speech (Grant, Wassenhove, & Poeppel, 2004), words (Conrey & Pisoni, 2006), and 

syllables (V. van Wassenhove, Grant, & Poeppel, 2007). 

 The marked asymmetry in this temporal window favoring visual-lead is rather striking.  

A plausible explanation based on the natural dynamics of audiovisual speech has been generated 

to explain this effect (Grant et al., 2004; V. van Wassenhove et al., 2007).  As it goes, visual 
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speech is relatively coarse with respect to both time and informational content – that is, the 

information conveyed by speechreading is limited primarily to place of articulation (Grant & 

Walden, 1996; Massaro, 1987; Q. Summerfield, 1987; Quentin Summerfield, 1992), which 

evolves over a syllabic interval of ~200ms (Greenberg, 1999).  Conversely, auditory speech 

contains robust cues that can be processed on a fine phonemic time scale of ~20-40 ms (Poeppel, 

2003).  The argument concerns the primacy of auditory speech signals: when relatively robust 

auditory information is processed before visual speech cues have been realized (i.e, even at 

rather short audio-lead asynchronies), there is no need to “wait around” for slowly-unfolding 

visual speech information, and so the auditory and visual speech streams are unbound.  The 

opposite is true for situations in which visual speech information is processed before auditory-

phonemic cues have been realized (visual-lead) – it pays to wait as long as possible for auditory 

information to disambiguate among candidate representations activated by visual speech 

(auditory and visual streams are bound).  Under this characterization, visual speech plays a 

predictive role in bimodal speech perception (Virginie van Wassenhove, Grant, & Poeppel, 

2005).  Indeed, mouth movements appear to lead the voice within a range of 100-300ms for 

audiovisual speech with natural timing (Chandrasekaran et al., 2009), but see also (Schwartz & 

Savariaux, 2014).   

 It might be argued that the large temporal window for binding of audiovisual speech is an 

artifact of the somewhat unnatural synchrony judgment task.  However, the same window – in 

terms of duration and visual-lead asymmetry – has been measured for audiovisual sentences 

using speech recognition as the task (Grant & Greenberg, 2001).  In this study, the auditory 

signal was filtered into two 1/3-octave bands (298-375 Hz, 4762-6000 Hz), rendering auditory 

sentences largely unintelligible (18.6% recognition).  Adding visual speech with natural timing 
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boosted intelligibility to 62.6% and this boost remained for visual-lead asynchronies up to 

200ms.  A drop in intelligibility (46.5%) was observed for auditory-lead asynchronies beginning 

at 40ms.  Interestingly, this suggests that the audiovisual boost to intelligibility, presumably 

derived from fusion computations that integrate complementary visual speech cues with the 

auditory signal, are essentially uniform within the audiovisual binding window.  Similar 

evidence can be drawn from the McGurk effect (McGurk & MacDonald, 1976) – an illusion in 

which an auditory syllable (e.g., /pa/) dubbed onto video of an incongruent visual syllable (e.g., 

/ka/) yields a perceived syllable that matches neither the auditory or visual component (e.g., /ta/).  

Here, fusion is measured explicitly (e.g., % illusory /ta/ responses), and McGurk fusion is 

demonstrably robust to temporal asynchrony over the typical binding window (<50ms audio-lead 

to ~150ms visual-lead) (V. van Wassenhove et al., 2007). 

 This syllable-length window has been dubbed the ‘temporal window of integration’ for 

audiovisual speech (V. van Wassenhove et al., 2007), meaning that auditory and visual speech 

signals that align anywhere within this temporal window will be bound (and effectively 

integrated when useful information is present, as evidence by the temporal window observed for 

audiovisual intelligibility gains and the McGurk effect).  This suggests that the set of visual cues 

that are integrated with the auditory signal does not depend on the temporal relationship between 

visual and auditory speech, so long as the two signals are within the temporal window of 

integration.  In other words, the fusion mechanism should operate uniformly for a given set of 

visual cues in a bound audiovisual speech signal.  However, this need not be the case.  

Multisensory neurons in animal models are modulated by changes in audiovisual synchrony even 

when these changes are within the window in which auditory and visual signals are perceptually 

bound (King & Palmer, 1985; Meredith, Nemitz, & Stein, 1987; Stein, Meredith, & Wallace, 
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1993).  The same effect is observed in humans (as measured in fMRI) when audiovisual speech 

is the stimulus, and seems to be related to a fairly high level or processing – the effect is 

localized to association cortex in the superior temporal lobe (Stevenson, Altieri, Kim, Pisoni, & 

James, 2010). 

 As such, it should be informative to examine precisely the visual speech cues that 

contribute to fusion and their temporal relationship to the auditory speech signal.  Here, we 

present a novel technique based on the McGurk effect that allows for such specification by 

examining, frame by frame (of a digital video), the visual speech information that leads to fusion.  

To implement the technique, we overlaid a McGurk stimulus with a spatiotemporally correlated 

visual masker that revealed different components of the visual speech signal at random on 

different trials, such that fusion was achieved on some trials but not on others based on the 

masking pattern.  Visual information crucial to fusion was identified by comparing the making 

patterns on fusion trials to the patterns on non-fusion trials.  This produced a high resolution 

spatiotemporal map of the visual features that contributed to fusion.  Further, we took advantage 

of the fact that audiovisual speech is bound over a large range of temporal asynchronies – 

namely, we implemented a temporal synchrony manipulation that allowed us to examine changes 

in the map of fusion-related visual features relative to changes in the temporal relationship 

between visual and auditory speech signals.  We specifically chose asynchrony values that fell 

within the temporal window for perceptual binding.  Finally, we extracted the temporal dynamics 

of lip-related movements in the McGurk stimulus (Chandrasekaran et al., 2009) and compared 

these dynamics to the temporal dynamics of the fusion process, estimated using our masking 

technique.  We posed the following questions: (1) What precisely are the visual cues that 

contribute to fusion? (2) When do these cues unfold relative to the auditory signal (i.e., is there 
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any preference for visual information that precedes onset of the auditory signal)? (3) Are these 

cues related to any features in the temporal dynamics of lip movements? (4) Do the particular 

cues that contribute to fusion vary depending on audiovisual synchrony, even when stimuli are 

behaviorally indistinguishable? 

 

Methods 

 

Participants 

 A total of 34 (6 male) participants were recruited to take part in two experiments.  All 

participants were right-handed, native speakers of English with normal hearing and normal or 

corrected-normal vision (self-report).  Participants were students enrolled at UC Irvine and 

received course credit for their participation.  Informed consent was obtained from each 

participant in accordance with the UC Irvine Institutional Review Board guidelines.  Of the 34 

participants, 20 were recruited for the main experiment and 14 for an additional calibration 

study.  Three participants (all female) did not complete the main experiment and were excluded 

from analysis. 

 

Stimuli 

Digital videos of a single male actor producing a sequence of vowel-consonant-vowel 

(VCV) non-words were recorded on a high-speed camera at a native resolution of 1080p at 60 

frames per second.  Videos captured the head and neck of the actor against a green screen.  In 
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post-processing, the videos were cropped to 500x500 pixels and the green screen was replaced 

with a uniform gray background.  Individual clips of each VCV were extracted such that each 

contained 78 frames (duration 1.3s).  Audio was simultaneously recorded on separate device, 

digitized (44.1 kHz, 16-bit), and synced to the main video sequence in post-processing (a 

deliberately-produced acoustic transient in the waveform was manually aligned to the same 

feature in the camera audio). 

 In each VCV, the consonant was preceded and followed by the vowel /α/ (as in ‘father’).  

At least nine VCV clips were produced for each of the English voiceless stops – i.e, APA, AKA, 

ATA.  Of these clips, five each of APA and ATA and one clip of AKA were selected for use in 

the study.  To create a McGurk stimulus, audio from one APA clip was dubbed onto the video of 

the AKA clip.  The APA audio waveform was manually aligned to the original AKA audio 

waveform such that the differences at offset of the initial vowel and onset of the consonant burst 

were minimized.  This resulted in the onset of the consonant burst in the McGurk-aligned APA 

leading the onset of the consonant burst in the original AKA by 6ms.  This McGurk stimulus will 

henceforth be referred to as ‘Lag0’ to reflect the natural timing in the alignment of the auditory 

and visual speech signals.  Two additional McGurk stimuli were created by altering the temporal 

alignment of the Lag0 stimulus.  Specifically, two clips with visual-lead asynchronies within the 

canonical temporal window of integration were created by lagging the auditory signal by 50ms 

(Lag50) and 100ms (Lag100), respectively (Figure 3.1).  A buffer was added to the beginning of 

the Lag50 and Lag100 audio files to maintain duration at 1.3s.  In a calibration experiment, the 

Lag0 McGurk clip was presented in a 4-AFC design along with congruent clips of APA, AKA, 

and ATA (experimental conditions were the same as for the main experiment; see below).  

Participants were asked to indicate what they perceived (APA, AKA, ATA, OTHER).  The Lag0 
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stimulus was perceived as ATA 92% (± 3% SEM) of the time on average, indicating a high 

degree of fusion.  All congruent stimuli were perceived accurately >90% of the time. 

 

Figure 3.1. Construction of McGurk stimuli.  The audio signal from an APA video clip was extracted and dubbed over an 
AKA video clip.  This was done with three separate versions of the APA audio clip: APA audio synchronized with AKA 
audio (Lag0), APA audio lagged 50ms behind AKA audio (Lag50), and APA audio lagged 100ms behind AKA audio 
(Lag100).  Audio waveforms for AKA, Lag0, Lag50, and Lag100 are displayed.  Red lines show stimulus combinations 
used to produce the McGurk stimuli. 

 

Procedure 

 For all experimental sessions, stimulus presentation and response collection was 

implemented in Psychtoolbox-3 (Kleiner et al., 2007) on an IBM ThinkPad running Ubuntu 

Linux.  Auditory stimuli were presented over Sennheiser HD 280 Pro headphones and responses 

were collected on a DirectIN keyboard (Empirisoft).  Participants were seated ~20 inches in front 
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of the testing laptop inside an anechoic chamber (IAC Acoustics).  All auditory stimuli 

(including those in audiovisual video clips) were presented at an average of 68 dB SPL (A) 

against a background of white noise at 62 dB SPL (A).  This auditory signal-to-noise ratio (+6 

dB) was chosen to increase the likelihood of McGurk fusion (Magnotti et al., 2013) without 

significantly disrupting identification of the auditory signal in isolation.   

Each participant completed three days of testing spread over no more than a week.  The 

task was phoneme identification on a six-point confidence scale: on each trial of the experiment, 

participants were asked to indicate whether or not they perceived the non-word APA using the 1-

6 keys on the response keyboard.  Participants were told they would be presented some VCV 

non-word of the form /α/-X-/α/.  The ‘1’ key indicated highest confidence for APA and the ‘6’ 

key indicated highest confidence for Not-APA, with the boundary between ‘3’ and ‘4’ 

corresponding to a categorical decision boundary.  The response key as displayed to participants 

follows: 

 

Sure apa 1 2 3 4 5 6 Sure Not apa 

 

Phoneme identification was performed in three conditions: audio-only, clear audiovisual (Clear-

AV), and masked audiovisual (masked-AV).  In the audio-only condition, participants completed 

two blocks of 100 trials of auditory phoneme identification.  The 100 trials comprised 50 trials in 

which the stimulus was APA, and 50 trials in which the stimulus was ATA.  There five separate 

APA tokens (including the APA audio used to create McGurk stimuli) and five separate ATA 

tokens (10 trials per token), presented in random order.  In each trial, a black fixation cross was 
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presented against a gray background over a jittered inter-trial interval (0.5-1.5s); at onset of the 

auditory signal, the fixation cross was replaced by the response key which remained on screen 

until participants made their response.   

In the clear-AV condition, participants completed six blocks of 24 trials of audiovisual 

phoneme identification.  In each block, 16 trials contained a McGurk stimulus, 4 trials contained 

one of four congruent APA videos, and 4 trials contained one of four congruent ATA videos.  

The congruent videos served as perceptual “anchoring” stimuli for the McGurk stimulus 

(participants were not explicitly aware that the McGurk stimulus was incongruent).  The McGurk 

stimulus in each block was Lag0, Lag50, or Lag100 (2 blocks each, random order).  In each trial, 

a blank gray background appeared during a variable inter-trial interval (based on video loading 

times), followed by presentation of the video (1.3s); at the end of the video, the response key was 

flashed on screen and remained until participants made their response. 

The crucial condition was the masked-AV condition.  Here, participants completed 24 

blocks of 40 trials of audiovisual syllable identification.  In each block, there were 32 McGurk 

trials and 8 “anchoring” trials with congruent APA or ATA videos.  The trial structure was the 

same as for clear-AV.  The major difference was that a visual masker was placed over the mouth 

of the speaker on each trial.  The masker disrupted McGurk fusion on some trials but not on 

others (see section immediately following). 

 

Visual masking technique 

 We developed a novel visual masking technique designed to reveal the temporal 

dynamics of audiovisual fusion in speech.  This technique is based on “bubbles” techniques 
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applied in some of our previous work (Thurman, Giese, & Grossman, 2010; Thurman & 

Grossman, 2011).  Masking was applied to VCV video clips in the masked-AV condition.  To 

apply our technique, we first down-sampled the clip to 120x120 pixels, and from this down-

sampled clip we selected a 30x35 pixel region covering the mouth and part of the lower jaw of 

the speaker.  This pixel values in this region were demeaned and a 30x35 mouth-region masker 

was applied as follows: (1) a random image (uniform(0,1)) was created for each frame; (2) a 

Gaussian blur was applied to the random image sequence in the temporal domain (sigma = 10 

frames); (3) a Gaussian blur was applied to the random image sequence in the spatial domain 

(sigma = 14 pixels); (4) the blurred image sequence was scaled back to a range of [0 1] and a 

power transform (^4) was applied; (5) the processed 30x35 image sequence was multiplied to the 

30x35 mouth region of the original video separately in each RGB color frame; (6) the contrast 

variance in the masked mouth region was adjusted to 4 and mean intensity was set to 128; (7) the 

fully processed sequence was up-sampled to 480x480 pixels for display.  In the resultant video, a 

masker with spatiotemporally correlated alpha (transparency) values covered the mouth.  

Specifically, the mouth was (at least partially) visible in certain frames of the video, but not in 

other frames (Figure 3.2).  Maskers were generated online and at random for each trial, such that 

no masker had the same pattern of transparent pixels.  The crucial manipulation was masking of 

McGurk stimuli, where the logic of the masking process is as follows: when transparent 

components of the masker reveal critical visual features (i.e., of the mouth during articulation), 

McGurk fusion will be observed; on the other hand, when critical visual features are blocked by 

the masker, McGurk fusion will not be observed.  The set of visual features that contribute 

reliably to fusion can be estimated from the relation between behavioral response patterns and 
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masker patterns over many trials.  The specific masker created for each trial was saved for later 

analysis.   

 

Figure 3.2. Twenty-five frames from an example masked-AV stimulus.  Masker alpha (transparency) values were 
spatiotemporally correlated such that only certain frames would be revealed on a given trial.  These frames are outlined 
in red on the example stimulus here.  If you look closely, you will see that the mouth is visible in these frames but not in 
others.  This effect was more natural in live videos. 

 

Data Analysis 

 Performance in the audio-only and clear-AV conditions was evaluated simply in terms of 

% APA responses and mean confidence rating.  The same measures were tabulated for congruent 

stimuli in the masked-AV condition.  The main analysis involved constructing ‘classification 

movies’ (CMs) for the Lag0, Lag50, and Lag100 McGurk stimuli based on behavior collected in 
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the masked-AV condition.  Data from McGurk trials were grouped by stimulus: Lag0, Lag50, 

Lag100 (256 trials each).  Separately for each stimulus, reverse correlation of trial-by-trial 

behavior with trial-by-trial masker alpha values was employed to construct CMs.  Alpha values 

ranged from 0 (most opaque) to 0.5 (most transparent), and a separate alpha movie (the masker) 

was stored for each trial (30x35 pixels, 78 frames).  Behavior was converted from six-point 

confidence ratings to binary weights: on trials for which participants responded APA (1-3 on the 

confidence scale), the response was assigned a value of -1; on trials for which participants 

responded Not-APA (4-6 on the confidence scale), the response was assigned a value of 1.  APA 

responses were correct with respect to the auditory signal (no fusion occurred) while Not-APA 

responses were incorrect with respect to the auditory signal (fusion occurred).  In other words, 

fusion responses were weighted positively and non-fusion responses were weighted negatively.  

In the reverse correlation, we performed a trial-by-trial sum of the masker alpha movies 

weighted by the behavioral response.  The weights were scaled by the overall fusion rate 

(proportion Not-APA responses).  Specifically, we performed a weighted sum of the alpha 

values (𝑎) over all trials (t) for each pixel location (x,y) in each frame (f) of the masker alpha 

movies.  For a given fusion rate, FR: 

𝐶𝑀!,!,! =   
1 − 𝐹𝑅 ∗ 𝑎!    if  response  is  fusion
−𝐹𝑅 ∗ 𝑎!      if  response  is  ~fusion

!"#
!!!         for  𝑥 = 1,… ,30; 𝑦 = 1,… ,35; 𝑓 = 1,… ,78    

  The result was a CM in which large positive values appeared at pixels that were frequently 

transparent (in the masker) when fusion occurred, while large negative values appeared at pixels 

that were frequently transparent when fusion did not occur.  A CM for Lag0, Lag50, and Lag100 

was created separately for each participant. 
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 In order to identify CM pixels that were reliably positive across participants, we 

constructed group CMs for each stimulus.  Individual participant CMs were first z-scored 

(globally across all pixels and time points).  The normalized CMs were then summed across 

participants and divided by sqrt(n), creating a group CM with a standard normal test statistic 

(group z-score) at each pixel.  Group CMs were thresholded using the False Discovery Rate 

(FDR; q < 0.05) to control for multiple comparisons (only the pixels in frames 10-65 were 

included in statistical testing and multiple comparison correction).  Visual features that 

contributed significantly to fusion were identified by overlaying the thresholded group CMs on 

the McGurk video.  In order to chart the temporal dynamics of fusion, we created group 

classification time-courses by averaging across all pixels in each frame of the group CMs.  We 

marked time-points that contributed significantly to fusion by identifying frames in which >25% 

of pixels survived the FDR-corrected threshold (considering only positive-valued z-scores). 

 

Temporal dynamics of lip movements in McGurk stimuli 

 For comparison with the group classification time-courses, we measured and plotted the 

temporal dynamics of lip movements in the McGurk video following established methods 

(Chandrasekaran et al., 2009).  The interlip distance, which tracks the time-varying amplitude of 

the mouth opening, was measured frame-by-frame by manually.  For plotting, the resulting time 

course was smoothed using a Savitzky-Golay filter (order 3, window = 9 frames).  The 

“velocity” of the lip opening was calculated by approximating the derivative of the interlip 

distance (Matlab ‘diff’).  The velocity time course was smoothed for plotting in the same way as 

the interilp distance time course.  Two features related to production of the stop consonant (/k/) 
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were identified from the interlip distance and velocity curves.  Consonants typically involve a 

rapid closing of the mouth before opening to produce the subsequent sound.  To identify the 

temporal signature of this closing phase, we looked backward in time from the onset of the 

consonant burst to find the point at which the interlip distance just started to decrease.  This was 

marked by a trough in the velocity curve, and corresponded to initiation of the closure 

movement.  We then looked forward in time to find the next peak in the velocity curve, which 

marked the point at which the mouth was half-closed and beginning to decelerate.  The time 

between this half-closure point and the onset of the consonant burst, known as ‘time-to-voice,’ 

was calculated to be 300ms for our McGurk stimulus.  The interlip distance time course and 

velocity time course of the McGurk visual AKA are plotted together with the Lag0 audio signal 

(APA) in Figure 3.3.  The various phases of consonant production are marked.  The purple shaded 

region corresponds to production of the initial vowel.  The yellow shaded region corresponds to 

consonant-related lip movements that take place prior to onset of the auditory signal.  The green 

shaded region corresponds to the time period during which consonant-related auditory signal is 

present (consonant burst through onset of vowel steady state). 
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Figure 3.3. McGurk visual stimulus parameters.  Pictured are normalized curves (max = 1) showing the visual interlip 
distance (blue, top) and lip velocity (red, middle) over time.  These curves describe the evolution of the visual AKA signal 
in our McGurk stimuli.  Also pictured is the auditory APA waveform used in the Lag0 (synchronized) McGurk stimulus.  
Several features are marked by numbers on the graphs: (1) corresponds to the onset of lip closure during the initial vowel 
production; (2) corresponds to the point at which the lips were half-way closed toward the offset of initial vowel 
production; (3) corresponds to onset of the consonant burst in the auditory waveform; (4) corresponds to onset of vowel 
steady state in the auditory waveform.  The time between (2) and (3) is the so-called ‘time to voice.’  The purple shaded 
region corresponds to visual and auditory information that both specify the initial vowel /a/.  The yellow shaded region 
corresponds to visual information that (presumably) specifies the consonant /k/.  The green shaded region corresponds to 
auditory information that specifies the consonant /p/.  There could also be visual information that specifies the consonant 
/k/ during the green-shaded period. 
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Results 

 

Audio-only and clear-AV 

 Auditory APA stimuli were perceived as APA 90% (± 1% SEM) of the time on average, 

and the mean confidence rating was 1.78 (± 0.07 SEM).  Auditory ATA stimuli were perceived 

as APA 9% (± 2% SEM) of the time on average, and the mean confidence rating was 5.22 (± 

0.14 SEM).  The APA audio used to create the McGurk stimuli was perceived as APA 89% (± 

2% SEM) of the time on average, and the mean confidence rating was 1.82 (± 0.11 SEM).  

Overall, this indicates that some perceptual uncertainty was introduced for auditory stimuli at the 

+6dB SNR chosen for auditory presentation, but overall auditory-only perception was quite 

accurate. 

 For reporting the results of the clear-AV condition, we will focus on the McGurk stimuli 

(performance for congruent AV stimuli was at ceiling).  Recall that in McGurk stimuli, an 

auditory APA was dubbed on a visual AKA.  Responses that did not conform to the identity of 

the auditory signal were considered fusion responses.   The Lag0 stimulus was perceived as APA 

5% (± 3% SEM) of the time on average, with a mean confidence rating of 5.34 (± 0.16).  The 

Lag50 stimulus was perceived as APA 6% (± 3% SEM) of the time on average, with a mean 

confidence rating of 5.33 (± 0.15).  The Lag100 stimulus was perceived as APA 6% (± 3% SEM) 

of the time on average, with a mean confidence rating of 5.34 (± 0.17).  Three conclusions are 

clear from these data.  First, a very large proportion of responses (>90%) deviated from the 

identity of the auditory signal, indicating a high rate of fusion.  Second, this rate of fusion did not 

differ across the McGurk stimuli (and nor did confidence ratings), suggesting that the McGurk 
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stimuli were equally well bound despite the asynchrony manipulation.  Third, McGurk stimuli 

were judged as Not-APA with roughly the same frequency and confidence as for auditory ATA 

stimuli, suggesting a high reliance on visual information (this was the intended effect of adding 

low-intensity white noise to the auditory signal). 

 

Masked-AV 

 Congruent APA videos were perceived as APA 95% of the time on average, while 

congruent ATA videos were perceived as APA 4% of the time on average, indicating that 

perception of congruent videos was largely unaffected  by the masker.  The Lag0 McGurk 

stimulus was perceived as APA 40% (± 4% SEM) on average, with a mean confidence rating of 

3.87 (± 0.80).  The Lag50 McGurk stimulus was perceived as APA 37% (± 4% SEM) on 

average, with a mean confidence rating of 3.97 (± 0.71).  The Lag100 McGurk stimulus was 

perceived as APA 33% (± 4% SEM) on average, with a mean confidence rating of 4.13 (± 0.65).  

Thus, we observed a net increase of APA responses equal to 35% for Lag0, 31% for Lag50, and 

27% for Lag100, indicating a significant reduction of fusion responses due to the masker.  This 

reduction was the basis for classification of the visual features that contribute to fusion. 

 Example frames from the FDR-corrected classification movie (CM) for the Lag0 

stimulus are presented in Figure 3.4.  Some comments are warranted.  First, there are several 

frames in which significant negative-valued pixels can be identified (i.e., pixels that were 

reliably transparent when fusion was not observed).  We have plotted the negative values for 

completeness, but we were not interested in the negative patterns and so will not address them 

further.  Second, since the masker region was rather small (i.e., confined to the mouth), and 
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because a high spatial correlation was induced in the maskers, it is difficult to make meaningful 

conclusions about the spatial patterns of significant pixels in the CMs.  We were primarily 

interested in the temporal dynamics of fusion, so from this point forward we fill focus on the 

classification time-courses. 

 

Figure 3.4. Results: Group classification movie for Lag0.  Fifty example frames from the classification movie for the Lag0 
McGurk stimulus are displayed.  Warm colors mark pixels that contributed significantly to fusion.  When these pixels 
were transparent, fusion was reliably observed.  Cool colors mark pixels that showed the opposite effect.  When these 
pixels were transparent, fusion was reliably blocked.  Only pixels that survived multiple comparison correction at FDR q 
< 0.05 are assigned a color.   

 Classification time-courses for the Lag0, Lag50, and Lag100 stimuli are plotted in Figure 

3.5 along with a trace of the auditory waveform for each stimulus.  Recall that these time-courses 

were created by simply averaging the group classification z-scores at each frame of the CM.  As 

such, large positive values correspond to frames that contributed most to fusion.  Frames for 

which >25% of pixels were positive-valued and exceeded the FDR-corrected threshold are 

labeled with red circles.  We will henceforth refer to these as ‘significant frames.’  In Figure 3.5, 
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several results are immediately apparent: (1) each of the classification time-courses reaches its 

peak in exactly the same region; (2) the morphology of the Lag0 time-course differs dramatically 

from the Lag50 and Lag100 time-courses; (3) there are more significant frames in the Lag0 time-

course than the Lag50 and Lag100 time-courses.  Regarding (1), the exact location of the peak in 

each time-course was frame 42, and this pattern was rather stable across subjects.  For the Lag0 

stimulus, 11 of 17 subjects had their classification peak within ± 2 frames of the group peak and 

14 of 17 subjects had a local maximum within ± frames of the group peak.  For the Lag50 

stimulus, these proportions were 12/17 and 15/17, respectively; and for the Lag100 stimulus, 

13/17 and 16/17, respectively.  Regarding (3), the range of significant frames for the Lag0 

stimulus was 30 through 45 (266.7ms).  The range of significant frames was 37 through 45 

(150ms) and 39 through 46 (133.4ms) for the Lag50 and Lag100 stimuli, respectively. 
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Figure 3.5. Results: Group classification time-courses for each McGurk stimulus.  The group-mean classification z-scores 
are shown for each frame in the Lag0 (top), Lag50 (middle), and Lag100 (bottom) McGurk stimuli.  Significant frames – 
i.e., those for which at least 25% of pixels in the group classification movie were positive-valued and exceeded the FDR 
threshold – are labeled by red circles.  These frames contributed significantly to McGurk fusion.  There are differences in 
both overall morphology and patterns of significant frames across the McGurk stimuli.  In particular, earlier frames tend 
to play a larger role in fusion for the Lag0 stimulus.  However, the peak is identical across each curve.  The waveform of 
the auditory signal (black) for each stimulus is plotted beneath the classification time course (blue). 

 In Figure 3.6, we zoom on the portion of classification time-courses containing significant 

frames, and we plot these portions aligned to the lip velocity curve over the same time period.  

Phases of the lip movement related to consonant production are labeled on the velocity curve.  

The shaded regions from Figure 3.3 are reproduced, accounting for shifts in the audio for the 

Lag50 and Lag100 stimuli.  Two features on this plot are immediately clear.  First, the peak 

region on each classification time-course clearly corresponds to the region of the lip velocity 
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curve describing acceleration of the lips to peak velocity approaching and following the release 

of airflow in visual /k/.  For the Lag0 stimulus, this part of the curve falls squarely in the time 

period containing auditory cues related to the /p/ sound.  In other words, the most salient visual 

cues for fusion strongly overlap the auditory signal when audiovisual timing is natural.  Second, 

10 significant frames in the Lag0 time-course fall in the time period (shaded yellow in Figure 

3.6) corresponding to pre-release lip movements – i.e., lip movements that precede the onset of 

the consonant-related auditory signal when the audiovisual timing is natural.  This number falls 

to just 3 significant frames for Lag50 and 1 significant frame for Lag100.  This shift constitutes 

the major difference in classification of fusion-related cues across the McGurk stimuli.  The fact 

that such a difference exists excludes the possibility that visual cues are integrated uniformly 

within the temporal window of integration. 



97 
 

 

Figure 3.6. Classification time-courses for the Lag0, Lag50, and Lag100 McGurk stimuli (blue) are plotted along with the 
lip velocity function (red).  The figure is “zoomed in” on the time period containing frames that contributed significantly 
to fusion (marked as red circles).  Classification time-courses have been normalized (max = 1).  The yellow-shaded period 
from Figure 3.3 is duplicated here.  The onset of this period corresponds to lip closure following the initial vowel, and the 
offset corresponds to release of airflow at the consonant burst.  We have labeled this the ‘pre-release’ visual /k/.  Shaded 
in green is the period containing the auditory consonant /p/ from initial burst to onset of vowel steady state.  The green 
shaded region is shifted appropriately for each McGurk stimulus (to account for auditory lags in Lag50 and Lag100).  A 
region on the lip velocity curve is shaded pink.  This region corresponds to ‘post-release’ visual /k/, as estimated from the 
classification time-courses.  Different phases of articulation are labeled (black) on the lip velocity function. 
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Discussion 

 We have developed a novel technique for mapping the temporal dynamics of audiovisual 

fusion in speech.  To implement this technique, we employed a phoneme identification task in 

which we overlaid McGurk stimuli with a spatiotemporally correlated visual masker that 

revealed critical visual cues on some trials but not on others.  As a result, McGurk fusion was 

observed only on trials for which critical visual cues were available.  Behavioral patterns in 

phoneme identification (fusion or no fusion) were reverse correlated with masker patterns over 

many trials, yielding a classification time-course of the visual cues that contributed significantly 

to fusion.  We performed this classification for three McGurk stimuli with different temporal 

offsets between the auditory and visual signals – natural timing (Lag0), 50ms visual-lead 

(Lag50), and 100ms visual-lead (Lag100) – in order to test whether this temporal relationship 

altered the set of visual cues that contributed to fusion.  Three significant findings sum up the 

results of the study.  First, the Lag0, Lag50, and Lag100 McGurk stimuli were rated identically 

in a phoneme identification task with no visual masker.  Specifically, each stimulus elicited a 

high degree of fusion, suggesting that all of the stimuli fell within the canonical temporal 

window of integration.  Second, the primary visual cue contributing to fusion, identified using 

our masking technique, was identical across the McGurk stimuli (i.e., regardless of the temporal 

offset between the auditory and visual signals).  Third, despite this fact, there were significant 

differences in the set of visual cues that contributed to fusion across the McGurk stimuli.  

Namely, early visual cues – that is, lip movements that precede the onset of the relevant auditory 

signal when audiovisual timing is natural – contributed significantly to fusion for the Lag0 

stimulus, but not for the other McGurk stimuli.  This finding is significant because it reveals 

details of the audiovisual fusion computation that are not available using traditional behavioral 
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measurements.  We discuss this and other findings in light of models of audiovisual integration 

below. 

 As mentioned in the Introduction, previous work on audiovisual integration in speech 

suggests that, so long as the auditory and visual speech signals are bound to a single perceptual 

stream, the fusion computation should operate rather uniformly.  The theoretical background for 

this claim is analysis-by-synthesis (Halle, 2003; Skipper, van Wassenhove, Nusbaum, & Small, 

2007; Virginie van Wassenhove et al., 2005) .  According to this approach, visual speech 

influences auditory speech by establishing a predictive context – namely, visual speech gestures, 

which tend to originate before the onset of the auditory speech signal, generate an abstract 

hypothesis for the identity of the incoming speech sound.  This hypothesis serves as the context 

for subsequent auditory-phonemic analysis (incoming auditory signals are evaluated against the 

visual hypothesis).  This type of model neatly explains why audiovisual integration of speech is 

disrupted when the auditory signal is made to artificially lead the visual signal (even at short 

asynchronies) – if visual cues have not been fully processed upon arrival and processing of the 

auditory signal, then there is no predictive context against which to evaluate the incoming 

auditory information.  As such, there is no need to bind the auditory and visual signals, and 

visual speech information is not integrated.  The opposite is true when the auditory signal is 

made to lag behind the visual signal.  In this case, any relevant visual cues can be fully processed 

prior to processing of the auditory signal, leading to generation of a visual hypothesis that is 

maintained in memory for as long as possible, until finally it is disambiguated by the incoming 

auditory signal.  The result is that visual speech information is integrated even at fairly long 

visual-lead asynchronies (Conrey & Pisoni, 2006; Grant & Greenberg, 2001; Grant et al., 2004; 

K. G. Munhall, Gribble, Sacco, & Ward, 1996; Virginie van Wassenhove et al., 2005). 
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 In our study, a baseline measurement of the visual cues that contribute to fusion (i.e., 

cues that would lead to generation of a visual hypothesis under analysis-by-synthesis) is given by 

the classification time-course for the Lag0 McGurk stimulus (natural audiovisual timing).  

Inspection of this time course reveals that 16 video frames (30-45) contributed significantly to 

fusion.  If analysis-by-synthesis is correct, this pattern should be largely unchanged for the 

Lag50 and Lag100 time-courses.  Specifically, the Lag50 and Lag100 stimuli were constructed 

with relatively short visual-lead asynchronies (50ms and 100ms, respectively) that produced no 

behavioral differences in McGurk fusion.  In other words, the ‘visual hypothesis’ for each 

stimulus remained the same in spite of the temporal synchrony manipulation.  However, the set 

of visual cues that contributed to fusion for Lag50 and Lag100 was drastically different than the 

set for Lag0.  In particular, all of the early significant frames dropped out – there were only 9 

video frames (37-45) that contributed to fusion for Lag50, and only 8 video frames (39-46) 

contributed to fusion for Lag100.  Overall, early video frames had progressively less influence 

on fusion as the auditory signal was lagged further in time.  This provides evidence that the 

fusion computation is not uniform with respect to the temporal relationship between the auditory 

and visual speech signals, even when those signals are within the canonical temporal window of 

integration.  It also suggests that analysis-by-synthesis must be adapted, at the very least, to 

account for the current data.  In particular, there was a nonlinear dropout of significant frames 

moving from Lag0 to Lag50 with respect to the synchrony manipulation.  In particular, a 50ms 

shift in the auditory signal, which should correspond to a three-frame shift with respect to the 

visual signal, caused seven early frames (116.7ms) to drop out from the classification moving 

from Lag0 to Lag50.  This suggests that discrete visual events contributed to “hypotheses” of 

varying strength, such that a relatively low-strength hypothesis related to visual events in the 
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early frames (those labeled ‘pre-release’ in Figure 3.6) was no longer influential when the 

auditory signal was lagged by 50ms. 

 Thus, we suggest an alternative explanation.  In our account, dynamic (perhaps 

kinematic) visual features enter into the fusion computation.  These features correspond to 

different phases of articulation but need not have any particular level of phonological specificity 

(Chandrasekaran et al., 2009; K. G. Munhall & Vatikiotis-Bateson, 2004; Q. Summerfield, 1987; 

H. C. Yehia, Kuratate, & Vatikiotis-Bateson, 2002; H. Yehia, Rubin, & Vatikiotis-Bateson, 

1998).  Several findings in the current study support the existence of such features.  Immediately 

above, we described a nonlinear dropout with respect to the contribution of early visual frames in 

the Lag50 classification relative to Lag0.  This suggests that a discrete visual feature (likely 

related to the catch+hold phase of articulation, i.e., cutting off airflow in the vocal tract) no 

longer contributed to fusion when the auditory signal was lagged by 50ms.  A linear shift in the 

classification time-course would be expected otherwise.  Further, the peak of the classification 

time-courses was identical across all McGurk stimuli, regardless of the temporal offset between 

the auditory and visual speech signals.  We believe this peak corresponds to a visual feature 

related to the release of air in consonant production (see Figure 3.6, which compares the 

classification time-courses to the lip velocity profile).  We suggest that visual features are 

weighted in the fusion computation according to three factors: (1) visual salience, (2) 

information content, and (3) temporal proximity to the auditory signal (closer = greater weight).  

To be precise, representations of visual features are activated with strength proportional to visual 

salience and information content (high for the ‘release’ feature here), and this activation decays 

over time such that visual features farther in time from the auditory signal are weighted less 

heavily (pre-release visual-articulatory features here).  This allows the auditory system to “look 
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back” in time for informative visual information.  The ‘release’ feature in our McGurk stimuli 

remained influential even when it was temporally distanced from the auditory signal (e.g., 

Lag100) because of its high salience and because it was the only informative feature that 

remained activated upon arrival and processing of the auditory signal.  Qualitative 

neurophysiological evidence (dynamic source reconstructions form MEG recordings) suggests 

that cortical activity loops between auditory cortex, visual motion cortex, and heteromodal 

superior temporal cortex when audiovisual convergence has not been reached, e.g. during 

lipreading (Arnal, Morillon, Kell, & Giraud, 2009).  This may reflect maintenance of visual 

features in memory over time.  

 Other research supports the notion of a dynamic-feature-based fusion computation.  It is 

evident from experiments with the McGurk effect that fusion depends on the time-varying 

dynamics of visual speech.  In particular, the McGurk effect is observed in situations when 

detailed configuration cues (the exact postures of the face and mouth at any point in time) are 

obscured or unavailable.  This holds when the speaker’s mouth is at too great a distance from the 

observer to provide reliable configuration cues (Jordan & Sergeant, 2000), and when visual 

speech is conveyed as a point-light stimulus (Rosenblum & Saldaña, 1996).  Moreover, the 

audiovisual advantage for speech intelligibility in noise is maintained when the visual speech 

signal is low-pass filtered in the spatial frequency domain (i.e., blurred) (K. Munhall, Kroos, 

Jozan, & Vatikiotis-Bateson, 2004).  There is also specific evidence that visual and auditory 

speech information interact at a featural level (Green, 1998).  For example, the presence of a 

visual bilabial stop (the /b/ in /ibi/) shifts perception of simultaneously-presented auditory tokens 

on an ambiguous /iri/-/ili/ continuum (Green & Norrix, 2001).  Presumably this reflects the 

influence of visual features in the bilabial stop (e.g., rapid opening of the lips after closure), 
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which specify temporal characteristics of the co-articulatory context (e.g., shortening of the 

vowel steady-state in /i/).  These temporal characteristics are the basis for the observed 

perceptual shift. 

 Another aspect of our results deserves some further elaboration.  As mentioned several 

times above, classification time-courses peaked over the same visual frames across all three 

McGurk stimuli.  This peak region coincided with an acceleration of the lips immediately 

preceding and following the release of airflow during consonant production.  Examination of the 

Lag0 stimulus (natural audiovisual timing) indicates that this visual-articulatory gesture unfolded 

over the same time period as the consonant-related portion of the auditory signal.  As such, the 

most influential visual information in the stimulus temporally overlapped the auditory signal.  

This information was equally influential in the Lag50 and Lag100 stimuli when it preceded the 

onset of the auditory signal.  This is interesting in light of the theoretical importance placed on 

visual speech cues that lead the onset of the auditory signal (Arnal et al., 2009; Virginie van 

Wassenhove et al., 2005).  In our study, the most informative visual information was related to 

the actual release of airflow during articulation, rather than the preparatory catch and hold 

(closing the vocal tract to produce the stop), and this was true whether this information preceded 

or temporally overlapped the auditory signal.  However, this may have been an artifact of the 

McGurk stimulus.  In particular, the visual velar /k/ is less distinct during vocal tract closure and 

makes a relatively weak prediction of the consonant identity (relative to, say, a bilabial /p/) 

(Arnal et al., 2009; Q. Summerfield, 1987; Quentin Summerfield, 1992; Virginie van 

Wassenhove et al., 2005).   

 Finally, we should address several of the design choices in the current study.  First, 

regarding our visual masking technique, we chose to mask only the part of the visual stimulus 
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containing the mouth and part of the lower jaw.  This choice obviously limits our conclusions to 

mouth-related visual features.  This is a potential shortcoming since it is well known that other 

aspects of face and head movement are correlated with the acoustic speech signature (Jiang, 

Alwan, Keating, Auer, & Bernstein, 2002; Jiang, Auer, Alwan, Keating, & Bernstein, 2007; K. 

G. Munhall et al., 2004; H. C. Yehia et al., 2002; H. Yehia et al., 1998).  However, restricting the 

masker to the mouth region reduced computing time and thus experiment duration since maskers 

were generated in real time.  Moreover, we were quite confident that masking the mouth region 

alone would produce a considerable reduction in McGurk fusion and we confirmed this in pilot 

testing (which was also used to tune the parameters of the masker).  Second, we added 62 dB 

SPL of noise to auditory speech signals (+6 dB SNR) throughout the experiment.  As mentioned 

above, this was done to increase the likelihood of fusion by increasing perceptual reliance on the 

visual signal (Alais & Burr, 2004; Shams & Kim, 2010).  We needed the highest possible fusion 

rates in order to conclude that any observed reduction in fusion was due primarily (if not 

entirely) to the presence of the visual masker.  A potential criticism is that adding ambiguity to 

the auditory signal changed the nature of the fusion computation.  Specifically, one could argue 

that the perceptual process shifted from fusion per se to visual capture.  This is unlikely for the 

following reasons: auditory-only identification performance for the McGurk stimulus was at 

90%, the results of our classifications depended on the position of the auditory signal, and the 

percept in our task was phenomenologically auditory.  Third, we chose to collect responses on a 

6-point confidence scale that emphasized identification of the nonword APA (i.e., the choices 

were between APA and Not-APA).  The major drawback of this choice is that we do not know 

precisely what subjects perceived on fusion (Not-APA) trials.  A 4-AFC calibration study shows 

that our McGurk stimulus was perceived overwhelmingly as ATA (92%) in a different group of 
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subjects.  Nevertheless, some ambiguity remains regarding the interpretation of behavior in the 

masked-AV condition of the current experiment.  This was driven by necessity because we 

needed to use a task with a binary response variable in order to implement the classification 

analysis.  A simple choice would have been to force subjects to choose between APA and ATA, 

but any subjects who perceived, for example, AKA on a significant number of trials would have 

been forced to arbitrarily assign this to APA or ATA.  We chose to use an identification task 

with APA as the target so that any response involving some visual interference (AKA, ATA, 

AKTA, etc.) would be attributed to the Not-APA category.  There is some debate regarding 

whether responses such as AKA or AKTA represent true fusion, but in these cases it is clear that 

some complementary visual information has influenced auditory perception.  This is how we 

define fusion, so we were comfortable grouping these responses into a single category.  A final 

issue concerns the generalizability of our results.  In the present study, we have presented 

classification data based on a single voiceless McGurk token, spoken by just one individual.  

This was done to facilitate collection of the large number of trials needed for a reliable 

classification.  As a result, generalizability may be low for some aspects of the data.  However, at 

least one conclusion with broad theoretical implications can be made quite strongly from the 

current data – the particular visual speech information that is integrated during fusion depends on 

the temporal relationship between the visual and auditory speech signals.  Moreover, we have 

provided here a method for classification of fusion-related visual features that can now be 

extended or modified in future research. 

 In conclusion, our visual masking technique successfully classified the mouth-related 

visual cues that contribute to audiovisual fusion in speech.  We were able to chart the temporal 

dynamics of fusion at a high resolution – our classifications were based on visual stimuli that 
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were recorded at a high frame rate (60 Hz).  The results of this procedure revealed details of the 

fusion computation that were not available in typical behavioral measurements.  In particular, a 

different set of visual cues influenced McGurk fusion depending on the temporal offset between 

the auditory and visual speech signals, even though the rate of perceived McGurk fusion was 

identical at each offset.  We interpreted this result in terms a model of audiovisual fusion in 

which dynamic visual features are extracted and integrated proportional to their salience, 

informational content, and temporal proximity to the auditory speech signal.  This model is 

potentially at odds with the influential analysis-by-synthesis account of audiovisual fusion. 
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CHAPTER 4 

 

Primer 

 The results of Ch. 3 suggested that discrete visual features are extracted from the visual 

speech signal and integrated with auditory speech at some (unspecified) level of representation.  

This question – i.e., ‘At what processing stage are visual and auditory speech integrated?’ – has 

plagued speech scientists for some time (Bernstein, 2005; K. P. Green, 1998; Massaro, 1987; 

Rosenblum, Pisoni, & Remez, 2005; Schwartz, Robert-Ribes, & Escudier, 1998; Summerfield, 

1987).  Recent neurophysiological evidence suggests that many cognitive processes relevant to 

audiovisual speech perception – including audiovisual integration, biological motion processing, 

and phonological speech processing – converge in one particular brain area: the superior 

temporal sulcus (STS; see below for details).  However, it has heretofore been unclear whether 

these computations converge to a single region of the STS or, instead, spread over multiple STS 

subregions.  The answer to this question may shed light on the issue of processing stages in 

audiovisual speech perception.  In the current chapter, I present the results of an fMRI study 

designed to examine: (a) the relation between unimodal (i.e., visual feature extraction) and 

bimodal (i.e., audiovisual integration) regions of the STS, and (b) the relation between speech-

specific (perhaps phonological) and general sensory processing regions of the STS.  The results 

allow an update to current neuroanatomically-informed models of audiovisual speech perception. 
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The visual speech stream: Facial motion processing, audiovisual integration, 
and speech perception in the superior temporal sulcus 

 

Jonathan H. Venezia, Feng Rong, Dale Maddox, Kourosh Saberi, and Gregory Hickok 

 

Introduction 

The superior temporal sulcus (STS) has been implicated as a crucial processing center in 

a wide variety of human perceptual abilities.  Among these are audiovisual integration (Amedi, 

Kriegstein, Atteveldt, Beauchamp, & Naumer, 2005; Michael S Beauchamp, Lee, Argall, & 

Martin, 2004), auditory speech perception (J. R. Binder, Swanson, Hammeke, & Sabsevitz, 

2008; J. Binder et al., 2000; G. Hickok & Poeppel, 2004; Gregory Hickok & Poeppel, 2007; 

Price, 2010), and biological motion perception (Allison, Puce, & McCarthy, 2000; Michael S 

Beauchamp, Lee, Haxby, & Martin, 2003; E. D. Grossman, Battelli, & Pascual-Leone, 2005; E. 

D. Grossman & Blake, 2002; E. Grossman et al., 2000; Puce & Perrett, 2003).  Where speech 

perception is concerned, it is widely established that visual speech information influences 

auditory speech perception (Callan et al., 2003; Dodd, 1977; McGurk & MacDonald, 1976; 

Reisberg, Mclean, & Goldfield, 1987; Sumby & Pollack, 1954), and thus it seems likely that 

biological motion information – specifically, information about the configuration of the various 

articulators that specify vocal tract shape – should interact with auditory speech representations 

in the STS or elsewhere, as others have suggested (Callan et al., 2003).  In fact, visual speech 

strongly engages the STS (Callan et al., 2003; Campbell et al., 2001; Okada & Hickok, 2009). 

Such an interaction implies that some form of integration of auditory and visual speech 

information must take place.  The STS is well positioned for this task as it lies between visual 
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association cortex in the posterior lateral temporal region (Michael S Beauchamp, Lee, Haxby, & 

Martin, 2002) and auditory association cortex in the superior temporal gyrus (Kaas & Hackett, 

2000; Rauschecker, Tian, & Hauser, 1995; Wessinger et al., 2001).  In nonhuman primates it has 

been demonstrated that polysensory fields in STS receive convergent input from unimodal 

auditory and visual cortical regions (Lewis & Van Essen, 2000; Seltzer & Pandya, 1978, 1994) 

and that these fields contain auditory, visual and bimodal neurons (Benevento, Fallon, Davis, & 

Rezak, 1977; Bruce, Desimone, & Gross, 1981; Dahl, Logothetis, & Kayser, 2009).  Indeed, a 

host of studies have identified the STS as a multisensory convergence zone for speech (M. S. 

Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004; Michael S Beauchamp, Nath, & Pasalar, 

2010; Calvert, Campbell, & Brammer, 2000; Nath & Beauchamp, 2011, 2012; Stevenson, 

Altieri, Kim, Pisoni, & James, 2010; Stevenson & James, 2009; Stevenson, VanDerKlok, Pisoni, 

& James, 2011; Szycik, Tausche, & Münte, 2008; Wright, Pelphrey, Allison, McKeown, & 

McCarthy, 2003).   

Two classes of models have been proposed for audiovisual integration in the STS (Figure 

4.1).  In what we call “direct integration” models, auditory speech representations housed in 

auditory association cortex (e.g., the superior temporal gyrus) and visual speech representations 

housed in visual association cortex (e.g., motion-sensitive/lateral occipital extrastriate visual 

cortex) converge on bimodal speech representations in multisensory STS; these bimodal 

representations are intrinsically-abstract, high-level representations of individual speech sounds 

(Michael S Beauchamp et al., 2010).   Thus, according to direct integration models, auditory and 

visual speech signals are integrated at the phonological level and the output of this integration 

process is essentially a categorized speech sound. 
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Figure 4.1. Schematic of current models of multisensory speech processing.  Brain diagram at left: approximate locations 
of processing stages in multisensory speech processing.  Arrows show directional connectivity.  A color-coded legend 
describing the labeled regions is located top left.  In Direct Integration models (solid arrows) the auditory speech signal 
(processed first in auditory cortex/superior temporal gyrus) is combined with the visual speech signal (processed first in 
the lateral occipital/posterior medial temporal lobe) in the multisensory region of the STS.  In Feedback models (solid and 
dashed arrows), auditory and visual speech signals are compared in STSms and fed back to unimodal cortices.  Schematic 
at right: expansion of STSms (yellow) to show different predictions made by Direct Integration and Feedback models.  In 
Direct Integration models, auditory and visual speech signals converge on abstract, bimodal speech sound representations 
at the phonological level (red square inside STSms).  Feedback models do not specify whether auditory and visual speech 
signals converge on phonological representations in STSms or elsewhere (red square both inside and outside STSms).  
Neither Direct Integration nor Feedback models characterize the relation between STSms and facial motion processing 
regions of the STS (teal square both inside and outside STSms). 

In what we term “feedback” models, the STS serves as a multimodal intermediary that 

processes or combines cross-modal speech signals and provides feedback to unimodal cortices 

(Calvert et al., 1999; Calvert et al., 1997; Calvert et al., 2000; Driver & Spence, 2000; 

Ghazanfar, Maier, Hoffman, & Logothetis, 2005; Okada, Venezia, Matchin, Saberi, & Hickok, 

2013; van Wassenhove, Grant, & Poeppel, 2005).  In general, these feedback models are rather 
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nonspecific regarding the level at which auditory and visual speech signals are processed or 

combined in the STS, and also with respect to the cortical location at which signals ultimately 

converge onto high-level speech sound representations (i.e., does this process happen directly in 

the multisensory STS, in the auditory cortex following feedback from the STS, or elsewhere?).  

Both direct integration and feedback models are largely silent with respect to the role of 

biological-motion-processing regions of the STS in multimodal speech perception.  By and large, 

activations to facial motion in particular – including natural facial motion (Puce, Allison, Bentin, 

Gore, & McCarthy, 1998), movements of facial line drawings (Puce et al., 2003), and point-light 

facial motion (Bernstein, Jiang, Pantazis, Lu, & Joshi, 2011) – yield activation quite posteriorly 

in the STS, a location potentially distinct from auditory and visual speech-related activations 

(Hein & Knight, 2008; Okada & Hickok, 2009).  However, these posterior STS regions may be 

crucial for extracting high-level properties of biological movements (e.g., action class or action 

goal) that are invariant with respect to particular motion kinematics, image size, or viewpoint (E. 

D. Grossman, Jardine, & Pyles, 2010; Lestou, Pollick, & Kourtzi, 2008).  This computation, 

applied specifically to facial motion, is likely to contribute to the formation of visual speech 

representations with any level of phonological specificity, yet the relation between biological 

motion systems and audiovisual speech integration systems has not been fully elucidated. 

In short, current models of multimodal speech processing in the STS, taken as a whole, 

are equivocal with respect to the following questions: (1) Are biological/facial motion processing 

regions of the STS involved in visual speech processing and do these regions overlap with 

multisensory STS? And (2) at what representational level are auditory and visual speech signals 

processed or combined in multisensory STS? 
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Here, we present an fMRI experiment designed to answer at least the first and possibly 

the second question.  Participants were presented with blocks of auditory and visual speech (CV 

syllables) and nonspeech (spectrally rotated speech, facial gurning) stimuli.  To identify 

multisensory speech regions (STSms) we performed a conjunction of activation to auditory and 

visual speech.  To identify facial motion processing regions (STSfm) we performed the 

conjunction of activation to visual speech and nonspeech facial gestures.  Critically, we included 

as a baseline condition blocks with a stationary face to account for activation related to face 

processing generally.  We also identified regions of the STS that were preferentially involved in 

processing speech versus nonspeech by contrasting activations to visual speech with activations 

to nonspeech facial gestures, and activations to auditory speech with activations to spectrally 

rotated (unintelligible) speech.  We performed multivariate pattern analysis (MVPA) based on 

regions of interest defined in individual subjects in order to test the representational properties of 

different subregions of the STS (Mur, Bandettini, & Kriegeskorte, 2009; Okada et al., 2010).  

The broad motivation, in light of the previously stated questions, was to test whether and to what 

extent multisensory speech processing and facial motion processing draw upon the same neural 

resources in the STS, and whether these neural resources preferentially activate to (or distinguish 

in their representational profile) auditory and visual speech compared to nonspeech. 
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Materials and Methods 

 

Participants 

Twenty (three female) right-handed native English speakers between 18 and 30 years of 

age participated in the study.  All volunteers had normal or corrected-to-normal vision, normal 

hearing by self-report, no known history of neurological disease, and no other contraindications 

for MRI.  Informed consent was obtained from each participant in accordance with UC Irvine 

Institutional Review Board guidelines.  Five subjects were excluded from MRI analysis leaving 

N = 15 for the imaging analysis (see below). 

 

Stimuli and Procedure 

Six two-second video clips were recorded in each of five experimental conditions 

featuring a single male actor shown from the neck up (Figure 4.2).  In three speech conditions – 

auditory speech (A), visual speech (V), and audiovisual speech (AV) – the stimuli were six 

visually distinguishable consonant-vowel (CV) syllables (\ba\, \tha\, \va\, \bi\, \thi\, \vi\).  In the 

A condition, clips consisted of a still frame of the actor’s face paired with auditory recordings of 

the syllables (44.1 kHz, 16-bit resolution).  In the V condition, videos of the actor producing the 

syllables were presented without sound (30 frames/s).  In the AV condition, videos of the actor 

producing the syllables were presented simultaneously with congruent auditory recordings.  

There were also two non-speech conditions – spectrally rotated speech I and nonspeech facial 

gurning (G).  In the R condition, spectrally inverted (Blesser, 1972) versions of the syllable 
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recordings were presented along with a still frame of the actor.  Auditory speech stimuli were 

first bandpass filtered (100-3900Hz) and then spectrally inverted about the center frequency 

(2000Hz).  Rotation of the signal preserves the spectrotemporal complexity of speech and rotated 

speech is acoustically similar to clear speech, but the rotation process renders sentence-length 

utterances unintelligible (Narain et al., 2003; Okada et al., 2010; Scott, Blank, Rosen, & Wise, 

2000) and significantly reduces discrimination accuracy for individual speech sounds separated 

by a category boundary (E. Liebenthal, Binder, Spitzer, Possing, & Medler, 2005).  In the G 

condition, the actor produced the following series of nonspeech, lower-face gestures (without 

sound): partial opening of the mouth with leftward deviation, opening of mouth with rightward 

deviation, opening of mouth with lip protrusion, tongue protrusion, lower lip biting, and lip 

retraction.  These gestures contain movements of a similar extent and duration as those used to 

produce the syllables in the speech conditions, but cannot be construed as speech (Campbell et 

al., 2001).  A rest condition consisted of a still frame of the actor with no sound.  Auditory 

speech stimuli were bandpass filtered to match the bandwidth of the rotated speech stimuli and 

all auditory stimuli were normalized to equal root-mean-square amplitude. 

 

Figure 4.2. Example stimuli from each experimental condition. 
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Participants were presented with 12-second blocks in each of the experimental 

conditions.  Each block contained all six of the clips composing that condition (i.e., all six CVs, 

all six rotated CVs, or all six gurning gestures).  The clips were concatenated in random 

permutations of stimulus order to form 35 distinct blocks in each condition.  Five additional 

“oddball” blocks were constructed for each condition (including rest), consisting of five within-

condition clips and a single oddball clip from one of the other conditions (e.g., an oddball block 

might contain five A clips and a single AV clip).  Oddball clips were randomly placed in the 

second through sixth positions in a block.  An oddball could deviate either visually (e.g., a V clip 

in a G block), acoustically (e.g., an A clip in an R block), or both (e.g., an AV clip in an R block 

or an A clip in a V block).  Each of these types of deviation occurred with equal frequency so 

that participants would attend equally to auditory and visual components of the stimuli (see task 

below). 

Functional imaging runs consisted of pseudo-random presentation of 21 blocks, three 

from each condition along with three rest blocks and three oddball blocks. Blocks were by a 

500ms period during which a black fixation cross was presented against a grey background.  

Participants were instructed to press a button each time an oddball was detected, and oddball 

blocks were modeled as a regressor of no interest and excluded from further analysis.  The 

experiment started with a short practice session inside the scanner during which participants 

were exposed to a single block from each condition including a rest block and an oddball block.  

Participants were then scanned for ten functional runs immediately followed by acquisition of a 

high-resolution T1 anatomical volume.  Auditory stimuli were presented through an MR 

compatible headset (ResTech) and stimulus delivery and timing were controlled using Cogent 

software (http://www.vislab.ucl.ac.uk/cogent_2000.php) implemented in Matlab 6 (Mathworks 
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Inc., USA). 

 

Scanning Parameters 

MR images were obtained on a Philips Achieva 3T (Philips Medical Systems, Andover, 

MA) fitted with an 8-channel SENSE receiver/head coil, at the Research Imaging Center facility 

at the University of California, Irvine.  We collected a total of 1090 echo planar imaging (EPI) 

volumes over 10 runs using single pulse Gradient Echo EPI (matrix = 112 x 110, repetition time 

[TR] = 2.5 s, echo time [TE] = 25 ms, size = 1.957 x 1.957 x 1.5 mm, flip angle = 90).  Forty-

Four axial slices provided whole brain coverage.  Slices were acquired sequentially with a 

0.5mm gap.  After the functional scans, a high-resolution anatomical image was acquired with a 

magnetization prepared rapid acquisition gradient echo [Mprage] pulse sequence in the axial 

plane (matrix = 240 x 240, TR = 11 ms, TE = 3.54 ms, size = 1 x 1 x 1 mm). 

 

Behavioral Data Analysis 

The Signal Detection Theory measure of sensitivity, d’, was calculated to determine 

performance on the oddball detection task (D. M. Green & Swets, 1966).  A hit was defined as a 

positive response (button press) to an oddball block, while a false alarm was defined as a positive 

response to a non-oddball block.  The hit rate (H) was calculated as the number of hits divided 

by the total number of oddball blocks, while the false alarm rate (F) was calculated as the 

number of false alarms divided by the number of non-oddball trials, and d’ was calculated as: 
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d’ = Φ-1[H] - Φ-1[F], 

 

where Φ is the standard normal cumulative distribution function.  Participants with a d’ more 

than 1.5 standard deviation beneath the mean were excluded from further analysis (N = 2; see 

Results).  We also calculated H separately for each experimental condition (based on the type of 

clips that composed the standard condition in oddball blocks).  Hit rates by condition were 

entered in a repeated measures ANOVA with Greenhouse/Geisser correction. 

 

fMRI Analysis 

In addition to the two participants excluded for poor behavioral performance, three 

participants were excluded from the MRI analysis for poor raw image quality (visible artifacts).  

Thus, N = 15 for the MRI analysis.  Preprocessing of the data was performed using AFNI 

software (http://afni.nimh.nih.gov/afni).  For each run, slice timing correction was performed 

followed by realignment (motion correction) and coregistration of the EPI images to the high 

resolution anatomical image in a single interpolation step.  Images were spatially smoothed with 

an isotropic 6-mm full-width half-maximum (FWHM) Gaussian kernel.  Each run was then 

scaled to have a mean of 100 across time at each voxel. 

First level regression analysis (AFNI 3dDeconvolve) was performed in individual 

subjects.  To create the regressors of interest, a stimulus timing vector was created for each 

experimental condition was convolved with a model hemodynamic response function.  Five such 

regressors were used in estimation of the model corresponding to the five experimental 
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conditions: A, V, AV, R, G.  The ‘still face’ rest condition was not modeled explicitly and was 

thus included in the baseline term.  An additional twelve regressors corresponding to motion 

parameters determined during the realignment stage of preprocessing along with their temporal 

derivatives were entered into the model.  Oddball blocks were modeled as a single regressor of 

no interest.  Individual time points were censored from analysis when more than 10% of in-brain 

voxels were identified as outliers (AFNI 3dToutcount) or when the Euclidean norm of the 

motion derivatives exceeded 0.4. 

 

Group Analysis 

For the group analysis only (as opposed to the ROI analysis, below), functional images 

were registered to a common space prior to smoothing, scaling, and first-level regression.  A 

study-specific anatomical template image was created using symmetric diffeomorphic 

registration (SyN) in the Advanced Normalization Tools (ANTS) software (B. Avants et al., 

2008; B. Avants & Gee, 2004).  Each participant’s T1 anatomical image was skull stripped in 

AFNI and submitted to the template-construction processing stream in ANTS 

(buildtemplateparallel.sh), which comprises rigid and SyN registration steps.  For SyN, we used 

a cross correlation similarity metric (B. B. Avants et al., 2011) with a three-level multi-resolution 

registration with 50x70x10 iterations.  A low-resolution version of the study-specific anatomical 

template was created to match the resolution of native-space functional images.  The set of affine 

and diffeomorphic transformations mapping each participant’s T1 anatomical to the study-

specific template were applied to the corresponding coregistered functional images using the 
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low-resolution template as a reference image.  The resulting functional images were aligned in 

the common study-specific template space. 

A second-level analysis of variance was performed on the parameter estimates from each 

participant, treating ‘participant’ as a random effect.  Statistical parametric maps (t-statistics) 

were created for each individual condition and all contrasts of interest.  Active voxels were 

defined as those for which t-statistics exceeded the p < 0.005 level with a cluster extent threshold 

of 159 voxels.  This cluster threshold was determined by Monte Carlo simulation (AFNI 

3dClustSim) to hold the family-wise error rate (FWER) less than 0.05 (i.e., corrected for multiple 

comparisons).  Estimates of smoothness in the data were drawn from the residual error time 

series for each participant after first-level analysis (AFNI 3dFWHMx).  These estimates were 

averaged across participants separately in each voxel dimension for input to 3dClustSim.  

Simulations were restricted to in-brain voxels. 

To identify STSms at the group level, we performed the conjunction A∩V, and to 

identify STSfm at the group level, we performed the conjunction V∩G.  Conjunctions were 

performed by constructing minimum t-maps (e.g., minimum T score from [A,V] at each voxel) 

and these maps were thresholded at p < 0.005 with a cluster extent threshold of 159 voxels 

(FWER < 0.05, as for individual condition maps).  This tests the ‘conjunction null’ hypothesis 

(Nichols, Brett, Andersson, Wager, & Poline, 2005).  We also performed contrasts for 

activations greater for speech than nonspeech, matched for input modality: A>R and V>G.  

Finally, we tested for activations greater for bimodal speech processing than unimodal speech 

processing: AV>A and AV>V. 
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For convenience in reporting and displaying group results, the study-specific anatomical 

template was aligned to the MNI-space ICBM template (Vladimir Fonov et al., 2011; VS Fonov, 

Evans, McKinstry, Almli, & Collins, 2009) using a 12-parameter affine registration in ANTS.  

This affine transformation was applied to second-level estimates of mean PSC. Thus, group plots 

reflect thresholded PSC maps in MNI space.  Plots are visualized on the Conte69 atlas in 

MNI152 space in CARET v5.65 (http://brainvis.wustl.edu/wiki/index.php/Caret:Download). 

 

ROI Selection and Analysis 

We also aimed to define STSms and STSfm as regions of interest in individual subjects 

(native space). To identify STSms, we performed the conjunction (minimum t-stat method, as 

above) A∩V thresholded at p < 0.005 (uncorrected); these will henceforth be referred to as the 

A∩V ROIs.  To identify STSfm, we performed the conjunction V∩G thresholded at p < 0.005, 

(uncorrected); these will henceforth be referred to as the V∩G ROIs.  To localize conjunctions to 

STS, a local peak t-score was identified on the minimum t-maps.  A 10mm-radius sphere was 

formed around the peak and only voxels significant in the conjunction and located within the 

sphere were included in the ROI. The logic for this selection procedure is that including voxels 

from a restricted region around the conjunction peak is likely to identify voxels that were 

maximally active to the two conditions entered in the conjunction.  In addition, it is well 

established that there is large degree of intersubject variability in the position of functionally-

localized STSms (Michael S Beauchamp, 2005a, 2005b), making it advantageous to identify this 

region precisely in individual subjects (Arnal, Morillon, Kell, & Giraud, 2009; Stevenson et al., 

2010; Stevenson & James, 2009; Stevenson et al., 2011). 
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Significant voxels were largely restricted to the STS, sometimes including voxels in 

nearby superior temporal or middle temporal gyri.  ROIs had a minimum of 35 significant 

voxels, although the vast majority had over 100 significant voxels (Error! Reference source not 

found.).  Separate A∩V ROIs were defined for left and right hemisphere (N=15 each); 

correspondingly, separate V∩G ROIs were defined for left and right hemisphere (N=15 each).  

Regions of interest were determined using only the odd-numbered runs, and subsequent analyses 

were then performed on data extracted from the ROI over even-numbered runs (separate linear 

models for odd and even runs).  For the purpose of reporting statistics, using this split-plot 

approach ensures that the voxel selection procedure and subsequent analyses are independent 

(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009; Poldrack & Mumford, 2009).  

 

Table 4.1.  MNI coordinates of individual subject ROIs 

 

  A∩V   V∩G 

 
LH_STS 

Vox 
RH_STS  

Vox 
LH_STS 

Vox 
RH_STS  

Vox 
Sub x y z x y z x y z x y z 

1 -62.6 -22.1 -1.9 255 57.7 -27.4 -3.2 226 -57.7 -42.3 8.2 186 53.5 -42.7 8.4 346 
2 -53.1 -43.1 7 54 60.8 -9.6 -4.2 35 -59.7 -63.8 13.2 253 52.2 -37 5.3 47 
3 -62.7 -38 6.7 169 53 -30.3 1.3 183 -49.8 -47.7 9.8 173 52.6 -17.2 -8 136 
4 -61.6 -30.3 4.9 417 62.5 -30.9 3 300 -61.5 -31.8 5.3 260 59.3 -34.8 5.8 319 
5 -58.9 -34.7 3.8 247 65.5 -29.7 2.7 347 -51.9 -46.9 6.1 222 52.4 -37.9 7.9 254 
7 -62.9 -19 -7.9 225 61 -33.6 4.3 167 -50.6 -50.8 8.6 143 48.9 -32.1 1.8 64 
9 -62.6 -35.7 3.8 256 51.3 -41.2 9.8 369 -53.4 -54.7 12.3 406 56.1 -45.5 10.3 382 

10 -67.7 -28.1 3.4 202 66.9 -32.1 5.8 151 -58.8 -59 12.2 232 51.9 -44.3 12 124 
11 -52 -47.6 17.1 234 57.4 -30.8 -0.7 111 -45.4 -52.4 16.8 133 57.2 -53.5 7.4 227 
12 -55.8 -49.5 11 372 63.2 -23.2 1.3 191 -56 -54.4 9.1 152 54.6 -48.3 6.3 486 
14 -65.9 -42.2 -2.9 348 63.7 -49.2 12.5 271 -55 -68.3 17.2 391 64.8 -49.5 13.8 212 
16 -54.6 -45.2 13.1 195 57.7 -31.1 1.2 117 -54.4 -51.6 9.9 201 54.8 -49.5 10 138 
18 -59.9 -21.5 2.7 145 68.2 -32.6 4.5 232 -59.6 -59.4 14.8 272 57.3 -51 9.1 330 
19 -62 -38.3 4.8 349 63.6 -34.3 3.7 366 -55.6 -41.7 9 97 62.5 -35.5 1.1 416 
20 -51.5 -43.3 14.8 193 57.2 -43.8 8.6 115 -49.4 -49 13.2 265 54.3 -45.2 13.3 47 

Mean -59.6 -35.9 5.4 244 60.6 -32 3.4 212 -54.6 -51.6 11 226 55.5 -41.6 7 235 
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To assess the response properties of these ROIs, we extracted the mean PSC from 

baseline (still face) in each of the experimental conditions for the even-numbered runs, based on 

the regions defined using the odd-numbered runs.  The mean PSCs for each subject in each 

condition were entered into separate repeated-measures ANOVAs for each region.  The 

Greenhouse/Geisser correction was applied and F tests were thresholded at p < 0.05.  Pairwise 

contrasts of interest were assessed using paired samples t tests.  Five pairwise contrasts – AvsV, 

AvvsA, AvvsV, AvsR, VvsG – were assessed for each ROI at a significance level of p < 0.05 

(two-sided).  To correct for multiple comparisons we applied a Bonferroni correction within each 

family of tests (i.e., for each ROI), making the corrected significance level p < 0.01. 

 

Pattern Classification 

MVPA was implemented in all four ROIs (A∩V: left and right STS; V∩G: left and right 

STS), identified in individual subjects. All analyses described below were performed on even-

numbered runs only, that is, runs that were independent from the ROI selection runs.  MVPA 

was achieved using a support vector machine (SVM) (MATLAB Bioinformatics Toolbox v3.1, 

The MathWorks, Inc., Natick, MA) as the pattern classification method. The logic behind this 

approach is that if a trained SVM classifier is able to successfully classify one condition from 

another based on the pattern of response in an ROI, then the distribution of activity among the 

voxels within the ROI must contain information that distinguishes the two conditions. In each 

ROI, five different pairwise classifications were performed: (i) AvsV, (ii) AvvsA, (iii) AvvsV, 

(iv) AvsR, (v) VvsG.  Note that (i)-(iii) involve classification of conditions containing identical 
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speech information and differing only in terms of modality of presentation, while (iv) and (v) 

involve classification of conditions containing intelligible speech versus nonspeech.   

Inputs to the classifier were estimates of activation to each block (event) based on “Least 

Squares – Separate” (LS-S) regression (Mumford, Turner, Ashby, & Poldrack, 2012).  

Specifically, we performed LS-S regressions (AFNI 3dLSS) using data from the even runs 

(preprocessed as described above), wherein each regression included one regressor of interest 

modeling a single block from a given condition (e.g., A), and five nuisance regressors modeling 

all other events in the condition of interest (e.g., A) and all events in the remaining conditions 

(e.g., V, AV, R, G), respectively (Turner, Mumford, Poldrack, & Ashby, 2012).  The output of 

each regression was an LS-S coefficient representing activity from a single block in the condition 

of interest.  LS-S coefficients representing all 15 blocks for each condition (3 blocks/run X 5 

even runs) were calculated and stored with appropriate run labels at each voxel in all four ROIs 

described above.  Prior to classification, LS-S coefficients for each ROI were z-scored (across 

voxels) for each block (time point), effectively removing mean amplitude differences across 

blocks (only spatial pattern information remained) (Coutanche, 2013; Mumford et al., 2012).  

We performed SVM classification on the LS-S data using a leave-one-out cross 

validation approach (Vapnik, 1999).  In each iteration, we used data from all but one even 

session to train an SVM classifier and then used the trained classifier to test the data from the 

remaining session. The SVM-estimated condition labels for the testing data set were then 

compared with the real labels to compute classification sensitivity.  Following signal detection 

convention, one condition was arbitrarily defined as “signal” and the other as “noise.”  A 

classifier “hit” was counted when the SVM-estimated condition label matched the real condition 

label for the “signal” condition, and a “false alarm” was counted when the SVM-estimated label 
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did not match the real condition label in the “noise” condition.  Measure of sensitivity, d’, was 

calculated following the formula for a yes-no experiment as listed in the behavioral analysis 

above. Classification d’ for each subject was derived by averaging the d’ scores across all leave-

one-out sessions, and an overall d’ was computed by averaging across subjects for each pairwise 

classification.  

Classification d’ scores were evaluated statistically using a nonparametric bootstrap 

method (Lunneborg, 2000). Classification procedures were repeated 10000 times for each 

pairwise classification within each individual data set.  The only difference from the above 

method is that the condition labels in the training data set for each leave-one-out session were 

randomly reshuffled per repetition.  Therefore, we obtained a random distribution of the 

bootstrap classification d’ scores that could range from -6.18 to 6.18 for each subject and 

pairwise classification.  By examining the bootstrapped d’ values we confirmed that the ideal 

mean of this distribution is at the d’ value of 0, corresponding to chance performance. We then 

tested the null hypothesis that the original classification d’ score is equal to the mean of the 

bootstrap distribution by computing a one-tailed accumulated percentile (P) of the original 

classification accuracy score in the distribution.  If the accumulated P > 0.95, then we rejected 

the null hypothesis and concluded that for this subject, signal from the corresponding ROI can 

classify the two tested experimental conditions.  Furthermore, a bootstrap-T approach was used 

to assess the significance of the classification d’ at the group level. For each repetition of the 

bootstrap, a t-test of the d’ scores across all subjects against the ideal chance d’ score (0 in our 

case) was performed. The t-score from the original classification procedures across the subjects 

was then statistically tested against the mean value of the distributed bootstrap t-scores.  As in 

the within-subject approach, an accumulated Pt > 0.95 guarantees rejection of the null hypothesis 
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(d’ is significantly greater than chance).  We will report statistical significance of the 

classification results with canonically used “p-values” calculated as p = 1-Pt. 

 

Results 

 

Behavior 

Two participants performed below the behavioral cutoff and were excluded from further 

analysis (d’ = 1.85, hits = 14/30; and d’ = 2.13, hits = 14/30).  The remaining eighteen 

participants performed well on the task (mean d’ = 3.40 ± 0.14 SEM, mean hits = 26 ± 0.56 

SEM) indicating that subjects attended to both auditory and visual components of the stimuli.  

Among participants that made the behavioral cutoff, there was not a significant difference in hit 

rate across conditions [F(2.3, 38.7) = 2.07, p = 0.13].    

 

Whole-Brain Group Analysis 

Activation maps for each of the five experimental conditions relative to rest are pictured 

in Figure 4.3 (top; FWER < 0.05).  In general, we observed activation in temporal and frontal 

cortices, including bilateral posterior superior temporal regions and Broca’s area, for the A, V, 

and AV speech conditions.  Activation in the nonspeech conditions (R and G) was qualitatively 

similar to activation in the corresponding speech conditions (A and V, respectively), with 

differences highlighted in the contrasts described below.  In a standard subtraction analysis, we 

tested for voxels showing an enhanced response for audiovisual speech versus auditory speech 

and visual speech alone (Figure 4.3, bottom).  For the AV>A contrast, we observed activation in 
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bilateral primary and secondary visual cortices, lateral occipital-temporal visual regions, inferior 

and middle temporal gyri, and posterior STS.  For the AV>V contrast, we observed activation in 

core auditory cortex extending along the superior temporal gyrus and into the STS in the right 

hemisphere.  In line with previous work, the posterior superior temporal sulcus showed enhanced 

activation to audiovisual speech versus auditory or visual speech alone.  However, these 

activations were largely non-overlapping in the STS.  This may have been due to functional-

anatomic variability in individual subjects, a fact that should not affect the ROI analyses reported 

below since they are carried out in native space. 

 

Figure 4.3. Group results: Whole-brain statistical parametric maps for individual conditions and contrasts of interest.  
Maps are thresholded at p < 0.005 with a cluster extent threshold of 159 voxels (FWER < 0.05).  Color scale reflects mean 
percent signal change (PSC) for the individual conditions, and mean differences in PSC for the contrasts. 
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We also tested for voxels showing an enhanced response to intelligible speech (i.e., 

speech vs. nonspeech).  To assess auditory speech intelligibility, we contrasted auditory speech 

versus rotated speech.  This contrast (A>R) did not yield any significant activation at the group 

level.  Although this is not consistent with previous imaging work, (Scott, Blank, Rosen & Wise, 

2000; Narain et al., 2003; Liebenthal, Binder, Spitzer, Possing & Medler, 2005; Okada et al., 

2010), we believe that our use of simpler stimuli, i.e. syllables versus sentences, may have 

produced this null result (see Discussion).  Finally, to assess visual speech intelligibility, we 

contrasted visual speech versus nonspeech facial gurning (V>G).  This contrast yielded an 

activation network consistent with previous work (Campbell et al., 2001; Okada & Hickok, 

2009), including bilateral STS, left inferior frontal gyrus, and a host of inferior parietal and 

frontal sensory-motor brain regions (Figure 4.3 and Figure 4.4). 
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Figure 4.4. Group results: Whole-brain conjunction analyses.  A: Group-level results for the two conjunctions used to 
define STSms (A∩V, yellow) and STSfm (V∩G, teal) are plotted together on an inflated surface rendering of the Conte69 
template in MNI space.  The results demonstrate a clear distinction: A∩V activations fall anterior to V∩G activations in 
the STS.  Overlap appears green-yellow.  B: Conjunction analyses are plotted together with the contrast VvsG (blue), 
which highlights regions that activate preferentially to visual speech versus nonspeech facial gurning.  These visual 
speech-specific regions fall anterior to V∩G in the STS and overlap strongly with A∩V (pink). Family-wise error rate 
controlled < 0.05. 

Finally, we conducted two conjunction analyses meant to highlight STSms (A∩V) and 

STSfm (V∩G).  Activation maps for each conjunction appear overlaid on the same image in 

Figure 4.4 (FWER < 0.05).  In general, A∩V activations were anterior to V∩G activations in the 

superior temporal lobe, including the STS (MNI coordinates of peak STS activations: A∩V LH 

= -65, -41, 5; A∩V RH = 62 -35 2; V∩G LH = -56, -58, 11; V∩G RH = 55, -46, 8), in both 

hemispheres, a fact we confirm in individual subjects below.  Moreover, V∩G activations 
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appeared to immediately abut the A∩V activations moving posterior-to-anterior in STS, with 

greater overlap in the right hemisphere.  Both conjunctions showed activation in the left inferior 

and middle frontal gyri and the right middle frontal gyrus.  Outside of the STS, selective 

activation to A∩V was present in the left temporoparietal junction, while selective activation to 

V∩G was present in bilateral visual cortices including hMT and surrounds, as well as right 

inferior frontal and premotor regions. 

Of interest, visual activations specific to speech (V>G) occupied much of the same STS 

territory as activations to A∩V (i.e., STSms), considering especially the extent of activations 

along the posterior-anterior axis of the STS.  The V∩G region of the STS (i.e., STSfm) did not 

overlap at all with speech-specific (V>G) activations (Figure 4.4).  This suggests that the 

subregion of the STS activating preferentially to speech is anatomically comparable to STSms, a 

finding we explore further in the ROI analyses below.  Note that much of the V>G activation on 

the ventral bank of the STS was due to deactivation in the G condition, rather than large 

activations in the V condition (see V-only maps in Figure 4.3).  STS regions that activated 

significantly to V and were also significant in V>G were likely to be occupied by A∩V. 

 

Region of Interest – Percent Signal Change   

We defined a set of four ROIs in the STS in each individual subject (native space).  Two 

ROIs, one in each hemisphere, were defined based on the conjunction A∩V.  This conjunction 

was chosen to identify STSms in each subject.  An additional two ROIs, again one in each 

hemisphere, were defined in STS based on the conjunction V∩G.  This method was chosen to 
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identify STSfm in each subject.  Voxels from A∩V and V∩G ROIs were free to overlap based 

on the selection criteria outlined in the Materials and Methods above.  In order to report the 

centers of mass of native-space ROIs in standard MNI space, we warped activation masks of 

each ROI to MNI space using the series of transformations reported in the Group Analysis 

subsection of the Methods.  The MNI coordinates of individual subject centers of mass for each 

ROI in each hemisphere are listed in Table 4.1 and pictured on the group template in Figure 4.5.  

As in the group-level conjunctions, A∩V ROIs showed an anterior location bias relative to V∩G 

ROIs in both hemispheres (particularly strong in the left).  In fact, ROIs followed this pattern in 

the majority of subjects (left: 14/15, right: 11/15), with varying degrees of overlap (generally 

more in the right).  Overall, three sources of evidence – (1) group level conjunction maps, (2) 

plots of individual-subject centers of mass together in MNI space, (3) location patterns of 

individual subject ROIs in native space – all support the conclusion that STSfm (V∩G) 

transitions to STSms (A∩V) moving posterior to anterior in the STS. 
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Figure 4.5. Location of individual subject ROIs visualized in MNI space.  Top and Bottom: MNI coordinates of center of 
mass for individual subject ROIs are plotted as 3.5mm spheres on the fiducial surface of the Conte69 template (Yellow = 
A∩V, Teal = V∩G).  Middle: The same coordinates are visualized as 3mm spheres on a smoothed volume rendering of 
our study-specific template warped to MNI space.  The image is shown in the axial plane (top-down, neurological 
convention) with spheres at all depths shown (only left-right and posterior-anterior location can be discerned).  On all 
three images, it is clear that the distribution of yellow spheres is centered anterior to the distribution of teal spheres, with 
less separation in the right hemisphere. 

In the following section we present a standard ROI analysis of percent signal change, 

employed here to assess whether the ROIs just described showed an enhanced response for 

bimodal (AV) speech over A or V alone (AvvsA, AvvsV), or for speech versus nonspeech 

(AvsR, VvsG).  We also tested for activation differences between the conditions used to select 

the ROIs (AvsV and, again, VvsG).  For each ROI, we extracted the mean percent signal change 

for each experimental condition.  These values were entered in a group-level analysis of 
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differences in the mean percent signal change (PSC).  All statistical tests were performed on 

independent data from those used to define the ROIs.  The results of PSC-based analyses are 

presented graphically in Figure 4.6. 

 

Figure 4.6. ROI results: Percent signal change.  Top: Mean percent signal change in each condition for the A∩V ROIs.  
Bottom: Mean percent signal change in each condition for the V∩G ROIs.  Trending (p < 0.05) and significant (p < 0.01) 
pairwise comparisons are starred.  We planned five contrasts in total: AvsV, AVvsA, AVvsV, AvsR, VvsG.  In general, 
A∩V ROIs show greater activation to audiovisual speech (AV) over auditory (A) or visual (V) speech alone, and greater 
activation to visual speech than nonspeech facial gurning (G).  V∩G ROIs show greater activation to visual conditions 
(AV, V, G) than auditory-only conditions (A, R). 
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A∩V ROIs 

The ANOVA on experimental condition was significant in both left [F(1.98, 27.73) = 

23.84, p p < 0.001] and right [F(1.76, 24.60) = 15.70, p < 0.001] hemispheres.  We also assessed 

each of the four contrasts that were tested in the whole-brain analysis in addition to the contrast 

AvsV.  Within each ROI the contrasts were thresholded at the Bonferroni-corrected level p < 

0.01.  The results are presented graphically in Figure 4.6.  In the left hemisphere, the AvvsA 

contrast demonstrated a strong trend [t(14) = 2.64, p = 0.019] and the AvvsV contrast was 

significant [t(14) = 4.30, p = 0.001].  The AvsR contrast was not significant [t(14) = 0.40, p = 

0.70], while the VvsG contrast was significant [t(14) = 5.83, p < 0.001].  Finally, the AvsV was 

significant [t(14) = 3.26, p = 0.006].  In the right hemisphere there was a similar pattern.  The 

AvvsA contrast trended strongly toward significance [t(14) = 2.90, p = 0.012] while the AvvsV 

contrast was significant [t(14) = 4.77, p < 0.001].  The AvsR contrast was not significant [t(14) = 

-0.01, p = 0.989], while the VvsG contrast demonstrated significance [t(14) = 3.51, p = 0.003].  

The AvsV contrast trended strongly toward significance [t(14) = 2.77, p = 0.015].  Overall, the 

A∩V ROIs showed enhanced activation for AV relative to A and V alone, which is consistent 

with a role in audiovisual integration using the max criterion (AV>max[A,V]) (Michael S 

Beauchamp, 2005b) and supports the conclusion that these ROIs occupy STSms.  In addition, 

there was increased activation to intelligible visual speech versus nonspeech facial movements 

(VvsG), which is consistent with the group results and indicates a possible role in higher-level 

phonological speech processing.   Finally, there was greater activation to auditory speech than 

visual speech, suggesting a possible bias induced by the ROI selection process.  The presence of 

such a bias would not affect our interpretation of the data. 
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V∩G ROIs 

An ANOVA on experimental condition was significant in the left [F(3.62, 16.60) = 

13.06, p = 0.002] and right [F(1.40, 19.65) = 12.28, p = 0.001] hemispheres.  The pattern of 

results in the pairwise contrasts was identical between hemispheres (Figure 4.6).  The AvsV [left: 

t(14) = -4.02, p = 0.001; right: t(14) = -3.90, p = 0.002] and AvvsA [left: t(14) = 4.24, p = 0.001; 

right: t(14) = 5.76, p < 0.001] contrasts were significant.  The AvvsV [left: t(14) = -1.40, p = 

0.18; right: t(14) = 1.20, p = 0.25], AvsR [left: t(14) = 1.27, p = 0.22; right: t(14) = -0.01, p = 

0.99], and VvsG [left: t(14) = -1.14, p = 0.27; right: t(14) = -1.75, p = 0.10] contrasts were not 

significant.  Overall, the V∩G ROIs responded well to stimuli containing facial motion (V, AV, 

and G), and poorly to auditory conditions (A, R), which supports the conclusion that these ROIs 

occupy STSfm.  Importantly, these regions did not respond differentially to V and G, the facial 

motion conditions used to define the ROIs via conjunction.  Additionally, there was no activation 

difference between the speech conditions containing facial motion (V and AV). 

 

Region of Interest – Multivariate Pattern Analysis 

Within the same ROIs discussed in the section above, we used MVPA to assess spatial 

patterns of activation rather than differences in mean signal strength.  Again, the logic is that if 

our SVM algorithm is able to reliably classify two conditions within a given ROI, then this ROI 

must contain distinct information about each condition.  A significant classification can be 

interpreted as support for the existence of distinct distributions of neuronal ensembles within the 

region that are differentially sensitive to each condition.  The pattern of activity in each ROI was 

assessed for the following contrasts (identical to the contrasts employed in the percent signal 
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change analysis above): (i) AvsV, (ii) AvvsA, (iii) AvvsV, (iv) AvsR, (v) VvsG.  Brain regions 

that are sensitive to modality of presentation should discriminate at least one of contrasts (i)-(iii), 

while brain regions that are sensitive to intelligible (speech-specific) information should 

discriminate one or both of (iv)-(v).  

 

A∩V ROIs 

The results of MVPA for A∩V ROIs are pictured in Figure 4.7 (top).  The AvsV contrast 

was discriminated successfully by our pattern classifier in the left [accuracy = 77.3%; d’ = 3.23, 

t(14) = 8.08, p = 0.005] and right [accuracy = 76.2%; d’ = 2.87; t(14) = 8.76, p < 0.001] 

hemispheres.  This indicates that there are likely distinct neuronal ensembles that subserve 

auditory and visual processing in these regions, a known feature of STSms.  Additionally, the 

AvvsA contrast was discriminated successfully in the left [accuracy = 58.4%; d’ = 1.01; t(14) = 

2.42, p = 0.03] and right [accuracy = 61.3%; d’ = 1.31; t(14) = 3.39, p = 0.008] hemispheres, as 

was the case for AvvsV in the left  [ accuracy = 0.70%; d’ = 2.40; t(14) = 4.66, p = 0.01] and 

right [accuracy = 66.2%; d’ = 1.82; t(14) = 4.17, p = 0.006] hemispheres.  It is worth noting that 

AV may classify versus unimodal conditions (A, V) simply due to the presence of distinct 

neuronal ensembles representing A and V – in other words, a significant contrast of bimodal 

versus unimodal speech does not necessarily support the existence of any distinct neuronal 

ensemble representing AV.  



138 
 

 

Figure 4.7. ROI results: Multivariate pattern analysis.  Top: Classification accuracy (d’) for the five planned pairwise 
comparisons for A∩V ROIs.  Bottom: Classification accuracy for the same five comparisons in V∩G.  Significant 
comparisons (bootstrap methods) are starred.  The A∩V ROIs successfully distinguish contrasts of speech in different 
modalities (AvsV, AVvsA, AVvsV) and visual speech versus nonspeech (VvsG).  V∩G ROIs distinguish conditions 
containing visual information from those that do not (AvsV, AVvsA) and also classify the contrast of visual speech versus 
nonspeech (VvsG). 

Regarding the intelligibility contrasts, VvsG was classified successfully in the left 

[accuracy = 66.0%; d’ = 1.76; t(14) = 4.698, p = 0.007] and right [accuracy = 65.1%; d’ = 1.72; 

t(14) = 3.38, p = 0.03] hemispheres.  The AvsR contrast was not classified successfully in the left 

[accuracy = 53.1%, d’ = 0.28; t(14) = 0.83, p = 0.22] or the right [accuracy = 54.4%, d’ = 0.45; 

t(14) = 1.14, p = 0.15] hemisphere.  Overall, the MVPA results for A∩V ROIs replicate the 

above observations based on PSC, but in terms of spatial patterns rather than mean signal 

differences.   
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V∩G ROIs 

The results of MVPA for V∩G ROIs are pictured in Figure 4.7 (bottom).  The AvsV 

contrast was significant in the left [accuracy = 81.3%, d’ = 3.68, t(14) = 8.40, p < 0.001] and 

right [accuracy = 73.1%, d’ = 2.66, t(14) = 5.51, p = 0.005] hemispheres.   The AvvsA contrast 

was also discriminated successfully in the left [accuracy = 76.0%, d’ = 2.88, t(14) = 6.91, p = 

0.004] but only marginally in the right [accuracy = 62.9%, d’ = 1.39, t(14) = 2.786, p = 0.06] 

hemisphere.  The reverse pattern was present for the AvvsV contrast, which was significant in 

the right [accuracy = 59.1%, d’ = 1.05; t(14) = 2.44, p = 0.04] but not in the left [accuracy = 

56.0%, d’ = 0.69; t(14) = 1.33, p = 0.15] hemisphere.   

Regarding the intelligibility contrasts, AvsR was not classified successfully in the left 

[accuracy = 52.0, d’ = 0.18, t(14) = 0.66, p = 0.28] or right [accuracy = 50.0%, d’ = 0.07, t(14) = 

0.16, p = 0.43] hemisphere.  However, the VvsG contrast was discriminated successfully in the 

left [accuracy = 69.3%, d’ = 2.08, t(14) = 8.32, p = 0.003] and right [ accuracy = 62.2%, d’ = 

0.51, t(14) = 1.166, p = 0.142] hemispheres.  Overall, the MVPA results for V∩G ROIs deviated 

from the results based on PSC in two important ways.  First, the V∩G ROIs distinguished visual 

speech (V) from nonspeech (G) in terms of spatial patterns, whereas this distinction could not be 

made on the basis of differences in mean signal strength.  Second, the right hemisphere V∩G 

ROI distinguished bimodal (AV) from unimodal (V) speech on the basis of spatial patterns, 

whereas these conditions did not produce reliable differences in mean signal strength from this 

region.  A visual region would not be expected to classify two conditions with identical visual 

information.  As such, it is tempting to conclude that AvvsV classified because a sizable auditory 
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population was included in the right hemisphere V∩G ROIs (there was more overlap between 

A∩V and V∩G in the right hemisphere).  However, the 8 subjects with the highest classification 

accuracy in the AvvsV contrast (mean = 69.58%) showed less auditory activation (mean PSC = 

0.12) than the 7 subjects with the lowest classification accuracy (mean = 47.1%, mean PSC = 

0.34).  Thus, we must recognize the possibility that right hemisphere facial motion regions are 

modulated by concurrent auditory information in AV stimuli. 

 

Discussion 

 

In the current study we set out to answer two questions concerning the organization of the 

visual speech stream in the STS: (1) Are biological/facial motion processing regions of the STS 

(here denoted STSfm) involved in visual speech processing and do these regions overlap with 

multisensory STS (here denoted STSms)?, and (2) At what representational level are auditory 

and visual speech signals processed or combined in STSms?   

The answer to the first question falls out neatly from the current data.  We identified 

STSfm by taking the conjunction of activation to visual speech (V) and nonspeech facial motion 

(G).  Recall that activation in all conditions was relative to a ‘still face’ baseline.  The logic 

behind the V∩G conjunction was that it should identify voxels that (a) respond to conditions that 

differ from baseline primarily in terms of facial motion, and (b) respond to visual speech, 

specifically.  This conjunction reliably identified voxels in the pSTS bilaterally, both at the group 

level and in individual subjects.  Our individual-subject ROI analysis demonstrated that V∩G 
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ROIs activated well to all conditions with facial motion (V, AV, G), but poorly to conditions 

without facial motion (A, R).  Moreover, these regions did not distinguish between the facial 

motion conditions in terms of differences in mean signal strength.  This supports the conclusion 

that the V∩G conjunction successfully identified STSfm.  However, V∩G ROIs distinguished 

two classes of facial motion (speech vs. nonspeech, i.e., VvsG) based on spatial patterns of 

activation, which suggests these regions likely code motion information at a more abstract level 

(E. D. Grossman et al., 2010; Lestou et al., 2008).  The fact that STSfm can distinguish speech 

from nonspeech suggests a role for this region in visual speech perception.    

The second component of question (1) concerned whether STSfm and STSms share the 

same neural territory.  We identified STSms by taking the conjunction of activation to auditory 

(A) and visual (V) speech.  The logic here was simple: voxels in STSms should respond to 

speech regardless of the sensory modality of the input.  The A∩V conjunction reliably identified 

voxels in the pSTS bilaterally, both at the group level and in individual subjects.  The A∩V 

ROIs in our individual subject analysis showed an enhanced response to bimodal speech using 

the max criterion (AV > max[A,V]) and also discriminated among speech conditions in different 

sensory modalities based on spatial patterns of activation (AvsV, AvvsA, AvvsV).  These results 

confirm that voxels identified by A∩V have the expected response profile for STSms.  

Regarding the localization of STSms with respect to STSfm, we observed that activations to 

A∩V were consistently positioned anterior to activations to V∩G in the STS.  Three sources of 

evidence support this observation.  First, group-level conjunction maps showed that A∩V 

activations were largely non-overlapping with V∩G activations, with A∩V occupying more 

anterior regions of STS.  Second, when we warped individual subject ROIs to standard group 

space (MNI) and plotted centers of mass for both A∩V and V∩G ROIs, the same pattern 
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emerged in which A∩V centers of mass were distributed anterior to V∩G centers of mass.  

Third, location patterns of individual subject ROIs in native space consistently showed the same 

anterior bias for A∩V.  Recall that individual subject ROIs were defined based on voxels 

showing the best response to A∩V and V∩G, respectively.  Of note, individual subject ROIs for 

A∩V and V∩G occasionally overlapped (to varying degrees) and group level activations to 

A∩V immediately abutted (and slightly overlapped in the right hemisphere) activations to V∩G 

moving posterior to anterior in the STS.  Overall, we suggest the results reflect a processing 

gradient in the pSTS that transitions gradually from STSfm to STSms moving posterior to 

anterior. 

Previous work suggests a similar posterior to anterior division along the pSTS in terms of 

cortex that responds preferentially to visual speech versus cortex that responds to high-level 

orofacial motion analysis.  A recent fMRI study (Bernstein et al., 2011) employed a rather 

comprehensive set of visual speech and nonspeech stimuli (but no auditory stimuli), 

demonstrating that a more anterior region of pSTS responds preferentially to orofacial visual 

motion when it is speech-related, while more posterior regions of pSTS respond to orofacial 

motion whether or not it is speech-related.  The authors dubbed the anterior speech-related area 

the temporal visual speech area (TVSA).  Indeed, the TVSA appears to be anatomically and 

functionally comparable to our A∩V region (i.e, STSms).  These results fall in line with our 

characterization of a posterior-to-anterior visual speech-processing gradient in the STS.  But 

what does this mean in light of current models of multisensory speech perception in the STS?   

The results of a recent investigation (Arnal et al., 2009) combined with our results shed 

light on this question.  Those researchers constructed a set of audiovisual syllables that varied in 
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terms of both visual predictability (viseme specificity) and phonological congruence (i.e., does 

the A syllable match the V syllable?).  Using MEG, they demonstrated latency facilitation of the 

early auditory-cortical response (M100) that depended on visual predictability but not 

phonological congruence.  An effect of phonological congruence was observed 20ms after the 

M100 latency effect, likely arising from a signal generated in the STS – the M170 response to 

visual syllables in the STS was delayed by exactly 20ms relative to the M170 response 

originating from motion-sensitive visual cortex, and the STS response peaked simultaneously 

with the peak response originating from auditory cortex.  From this, the authors concluded that 

speech-related motion signals originating from visual cortex split onto two targets – auditory 

cortex and the STS – leading to two integration pathways: (a) an early direct pathway (with low 

phonological specificity) from motion sensitive cortex to auditory cortex, and (b) a later indirect 

pathway (with greater phonological specificity) from motion sensitive cortex to STSms.  The 

delay in the indirect pathway may be due to further “preprocessing” of the visual signal in 

STSfm, performed in order to extract abstract features of the motion signal relevant to 

phonological classification.  This dovetails with the current data, which describe a processing 

stream running from STSfm to STSms. 

The second question posed at the beginning of this section concerned the level at which 

auditory and visual signals are combined in STSms.  Recall from the Introduction that direct 

integration models support integration at a high level – that is, auditory and visual speech signals 

are said to converge on bimodal, abstract speech sound representations directly in STSms.  

Feedback models, on the other hand, are rather nonspecific regarding this question and state 

simply that auditory and visual speech signals are compared in STSms and fed back to unimodal 

sensory cortices for further evaluation.  Based on previous data, we feel confident asserting that 
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high-level phonological processing is carried out in the STS (J. R. Binder et al., 2008; J. Binder 

et al., 2000; G. Hickok & Poeppel, 2004; Gregory Hickok & Poeppel, 2007; Okada & Hickok, 

2006; Price, 2010; Vaden Jr, Muftuler, & Hickok, 2010).  As such, we would like to specifically 

evaluate the feasibility of direct integration models and to ask, more generally, whether STSms 

overlaps with auditory-phonological speech regions in the STS.  To look ahead, our data are 

somewhat suggestive but ultimately cannot resolve among the competing positions. 

One way to address the question at hand would be to plot the relation between STSms 

and regions of the STS that are selective for auditory speech compared to auditory nonspeech, 

which is a contrast that is often used to identify high-level speech processing networks.  

However, we failed to observe significant activation (or differences in pattern information) for 

the AvsR contrast in STSms or elsewhere in the STS, in contrast to previous studies (E. 

Liebenthal et al., 2005; Einat Liebenthal et al., 2010).  We believe the manipulation may have 

failed due to the presence of phonetic information under spectral rotation at the syllable level (E. 

Liebenthal et al., 2005).  In contrast, we were able to examine the relation between STSms and 

speech-specific activations in the visual modality.  We found large clusters of activation in the 

pSTS bilaterally for the group V>G contrast.  These clusters were positioned similarly to the 

A∩V conjunction (as opposed to V∩G) at the group level and, furthermore, only the individual-

subject A∩V ROIs showed significant differences in mean signal for VvsG, favoring visual 

speech over nonspeech gurning.  Thus, regions of the STS that prefer visual speech over 

nonspeech correspond well to STSms, providing partial support for audiovisual integration at a 

high level.   

Co-localization of the TVSA with STSms may provide similar support, but in fact the 

authors who identified the TVSA assert that speech sounds are categorized downstream in the 
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middle STS (mSTS) (Bernstein et al., 2011): “TVSA provides a linguistically relevant 

integration of cues that is projected for categorization by other areas…specifically, the more 

anterior mSTG/mSTS area previously identified as having a role in auditory speech perception” 

(p. 1672).  Indeed, several studies have emphasized the role of the mSTS in categorical speech 

processing.  We will review two significant studies here.  First, a recent fMRI study employed 

dynamic sound morphing of consonant-vowel syllables to investigate temporal lobe speech 

processing (Specht, Osnes, & Hugdahl, 2009).  This technique involves a parametric 

manipulation that mixes speech sounds with white noise using an increasingly large interpolation 

factor.  The result is a continuum from white noise (morph step 1) to speech (morph step 7) that 

gradually reveals the spectral and temporal characteristics of the speech in a step-wise manner.  

Musical sounds of matched length were manipulated to create a control continuum.  A 

significant stimulus (speech, music) by manipulation (seven-step morph continuum) interaction 

was observed in the left mSTS, whereby activation to speech increased linearly from step two to 

five of the morph continuum, after which activation leveled off, while activation to music was 

overall less than activation to speech and increased steadily, without leveling off.  Crucially, the 

structure of the first and second formants of the speech stimuli were revealed in morph step five, 

such that the activation profile in mSTS reflected a rather categorical difference between 

auditory speech and nonspeech.  On the other hand, a region of pSTS immediately posterior to 

the mSTS region showed a linearly increasing parametric response to the morphing manipulation 

across all seven levels for speech stimuli.  This suggests a posterior-anterior distinction in which 

the pSTS supports high-level spectrotemporal analysis while the mSTS performs more abstract, 

perhaps categorical phonological processing. 

A second fMRI study from a different group demonstrated a similar distinction between 
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pSTS and mSTS (Einat Liebenthal et al., 2010).  In this study, participants performed 

categorization (identification) of seven-step speech (/ba/-/da/) and nonspeech (rotated analogs) 

continua.  The speech and nonspeech stimuli were identical with the exception that the spectral 

energy was inverted at the first formant of nonspeech stimuli, rendering those stimuli 

phonetically unfamiliar.  Participants were scanned while performing identification trials for 

speech and nonspeech stimuli both before and after a two week training period that gave 

participants practice categorizing the two stimulus classes.  Left pSTS and mSTS showed 

markedly different activation profiles with respect to stimulus (speech, nonspeech) and training 

(before, after).  While the mSTS activated more to speech versus nonspeech both before and 

after training, the pSTS showed increased activation to speech versus nonspeech in the 

pretraining session but showed the reverse pattern after training.  In their interpretation of these 

results, the authors argued that pSTS provides a short-term representation of sound features 

relevant to categorization, while mSTS mediates categorization of highly familiar phonemic 

patterns. 

In light of these findings, an elegant expansion of the pattern in the current data would be 

to simply extend the posterior-to-anterior processing gradient running from STSfm to STSms 

into the mSTS.  In other words, the visual speech stream in STS would run as follows: (1) 

extraction of high-level motion properties (vocal tract configurational information) in STSfm, (2) 

integration of visual speech representations with auditory speech representations in STSms, (3) 

categorization of speech sounds in the mSTS.  However, the current data alone cannot mediate 

between this model (which is essentially an expanded feedback model) and direct integration 

models (both pictured in Figure 4.8).  Future research might combine an appropriate localizer for 

STSms (James & Stevenson, 2012) with a design to identify categorical speech regions in the 
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mSTS (within the same group of subjects).  

 

Figure 4.8. Updated model schematics for multisensory speech processing in the STS.  Left: An expanded Direct 
Integration model.  Essentially, we have expanded the processing stream in the STS to reflect the posterior to anterior 
gradient from STSfm (teal) to STSms (yellow) identified in the current study, along with the a connection between 
motion-sensitive cortex (blue) and auditory cortex (purple) to account for the early influence of visual speech on auditory 
speech perception.  Right: An expanded feedback model.  Here, we have extended the posterior to anterior gradient into 
the mSTS (red) where categorical speech sound representations may be located.  Feedback connections are present.  
Auditory cortex feeds directly and indirectly (via STSms) to the mSTS.  Left & Right: Dotted arrows represent 
connections that do not run through the STSms.  Color-coded boxes beneath the figures represent the computations at 
each stage/location in the processing stream.  From the perspective of the Direct Integration model, the “red” stage of the 
Feedback model is subsumed by the “yellow” stage. 

In sum, we have demonstrated that different subregions of the STS are involved in 

processing facial motion versus multisensory speech.  STSms is positioned anterior to STSfm in 

the posterior STS, but STSfm appears to transition gradually to STSms moving posterior to 

anterior.  Intelligible visual speech can be distinguished from nonspeech facial gestures only on 
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the basis of spatial patterns in STSfm, but by the time the signal reaches STSms the mean signal 

strength to visual speech exceeds the mean signal strength to nonspeech facial gestures.  Thus, 

visual speech representations are elaborated gradually along the posterior-to-anterior processing 

gradient.   It remains for future research to determine whether multisensory speech interactions 

in STSms reflect phonological processing directly, or, as others have suggested (Arnal et al., 

2009; Calvert et al., 1999; Skipper, van Wassenhove, Nusbaum, & Small, 2007), whether the 

outcome of multisensory integration merely informs phonological mechanisms in other brain 

regions such as the mSTS. 
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CHAPTER 5 

 

Primer 

 Recall from Ch. 1 that auditory speech sound representations are engaged not only in 

perception of speech but also during speech production.  Specifically, speech sound 

representations serve as the sensory “targets” for speech production.  Chapters 3 and 4 were 

spent examining the mechanisms underlying audiovisual speech perception under the assumption 

that an understanding of how information from multiple modalities is combined could reveal 

general principles of organization with respect to perceptual speech systems.  The current chapter 

applies the same approach to speech production.  Namely, this chapter asks whether visual 

speech is integrated with the speech motor system in the same way as auditory speech.  The 

motivation behind this question is a recent finding (details to follow) that some non-fluent 

aphasics recover a great deal of their productive speech capacity when following along with a 

video of a talker’s face during an auditory repetition task.  These patients often have extensive 

damage to motor and sensorimotor-integration systems for speech, and as a result they may 

struggle to produce more than a few words per utterance.  Yet, some of these patients can mimic 

audiovisual stimuli enabling them to produce fluent speech in real time.  This same effect does 

not hold for audio- or visual-only speech stimuli.  Thus, it seems that auditory and visual speech 

signals can be combined to somehow access impoverished (but spared) motor speech commands 

in (some) non-fluent aphasics.  How does this happen?  Visual speech must have access to the 

speech motor system.  Perhaps visual speech accesses the motor system by combining 

synergistically with auditory speech within canonical auditory-motor integration networks.  But, 
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as mentioned, these networks are often damaged in non-fluent aphasics.  Another possibility is 

that dedicated networks exist to connect visual speech with vocal tract control mechanisms.  In 

this chapter, I will present the results of an fMRI study that uses a covert rehearsal task to map 

sensorimotor integration networks for auditory, visual, and audiovisual speech inputs.  

Understanding the role of visual speech in production will provide insight into the general 

organization of vocal tract control mechanisms, and an idea of precisely how these mechanisms 

function to support speech production. 

 

Perception drives production across sensory modalities: A network for 

sensorimotor integration of visual speech 

Jonathan H. Venezia, Paul Fillmore, Lisette Isenberg, William Matchin, Gregory Hickok and 

Julius Fridriksson 

 

Introduction 

 Visual speech refers to the motion and configuration cues associated with watching a 

talker’s head, face and mouth during articulation.  The neuro-computational role of visual speech 

is often couched in terms of its influence on auditory speech perception.  This is not surprising 

given that a very large proportion of visual speech research has focused on the perceptual effects 

induced by adding visual speech to an auditory speech signal, which include improved 

intelligibility for speech in noise (Erber, 1969; MacLeod & Summerfield, 1987; McCORMICK, 

1979; Neely, 1956; Ross, Saint-Amour, Leavitt, Javitt, & Foxe, 2007; Sumby & Pollack, 1954) 
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or even for speech with undistorted acoustics (Arnold & Hill, 2001), alteration of auditory 

syllable identity (Massaro, 1998; McGurk & MacDonald, 1976), and improved acquisition of 

non-native speech sound categories (Hardison, 2003).  Conversely, research on auditory speech 

has focused not only on its fundamental contribution to perception, but also on the crucial role of 

auditory speech systems in supporting speech production.  Specifically, evidence suggests that 

auditory speech representations serve as the sensory “targets” for speech production.  According 

to current theory, speech sound representations constitute both the initial goals and end-stage 

consequences of motor speech output, and they are integrated with motor systems via a dorsal 

sensorimotor processing stream (Guenther, 2006; Gregory Hickok, 2012, 2014; Gregory Hickok, 

Houde, & Rong, 2011; Gregory Hickok & Poeppel, 2007; Indefrey & Levelt, 2004; Tourville, 

Reilly, & Guenther, 2008).  Evidence that auditory speech supports production includes 

articulatory decline in adult-onset deafness (Waldstein, 1990), disruption of speech output by 

delayed auditory feedback (Stuart, Kalinowski, Rastatter, & Lynch, 2002; Yates, 1963), and 

compensation for altered auditory feedback (Burnett, Freedland, Larson, & Hain, 1998; Purcell 

& Munhall, 2006). 

 There is also evidence that visual speech plays at least a complementary role in 

supporting speech production.  A classic study (Reisberg, Mclean, & Goldfield, 1987) that is in 

fact frequently cited to support claims that visual speech increases auditory intelligibility actually 

suggests that audiovisual speech facilitates production.  In this study, subjects were asked to 

shadow (listen to and immediately repeat word-by-word) spoken passages that were easy to hear 

but hard to understand – specifically, passages were spoken in a recently acquired second 

language, spoken in accented English, or drawn from semantically and syntactically complex 

content.  The dependent variable was the tracking (speech production) rate in words per minute, 
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and this rate significantly increased when spoken passages were accompanied by concurrent 

visual speech. 

 Circumstantial evidence that visual speech supports production can be drawn from recent 

neurophysiological research indicating that visual and audiovisual speech activate the speech 

motor system (Callan et al., 2003; Hasson, Skipper, Nusbaum, & Small, 2007; Ojanen et al., 

2005; K. Okada & Hickok, 2009; Skipper, van Wassenhove, Nusbaum, & Small, 2007; Watkins, 

Strafella, & Paus, 2003).  Although this evidence is often interpreted as supporting a role for the 

motor system in visual or multimodal speech perception (Hasson et al., 2007; Möttönen & 

Watkins, 2012; Schwartz, Basirat, Ménard, & Sato, 2012), the reverse relation – visual speech 

supports production – is perhaps equally plausible.  This notion motivated some of our own 

research examining the effects of visual speech on production.  Upon observing that visual and 

auditory speech perception activate the speech motor system (Fridriksson et al., 2008; Meister, 

Wilson, Deblieck, Wu, & Iacoboni, 2007; Rorden, Davis, George, Borckardt, & Fridriksson, 

2008), we hypothesized that perceptual training with audiovisual speech would improve the 

speech output of nonfluent aphasics.  Indeed, when patients were trained on a word-picture 

matching task, significant improvement in subsequent picture naming was observed, but only 

when the training phase included audiovisual words (Fridriksson et al., 2009).  We later 

discovered a striking effect we termed “Speech Entrainment” (SE), in which shadowing of 

audiovisual speech allowed patients with nonfluent aphasia to increase their speech output by a 

factor of two or more (Fridriksson et al., 2012).  This effect was not observed for shadowing of 

auditory- or visual-only speech, which suggests the following: motor commands for speech are 

relatively intact in some cases of nonfluent aphasia, and visual speech when combined with 

auditory speech provides crucial information allowing access to these motor commands. 
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 As such, current evidence points to the conclusion that visual speech plays a role in 

speech motor control, at least in some situations.  To be specific, we assume that the noted 

behavioral increases in speech output following exposure to audiovisual speech reflect the 

addition of a complementary set of visual speech “targets” that combine with auditory speech 

“targets” to facilitate speech motor control.   Evidence from other domains demonstrates 

unambiguously that auditory and visual signals interact to support motor control.  The canonical 

animal model for audiovisual integration at the cellular level, the cat superior colliculus 

(Meredith, Nemitz, & Stein, 1987; Meredith & Stein, 1983; Stein & Stanford, 2008), is in fact a 

sensorimotor structure involved extensively in oculomotor control.  An extensive body of 

evidence demonstrates that audiovisual integration facilitates the latency and accuracy of 

saccades and manual movements in humans (Colonius & Arndt, 2001; Corneil, Van Wanrooij, 

Munoz, & Van Opstal, 2002; Diederich & Colonius, 2004; Frens, Van Opstal, & Van der 

Willigen, 1995; Hughes, Reuter-Lorenz, Nozawa, & Fendrich, 1994), and in nonhuman primates 

it has been demonstrated that audiovisual responses in the superior colliculus drive such 

facilitation for saccades (Bell, Meredith, Van Opstal, & Munoz, 2005).  Posterior parietal 

visuomotor integration regions that support saccades, reaching, and grasping in primates also 

have multisensory properties (Andersen, 1997; Cohen & Andersen, 2002).   

 A straightforward hypothesis concerning the mechanism for sensorimotor integration of 

visual speech is that the visual signals are first translated to an auditory-phonological code.  This 

would grant visual speech indirect access to the speech motor system via auditory dorsal stream 

networks.  Another possibility is that visual speech activates sensorimotor speech networks 

directly.  Indeed, speech-reading (perceiving visual speech) activates both multimodal sensory 

speech regions in the posterior superior temporal lobe and a well-known sensorimotor integration 
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region for speech (Spt) in left posterior Sylvian cortex (K. Okada & Hickok, 2009).  A third 

possibility is that dedicated sensorimotor networks exist for visual speech. Speech Entrainment 

provides indirect support for this position – namely, the addition of visual speech improves 

speech output in a population for which canonical auditory-motor integration networks are often 

extensively damaged (Fridriksson, Fillmore, Guo, & Rorden, 2014; Fridriksson et al., 2012).  In 

the current study, we attempted to disambiguate among these possibilities by studying the 

organization of sensorimotor networks for auditory, visual, and audiovisual speech.  Specifically, 

we used BOLD fMRI to test whether covert repetition of visual or audiovisual speech: (1) 

increased activation in known auditory-motor circuits (relative to repetition of auditory-only 

speech), (2) activated sensorimotor pathways unique to visual speech, (3) both, or (4) neither.  

Covert repetition is often employed to identify auditory-to-vocal-tract networks (Buchsbaum, 

Hickok, & Humphries, 2001; Gregory Hickok, Buchsbaum, Humphries, & Muftuler, 2003; 

Kayoko Okada & Hickok, 2006; Rauschecker, Pringle, & Watkins, 2008; Wildgruber, 

Ackermann, & Grodd, 2001), where a typical paradigm involves presenting participants with 

blocks of auditory non-words in each of the following conditions: perception followed by covert 

rehearsal (P+Reh), perception followed by rest (P+Rest), and continuous perception (CP).  

P+Reh is the task of interest, and regions involved the Motor phase of the task are isolated by the 

contrast P+Reh > P+Rest, while regions involved in the Sensory phase are isolated by the 

contrast CP > baseline, and the conjunction of the two contrasts identifies Sensorimotor areas.  

Adapting this paradigm, we asked whether using visual (V) or audiovisual (AV) stimuli as the 

input recruited different sensorimotor networks versus auditory-only (A) input.  We computed 

the Sensory contrast, Motor contrast, and Sensorimotor conjunction for each of the input 

modalities separately.  To explore the space of hypotheses listed above, i.e., (1), (2), (3), and (4), 



159 
 

we compared the Sensorimotor networks for each modality and also identified regions 

demonstrating an increased Motor response for V or AV input relative to A.  We also assessed 

whether including visual speech in the input produced effects (if any) only in the AV condition, 

or whether such effects could also be observed for V alone.  To the best of our knowledge, this is 

the first time this type of sensorimotor-speech design has been applied comprehensively to 

multiple input modalities within the same group of participants. 

 

Materials and Methods 

 

Participants 

Twenty (16 female) right-handed native English speakers between 20 and 30 years of age 

participated in the study.  All volunteers had normal or corrected-to-normal vision, normal 

hearing by self-report, no known history of neurological disease, and no other contraindications 

for MRI.  Informed consent was obtained from each participant in accordance with University of 

South Carolina Institutional Review Board guidelines.  

 

Stimuli and Procedure 

Forty-five digital video clips (3s duration, 30 fps) were produced featuring a single male 

actor shown from the neck up.  In each clip, the actor produced a sequence of four consonant-

vowel (CV) syllables drawn from a set of six visually distinguishable CVs – \ba\, \tha\, \va\, \bi\, 

\thi\, \vi\.  The CVs were articulated as a continuous sequence with the onset of each component 
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syllable timed to a visual metronome at 2 Hz.  Each of the six CVs appeared exactly 30 times 

across all 45 clips and any given CV was never repeated in a sequence.  Otherwise, the ordinal 

position of each CV within a sequence was selected at random.  Videos were recorded in a single 

session against a ‘green screen’ at 720p resolution and post-processed in Final Cut Pro 7 (Apple 

Inc.).  The green screen was replaced with a uniform gray background, individual clips were cut 

to 3s duration with an equal number of frames preceding and following articulation, and clips 

were cropped and compressed to 640x480 pixels.  The concurrent auditory speech signals were 

recorded on a separate microphone during the video recording session, digitized (44.1 kHz, 16-

bit mono), and synced manually with the video recordings using Audacity software.  Auditory 

stimuli were normalized to equal root-mean-square amplitude. 

Syllable sequences were presented to participants in each of three modalities (Figure 5.1): 

auditory-only (A), visual-only (V) and audiovisual (AV).  In the A modality, clips consisted of a 

still frame of the actor’s face paired with auditory recordings of CV syllable sequences.  In the V 

modality, videos of the actor producing syllable sequences were presented without sound.  In the 

AV modality, videos of the actor producing syllable sequences were presented along with the 

concurrent auditory speech signal.  In addition, syllable sequences were presented in three 

experimental conditions: perceive and rehearse (P+Reh), perceive and rest (P+Rest), and 

continuous perception (CP).  A single trial in each condition comprised a 10s period (Figure 5.1): 

a visual cue indicating the condition (1.5s) followed by a blank gray screen (uniformly jittered 

duration, 0.5-2s), stimulation (6s), and then a black fixation “X” on the gray background 

(remainder of 10s).  Only the 6s stimulation period varied by condition.  In the P+Reh condition, 

participants were asked to “perceive” (watch, listen to, or both) syllable sequences (3s) and then 

covertly rehearse (single repetition) the “perceived” sequence in the period immediately 
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following (3s).  In the P+Rest condition, participants were asked to perceive syllable sequences 

(3s) followed immediately by a period of rest (3s without covert articulation).  In the CP 

condition, participants were asked to perceive a syllable sequence that was presented twice so as 

to fill the entire stimulation period (6s).  There were also rest trials in which the black fixation 

“X” was presented for the entire 10s. 

 

Figure 5.1. Design schematic of multimodal sensorimotor speech task.  Input modality (top) was crossed with condition 
(bottom).  Each run contained 30 trials from a given input modality – A, V or AV – and 10 rest trials (not pictured).  Of 
the 30 trials, 10 each were perceive+rehearse, perceive+rest, and continuous perceive.  The perceive+rehearse trials were 
cued by an image of lips at the onset of the trial, and the perceive+rest and continuous perceive trials were cued by an 
image of an eye at the onset of the trial.  Trial structures are shown for each condition.  White text indicates what subjects 
were actually doing, rather than instructions on screen.  Stimuli were 3s CV syllable sequences drawn from the set of 
visually distinguishable CVs /ba/, /bi/, /tha/, /thi/, /va/, /vi/.  The CV sequence shown is just one possible example. 
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Functional imaging runs consisted of 40 trials, 10 from each condition and 10 rest trials.  

Runs were blocked by modality – that is, of nine functional runs, there were three A runs, three 

V runs, and three AV runs, presented in pseudo-random order (the same modality was never 

repeated more than once and each participant encountered a different presentation order).  Within 

each run, trials from each condition were presented in pseudo-random order (same condition 

never repeated more than once and rest trials were never repeated).  The 45 syllable sequences in 

our stimulus set (see above) were presented twice in each modality (total of 90 trials, 30 in each 

condition).  The same sequence was never presented twice in a given run and sequences were 

balanced across the first and second halves of the experiment: within a given modality, all 45 

sequences appeared once during the initial 45 trials and once during the final 45 trials. The 

sequence order was random otherwise.  Participants were scanned for nine functional runs 

immediately followed by acquisition of a high-resolution T1 anatomical volume.  Stimulus 

delivery and timing were controlled using the Psychtoolbox-3 (Kleiner et al., 2007) implemented 

in Matlab (Mathworks Inc., USA). 

 

Scanning Parameters 

MR images were obtained on a Siemens 3T fitted with a 12-channel head coil and an 

audio-visual presentation system.  We collected a total of 1872 echo planar imaging (EPI) 

volumes per subject over 9 runs using single pulse Gradient Echo EPI (matrix = 104 x 104, 

repetition time [TR] = 2s, echo time [TE] = 30ms, size = 2 x 2 x 3.75 mm, flip angle = 76).  

Thirty-one sequentially acquired axial slices provided whole brain coverage.  After the 
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functional scans, a high-resolution T1 anatomical image was acquired in the sagittal plane (1 

mm3). 

 

Imaging Analysis – Study-Specific Anatomical Template Construction 

A study-specific anatomical template image was created using symmetric diffeomorphic 

registration (SyN) in the Advanced Normalization Tools (ANTS) software (B. Avants et al., 

2008; B. Avants & Gee, 2004).  Each participant’s whole-head T1 anatomical image was 

submitted to the template-construction processing stream in ANTS (buildtemplateparallel.sh), 

which comprises rigid and SyN registration steps.  For SyN, we used a cross correlation 

similarity metric (B. B. Avants et al., 2011) with a three-level multi-resolution registration with 

50x70x10 iterations.  The output of this registration process was a whole-head T1 template 

approximating the group average shape and intensity.  The whole-head template was skull 

stripped in ANTS (antsBrainExtraction.sh) via registration with the prebuilt NKI template with 

probabilistic brain mask (Avants, Brian; Tustison, Nick (2014): ANTs/ANTsR Brain Templates. 

Figshare. http://dx.doi.org/10.6084/m9.figshare.915436).  A brain+cerebellum mask of the 

skull-stripped template was inverse-warped to each participant’s native space and used to skull 

strip the individual participant T1 images.  These skull-stripped images were then re-registered to 

the skull-stripped template using SyN (antsRegistration) in order to improve registration 

accuracy.  Finally, the skull-stripped template was aligned to the MNI152-space ICBM template 

(Vladimir Fonov et al., 2011; VS Fonov, Evans, McKinstry, Almli, & Collins, 2009) using a 12-

parameter affine registration in ANTS.  The complete set of affine and diffeomorphic 

transformations mapping each participant’s T1 anatomical to the study-specific T1 template, and 
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the affine transformation mapping the study-specific T1 template to MNI space, were later used 

to bring each participant’s functional data into alignment with the study-specific template in 

MNI space. 

 

Imaging Analysis –fMRI 

Preprocessing of the data was performed using AFNI software 

(http://afni.nimh.nih.gov/afni).  For each run, slice timing correction was performed followed by 

realignment (motion correction) and coregistration of the EPI images to the high resolution 

anatomical image in a single interpolation step.  Functional data were then warped to the study-

specific template in MNI space using the set of transforms defined in ANTS.  Finally, images 

were spatially smoothed with an isotropic 6-mm full-width half-maximum (FWHM) Gaussian 

kernel and each run was scaled to have a mean of 100 across time at each voxel. 

First level regression analysis (AFNI 3dREMLfit) was performed in individual subjects.  

The hemodynamic response function (HRF) for events from each cell of the design was 

estimated using a cubic spline (CSPLIN) function expansion with 8 parameters modeling the 

response from 2 to 16s after stimulation onset (spacing = 1TR).  The HRF was assumed to start 

(0s post-stimulation) and end (18s post-stimulation) at zero.   Thus, a total of 72 regressors were 

used to model the HRF from each of the 9 event types in the experiment: A P+Reh, A P+Rest, A 

CP, V P+Reh, V P+Rest, V CP, AV P+Reh, AV P+Rest, AV CP.  The amplitude of the response 

was calculated by averaging the HRF values from 6-10s post-stimulation.  These amplitude 

estimates were fed to the 2nd level for group analysis.  The “cue” periods from each trial were 

modeled as a single regressor of no interest corresponding to an event timing vector convolved 
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with a canonical hemodynamic response function.  Rest trials were not modeled explicitly and 

were thus included in the baseline term.  An additional twelve regressors corresponding to 

motion parameters determined during the realignment stage of preprocessing along with their 

temporal derivatives were entered into the model.  Individual time points were censored from 

analysis when more than 10% of in-brain voxels were identified as outliers (AFNI 3dToutcount) 

or when the Euclidean norm of the motion derivatives exceeded 0.4. 

A second-level mixed effects analysis (Chen, Saad, Nath, Beauchamp, & Cox, 2012) was 

performed on the HRF amplitude estimates from each participant, treating ‘participant’ as a 

random effect.  This procedure is similar to a standard group-level t-test but also takes into 

account the level of intra-subject variation by accepting t-scores from each individual subject 

analysis.  Statistical parametric maps (t-statistics) were created for each contrast of interest.  

Active voxels were defined as those for which t-statistics exceeded the p < 0.005 level with a 

cluster extent threshold of 173 voxels.  This cluster threshold was determined by Monte Carlo 

simulation (AFNI 3dClustSim) to hold the family-wise error rate (FWER) less than 0.05 (i.e., 

corrected for multiple comparisons).  Estimates of smoothness in the data were drawn from the 

residual error time series for each participant after first-level analysis (AFNI 3dFWHMx).  These 

estimates were averaged across participants separately in each voxel dimension for input to 

3dClustSim.  Simulations were restricted to in-brain voxels. 

We performed two group-level contrasts to identify different components of speech-

related sensorimotor brain networks.  The first, which we term the ‘Sensory’ contrast, tested for 

activation greater in the CP condition than baseline (CP > Rest) and was intended to identify 

brain regions involved in the sensory phase of the perceive+rehearse task.  The second, which we 

term the ‘Motor’ contrast, tested for activation greater in the P+Reh condition than the P+Rest 
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condition (P+Reh > P+Rest).  This contrast factored out activation to the sensory phase and was 

thus intended to identify brain regions involved in the (covert) motor phase of the 

perceive+rehearse task.  Finally, Sensorimotor brain regions (i.e., those involved in both phases 

of the task) were identified by performing a conjunction of the Sensory and Motor contrasts (CP 

> rest ∩ P+Reh > P+Rest).  The conjunction analysis was performed by constructing minimum t-

maps (e.g., minimum T score from [Sensory, Motor] at each voxel) thresholded at p < 0.005 with 

a cluster extent threshold of 173 voxels (FWER < 0.05, as for individual condition maps).  The 

Sensory, Motor, and Sensorimotor analyses were performed separately for each modality to form 

a total of 9 group-level SPMs: A-Sensory, A-Motor, A-Sensorimotor, V-Sensory, V-Motor, V-

Sensorimotor, AV-Sensory, AV-Motor, AV-Sensorimotor.   We tested directly for differences in 

motor activation across input modalities by performing two interaction contrasts: VvsA-Motor 

(V-Motor > A-Motor) and AvvsA-Motor (AV-Motor > A-Motor). 

Activations were visualized on the Conte69 atlas in MNI152 space in CARET v5.65 

(http://brainvis.wustl.edu/wiki/index.php/Caret:Download), or on the study-specific template in 

MNI152 space in AFNI.  Displayed group-average time-course plots were formed by taking the 

average of individual subject HRF regression parameters at each time point and performing 

cubic spline interpolation with a 0.1s time step. 

 

Results 

 Auditory-motor integration networks for the vocal tract have previously been identified 

quite reliably using a standard imaging paradigm in which subjects listen to and covertly 

rehearse sequences of auditory nonwords.  In particular, auditory-motor integration regions are 
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identified by testing for voxels that respond significantly to both the listen (Sensory) and 

rehearsal (Motor) phases of the task.  Here, we have extended this design to multiple input 

modalities: in addition to auditory (A) speech (CV syllables), participants were asked to perceive 

and covertly rehearse visual (V) and audiovisual (AV) speech.   

We hypothesized the following with respect to our multimodal perceive+rehearse task: 

(1) Additional sensorimotor brain regions (i.e., outside canonical auditory-motor networks as 

assessed in the A modality) will be recruited when the input modality is V, AV, or both; (2) 

Additional motor activation will be observed (either within canonical auditory-motor regions or 

in visual-specific regions) when the input modality is V, AV, or both (i.e., there will be motor 

activation over and above that observed for auditory-only input). The motivation for (1) and (2) 

is behavioral work (detailed above) reporting an increase in speech output when the task is to 

repeat a stimulus that contains visual speech – specifically, we hypothesized that these 

behavioral improvements are driven by recruitment of unique visual-to-motor speech pathways 

that lead to an increased motor response (the presumed neural correlate of behavioral 

improvements, although we do not test this directly).  To assess (1), we simply observed 

differences in Sensorimotor maps across modalities qualitatively.  To assess (2), we tested 

directly for differences in Motor (P+Reh > P+Rest) activation across modalities by performing 

two interaction contrasts: AvvsA-Motor (AV-Motor > A-Motor) and VvsA-Motor (V-Motor > 

A-Motor).  These interaction contrasts were designed to identify brain regions demonstrating an 

enhanced motor response while factoring out activations to the sensory phase of the task in each 

modality. 
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Sensorimotor speech networks for multiple input modalities 

  In this section we report the results of the Sensorimotor conjunction analysis designed to 

identify sensorimotor integration networks in each of three input modalities: A, V, and AV.  This 

conjunction analysis tested for voxels showing a significant response in both Sensory and Motor 

phases of the perceive+rehearse task.  It should be noted for the purposes of viewing activation 

time-courses that estimates of the hemodynamic response are based on 6s of effective 

stimulation for the Sensory phase and only 3s of effective stimulation for the Motor phase (refer 

to the Sensory and Motor contrasts in the Methods).   

The A-Sensorimotor map (Figure 5.2, top left) comprised significant clusters in canonical 

motor-speech brain regions including the left inferior frontal gyrus/frontal operculum (IFG), the 

left precentral gyrus (PreM), and bilateral supplementary motor area (SMA; preponderance of 

activation in the left hemisphere).  In addition, there were significant clusters in the left posterior 

Sylvian region (Spt), right PreM, and the right cerebellum (cerebellar activations pictured in 

Figure 5.2, middle right).  This network matches up quite well with previously identified 

auditory-motor integration networks for the vocal tract (Buchsbaum et al., 2001; Gregory Hickok 

et al., 2003; Isenberg, Vaden, Saberi, Muftuler, & Hickok, 2012; Kayoko Okada & Hickok, 

2006).   
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Figure 5.2. Sensorimotor conjunction SPMs.  Sensorimotor brain regions were highlighted in each modality by taking the 
conjunction of Sensory (CP > baseline) and Motor (P+Reh > P+Rest) contrasts.  These regions are displayed on separate 
cortical surface renderings for each input modality: A, V, AV.  Also shown is a volume rendering for each modality with 
axial slices peeled away to allow visualization of cerebellar activation.  Activation time-courses are shown for 
sensorimotor regions that were unique to the V and AV modalities.  Yellow: Right pSTS.  Teal: Left pSTS/MTG.  
Magenta: Left insula. 

We hypothesized that Sensorimotor maps for V and/or AV would contain additional 

regions consistent with distinct pathways for integrating visual speech information with the 

speech motor system.  This is precisely what we found.  The V-Sensorimotor (Figure 5.2, top 

right) and AV-Sensorimotor maps (Figure 5.2, middle left) included the same network of brain 

regions as the A-Sensorimotor map, but with the following differences.  First, the extent of 

activation in typical auditory-motor integration regions was greater for both V and AV.  This was 
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observed for Spt, SMA, and PreM (Table 5.1).  Second, several new clusters emerged in both the 

V-Sensorimotor and AV-Sensorimotor maps.  Common to both maps, additional clusters were 

active in the left posterior superior temporal sulcus/middle temporal gyrus (STS/MTG), the right 

posterior STS, and the left Insula (all highlighted in colored boxes in Figure 5.2).  Examination 

of the activation time-courses (Figure 5.2, bottom) indicates that increased Motor activation in 

the V and AV modalities (relative to A) likely drove these additional clusters above threshold.  

This effect was subtle for the right STS (indeed, there were 114 suprathreshold voxels that did 

not survive cluster correction in the A-Sensorimotor conjunction).  Unique to the V-

Sensorimotor map, an additional cluster was present in the left cerebellum, while additional 

clusters unique to the AV-Sensorimotor map were observed in the left ventral PreM, the left IFG, 

and the left putamen (Table 5.1).  Overall, sensorimotor integration of visual speech, whether V 

or AV, recruited a more extensive sensorimotor speech network, possibly via additional 

activation of posterior superior temporal regions. 
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Table 5.1. Centers of mass (MNI) of significant clusters in Sensorimotor conjunction maps  

 

Region Hemisphere x y z 
Vol 

(voxels) 
Approximate 

Cytoarch. Area 

A-Sensorimotor SMA L -2.2 6.5 64.1 450 6 

 

Spt L -59.6 -42.3 22.9 364 IPC (PF) 

 

Cerebellum R 29.2 -61.7 -24.6 323 Lobule VI 

 

PreM L -55.5 -3.4 49.5 320 6 

 

PreM R 57.7 0.9 44.6 271 6 

 

IFG L -52.8 9.4 -1.6 251 45 

        V-Sensorimotor PreM L -54.2 -0.1 46.3 927 6 

 

Spt/STS L -56.3 -47.5 16.3 782 IPC (PF) 

 

SMA L -1.9 7.3 62.7 734 6 

 

PreM R 56.9 0.8 45.3 458 6 

 

STS R 54.8 -36.5 9.6 395 n/a 

 

Cerebellum R 37.6 -64.3 -25.9 391 Lobule VI 

 

Cerebellum L -40.5 -65.7 -26.6 348 Lobule VIIa Crus I 

 

Insula L -35.7 22.6 3.2 313 n/a 

        AV-
Sensorimotor Spt/STS L -58.8 -44.3 17.1 1271 IPC(PF) 

 

IFG/Insula/vPreM L -47.9 15.2 6.2 1028 44 

 

SMA L -2 5.8 64 690 6 

 

PreM L -53.4 -2.5 49.4 525 6 

 

PreM R 57.5 0.1 44 342 6 

 

STS R 47.1 -37.8 6 337 n/a 

 

Cerebellum R 36.1 -65.6 -25.1 214 Lobule VI 

 

Putamen L -22 4.8 6.4 192 n/a 
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Explicit tests for increased Motor activation in the context of visual speech 

The previous section highlighted differences in sensorimotor integration networks for the 

vocal tract based on the input modality.  However, these differences were inferred on the basis of 

qualitative inspection of multiple conjunction maps.  It is possible that some of the observed 

patterns emerged on the basis of the cluster correction threshold we imposed in order to control 

the family-wise error rate.  As such, we also wanted to test directly for differences in activation 

based on the input modality.  In particular, we focused on differences in activation in the Motor 

(rehearsal) phase of the task.  If the presence of visual speech information in fact recruits 

additional pathways to the motor system, we should observe at least one of the following in 

VvsA-Motor or AvvsA-Motor interaction contrast maps: (1) increased activation in canonical 

motor and/or sensorimotor speech areas that activate in response to covert production across 

input modalities; (2) increased activation in additional motor regions that come online only when 

the input contains visual speech; (3) increased activation in additional sensorimotor regions 

responsible for interfacing visual speech information with the motor system. 

The VvsA-Motor and AvvsA-Motor interaction contrast maps are displayed in Figure 5.3 

(warm colors), overlaid with the V-Sensorimotor and AV-Sensorimotor maps (blue) from Figure 

5.2, respectively.  The following is immediately apparent: extensive networks were highlighted 

by the interaction contrasts, but these networks did not overlap strongly (hardly at all, in fact) 

with the sensorimotor networks identified in the V-Sensorimotor and AV-Sensorimotor 

conjunction maps.  The only region of considerable overlap is the left posterior MTG, and this 

overlap is present for both the V and AV input modalities.  Thus, it seems there was not a 
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significant “gain” on canonical sensorimotor integration regions in the presence of visual speech.  

However, as mentioned, large networks of additional brain regions were active in the interaction 

contrasts.  In both the AvvsA-Motor and VvsA-Motor maps, large clusters in bilateral ventral 

occipital-temporal regions were active, as was a cluster in the right ventral pre/post-central 

region.  Unique to the VvsA-Motor map, clusters emerged in the left posterior STS, IFG, Insula, 

cingulate cortex, and bilateral caudate nucleus.  Unique to the AvvsA-Motor map, extensive pre- 

and post-central clusters emerged in addition to clusters in bilateral superior parietal lobules and 

paracentral lobules. 

 

Figure 5.3. Interaction contrast SPMs (warm) overlaid with Sensorimotor conjunction SPMs (blue).  Regions that 
displayed significantly greater Motor activation in the presence of visual speech are shown in the interaction contrast 
maps.  Left: the AVvsA-Motor (AV-Motor > A-Motor) interaction contrast map is shown on a cortical surface rendering 
and a volume rendering with axial slices removed to allow cerebellar activation.  Right: the VvsA-Motor (V-Motor > A-
Motor) interaction contrast map is shown on a cortical surface rendering and a volume rendering with axial slices 
removed to allow cerebellar activation.  Interaction contrast SPMs did not overlap strongly with Sensorimotor SPMs, 
indicating recruitment of additional motor areas. 
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To further examine the properties of brain regions identified in the interaction contrasts, 

we narrowed in on particular subregions to plot the activation time-courses of Sensory and Motor 

contrasts across all three input modalities.  To locate interesting subregions, we restricted the 

search to voxels that were also significantly active in the Motor contrast alone.  We did this 

because it was possible for voxels to reach significance in the interaction contrasts (e.g., when 

comparing across modalities as in AvvsA) but not in the within-modality Motor contrasts (e.g., 

AV-motor).  In these cases, a significant interaction contrast would be due to differential patterns  

of deactivation in the Motor contrast across modalities, which are difficult to interpret.  

As such, we identified clusters of interest using overlap analyses (logical conjunction).  For 

significant voxels in the VvsA-Motor interaction contrast map, we identified clusters that were 

also significantly active to V-Motor alone (VvsA-Motor AND V-Motor).  For significant voxels 

in the AvvsA-Motor interaction contrast map, we identified clusters that were also significantly 

active to AV-Motor alone (AvvsA-Motor AND AV-Motor).  The idea was to highlight regions 

that showed an augmented Motor response in the presence of visual speech (V or AV relative to 

A) and also a significant Motor response relative to baseline.  Overlap clusters are listed in Table 

5.2 with MNI coordinates. 
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Table 5.2. Centers of mass (MNI) of significant clusters in interaction contrast maps overlapped 

with individual Motor maps (each thresholded FWER < 0.05) 

 

 

Region Hemisphere x y z Vol (voxels) 
Approximate 

Cytoarch. Area 

VvsA-Motor 
AND V-Motor 

PreCen Sulcus L -32.6 -4.6 53.8 282 6 

PreCen Sulcus R 27.3 -9.1 59.7 251 6 

 

Inf Par Lobule L -37 -38.9 50.5 86 2 

 

MTG L -57.1 -59.9 8.8 58 n/a 

 

PreM L -58.5 1.2 33.6 55 6 

 

Cen Sulcus L -50.9 -14.2 52.2 38 1 

        AvvsA-Motor 
AND AV-

Motor 

ACC L -7.9 23.8 33.7 177 n/a 

Caudate Nucl. L -12.5 12.4 6.2 123 n/a 

 

Cerebellum R 28.7 -71.9 -25.5 117 Lobule VIIa Crus I 

 

MTG L -57.5 -60.1 12.8 110 n/a 

 

Insula L -27 23.3 3.3 84 n/a 

 

IFG L -47.3 32.4 17 70 45 

 

 

In Figure 5.4, we show clusters that were active in both the VvsA-Motor interaction 

contrast and the V-Motor contrast.  These clusters were located in the left insula, IFG, caudate 

nucleus, cingulate cortex, MTG, and right cerebellum. The pattern of responses in the majority of 

these clusters was quite similar – Motor activation followed a graded pattern with the largest 

response in the V modality, followed by the AV modality and then the A modality (often little or 
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no response), and there is very little Sensory activation across modalities.  The one exception is 

the left MTG which responded well to both Sensory and Motor contrasts for V and AV, but 

poorly in both contrasts for A.  In Figure 5.5, we show clusters that were active in both the 

AvvsA-Motor interaction contrast and the AV-Motor contrast.  These clusters were located in the 

left PreM, pre-central sulcus, central sulcus/post-central gyrus, inferior parietal lobule, MTG, and 

the right pre-central sulcus.  Three of these six clusters showed similar response patterns – Motor 

activation followed a graded pattern with the largest response in the AV Modality, followed by 

the V modality, and very little response in the A modality, with very little Sensory activation 

across modalities.  The left PreM and inferior parietal lobule showed a strong Motor response in 

all three modalities but the response in AV and V exceeded the response in A.  The left MTG 

cluster was in nearly the exact same region identified in the overlap between the VvsA-Motor 

interaction contrast and the V-Motor contrast, with nearly identical response properties.  Overall, 

the overlap between Motor interaction contrast maps and individual-modality Motor contrast 

maps identified a network of motor-related brain regions that responded better during rehearsal 

of speech that contained a visual signal (V or AV).  Some of these regions responded only to V 

and AV and thus correspond to additional motor regions recruited via visual-to-motor pathways, 

while other regions responded to all three modalities but responded best in the presence of a 

visual speech signal. 
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Figure 5.4. Overlap Analysis: VvsA-Motor and V-Motor.  Clusters that were significant in the VvsA-Motor interaction 
contrast (V-Motor > A-Motor) and also to V-Motor alone are shown in volume space along with mean activation time-
courses. 



178 
 

 

Figure 5.5. Overlap Analysis: AVvsA-Motor and AV-Motor.  Clusters that were significant in the AVvsA-Motor 
interaction contrast (AV-Motor > A-Motor) and also to AV-Motor alone are shown in volume space along with mean 
activation time-courses. 

  Of note, the left posterior MTG has been consistently highlighted in every analysis – 

Sensorimotor conjunctions, Motor interaction contrasts, and overlap maps – strongly suggesting 

this region is a crucial sensorimotor node in a network for communicating visual speech 

information to the motor system. 
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Discussion 

 In the current study we asked whether sensorimotor integration networks for speech 

differed depending on the sensory modality of the input stimulus.  In particular, we conducted an 

fMRI experiment in which participants were asked to perceive and immediately repeat a 

sequence of consonant-vowel syllables presented in one of three sensory modalities: auditory 

(A), visual (V), or audiovisual (AV).  We measured activation to both the Sensory and Motor 

phases of the task, and we identified Sensorimotor brain regions by testing for voxels that 

activated significantly to both phases.  We also tested for regions showing an increased Motor 

response when visual speech was included in the input (V or AV) relative to auditory-only input.  

We hypothesized that inclusion of visual speech in the input would either augment the activation 

in known auditory-motor networks (via multisensory integration of AV inputs) or recruit 

additional sensorimotor regions to support speech production (V or AV).  Three noteworthy 

results will be discussed at further length below.  First, speech motor regions were more 

activated when the input stimulus included visual speech.  Second, certain motor and 

sensorimotor regions were only activated when the input stimulus included visual speech.  Third, 

regions that activated preferentially for V input also tended to activate well to AV input and vice 

versa.  

 

Visual speech inputs increase motor speech activation during rehearsal 

 Two sources of evidence support this conclusion.  The first concerns differences in the V-

Sensorimotor and AV-Sensorimotor networks relative to the A-Sensorimotor network.  Both V 

and AV inputs increased the extent of sensorimotor activation in canonical motor speech regions 
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including the ventral premotor cortex.  Additionally, a significant cluster of sensorimotor 

activation was observed in the left insula in the V-Sensorimotor and AV-Sensorimotor maps, but 

not the A-Sensorimotor map.  Examination of the activation time-course in this left insula region 

indicates that increased Motor activation in the V and AV modalities (relative to A) drove this 

effect.  The second source of evidence comes from direct comparison of Motor activation in the 

V and AV modalities relative to A.  The AvvsA-Motor map showed extensive activation in 

rolandic cortex bilaterally with additional activation in premotor regions.  The VvsA-Motor map 

revealed activation in the right premotor cortex, left insula, and bilateral striatum.   

 This result concurs with behavioral evidence from normal and aphasic individuals 

indicating that shadowing audiovisual speech leads to increased speech output compared to 

shadowing of auditory-only speech (Fridriksson et al., 2012; Reisberg et al., 1987).  Specifically, 

we have shown here that rehearsal immediately following speech input leads to greater activation 

in motor speech regions when the input contains visual speech, with large effects in primary 

motor regions for audiovisual speech in particular.  One potential flaw in this conclusion, viz. 

that differences in Sensory activation between the input modalities produced the observed 

differences in motor system activation, deserves to be addressed explicitly here.  Several recent 

studies suggest that perception of V or AV speech leads to increased motor system activation 

relative to perception of A speech (Callan et al., 2003; Matchin, Groulx, & Hickok, 2014; 

Skipper, Nusbaum, & Small, 2005; Skipper et al., 2007).  However, this cannot be the source of 

activation differences observed in the current study.  Firstly, although our perceive+rehearse task 

is inherently sensorimotor, activation to the Sensory phase of the task was factored out when 

computing activation to the Motor phase.  For example, when comparing AV-Motor versus A-

Motor the full contrast was (AV P+Reh – AV P+Rest) – (A P+Reh – A P+Rest), such that the 
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“P”, or perceptual component, was subtracted out separately for AV and A.  Moreover, 

examination of the activation time-courses for Motor clusters in the VvsA-Motor and AvvsA-

Motor interaction contrast maps (Figs. 5.4 & 5.5) reveals very little Sensory activation across 

input modalities.  In other words, modality differences in Sensory activation cannot explain 

modality differences in Motor activation. 

 

A distinct sensorimotor pathway for visual speech 

  Several of the sensorimotor brain regions showing an increased Motor response when 

the input stimulus contained visual speech also activated in the A-Motor contrast.  These include 

the bilateral pSTS and left insula, ventral premotor cortex, and inferior parietal lobule.  This set 

of regions responded preferentially to V, AV or both (relative to A).  Other brain regions 

showing increased Motor activation following visual speech input responded exclusively to V, 

AV or both.  Among these regions were the bilateral pre-central sulci and left central sulcus, 

striatum, IFG, and MTG.  This set of regions may constitute a distinct sensorimotor pathway for 

visual speech that, when engaged in conjunction with auditory-motor networks by an audiovisual 

stimulus, produces increased activation of the speech motor system.  If so, the influence of visual 

speech on production cannot be reduced to secondary activation of canonical auditory-motor 

pathways (i.e., via activation of auditory-phonological targets that interface with the speech 

motor system (Calvert et al., 1999; Calvert et al., 1997; Calvert, Campbell, & Brammer, 2000; K. 

Okada & Hickok, 2009; Kayoko Okada, Venezia, Matchin, Saberi, & Hickok, 2013)).  In 

support of this conclusion, a recent TMS study using congruent (e.g., AV-ba and AV-ga) and 

incongruent (e.g., A-ba paired with V-ga and vice versa) audiovisual syllables suggests that, 
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during perception, both the auditory and visual channels influence activity in speech motor 

cortex, but the two channels do not interact (Sato, Buccino, Gentilucci, & Cattaneo, 2010).  

Another study using an audiovisual perceive+rehearse paradigm with incongruent VCV syllables 

(A-aba paired with V-aga and vice versa) demonstrated that, when participants repeated the 

syllable from the auditory channel (attention was not directed to a particular channel), there was 

a shift in their production toward the syllable from the visual channel (evidenced by an f2 shift), 

even though participants were perceptually unaware of the incongruence (Gentilucci & Cattaneo, 

2005). 

 Our results suggest that the left posterior MTG is a crucial node in the visual-to-motor 

speech pathway.  This region was identified in the V-Sensorimotor and AV-Sensorimotor 

networks but not the A-Sensorimotor network, and responded significantly more (in fact only 

responded) to the Motor phase of the task when the input stimulus was V or AV.  Sensory 

activation in the left MTG was much greater for V and AV inputs as well (Figs. 5.4 & 5.5).  The 

left MTG figured prominently in a previous imaging study examining the effects of Speech 

Entrainment (SE) in nonfluent aphasics and normal subjects (Fridriksson et al., 2012).  In both 

subject groups, there was significantly greater activation in the left MTG for SE (audiovisual 

shadowing) compared to spontaneous speech production, and probabilistic fiber tracking based 

on DTI data in the normal subjects indicated anatomical connections between the left MTG and 

left inferior frontal speech regions via the arcuate fasciculus.  A recent voxel-based lesion-

symptom mapping study examining conversational speech deficits (Borovsky, Saygin, Bates, & 

Dronkers, 2007) showed that damage to the left posterior MTG correlated with the token type 

ratio (a measure of the proportion of unique words generated).  Crucially, conversational speech 



183 
 

production was assessed in the context of one-on-one (presumably face-to-face) biographical 

interviews in a quiet room.   

 

Visual and audiovisual speech inputs engage a similar rehearsal network 

 Behavioral increases in speech output are observed when subjects repeat audiovisual 

speech but not visual-only speech (Fridriksson et al., 2012; Reisberg et al., 1987).  This is likely 

due to the fact that speechreading (i.e., of V alone) is perceptually demanding to the point that 

even the best speechreaders (with normal hearing) discern only 50% of the content from 

connected speech (MacLeod & Summerfield, 1987; Summerfield, 1992).  As such, we may have 

expected to see differences in Motor activation depending on whether the input stimulus was AV 

or V.  We did observe some such differences.  Several small clusters were unique to the AV-

Sensorimotor map and a cluster in the left cerebellum was unique to the V-Sensorimotor map.  

Moreover, the AvvsA-Motor interaction contrast emphasized pre- and post-central regions, while 

the VvsA-Motor interaction contrast emphasized medial regions including cingulate cortex and 

the caudate nucleus.  However, when we specifically examined activation time-courses in these 

areas, it was generally the case that AvvsA-Motor regions also showed strong activation to the 

V-Motor contrast and vice versa for VvsA-Motor regions (in other words, motor areas that 

activated in AV also tended to activate in V; Figs. 5.4 & 5.5).  There are two possible reasons for 

this phenomenon.  First, we used a closed stimulus set with CV syllables that were easily 

distinguishable in the V modality, such that speechreading performance would be much higher 

than that observed for connected speech (i.e., effects of perceptual difficulty on rehearsal, and 

thus modality differences on this basis, would be diminished).  Second, as observed above, there 
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may be a distinct visual-to-motor pathway that interfaces visual speech with the motor system, 

and this pathway would be similarly engaged by visual and audiovisual speech. 

 It is worth noting that, although the visual syllables in this study were distinguishable, 

repetition in the V modality was certainly more taxing than in the A or AV modalities.  This is 

particularly relevant with respect to certain regions that responded more in the Motor phase for V 

than AV or A.  These include the left caudate nucleus, cingulate cortex, and IFG.  The caudate is 

part of the basal ganglia, a group of subcortical regions theorized to be crucial for sequencing 

and timing in speech production (Bohland, Bullock, & Guenther, 2010; Fridriksson et al., 2005; 

Guenther, 2006; Lu, Chen, et al., 2010; Lu, Peng, et al., 2010; Pickett, Kuniholm, Protopapas, 

Friedman, & Lieberman, 1998; Stahl, Kotz, Henseler, Turner, & Geyer, 2011), while the left IFG 

and cingulate cortex are crucial for conflict monitoring and resolving among competing 

alternatives (Botvinick, Cohen, & Carter, 2004; Carter et al., 1998; January, Trueswell, & 

Thompson-Schill, 2009; Kerns et al., 2004; Novick, Trueswell, & Thompson-Schill, 2005; 

Novick, Trueswell, & Thompson-­‐Schill, 2010).  Each of these computations was likely taxed 

preferentially in the V perceive+rehearse task.  The same cannot be argued for AV, which is the 

easiest version of the task.  Still, there was one motor brain region that activated exclusively to 

rehearsal in the AV modality, the right pre-central sulcus.  We can thus speculate that right 

hemisphere motor regions partially mediate behavioral improvements observed for SE in 

nonfluent aphasics (the right hemisphere is not damaged in these patients). 

 

 Why is visual speech linked to the motor system? 
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 As alluded to in the Introduction, there is a well-accepted answer to this question in the 

auditory domain: speech sound representations are used to guide speech production.  

Development of the ability to speak constitutes the most intuitive evidence for this claim.  In 

short, development of speech is a motor learning task that must take sensory speech as the input 

– at first from other users of the language and subsequently from self-generated babbling (Oller 

& Eilers, 1988).  It has been suggested that a dorsal, auditory-motor processing stream functions 

to support language development, and that this stream continues to function into adulthood (G. 

Hickok & Poeppel, 2004; Gregory Hickok & Poeppel, 2000, 2007).  More recent models suggest 

that for adult speakers auditory input functions primarily to tune internal feedback circuits that 

engage stored speech-sound representations to guide online speech production in real time 

(Gregory Hickok, 2012). 

 We have already cited evidence that perception of visual speech affects production 

(Fridriksson et al., 2009; Fridriksson et al., 2012; Gentilucci & Cattaneo, 2005; Reisberg et al., 

1987; Sato et al., 2010).  We have also asserted that the current imaging study supports the 

existence of a distinct visual-to-motor pathway for visual speech.  Here we suggest that, like the 

dorsal auditory-motor stream, this visual-motor pathway begins to solidify during (and 

subserves) development of speech production.  As described in the Introduction, the idea is that a 

distinct set of visual speech “targets” combine with auditory speech “targets” to facilitate motor 

control processes, in this case during development.  Evidence suggests that sensory visual-speech 

“targets” are formed prior to the emergence of productive speech capacities.  This is evidenced 

by existence of the McGurk effect in pre-linguistic infants (Burnham & Dodd, 2004; Rosenblum, 

Schmuckler, & Johnson, 1997).  Pre-linguistic infants also match vowel sounds to facial displays 

of vowel articulation (Kuhl & Meltzoff, 1982), and show articulatory imitation of matching 
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face/voice stimuli (Patterson & Werker, 1999).  Moreover, visual speech improves phoneme 

discrimination and may lead to learning of category boundaries (Teinonen, Aslin, Alku, & 

Csibra, 2008).  Finally, evidence suggests that visual speech representations (at least in the form 

of high-level motion and configuration information) are integrated with the motor system during 

development.  Infants mimic facial gestures extensively, and they carry this out by correcting 

(tuning) their own motor behavior through a series of successive approximations to visual targets 

(i.e., representations of the face) (Meltzoff & Kuhl, 1994).  This type of motor learning is 

precisely what would be required to “wire-up” motor control circuits for visual speech. 

 

Conclusion 

 In summary, we have demonstrated that covert rehearsal following perception of syllable 

sequences results in increased speech motor activation when the input sequence contains visual 

speech.  This increased activation is likely produced via recruitment of a visual-speech-specific 

network of sensorimotor brain regions.  We presume this network functions to support speech 

motor control by providing a complementary set of visual speech “targets” that can be used in 

combination with auditory “targets” to guide production.   This predicts that improvements in 

speech output will be observed when this visual-motor pathway is activated in conjunction with 

canonical auditory-motor speech pathways, a hypothesis in need of further testing.  We have 

argued the visual-motor speech stream is formed during development for the purpose of motor 

control.  Whether the visual-motor stream functions to support online production of spontaneous 

speech, as is true for the auditory-motor dorsal stream, remains to be determined.  

 



187 
 

References 

Andersen, Richard A. (1997). Multimodal integration for the representation of space in the posterior 
parietal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological 
Sciences, 352(1360), 1421-1428.  

Arnold, Paul, & Hill, Fiona. (2001). Bisensory augmentation: A speechreading advantage when speech is 
clearly audible and intact. British Journal of Psychology, 92(2), 339-355.  

Avants, B., Duda, J. T., Kim, J., Zhang, H., Pluta, J., Gee, J. C., & Whyte, J. (2008). Multivariate 
Analysis of Structural and Diffusion Imaging in Traumatic Brain Injury. Academic Radiology, 
15(11), 1360-1375.  

Avants, B., & Gee, J. C. (2004). Geodesic estimation for large deformation anatomical shape averaging 
and interpolation. Neuroimage, 23, 139-150.  

Avants, Brian B, Tustison, Nicholas J, Song, Gang, Cook, Philip A, Klein, Arno, & Gee, James C. 
(2011). A reproducible evaluation of ANTs similarity metric performance in brain image 
registration. Neuroimage, 54(3), 2033-2044.  

Bell, Andrew H, Meredith, M Alex, Van Opstal, A John, & Munoz, Douglas P. (2005). Crossmodal 
integration in the primate superior colliculus underlying the preparation and initiation of saccadic 
eye movements. Journal of Neurophysiology, 93(6), 3659-3673.  

Bohland, Jason W, Bullock, Daniel, & Guenther, Frank H. (2010). Neural representations and 
mechanisms for the performance of simple speech sequences. Journal of cognitive neuroscience, 
22(7), 1504-1529.  

Borovsky, Arielle, Saygin, Ayse Pinar, Bates, Elizabeth, & Dronkers, Nina. (2007). Lesion correlates of 
conversational speech production deficits. Neuropsychologia, 45(11), 2525-2533.  

Botvinick, Matthew M, Cohen, Jonathan D, & Carter, Cameron S. (2004). Conflict monitoring and 
anterior cingulate cortex: an update. Trends in cognitive sciences, 8(12), 539-546.  

Buchsbaum, Bradley R, Hickok, Gregory, & Humphries, Colin. (2001). Role of left posterior superior 
temporal gyrus in phonological processing for speech perception and production. Cognitive 
Science, 25(5), 663-678.  

Burnett, Theresa A, Freedland, Marcia B, Larson, Charles R, & Hain, Timothy C. (1998). Voice F0 
responses to manipulations in pitch feedback. The Journal of the Acoustical Society of America, 
103(6), 3153-3161.  

Burnham, Denis, & Dodd, Barbara. (2004). Auditory–visual speech integration by prelinguistic infants: 
Perception of an emergent consonant in the McGurk effect. Developmental psychobiology, 45(4), 
204-220.  

Callan, D. E., Jones, J. A., Munhall, K., Callan, A. M., Kroos, C., & Vatikiotis-Bateson, E. (2003). Neural 
processes underlying perceptual enhancement by visual speech gestures. Neuroreport, 14(17), 
2213-2218. doi: 10.1097/01.wnr.0000095492.38740.8f 

Calvert, Gemma A, Brammer, Michael J, Bullmore, Edward T, Campbell, Ruth, Iversen, Susan D, & 
David, Anthony S. (1999). Response amplification in sensory-specific cortices during crossmodal 
binding. Neuroreport, 10(12), 2619.  

Calvert, Gemma A, Bullmore, Edward T, Brammer, Michael J, Campbell, Ruth, Williams, Steven CR, 
McGuire, Philip K, . . . David, Anthony S. (1997). Activation of auditory cortex during silent 
lipreading. Science, 276(5312), 593-596.  

Calvert, Gemma A, Campbell, Ruth, & Brammer, Michael J. (2000). Evidence from functional magnetic 
resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 
10(11), 649-658.  

Carter, Cameron S, Braver, Todd S, Barch, Deanna M, Botvinick, Matthew M, Noll, Douglas, & Cohen, 
Jonathan D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of 
performance. Science, 280(5364), 747-749.  



188 
 

Chen, Gang, Saad, Ziad S, Nath, Audrey R, Beauchamp, Michael S, & Cox, Robert W. (2012). FMRI 
group analysis combining effect estimates and their variances. Neuroimage, 60(1), 747-765.  

Cohen, Yale E, & Andersen, Richard A. (2002). A common reference frame for movement plans in the 
posterior parietal cortex. Nature Reviews Neuroscience, 3(7), 553-562.  

Colonius, Hans, & Arndt, Petra. (2001). A two-stage model for visual-auditory interaction in saccadic 
latencies. Perception & psychophysics, 63(1), 126-147.  

Corneil, BD, Van Wanrooij, M, Munoz, DP, & Van Opstal, AJ. (2002). Auditory-visual interactions 
subserving goal-directed saccades in a complex scene. Journal of Neurophysiology, 88(1), 438-
454.  

Diederich, Adele, & Colonius, Hans. (2004). Bimodal and trimodal multisensory enhancement: effects of 
stimulus onset and intensity on reaction time. Perception & psychophysics, 66(8), 1388-1404.  

Erber, Norman P. (1969). Interaction of audition and vision in the recognition of oral speech stimuli. 
Journal of Speech, Language, and Hearing Research, 12(2), 423-425.  

Fonov, Vladimir, Evans, Alan C, Botteron, Kelly, Almli, C Robert, McKinstry, Robert C, & Collins, D 
Louis. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 
313-327.  

Fonov, VS, Evans, AC, McKinstry, RC, Almli, CR, & Collins, DL. (2009). Unbiased nonlinear average 
age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102.  

Frens, Maarten A, Van Opstal, A John, & Van der Willigen, Robert F. (1995). Spatial and temporal 
factors determine auditory-visual interactions in human saccadic eye movements. Perception & 
Psychophysics, 57(6), 802-816.  

Fridriksson, Julius, Baker, Julie M, Whiteside, Janet, Eoute, David, Moser, Dana, Vesselinov, Roumen, & 
Rorden, Chris. (2009). Treating visual speech perception to improve speech production in 
nonfluent aphasia. Stroke, 40(3), 853-858.  

Fridriksson, Julius, Fillmore, Paul, Guo, Dazhou, & Rorden, Chris. (2014). Chronic Broca's Aphasia Is 
Caused by Damage to Broca's and Wernicke's Areas. Cerebral Cortex, bhu152.  

Fridriksson, Julius, Hubbard, H Isabel, Hudspeth, Sarah Grace, Holland, Audrey L, Bonilha, Leonardo, 
Fromm, Davida, & Rorden, Chris. (2012). Speech entrainment enables patients with Broca’s 
aphasia to produce fluent speech. Brain, 135(12), 3815-3829.  

Fridriksson, Julius, Moss, Joel, Davis, Ben, Baylis, Gordon C, Bonilha, Leonardo, & Rorden, Chris. 
(2008). Motor speech perception modulates the cortical language areas. Neuroimage, 41(2), 605-
613.  

Fridriksson, Julius, Ryalls, Jack, Rorden, Chris, Morgan, Paul S, George, Mark S, & Baylis, Gordon C. 
(2005). Brain damage and cortical compensation in foreign accent syndrome. Neurocase, 11(5), 
319-324.  

Gentilucci, Maurizio, & Cattaneo, Luigi. (2005). Automatic audiovisual integration in speech perception. 
Experimental Brain Research, 167(1), 66-75.  

Guenther, F. H. (2006). Cortical interactions underlying the production of speech sounds. J Commun 
Disord, 39(5), 350-365. doi: 10.1016/j.jcomdis.2006.06.013 

Hardison, Debra M. (2003). Acquisition of second-language speech: Effects of visual cues, context, and 
talker variability. Applied Psycholinguistics, 24(04), 495-522.  

Hasson, U., Skipper, J. I., Nusbaum, H. C., & Small, S. L. (2007). Abstract coding of audiovisual speech: 
beyond sensory representation. Neuron, 56(6), 1116-1126. doi: 10.1016/j.neuron.2007.09.037 

Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of 
the functional anatomy of language. Cognition, 92(1-2), 67-99. doi: 
10.1016/j.cognition.2003.10.011 

Hickok, Gregory. (2012). Computational neuroanatomy of speech production. Nature Reviews 
Neuroscience, 13(2), 135-145.  

Hickok, Gregory. (2014). Towards an integrated psycholinguistic, neurolinguistic, sensorimotor 
framework for speech production. Language, Cognition and Neuroscience, 29(1), 52-59.  



189 
 

Hickok, Gregory, Buchsbaum, Bradley, Humphries, Colin, & Muftuler, Tugan. (2003). Auditory–motor 
interaction revealed by fMRI: speech, music, and working memory in area Spt. Cognitive 
Neuroscience, Journal of, 15(5), 673-682.  

Hickok, Gregory, Houde, John, & Rong, Feng. (2011). Sensorimotor integration in speech processing: 
computational basis and neural organization. Neuron, 69(3), 407-422.  

Hickok, Gregory, & Poeppel, David. (2000). Towards a functional neuroanatomy of speech perception. 
Trends in cognitive sciences, 4(4), 131-138.  

Hickok, Gregory, & Poeppel, David. (2007). The cortical organization of speech processing. Nat Rev 
Neurosci, 8(5), 393-402.  

Hughes, Howard C, Reuter-Lorenz, Patricia A, Nozawa, George, & Fendrich, Robert. (1994). Visual-
auditory interactions in sensorimotor processing: saccades versus manual responses. Journal of 
Experimental Psychology: Human Perception and Performance, 20(1), 131.  

Indefrey, Peter, & Levelt, Willem JM. (2004). The spatial and temporal signatures of word production 
components. Cognition, 92(1), 101-144.  

Isenberg, A Lisette, Vaden, Kenneth I, Saberi, Kourosh, Muftuler, L Tugan, & Hickok, Gregory. (2012). 
Functionally distinct regions for spatial processing and sensory motor integration in the planum 
temporale. Human brain mapping, 33(10), 2453-2463.  

January, David, Trueswell, John C, & Thompson-Schill, Sharon L. (2009). Co-localization of stroop and 
syntactic ambiguity resolution in Broca's area: implications for the neural basis of sentence 
processing. Journal of Cognitive Neuroscience, 21(12), 2434-2444.  

Kerns, John G, Cohen, Jonathan D, MacDonald, Angus W, Cho, Raymond Y, Stenger, V Andrew, & 
Carter, Cameron S. (2004). Anterior cingulate conflict monitoring and adjustments in control. 
Science, 303(5660), 1023-1026.  

Kleiner, Mario, Brainard, David, Pelli, Denis, Ingling, Allen, Murray, Richard, & Broussard, Christopher. 
(2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1.1-16.  

Kuhl, Patricia K, & Meltzoff, Andrew N. (1982). The bimodal perception of speech in infancy. 
Lu, Chunming, Chen, Chuansheng, Ning, Ning, Ding, Guosheng, Guo, Taomei, Peng, Danling, . . . Lin, 

Chunlan. (2010). The neural substrates for atypical planning and execution of word production in 
stuttering. Experimental neurology, 221(1), 146-156.  

Lu, Chunming, Peng, Danling, Chen, Chuansheng, Ning, Ning, Ding, Guosheng, Li, Kuncheng, . . . Lin, 
Chunlan. (2010). Altered effective connectivity and anomalous anatomy in the basal ganglia-
thalamocortical circuit of stuttering speakers. Cortex, 46(1), 49-67.  

MacLeod, Alison, & Summerfield, Quentin. (1987). Quantifying the contribution of vision to speech 
perception in noise. British journal of audiology, 21(2), 131-141.  

Massaro, Dominic W. (1998). Perceiving talking faces: From speech perception to a behavioral principle 
(Vol. 1): Mit Press. 

Matchin, William, Groulx, Kier, & Hickok, Gregory. (2014). Audiovisual speech integration does not 
rely on the motor system: Evidence from articulatory suppression, the mcgurk effect, and fmri. 
Journal of cognitive neuroscience, 26(3), 606-620.  

McCORMICK, BARRY. (1979). Audio-­‐visual discrimination of speech*. Clinical Otolaryngology & 
Allied Sciences, 4(5), 355-361.  

McGurk, Harry, & MacDonald, John. (1976). Hearing lips and seeing voices.  
Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D., & Iacoboni, M. (2007). The essential role of 

premotor cortex in speech perception. Curr Biol, 17(19), 1692-1696. doi: 
10.1016/j.cub.2007.08.064 

Meltzoff, Andrew N, & Kuhl, Patricia K. (1994). Faces and speech: Intermodal processing of biologically 
relevant signals in infants and adults. The development of intersensory perception: Comparative 
perspectives, 335-369.  

Meredith, M Alex, Nemitz, James W, & Stein, Barry E. (1987). Determinants of multisensory integration 
in superior colliculus neurons. I. Temporal factors. The Journal of Neuroscience, 7(10), 3215-
3229.  



190 
 

Meredith, M Alex, & Stein, Barry E. (1983). Interactions among converging sensory inputs in the 
superior colliculus. Science.  

Möttönen, Riikka, & Watkins, Kate E. (2012). Using TMS to study the role of the articulatory motor 
system in speech perception. Aphasiology, 26(9), 1103-1118.  

Neely, Keith K. (1956). Effect of visual factors on the intelligibility of speech. The Journal of the 
Acoustical Society of America, 28(6), 1275-1277.  

Novick, Jared M, Trueswell, John C, & Thompson-Schill, Sharon L. (2005). Cognitive control and 
parsing: Reexamining the role of Broca’s area in sentence comprehension. Cognitive, Affective, & 
Behavioral Neuroscience, 5(3), 263-281.  

Novick, Jared M, Trueswell, John C, & Thompson-­‐Schill, Sharon L. (2010). Broca’s area and language 
processing: Evidence for the cognitive control connection. Language and Linguistics Compass, 
4(10), 906-924.  

Ojanen, V., Mottonen, R., Pekkola, J., Jaaskelainen, I. P., Joensuu, R., Autti, T., & Sams, M. (2005). 
Processing of audiovisual speech in Broca's area. Neuroimage, 25(2), 333-338. doi: 
10.1016/j.neuroimage.2004.12.001 

Okada, K., & Hickok, G. (2009). Two cortical mechanisms support the integration of visual and auditory 
speech: a hypothesis and preliminary data. Neurosci Lett, 452(3), 219-223. doi: 
10.1016/j.neulet.2009.01.060 

Okada, Kayoko, & Hickok, Gregory. (2006). Left posterior auditory-related cortices participate both in 
speech perception and speech production: Neural overlap revealed by fMRI. Brain and 
Language, 98(1), 112-117.  

Okada, Kayoko, Venezia, Jonathan H, Matchin, William, Saberi, Kourosh, & Hickok, Gregory. (2013). 
An fMRI Study of Audiovisual Speech Perception Reveals Multisensory Interactions in Auditory 
Cortex. PloS one, 8(6), e68959.  

Oller, D Kimbrough, & Eilers, Rebecca E. (1988). The role of audition in infant babbling. Child 
development, 441-449.  

Patterson, Michelle L, & Werker, Janet F. (1999). Matching phonetic information in lips and voice is 
robust in 4.5-month-old infants. Infant Behavior and Development, 22(2), 237-247.  

Pickett, Emily R, Kuniholm, Erin, Protopapas, Athanassios, Friedman, Joseph, & Lieberman, Philip. 
(1998). Selective speech motor, syntax and cognitive deficits associated with bilateral damage to 
the putamen and the head of the caudate nucleus: a case study. Neuropsychologia, 36(2), 173-
188.  

Purcell, David W, & Munhall, Kevin G. (2006). Compensation following real-time manipulation of 
formants in isolated vowels. The Journal of the Acoustical Society of America, 119(4), 2288-
2297.  

Rauschecker, Andreas M, Pringle, Abbie, & Watkins, Kate E. (2008). Changes in neural activity 
associated with learning to articulate novel auditory pseudowords by covert repetition. Human 
brain mapping, 29(11), 1231-1242.  

Reisberg, Daniel, Mclean, John, & Goldfield, Anne. (1987). Easy to hear but hard to understand: A lip-
reading advantage with intact auditory stimuli.  

Rorden, Christopher, Davis, Ben, George, Mark S, Borckardt, Jeffrey, & Fridriksson, Julius. (2008). 
Broca’s area is crucial for visual discrimination of speech but not non-speech oral movements. 
Brain stimulation, 1(4), 383.  

Rosenblum, Lawrence D, Schmuckler, Mark A, & Johnson, Jennifer A. (1997). The McGurk effect in 
infants. Perception & Psychophysics, 59(3), 347-357.  

Ross, Lars A, Saint-Amour, Dave, Leavitt, Victoria M, Javitt, Daniel C, & Foxe, John J. (2007). Do you 
see what I am saying? Exploring visual enhancement of speech comprehension in noisy 
environments. Cerebral Cortex, 17(5), 1147-1153.  

Sato, Marc, Buccino, Giovanni, Gentilucci, Maurizio, & Cattaneo, Luigi. (2010). On the tip of the tongue: 
modulation of the primary motor cortex during audiovisual speech perception. Speech 
Communication, 52(6), 533-541.  



191 
 

Schwartz, Jean-Luc, Basirat, Anahita, Ménard, Lucie, & Sato, Marc. (2012). The Perception-for-Action-
Control Theory (PACT): A perceptuo-motor theory of speech perception. Journal of 
Neurolinguistics, 25(5), 336-354.  

Skipper, J. I., Nusbaum, H. C., & Small, S. L. (2005). Listening to talking faces: motor cortical activation 
during speech perception. Neuroimage, 25(1), 76-89. doi: 10.1016/j.neuroimage.2004.11.006 

Skipper, J. I., van Wassenhove, V., Nusbaum, H. C., & Small, S. L. (2007). Hearing lips and seeing 
voices: how cortical areas supporting speech production mediate audiovisual speech perception. 
Cereb Cortex, 17(10), 2387-2399. doi: 10.1093/cercor/bhl147 

Stahl, Benjamin, Kotz, Sonja A, Henseler, Ilona, Turner, Robert, & Geyer, Stefan. (2011). Rhythm in 
disguise: why singing may not hold the key to recovery from aphasia. Brain, awr240.  

Stein, Barry E, & Stanford, Terrence R. (2008). Multisensory integration: current issues from the 
perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255-266.  

Stuart, Andrew, Kalinowski, Joseph, Rastatter, Michael P, & Lynch, Kerry. (2002). Effect of delayed 
auditory feedback on normal speakers at two speech rates. The Journal of the Acoustical Society 
of America, 111(5), 2237-2241.  

Sumby, William H, & Pollack, Irwin. (1954). Visual contribution to speech intelligibility in noise. The 
Journal of the Acoustical Society of America, 26(2), 212-215.  

Summerfield, Quentin. (1992). Lipreading and audio-visual speech perception. Philosophical 
Transactions of the Royal Society of London. Series B: Biological Sciences, 335(1273), 71-78.  

Teinonen, Tuomas, Aslin, Richard N, Alku, Paavo, & Csibra, Gergely. (2008). Visual speech contributes 
to phonetic learning in 6-month-old infants. Cognition, 108(3), 850-855.  

Tourville, Jason A, Reilly, Kevin J, & Guenther, Frank H. (2008). Neural mechanisms underlying 
auditory feedback control of speech. Neuroimage, 39(3), 1429-1443.  

Waldstein, Robin S. (1990). Effects of postlingual deafness on speech production: implications for the 
role of auditory feedback. The Journal of the Acoustical Society of America, 88(5), 2099-2114.  

Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system 
involved in speech production. Neuropsychologia, 41(8), 989-994. doi: 10.1016/s0028-
3932(02)00316-0 

Wildgruber, D, Ackermann, H, & Grodd, W. (2001). Differential contributions of motor cortex, basal 
ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by 
fMRI. Neuroimage, 13(1), 101-109.  

Yates, Aubrey J. (1963). Delayed auditory feedback. Psychological Bulletin, 60(3), 213.  



192 
 

CHAPTER 6 

 

Primer 

 Throughout the preceding chapters I have worked under the assumption that speech 

perception is fundamentally an auditory process (and, incidentally, that speech production is 

fundamentally an auditory-motor process).  Yet, I have not dedicated any space to a direct 

investigation of the mechanisms underlying perception of auditory speech.  Perhaps this is no 

surprise.  Auditory speech perception is a very difficult problem that can be approached from 

many levels.  In the current chapter, I begin to tackle that problem.  I have chosen (along with 

collaborators) to be start with a bottom-up approach to speech perception.  To be specific, the 

initial goal of this program is to understand the nature of cortical representations of low-level 

auditory features.  I assume that speech sound representations are built hierarchically out of these 

lower-level auditory representations.  As such, it will be of considerable use to describe the 

organization of low-level auditory cortical brain regions.  In other work, we have begun to 

develop a technique that allows for mapping of individual cortical auditory fields with an 

unprecedented level of detail (Barton, Venezia, Saberi, Hickok, & Brewer, 2012).  Here, I 

investigate the fine-grained structure of these auditory field maps with respect to a particular 

low-level auditory feature: low frequency temporal modulations.  This feature appears to be 

particularly relevant for processing of speech sounds, as will be motivated below.  
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Periodicity coding in human auditory cortex 

Jonathan H. Venezia, Brian Barton, Kourosh Saberi, Alyssa Brewer and Gregory Hickok 

 

Introduction 

Human speech, like many natural sounds, is a highly periodic signal (Nelken, Rotman, & 

Yosef, 1999; Singh & Theunissen, 2003).  The periodicity of a signal is characterized by 

rhythmic fluctuations in the amplitude envelope.  Behavioral evidence suggests that the 

envelope, or contour, of a sound is of particular importance for decoding human speech (Ahissar 

et al., 2001; Luo & Poeppel, 2007; Nourski et al., 2009; Saberi & Perrott, 1999; Shannon, Zeng, 

Kamath, Wygonski, & Ekelid, 1995), and it has been proposed that the speech envelope is 

extracted via one or another form of phase locking with periodicities in the speech stream, 

reflected in or driven by neural oscillations (A. L. Giraud & Poeppel, 2012).  Indeed, some assert 

that extraction and representation (i.e., coding) of envelope periodicities is fundamental to the 

auditory nervous system, on par with spectral decomposition and maintenance of orderly 

tonotopic representations (Ahissar et al., 2001; Attias & Schreiner, 1997; T. Dau, Verhey, & 

Kohlrausch, 1999; Z. M. Smith, Delgutte, & Oxenham, 2002).  

There is evidence of such periodicity coding in animal models.  Beginning at the auditory 

nerve and continuing from subcortical auditory centers into primary auditory cortex, periodicity 

is coded in either the temporally modulated firing pattern or mean firing rate (or both) of 

individual cells (Joris, Schreiner, & Rees, 2004).  In short, neurons show a preference for 

particular amplitude modulation (AM) frequencies in terms of the reliability of their phase-

locked responses or in the overall strength of their responses.  Distributions of best modulation 
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frequency (BMF) across large samples of cells describe important properties of the periodicity 

code (Bieser & Müller-Preuss, 1996; Joris et al., 2004; Liang, Lu, & Wang, 2002).  Across a 

variety of species, mean BMF generally decreases moving from the auditory brainstem (100-500 

Hz) to the auditory midbrain (40-250 Hz) and into auditory cortex (8-50 Hz) (Joris et al., 2004).  

Recent evidence in marmosets suggests this trend may continue into the cortical hierarchy 

(Bendor & Wang, 2008).  However, these data stem largely from unit physiology studies, which 

are subject to ascertainment biases and may not faithfully represent the neural populations in 

these regions.  To be sure, it is common practice to pool unit data across hemispheres and 

individuals when describing population-level properties, which may obscure the large-scale 

organization. 

As such, several studies have aimed specifically at describing the large-scale structure of 

periodicity codes.  Recent data involving harmonic and AM stimuli, and utilizing optical 

imaging, MEG, and fMRI across several species, indicate the existence of an orderly spatial 

representation of periodicity in the auditory midbrain (Baumann et al., 2011) and primary 

auditory cortex (Langner, Dinse, & Godde, 2009; Langner, Sams, Heil, & Schulze, 1997; 

Schulze, Hess, Ohl, & Scheich, 2002). This periodotopic place map for modulation frequency 

runs from low to high in a gradient tilted orthogonally to the well-known tonotopic gradient.  A 

recent fMRI study extended the characterization of periodotopic maps to multiple regions of 

human auditory cortex, showing that several reversals of the periodotopic gradient occur within a 

single, shared representation of tonotopic frequency space, delineating the borders of individual, 

orthogonally-organized auditory field maps (AFMs) (Barton et al., 2012).  This study defined 11 

AFMs in core and belt auditory regions, each of which demonstrated spatial periodicity coding 

across a range of AM rates (2-256 Hz). 



195 
 

Some authors have suggested that population-level properties of the cortical periodicity 

code may reflect so-called “temporal integration windows”(Wang, Lu, & Liang, 2003).  In short, 

the population BMF of a cortical field (or AFM) may reflect its temporal integration window – 

the length of time over which separate events are not distinguished in the neural output.  Also, it 

may be that two (or more) temporal integration windows are reflected as peaks in the population-

level distribution of BMF over different ranges of the periodicity code.  This idea relates neatly 

to prominent theories of speech perception, wherein Poeppel has emphasized two critical time 

scales – a slower syllable scale and a faster phoneme scale – that produce distinct periodicities in 

the speech stream (~5 Hz versus ~35 Hz, respectively) (D. Poeppel, 2003).  Several functional-

anatomic models have suggested that the left and right auditory cortices differ in their sensitivity 

to faster versus slower features of the acoustic signal.  Zatorre’s (R.J. Zatorre, Belin, & Penhune, 

2002; Robert J Zatorre, 1997) temporal vs. spectral model and Poeppel’s asymmetric sampling in 

time model (A. L. Giraud & Poeppel, 2012; D. Poeppel, 2003) (as well as earlier claims by Tallal 

and others (Tallal, Miller, & Fitch, 1993)) have argued that the left hemisphere is tuned to fast 

temporal processing (25-50 ms time scale = 20-40 Hz), whereas the right hemisphere is tuned to 

slower temporal processing, which enhances spectral information (150-300 ms time scale = 3.33-

6.67 Hz). 

Here we characterize the organization of the periodicity code in human auditory cortex.  

We use an fMRI technique that produces voxel-wise maps of BMF in core and belt auditory 

regions.  The use of fMRI offers a unique opportunity to observe macro-organizational properties 

of the periodicity code, including the extent of cortical surface area (SA) dedicated to 

representation of particular BMFs, free from ascertainment bias present in single- and multi-unit 

recoding studies.  Moreover, it allows us to compare periodicity coding across an unprecedented 
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number of auditory cortical fields and between hemispheres.  Thus, focusing on the distribution 

of cortical SA (relative to functionally-defined BMF), we aim to describe the periodicity code in 

human auditory cortex over 11 core and belt auditory fields and between hemispheres.   We 

combine a descriptive approach with exploratory statistical analyses to investigate the following 

questions: (i) are periodicity codes uniform across AM rates or is there cortical magnification of 

a particular range (or ranges) of BMFs?  If they are not uniform, (ii) do the two hemispheres 

differ in their preferred rates as the aforementioned theories suggest?, and (iii) does the 

decreasing BMF (brainstem to cortex) observed in animal models continue into the human 

cortical processing hierarchy? 

 

Methods 

This section will include information relevant to the construction of both tonotopic and 

periodotopic maps in human auditory cortex and, in addition, some brief details on how these 

maps are combined to delineate individual AFMs.  However, the focus of the current study is to 

characterize the periodotopic component of AFMs (i.e., the spatial periodicity code).  

Methodological details that are directly relevant to this focus are given in the two final 

subsections of the Methods. 

 

Subjects 

Four human subjects (one female and three males, aged 26–38) from the University of 

California, Irvine, served as participants for the present study. The experimental protocol was 
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approved by the Institutional Review Board at University of California, Irvine, and informed 

consent was obtained from all subjects. 

 

Experimental Design 

 Auditory stimuli were presented in a block fMRI design following the traveling wave 

method, which is the standard fMRI paradigm employed in visual field mapping (A.A. Brewer & 

Barton, 2012; Alyssa A Brewer, Liu, Wade, & Wandell, 2005; DeYoe et al., 1996; Engel, 1994; 

Sereno et al., 1995; B. A. Wandell, Brewer, & Dougherty, 2005; Brian A Wandell & Winawer, 

2011).  In the traveling wave method, stimuli that vary on a single dimension are presented in 

consecutive blocks at discrete values that span the entire ‘stimulus space’ (e.g., visual 

eccentricity from 0-20°).  Blocks are presented in order from low to high stimulus values (e.g., 

5°à10°à20°).  This presentation scheme produces a “traveling wave” of activation that allows 

for specification of the preferred stimulus value at each voxel in topographically organized brain 

regions.  Here, we modified the traveling wave procedure to a sparse acquisition sequence 

designed for auditory presentation – stimulus blocks were presented in the silent periods between 

single volume acquisitions.   

We employed two classes of amplitude-modulated (AM) stimuli, narrowband and 

broadband noise, which varied along the stimulus dimensions of center frequency (CF; tonotopy) 

and AM rate (periodotopy), respectively. These stimuli were presented in short blocks with a 1s 

silent period, then 5s of AM noise at a single stimulus value (50 ms cosine rise/fall envelope), 

followed by a 2s silent period, and a 2s slice acquisition period.  Participants maintained fixation 

on a small white central cross (~0.5° of visual angle) on a black background. Stimuli were 
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presented at a mean level of 65 dB SPL (A), with a 3 dB level increase or decrease (selected 

randomly) at the midpoint of each presentation. Participants were asked to indicate the direction 

of the shift with a button press.  Tonotopic stimuli consisted of 100-Hz-wide bands of noise with 

varying CF – 400, 800, 1,600, 3,200, and 6,400 Hz – each of which were amplitude modulated at 

8 Hz (80% depth). Periodotopic stimuli were broadband noise segments (0–8,000 Hz) amplitude 

modulated (80% depth) at 2, 4, 8, 16, 32, 64, 128, and 256 Hz (Figure 6.1).  Separate functional 

scans were dedicated to tonotopic and periodotopic stimuli.  In these scans, the entire range of 

stimuli was covered by consecutive blocks presented in order from low to high (CF or AM rate) 

in what is referred to as one stimulus cycle.  Six stimulus cycles were presented sequentially in 

each functional scan, and each subject underwent 6-8 functional scans in each stimulus class (see 

Fig. 6.1D for a schematic of the experimental design).  



199 
 

 

Figure 6.1. Experimental stimuli and design. The sound spectrogram across frequencies (vertical axes) and time 
(horizontal axes). Increasing sound energy is represented as increasingly “warmer” colors. (A) Example broadband noise 
stimuli with amplitude modulation (AM) rates of 8 (Left) and 16 Hz (Right). (B) Example narrowband noise stimuli with 
center frequencies (CF) of 1,600 (Left) and 3,200 Hz (Right). (C) All experimental stimuli. Broadband noise stimuli 
maintain constant frequency information and vary periodicity, whereas narrowband noise stimuli hold periodicity 
constant and vary frequency. (D) Sparse sampling traveling wave experimental design. 

 

Stimulus Presentation 

 Sounds were presented over MR-compatible, insert-style headphones (Sensimetrics 

model S14) powered by a 15 watt-per-channel stereo amplifier (Dayton model DTA-1).  This 

style of headphone utilizes a disposable “earbud” insert that serves as both a sound attenuation 

device (earplug) and sound delivery apparatus, allowing sounds to be presented directly to 
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participants’ ear canals, so no transfer function need be applied to the stimulus. The headset can 

provide output levels in the ear canal up to 110 dB SPL and has a flat frequency response over 

the stimulus frequency range 0Hz – 8kHz , covering the range used in these experiments. During 

scanning, a secondary protective ear cover (Pro Ears Ultra 26) was placed over the earbuds for 

additional attenuation of scanner noise.  Stimulus delivery and timing were controlled using 

Cogent 2000 software (http://www.vislab.ucl.ac.uk/cogent 2000.php) implemented in Matlab 

R12 (Mathworks, Inc, USA). 

Visual displays of the task instructions and the fixation cross were generated using the 

Cogent 2000 software and back-projected via a Christie DLV1400-DX DLP projector onto a 

screen at the head end of the bore of the magnet (spatial resolution: 1024x768 pixels; refresh 

rate: 60 Hz). Subjects viewed the display on an angled front surface mirror mounted on the head 

coil close to the eyes with a viewing distance of approximately 70 cm. Head movements were 

minimized with padding and tape. 

 

Anatomical Data Acquisition 

 Scanning was conducted on the 3T Philips Achieva MR scanner at the University of 

California, Irvine, with an 8 channel SENSE imaging head coil. One high-resolution whole-brain 

anatomical dataset was acquired for each subject (T1-weighted 3D MPRAGE, 1 mm3 voxels, TR 

= 8.4 ms, TE = 3.7 ms, flip = 8˚, SENSE factor = 2.4), which uses a fast gradient echo T1-

weighted inversion pulse sequence (MPRAGE) in conjunction with parallel imaging to maximize 

the image contrast between white and gray cortical matter. In addition, one anatomical in-plane 

image was acquired before each set of functional scans, with the same slice prescription as the 

functional scans but with a higher spatial resolution (1 mm x 1 mm x 3 mm voxels).  
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Functional Data Acquisition 

 Functional MR data were acquired on the same scanner as the anatomical data, with 35 

axial slices oriented close to parallel to the STG (T2-weighted, gradient echo imaging, TR = 10s, 

TA = 2s, TE = 30 ms, flip = 90˚, SENSE factor = 1.7, reconstructed voxel size of  1.875 x 1.875 

x 3 mm, no gap).   

 

Anatomical Data Analysis 

 The T1-weighted slices were physically in register with the functional slices and were 

used to align the functional data with the high-resolution anatomical data, first by a manual co-

registration and then by a semi-automated three-dimensional (3D) co-registration algorithm, a 

mutual information method (Maes, Collignon, Vandermeulen, Marchal, & Suetens, 1997; 

Nestares & Heeger, 2000). In addition, the high-resolution anatomical volume was corrected for 

inhomogeneity and linearly transformed with no rescaling and no distortion to align with the 

Talairach reference brain, using tools from the FMRIB software library 

(http://www.fmrib.ok.ac.uk/fsl/). 

For analysis of neuroimaging data for individual subjects, we used a Matlab-based signal 

processing software package developed by the Wandell lab at Stanford University (mrVista is 

open-source software and is publicly available online at http://white.stanford.edu/software/). With 

this software, the location of the cortical gray matter for each subject was identified 

(“segmented”) in the high-resolution anatomical scan using the mrVista automated algorithm 

followed by hand-editing to minimize errors for individual subject analyses (Teo, Sapiro, & 
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Wandell, 1997). Gray matter was then grown from the segmented white matter to form a 3-4 mm 

layer covering the white matter surface. To improve sensitivity, only data from this identified 

gray matter were analyzed. The gray matter was then rendered in 3D close to the gray-white 

matter boundary or unfolded into a continuous, flat sheet to allow visualization of functional 

activity within the sulci, with light gray regions indicating gyri and dark gray regions 

representing sulci. After registration to the high-resolution anatomy, the functional activity can be 

visualized either in its original coordinate frame (‘inplanes’), on the segmented gray matter in 

anatomical volume slices, or on inflated or flattened representations of the cortical surface to 

allow for optimal definition of auditory field map boundaries (B. A. Wandell, S. Chial, & B. T. 

Backus, 2000). 

 

Functional Data Analysis 

 We analyzed the functional MRI data using the same mrVista custom Matlab software 

described above for anatomical data analysis (http://white.stanford.edu/software). For each 

subject, data in each fMRI session were analyzed voxel-by-voxel with no spatial smoothing. The 

mean value maps of the BOLD signal were compared across scans to check for potential head 

movements. Because all scans had less than one voxel of head motion, no motion correction 

algorithm was applied. The time series from each scan was high-pass filtered to remove low-

frequency sources of physiological noise and averaged together to form one mean time series for 

each subject.  A Fourier coherence analysis was applied to every voxel to separate activity due to 

the stimuli (at the frequency of six cycles per scan) from activity due to random and 

physiological noise (at the other frequencies in the cycles-per-scan domain).  A phase value was 
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assigned to each voxel with activity above a standard coherence threshold of 0.20 (Alyssa A 

Brewer et al., 2005; B. A. Wandell, Dumoulin, & Brewer, 2007).  This phase value corresponds 

to that voxel’s preferred point in the relevant stimulus space.  The resultant phase maps 

correspond to voxel-wise descriptions of best frequency (BF; narrowband noise; tonotopy) and 

best modulation frequency (BMF; broadband noise; periodotopy).  It should be noted that phase 

maps allow smooth interpolation of BF and BMF across the entire range of stimuli presented in 

the study. 

 

Definition of Auditory Field Maps 

  Details are given elsewhere (Barton et al., 2012).  Briefly, AFMs were defined 

individually for each hemisphere of each subject on a flattened representation of the cortical 

surface centered on Heschl’s gyrus (HG).  By combining tonotopic and periodotopic maps – i.e., 

using reversals in tonotopic maps to define one set of functional boundaries and using reversals 

in periodotopic maps to define another set of functional boundaries – we defined 11 AFMs in 

each hemisphere of each subject.  Tonotopic responses included a large low-frequency region 

oriented parallel to HG, which was encircled by and transitioned to a high frequency region, 

while periodotopic responses formed “isoperiodotopic” bands organized in radial spokes within 

HG, orthogonal to the tonotopic gradient (Figure 6.2 C, D). 
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Figure 6.2. Anatomical and functional data in auditory core and belt. (Left) Data in subject 4’s (S4’s) left hemisphere and 
(Middle) in S4’s right hemisphere. (Right) Data in S3′s left hemisphere. Light gray indicates gyri; dark gray indicates 
sulci. (A) A 3D rendering of individual cortical surfaces. Circles indicate HG and surrounding regions presented in (B). 
(B) Flattened cortical surface of HG and surrounding regions for each hemisphere, orientated to align STG. Solid black 
lines indicate AFM boundaries between maps along mirror-symmetric tonotopic reversals. Dotted black lines indicate 
AFM boundaries between maps along mirror-symmetric periodotopic reversals. Red text indicates AFM names; black 
text indicates gyri names. (C) Tonotopy mapped using narrowband noise stimuli. Colors indicate the preferred center 
frequency for each voxel (CF, in hertz). (D) Periodotopy mapped using broadband noise stimuli. Colors indicate the 
preferred period for each voxel (AM rate, in hertz). Each voxel is measured independently with no spatial or temporal 
smoothing and no motion correction. Voxels presented have coherence above the statistical threshold of 0.20 and are 
within one of the 11 AFMs presently studied. Scale bar denotes 1 cm along the flattened cortical surface. 

The 11 observed AFMs correspond nicely to proposed auditory fields in the macaque 

auditory core and belt, and so we refer to our human AFMs as hA1, hR, hRT, hCM, hMM, hRM, 

hRTM, hCL, hAL, hRL, and hRTL, where “h” stands for “human” and the other letters indicate 

proposed homology to the monkey auditory subfield names.  It should be noted that moving 

rostrally in the monkey anatomy (e.g., from A1, to R and RT) corresponds to moving laterally in 
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the homologous human AFMs (hA1, hR, hRT; Fig. 6.2).  However, we organize human AFMs 

similarly into core (hA1, hR, hRT), medial belt (hCM, hMM, hRM, hRTM) and lateral belt 

(hCL, hML, hAL, hRTL) subregions of auditory cortex.  By definition, voxels within each AFM 

cover the entire narrowband and broadband stimulus ranges in terms of BF and BMF, 

respectively, in orthogonal topographic gradients from low to high (Barton et al., 2012). 

 

Surface Area Measurements 

  Voxel-wise maps of BMF (i.e., periodotopic maps) were first identified on a 2-d 

flattened region (‘flat map’) representing the cortical surface near HG.  Measurements of BMF in 

periodotopic maps were interpolated smoothly across the range of AM values expressed in our 

broadband noise stimuli (2-256 Hz).  To construct surface area distributions, we discretized the 

range of stimulus values by constructing periodicity bins around the AM rates of the actual 

stimuli presented in the experiment (2, 4, 8, 16, 32, 64, 128, 256 Hz).  The stimulus values 4, 8, 

16, 32, 64, and 128 Hz served as bin centers on a linear scale, such that the bins were equal width 

on either side of the center (the 4 Hz bin ranged from 3-5 Hz, the 8 Hz bin ranged from 5-11 Hz, 

etc).  The stimulus values 2 and 256 Hz served as lower and upper bin boundaries for bins at the 

lowest and highest AM rates, respectively, and these bins were half-width relative to the others.  

Once bins were formed, individual regions of interest (ROIs) were identified within each AFM 

to represent all 8 of the bins separately – that is, for a particular bin, only those voxels with 

BMFs that fell within the bin range were assigned to the corresponding ROI.  Surface area was 

calculated for each of the 8 periodicity-bin ROIs in all 11 AFMs in each subject.  The 2-d 

coordinates of the ROIs were identified on the flattened representation of the cortical surface.  
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Because the flattening process inevitably distorts distance and area measurements, all surface 

area measurements were made along the 3-d cortical manifold by mapping the 2-d coordinates 

back to the 3-d manifold.  The surface area is then measured along the boundary between gray 

and white matter, which allows more reliable boundary definition than the outer surface of the 

gray matter or any particular cortical layer (Teo et al., 1997; B. A. Wandell, S. Chial, & B. 

Backus, 2000). For extended details about the algorithm used in these measurements, see (R. F. 

Dougherty et al., 2003).  Raw surface area measurements in mm2 were then converted to 

proportional measurements by dividing the surface area of each periodicity-bin ROI by the total 

surface area of its parent AFM.  This resulted in 88 discrete distributions of proportional cortical 

surface area relative to BMF (11 AFMs x 2 hemispheres x 4 participants). 

 

Exploratory statistical analyses of differences in SA distributions 

  We aimed to conduct exploratory statistical analyses in order to examine two research 

questions of interest: (i) are there hemispheric differences in periodicity coding (i.e., do SA 

distributions differ between the left and right hemispheres)?, and (ii) are differences in 

periodicity coding observed moving through the cortical hierarchy (i.e., do SA distributions 

differ between individual AFMs)?  Of note, our data were doubly multivariate with 8 

measurements of proportional surface area (for each of the 8 periodicity bins) repeated in 22 

distinct auditory fields per participant (11 AFMs x 2 hemispheres).  Since we had data from only 

four participants, we chose to reduce the data by focusing on the periodicity bins containing the 

large majority of total surface area (4-32 Hz; see Results below).  Further, we chose to restrict 

our exploratory analyses to only the three AFMs that make up the auditory core (hA1, hR, hRT).  
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Finally, we avoided doubly multivariate analysis by testing for differences only within individual 

periodicity bins. 

All statistical analyses were conducted in IBM SPSS Statistics (release 20.0.0).  We 

tested for hemispheric differences by conducting four paired t-tests (4 Hz left vs. right; 8 Hz left 

vs. right; 16 Hz left vs. right; 32 Hz left vs. right) in each of the three core AFMs (hA1, hR, 

hRT).  Individual t-tests were thresholded at p < 0.05 and family-wise error was controlled via 

Bonferroni correction (12 total tests, corrected threshold p < 0.004167).  We tested for ‘cortical 

hierarchy’ differences by first collapsing SA distributions across hemispheres and then 

constructing separate linear mixed models for each of the four periodicity-bins (4 Hz, 8 Hz, 16 

Hz, 32 Hz).  Each mixed model had a single fixed factor, field, with three levels (hA1, hR, hRT).  

Surface area data from each AFM were treated as repeated measures and so field was entered as 

a repeated factor with an unstructured covariance matrix (analogous to the MANOVA approach 

to repeated measures (Bagiella, Sloan, & Heitjan, 2000)).  All pairwise comparisons (paired t-

tests) were also performed for each periodicity bin.  Individual tests were thresholded at p < 0.05 

and family-wise error was controlled via Bonferoni correction (3 fixed effects tests on field, 

corrected p < 0.0167; 12 pairwise comparisons, corrected p < 0.004167). 

A follow-up analysis was performed in order to further explore ‘cortical hierarchy’ 

differences in SA distributions.  Rather than reducing the data by focusing on the 4-32 Hz 

periodicity bins, we parameterized SA distributions by fitting a rounded exponential (RoEx) 

function (Moore & Glasberg, 1983) to each individual distribution (again, collapsed across 

hemispheres) and measuring the width of its passband (henceforth called bandwidth) in Hz (see 

Appendix). The RoEx function is typically used to model peripheral auditory filters.  As such, it 

provides a good fit to distributions with a passband (a single peak) that gives way to shallower 
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tails, as our SA distributions do.  We chose to measure bandwidth (BW) in light of the observed 

shape of the SA distributions – i.e., considering the unimodal character of the SA distributions, 

including common peaks at or near 8 Hz, a smaller bandwidth indicates greater accumulation of 

SA around the peak (or center modulation frequency, CMF) with a smaller proportion of SA 

dedicated to fast modulations (and very slow modulations).  The results of our single-bin 

analyses suggested that BW might decrease moving laterally through the core AFMs 

(hA1àhRàhRT; see Results below).  To test this, we repeated the linear mixed model analysis 

described above with BW as the dependent measure.  The fixed effect test for field was 

thresholded at p < 0.05. In addition to BW and CMF, we report a centroid measure (CEN, Hz) 

for each of the 11 AFMs corresponding to the point at which 50% of the area under the RoEx 

curve was accumulated. 

 

Results 

 

Descriptive characterization of periodicity distributions 

We obtained 88 individual distributions of cortical SA relative to BMF (4 participants x 2 

hemispheres x 11 AFMs).  These distributions are pictured averaged across the four participants 

(Figure 6.3).  Cursory examination of SA distributions reveals two important features.  First, the 

distributions in all 11 AFMs are not uniform.  Rather, they are unimodal with peaks at or near the 

8 Hz periodicity bin (in other words, cortical magnification is observed over a certain range of 

periodicities; Fig. 6.3, line graphs).  Second, differences between hemispheres are small 

compared to differences between AFMs within each hemisphere.  Also, the within-hemisphere 
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differences between AFMs appear to be similar in the left and right hemispheres, and tend to 

occur primarily within a particular range of the SA distributions (4-32Hz; Fig. 6.3, pie charts 

show SA data collapsed across hemispheres).  This range contains the overwhelming majority of 

the total mass for each distribution, which is significant because it contains AM rates present in 

the most common envelope modulations observed in natural human speech (Chandrasekaran, 

Trubanova, Stillittano, Caplier, & Ghazanfar, 2009).  Below we report exploratory statistical 

tests for hemispheric differences in SA distributions as well as differences between individual 

AFMs. 

 

Figure 6.3. Distributions of cortical surface area relative to best modulation frequency (periodicity distributions).  
Periodicity distributions are shown for all 11 core and belt AFMs.  (Top Row + hCL) Lateral belt AFMs. (Bottom Row + 
hCM) Medial belt AFMs.  (Middle Row) Core AFMs.  Columns moving left to right reflect anatomical position moving 
medial to lateral.  Periodicity distributions were measured by tabulating the surface area in each of 8 periodicity bins.  
The 8 stimulus values (AM rate; 2, 4, 8, 16, 32, 64, 128, 256 Hz) served as bin centers with equal width to the left and right 
(the 2 and 256 Hz bins were half-width relative to the others).  Surface area is expressed as a percent of the total surface 
area in each AFM. (Line Graphs) Blue and red lines reflect periodicity distributions in the left and right hemispheres, 
respectively, in each AFM.  (Pie Charts) Periodicity distribution collapsed across hemispheres.  Notice two features: (1) 
the periodicity distributions in the left and right hemispheres are nearly overlapping in all 11 AFMs, and (2) periodicity 
distributions vary from one AFM to another within the core, medial belt and lateral belt, especially in the range of 8-
32Hz. 
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Exploratory Tests – Hemispheric Differences in Periodicity Coding in Core AFMs 

As mentioned above, a widely held view is that the left and right auditory cortices differ 

in their sensitivity to faster versus slower periodicities.  These periodicities may be related to 

distinct processing time scales in speech perception.  The AM rates that fall within these time 

scales are covered predominantly by our SA bands centered on 4 and 32 Hz (Figure 6.4).  Here 

we report tests for differences in mean proportional SA between the left and right hemispheres in 

the 4, 8, 16 and 32 Hz periodicity bins.  Tests were restricted to AFMs that make up the auditory 

core (hA1, hR, hRT).  The results of each test are given in Table 6.1.  In short, no test was 

significant at the uncorrected (p<0.05) or Bonferroni-corrected (p<0.004167) level of 

significance.  The only test to approach the uncorrected significance level was the 32 Hz bin in 

field hRT (p=0.063).  However, the mean proportional SA in this bin was negligible at 0.0149 

(1.5% of the total SA in hRT), and the difference in means (left vs. right) was -0.0098.  This 

difference was also negligible and in the opposite direction of that predicted by hemispheric-

differences hypotheses.  Thus, these results support the conclusion drawn from qualitative 

inspection of the data – specifically, there is no evidence of hemispheric differences in 

periodicity coding. 
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Figure 6.4. Schematic of the hemispheric asymmetry hypothesis. Poeppel’s asymmetric sampling in time model argues 
that the left hemisphere is tuned to fast temporal processing (short window, 25-50 ms time scale = 20-40 Hz), whereas the 
right hemisphere is tuned to slower temporal processing, which enhances spectral information (long window, 150-300 ms 
time scale = 3.33-6.67 Hz). (A) Diagram of our 8 periodicity bins in which dotted lines are placed at the bin boundaries.  
Each bin is labeled with the bin center (Hz) and bin boundaries (period, T, ms; period = 1000/Hz).  Poeppel’s short (blue) 
and long (red) windows are overlaid on the diagram with boundaries marked by dashed lines.  It is clear from the 
diagram that these windows strongly overlap the 32 and 4 Hz bins, respectively. (B) Predicted effect of hemispheric 
asymmetry on periodicity distributions, depicted as a bar graph with dashed fit-lines.  The left hemisphere (blue) has a 
peak in surface area at the 32 Hz bin.  The right hemisphere (red) has a peak in surface area at the 4 Hz bin.  The 
predicted distributions account for possible carry-over effects in neighboring bins. 
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Table 6.1 

Surface Area Differences: Between-Hemisphere Paired T-tests 

Periodicity 
Bin AFM* Diff SEM 

95% Confidence Interval of 
the Difference 

t df p** Lower Upper 

4 Hz 

hA1 -0.070 7.338 -23.424 23.284 -0.010 3 0.993 

hR -10.058 5.344 -27.065 6.950 -1.882 3 0.156 

hRT -0.948 9.234 -30.333 28.438 -0.103 3 0.925 

8 Hz 

hA1 3.873 7.996 -21.574 29.319 0.484 3 0.661 

hR 8.340 8.419 -18.452 35.132 0.991 3 0.395 

hRT 18.750 25.411 -62.120 99.620 0.738 3 0.514 

16 Hz 

hA1 5.433 5.783 -12.971 23.836 0.939 3 0.417 

hR 3.935 5.912 -14.879 22.749 0.666 3 0.553 

hRT -6.470 7.699 -30.971 18.031 -0.840 3 0.462 

32 Hz 

hA1 -6.103 9.671 -36.879 24.674 -0.631 3 0.573 

hR -0.565 2.552 -8.688 7.558 -0.221 3 0.839 

hRT -0.980 0.339 -2.060 0.100 -2.888 3 0.063 

    *All contrasts are Left vs Right   

    **Bonferroni-corrected significance level p < 0.004167 

 

 

Exploratory Tests – Differences in Periodicity Coding between Individual Core AFMs 

Previously we tested for hemispheric differences in periodicity coding.  Here, we test for 

differences in periodicity coding as we move through the cortical processing hierarchy in the 

auditory core – that is, from hA1 to hR to hRT.  Previous research has revealed differences in 
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temporal processing along this gradient ((Bendor & Wang, 2008; Camalier, D’Angelo, Sterbing-

D’Angelo, Lisa, & Hackett, 2012).  To test for such differences, we collapsed our SA 

distributions across hemispheres and constructed linear mixed models with fixed factor field 

(hA1, hR, hRT) separately for the 4, 8, 16 and 32 Hz periodicity bins.  The effect of field was not 

significant for the 4 Hz bin [F(2,3) = 0.235, p = 0.804].  However, the effect of field was 

significant at both the uncorrected (p < 0.05) and Bonferroni-corrected (P < 0.0167) levels for 

the 8 Hz bin [F(2,3) = 22.561, p = 0.160], and was significant at the uncorrected level (but did 

not survive Bonferroni correction) for the 16 Hz bin [F(2,3) = 12.172, p = 0.360].  Once again, 

the effect of field was not significant for the 32 Hz bin but did approach significance at the 

uncorrected level [F(2,3) = 8.412, p = 0.059]. 

None of the pairwise comparisons survived Bonferroni correction (p < 0.004167).  

However, the pattern of the results remains informative (Table 6.2).  In the 8 Hz bin, SA was 

significantly smaller (uncorrected) in hA1 versus hR [t(3) = -6.692, p = 0.007] and hRT [t(3) = -

3.517, p = 0.039].  In the 16 Hz bin, SA was significantly larger (uncorrected) in hR versus hRT 

[t(3) = 3.972, p = 0.029].  In the 32 Hz bin, SA was significantly larger (uncorrected) in hA1 

versus hR [t(3) = 3.331, p = 0.045] and there was a trend in this direction for hA1 versus hRT 

[t(3) = 2.638, p = 0.078].  Thus, SA appears to be spread more evenly across periodicities in the 

8-32Hz range in hA1, while SA in hR in hRT is dedicated in increasing proportion to 

periodicities near 8 Hz (Figure 6.5).  
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Figure 6.5. Differences in a subsection (8-32 Hz) of the periodicity distributions in the core auditory fields, depicted as a 
bar graph.  The three clusters of bars running left to right reflect surface area in fields hA1, hR and hRT.  Surface area is 
expressed as a percent of the total surface area in each AFM, collapsed across hemispheres and averaged over all 4 
participants (error bars are ± 1 SEM).  It is clear from the graph that a more restricted representation of periodicity 
emerges moving from hA1 to hR and hRT – an increasing proportion of surface is dedicated to the 8 Hz bin at the 
expense of the 16 and 32 Hz bins.  Pairwise comparisons (paired t-tests within periodicity bins and between AFMs) that 
were significant at the uncorrected level of p < 0.05 are shown (colored lines marked with stars; the color indicates the 
periodicity bin for which the comparison was made).  No tests survived Bonferroni correction (p < 0.004167). 

Table 6.2 

Surface Area Differences: Between-AFM Paired T-tests 

Periodicity 
Bin Contrast Diff SEM 

95% Confidence Interval of 
the Difference 

t df p* Lower Upper 

4 Hz 

hA1 vs hR -1.705 3.878 -14.045 10.635 -0.440 3 0.690 

hA1 vs hRT -1.708 2.540 -9.791 6.376 -0.672 3 0.550 

hR vs hRT -0.003 2.470 -7.865 7.860 -0.001 3 0.999 

8 Hz 

hA1 vs hR -21.348 3.190 -31.500 -11.195 -6.692 3 0.007 

hA1 vs hRT -24.423 6.945 -46.523 -2.322 -3.517 3 0.039 

hR vs hRT -3.075 6.212 -22.845 16.695 -0.495 3 0.655 

16 Hz 

hA1 vs hR 0.925 7.028 -21.440 23.290 0.132 3 0.904 

hA1 vs hRT 11.573 5.919 -7.266 30.411 1.955 3 0.146 

hR vs hRT 10.648 2.681 2.117 19.178 3.972 3 0.029 
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32 Hz 

hA1 vs hR 14.550 5.516 -3.004 32.104 2.638 3 0.078 

hA1 vs hRT 16.823 5.050 0.751 32.894 3.331 3 0.045 

hR vs hRT 2.273 1.392 -2.158 6.703 1.632 3 0.201 

    *Bonferroni-corrected significance level p < 0.004167 

 

 

Follow-up Analysis: Differences in Bandwidth of Periodicity Distributions 

In order to characterize the bandwidth (BW), or spread, of SA distributions, we fit RoEx 

functions to the distribution for each of the 11 AFMs (collapsed across hemispheres) for all four 

participants.  The RoEx function expresses each distribution as a filter in terms of “gain” relative 

to the maximum proportional SA, whereas this maximum is set to occur at the bin center of the 

periodicity bin with the largest proportional SA (2, 4, 8, 16, 32, 64, 128 or 256 Hz).  Example fits 

are shown for the core AFMs in (Figure 6.6).  For each fit, we report in Table 6.3 the center 

modulation frequency (CMF), BW, and a centroid (CEN) value (modulation frequency at which 

half of the area under the RoEx function is accumulated).  We chose to analyze BW due to the 

observation that the spread of periodicity distributions appears to change in an orderly fashion 

(e.g., from hA1 to hR to hRT as seen in the immediately preceding section).  The advantage of 

the BW measure is that SA data from all eight periodicity bins affect the measure – i.e., BW is a 

summary measure that parameterizes the entire SA distribution.  Here we report the results of a 

linear mixed model testing for the effect of field (hA1, hR, hRT) on BW in core AFMs.  We also 

present summary information relevant to differences in BW across all 11 AFMs.  
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Figure 6.6. Example RoEx fits in a representative subject (Participant 1).  Fits are shown for the core auditory fields 
(hA1, hR, hRT).  Red circles mark the actual data composing periodicity distributions, depicted here as normalized 
surface area.  The blue lines depict the best-fitting RoEx function for each distribution (nonlinear least squares).  The 
black line shows the bandwidth of each distribution, measured as the full width of the RoEx function at 0.707 (3dB down 
from the peak).  The center modulation frequencies (i.e., peaks) for hA1, hR, and hRT are 16, 8, and 8 Hz, respectively. 
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Table 6.3 RoEx fits to surface area data averaged across the two hemispheres.  Within each subregion 
(core, medial belt, lateral belt), the table is organized such that AFMs that run anatomically medial to 
lateral are positioned left to right (e.g., hA1àhRàhRT).  CMF = center modulation frequency, BW = 
bandwidth at three decibels down from the peak, CEN = centroid (point at which half of the total area 
under the RoEx curve is accumulated).  CMF, BW, and CEN are reported in Hz. 

 

 

In our linear mixed model investigating differences in BW among the core AFMs, the 

effect of field was significant [F(2,3) = 16.206, p = 0.025] with BW decreasing from hA1 to hR 

and then hRT (13.740à7.780à4.840).  In post-hoc testing, only the difference between hR and 

hRT was significant [t(3) = 3.220, p = 0.049], and only at the uncorrected level (p < 0.05; 

Bonferroni corrected level is p < 0.01667).  Comparisons involving hA1 did not reach 

Summary Measures: RoEx Fits in Individual Subjects 
 Core 

 
    hA1 hR hRT 

Participant    CMF BW CEN CMF BW CEN CMF BW CEN 
1    16 18.0 17.3 8 7.0 9.8 8 4.6 8.8 
2    4 3.9 5.5 8 10.4 7.4 8 5.6 6.6 
3    4 18.0 10.6 8 8.1 8.4 8 4.2 6.4 
4    8 15.0 10.0 8 5.6 6.9 8 5.0 6.4 

 Medial Belt 
 
 hCM hMM hRM hRTM 
 CMF BW CEN CMF BW CEN CMF BW CEN CMF BW CEN 

1 16 25.5 13.8 32 48.9 27.3 8 11.0 9.3 8 5.5 10.8 
2 8 6.7 8.0 8 5.7 8.2 8 13.8 11.4 8 3.9 6.7 
3 8 5.5 10.2 32 25.2 22.5 8 8.5 10.2 8 4.3 7.7 
4 8 6.3 9.5 16 29.2 16.6 8 4.7 8.2 8 6.4 6.7 

 Lateral Belt 
 
 hCL hML hAL hRTL 
 CMF BW CEN CMF BW CEN CMF BW CEN CMF BW CEN 

1 32 22.3 21.5 16 11.1 14.5 8 8.1 15.8 8 4.2 14.2 
2 4 3.7 7.5 8 7.1 7.6 8 8.4 9.8 8 7.8 10.5 
3 16 19.8 15.0 8 5.0 8.4 8 6.1 7.4 8 4.3 8.4 

4 8 16.6 11.8 8 6.9 7.9 8 11.4 9.0 4 5.5 9.8 
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significance due to large variance in BW for hA1, stemming from a single participant 

(Participant 2) that did not follow group pattern (see Table 6.3).  Overall, there appears to be a 

trend, based on BW and SA measurements, in which BMFs decrease moving from hA1 to hR 

and hRT.  In anatomical terms, a vector connecting hA1, hR and hRT moves medial (hA1) to 

lateral (hRT), from Heschl’s gyrus toward the superior temporal gyrus.  In other words, based on 

the trend in the auditory core, medial AFMs tend to represent a broader range of periodicities 

including a greater proportion of SA representing large BMFs. 

To explore this further, we averaged cortical SA distributions across the four participants 

and fit RoEx functions to these averaged distributions (11 total, one for each AFM).  Once again, 

we calculated CMF, BW, and CEN.  AFMs were split into medial and lateral categories 

according to the schematic in Figure 6.7A.  In Figure 6.7B, we plot CEN against BW for each of 

the 11 AFMs (see also Table 6.3).  Medial AFMs (hCM, hCL, hMM, hA1, hML) are plotted in 

red and laterl AFMs (hRM, hR, hAL, hRTM, hRT, hRTL) are plotted in blue.  In Figure 6.7C, 

we reproduce Figure 6.7B based on RoEx fits in individual participants.  Two features are 

prominent in the graphs: first, centroid estimates are highly correlated with bandwidth estimates, 

and second, lateral AFMs cluster toward the bottom left while medial AFMs cluster to the top 

right – that is, the cortical SA distributions of lateral AFMs are narrower and have less area 

dedicated to large BMFs than those of medial AFMs. (Recall that CEN measures the point at 

which half of the area under the RoEx function is accumulated, such that smaller values of CEN 

indicate proportionally less SA dedicated to large BMFs).  Indeed, the three points located 

closest to the bottom left of the graph are the lateral-most AFMs (hRTM, hRT, hRTL).  The 

implication of this result is discussed below. 
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Figure 6.7. Schematic of the organization of human core and belt auditory fields with respect to the relevant anatomy, 
depicted on a flattened representation of the cortical surface. Dark gray indicates sulci or the plane of the Sylvian fissure, 
while light gray indicates gyri. Purple regions represent auditory core. Orange regions indicate auditory belt. (A, bottom) 
Core and belt AFMs are pictured moving medial to lateral from left to right.  For descriptive purposes, AFMs were split 
down the middle into medial and lateral groups (red and blue arrows, respectively). (B) Graphical plot of the 
characteristics of RoEx fits to the data.  Centroid (Hz) is plotted against bandwidth (Hz).  In this plot, data points reflect 
paired observations drawn from RoEx fits to surface area data collapsed across hemispheres and participants in all 11 
AFMs.  Medial AFMs are plotted in red while lateral AFMs are plotted in blue.  The three data points (blue triangles) at 
the bottom left of the graph represent hRT, hRTL and hRTM.  The three data points at the top right of the graph 
represent hA1, hMM, and hCL.  The dotted black line represents the linear relationship between centroid and 
bandwidth, which are highly correlated (see legend). (C) Structured identically to (B).  In this plot, data points reflect 
paired observations drawn from RoEx fits to surface area data in each individual participant collapsed across 
hemispheres (4 participants x 11 AFMs = 44 data points). 

 

Discussion 

In previous work, we demonstrated the existence of an orderly, topographic gradient in 

the representation of periodicity in human auditory cortex (Barton et al., 2012).  Here, we have 

argued that the representational properties of this periodotopic place code can be elucidated in 
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terms of the amount cortical surface area dedicated to different modulation frequencies.  This 

notion – i.e., that important functional properties can be captured by cortical magnification of 

particular regions of sensory space – is common in sensory neurophysiology.  Indeed, the work 

of Penfield and Rasmussen reveals cortical magnification as a key organizational feature in the 

neural representation of the human body (Penfield & Rasmussen, 1950).  Modern visual field 

mapping techniques make regular use of cortical SA measurements to describe absolute and 

relative magnification of visual areas (A.A. Brewer & Barton, 2012; Alyssa A Brewer et al., 

2005; Robert F Dougherty et al., 2003; Ejima et al., 2003; Horton & Hoyt, 1991), and this 

research shows that cortical magnification is inversely related to receptive field size (Dumoulin 

& Wandell, 2008; Kastner et al., 2001; A. T. Smith, Singh, Williams, & Greenlee, 2001; Tootell 

et al., 1997).  Additionally, cortical magnification in V1 correlates with acuity thresholds 

(Duncan & Boynton, 2003).  We believe that the current characterization of SA distributions 

with respect to temporal auditory information holds similar functional significance. 

 

Periodicity Coding – Cortical Magnification 

We initially set out to determine whether periodicity codes in human auditory cortex 

were uniform across the range of AM rates tested (i.e., whether or not there was cortical 

magnification of particular AMs).  We observed several key features in the distribution of 

surface area relative to BMF (henceforth “periodicity distribution”) that inform this question.  

First, the periodicity distribution was not uniform across all modulation frequencies – rather, 

there was a disproportionate representation of a subrange of frequencies distributed in unimodal 

form in all 11 core and belt AFMs currently measured.  Second, there was relatively little cortical 



221 
 

SA dedicated to very high modulation rates (>32 Hz).  Last, the bulk of cortical SA was 

dedicated to modulation rates between 4 and 32 Hz (i.e., we observed cortical magnification in 

this region), with peaks in the periodicity distribution typically falling at or near 8 Hz (see Table 

6.3, Center Frequency).   

These observations are consistent with the animal literature.  In cats, the composite 

temporal modulation transfer function (tMTF) of A1 neurons, computed as the weighted sum of 

individual tMTFs, is bandpass (unimodal) with a peak at 12.8 Hz (Miller, Escabí, Read, & 

Schreiner, 2002), and the distributions of BMF in several auditory fields, which are based on 

counts of single-neuron BMFs, are unimodal for temporal (Schreiner & Urbas, 1988) and rate-

based (Miller et al., 2002; Schreiner & Urbas, 1988) coding of modulation rate (although the 

reliability of this measure depends largely on the number of cells recorded from).  The 

distribution of BMFs extracted from multi-electrode patterns of neural firing in cat A1 also 

contains a large peak at 8 Hz (Gourevitch & Eggermont, 2010).  In squirrel monkeys, the most 

commonly observed form of MTF in individual cortical neurons is bandpass, with a peak in the 

distribution of BMFs at 8 Hz in A1 (Bieser & Müller-Preuss, 1996).  Single-cell recordings in 

marmoset A1 reveal unimodal distributions of BMF centered at 8 Hz (temporal coding) or 16 Hz 

(rate coding) (Liang et al., 2002).  In macaques, population MTFs based on firing rate show 

weak tuning that nonetheless appears to be bandpass with a peak near 8 Hz (Scott, Malone, & 

Semple, 2011) (although distributions of BMF are not clearly unimodal (Yin, Johnson, 

O'Connor, & Sutter, 2011)).  

Psychophysical measurements provide additional support for the current data.  Human 

behavioral MTFs, based on threshold performance in a multiple-interval modulation detection 

task, display a lowpass characteristic for broadband noise carriers wherein performance begins to 
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decline at ~10 Hz (Viemeister, 1979).  Using narrowband noise carriers, human behavioral 

MTFs take on more of a bandpass (unimodal) character with peaks often occurring at 8 Hz 

(Torsten Dau, Kollmeier, & Kohlrausch, 1997).  Macaques have a bandpass behavioral MTF 

with a peak in sensitivity near 20 Hz (Moody, 1994).  Human modulation difference limens 

(detecting increments in modulation frequency) begin to increase (performance declines) at 10 

Hz and increase dramatically from 60 Hz (difference limen = 2.61 Hz) to 400 Hz (difference 

limen = 122 Hz) (Formby, 1985).  Macaque difference limens follow a similar pattern although 

they do not show the same precipitous increase at very high modulation rates (Moody, 1994). 

 

Periodicity Coding – Absence of Hemispheric Differences 

Given that all of our sampled AM rates (periodicities) were not equally represented in 

auditory cortex, we next turn to the question of whether hemispheric differences in periodicity 

coding can be observed.  We failed to identify such hemispheric differences in our 

measurements, which were drawn from 11 AFMs spanning the auditory core and belt.  Of note, 

theories predicting hemispheric asymmetries in temporal auditory processing are either unclear 

with respect to the anatomical location and/or processing stage at which these asymmetries 

should occur (R.J. Zatorre et al., 2002), or clearly predict that asymmetries should occur in 

nonprimary auditory areas (D. Poeppel, 2003; David Poeppel, 2001).  Indeed, recent functional 

imaging evidence bears out the prediction that hemispheric differences occur in downstream 

auditory cortical regions, with right hemisphere preferences for longer segment duration (slower 

temporal modulation) being observed only in posterior temporal regions (including pSTG/STS 

and planum temporale) in segmented noise (Boemio, Fromm, Braun, & Poeppel, 2005) and 
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speech (Liem, Hurschler, Jäncke, & Meyer, 2013).  However, a number of other recent studies 

support the emergence of hemispheric asymmetries as early as Heschl’s gyrus (Belin et al., 1998; 

A.-L. Giraud et al., 2007; Liégeois-Chauvel, de Graaf, Laguitton, & Chauvel, 1999), including a 

specific relationship between the cortical volume of HG and observed functional asymmetries 

(Warrier et al., 2009).  In any case, from the present results we can conclude that, should such 

hemispheric asymmetries exist, they do not result from differential cortical magnification in the 

two hemispheres at the level of the core and belt auditory regions.   

To reconcile with existing data, we should consider where hemispheric differences in 

temporal processing might in fact lie.  Indeed, hemispheric differences may not be detectable in 

the distribution of cortical SA.  Rather, it may be the case that place representations of 

periodicity, which are symmetric across hemispheres in the current data, are engaged 

differentially by downstream areas (or interact differentially within core and belt areas) during 

active stimulus processing in the left versus right hemisphere.  It has been hypothesized that 

these types of interactions are reflected in population level neural oscillations, which vary 

between hemispheres in auditory cortex (A. L. Giraud & Poeppel, 2012).  In addition, as 

mentioned above, some theories that emphasize hemispheric asymmetries in temporal processing 

are concerned with temporal integration windows (D. Poeppel, 2003), which are often assessed 

at the single-neuron level by measuring a cell’s upper limit of synchronization (Lu, Liang, & 

Wang, 2001; Wang et al., 2003).  This measure hinges on temporal firing patterns rather than 

overall firing rate – whereas fine-grained temporal information is not available in the BOLD 

signal as measured presently – and is often drawn in relation to discrete stimuli (e.g., click 

trains).  However, population temporal integration windows may also be reflected in the 
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maximal firing rate response to a continuous modulation (Wang et al., 2003), analogous to the 

voxel-wise measure of BMF in the current study.   

We should also consider the possibility that differences in cortical magnification exist on 

a very fine scale.  For instance, the critical range of periodicities over which hemispheric 

differences are hypothesized to occur (~4-40 Hz (David Poeppel, 2001)) is sampled over three 

stimulus values in the current study.  Although our analysis method allows for smooth 

interpolation over these values (i.e., when calculating BMF), it may be that subtle features of 

cortical SA distributions were obscured.  Furthermore, our power to detect hemispheric 

differences was limited by sample size, and our exploratory statistical analyses were restricted to 

the core auditory fields (hA1, hR, hRT).  It is feasible that hemispheric differences in cortical 

magnification exist at a scale detectable only with a very large sample, and that such differences 

may be present in the belt fields that were not formally assessed presently (however, visual 

inspection of the data suggests that periodicity codes are quite uniform across hemispheres in 

these fields, as well).  Overall, the effect of hemisphere appears to be quite weak even given our 

level of power, and we were able to detect other effects, which predominate at the same level of 

power.  As such, the current data lead us to hypothesize that hemispheric differences will not be 

observed in cortical magnification of particular periodicities even at a finer scale or in a larger 

sample, which is nontrivial given the current state of the literature. 

 

Periodicity Coding – A Medial to Lateral Gradient in Humans 

A second question we set out to address with our data concerned whether or not a 

decrease in BMF can be observed between AFMs, i.e., does the general trend toward slower 
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periodicities as one moves from the peripheral to the central auditory system continue in the 

cortical hierarchy? Bendor and Wang recently formalized a model in which the “temporal 

processing pathway” in primate auditory cortex follows the caudal-to-rostral axis, with 

increasing temporal integration windows moving rostrally (Bendor & Wang, 2008).  This model 

was based on single-unit data collected from the auditory core (A1, R, RT) of marmosets in 

response to AM tones.  Differences were observed in the temporal coding of AM: population 

synchronization to AMs was weaker in R and RT than in A1, a larger proportion of A1 neurons 

synchronized to AMs than in R or RT (and RT had a larger proportion of nonsynchronized 

neurons than A1 or R), the distribution of temporal BMFs was significantly different in A1 and 

RT (greater proportion of tBMFs at high modulation frequencies in A1), and a larger proportion 

of neurons in A1 had maximum synchronization frequencies at high modulation rates compared 

to R and RT.  Moreover, differences were observed in the firing rate response to AM: the 

average bandwidth of rate-based modulation transfer functions was significantly greater in A1 

than RT, and among nonsynchronized neurons average bandwidth was significantly smaller in R 

and RT compared to A1. 

These data match the observations in the current study, in which we have demonstrated 

that the “bandwidth” of periodicity distributions decreases moving laterally, including clear 

decreases moving from hA1 to hR and hRT.  (Of note, the human AFMs that fall on the medial-

to-lateral pathway are homologous with monkey AFMs that fall on the caudal-to-rostral 

pathway.)  A decreasing bandwidth implies the emergence of a more restricted representation of 

periodicity in the lateral fields, with most of the cortical SA dedicated to populations of neurons 

with BMFs near 8 Hz.  This proportional increase in number of cells that respond maximally 
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over relatively long temporal windows may be related to auditory object information along a 

medial-to-lateral temporal processing gradient.   

Further support for this temporal processing gradient is provided in measurements of the 

response latency of auditory cortical cells.  Response latency, which correlates inversely with 

maximum synchronization frequency in the response to AM (Bendor & Wang, 2008; Scott et al., 

2011), increases moving rostrally in the core, medial belt, and lateral belt of macaques (Camalier 

et al., 2012).  Moreover, while response latencies in A1 appear to drop with increasing tonotopic 

frequency, neurons in R demonstrate a relatively constant response latency across the tonotopic 

gradient, perhaps “facilitating the integration of frequency components into a unified auditory 

object” (Scott et al., 2011) (p. 728).  Another recent study confirms increases in response latency 

and demonstrates increasing stimulus selectivity to monkey calls and other complex sounds 

moving along the rostral pathway from A1 to RT and further to the more rostral supratemporal 

plane (Kikuchi, Horwitz, & Mishkin, 2010).  These data provide loose support  for a prominent 

model of human auditory processing in which auditory object formation follows a ventral stream 

along an anterolateral pathway from primary auditory cortex (Rauschecker & Scott, 2009).  

However, the aforementioned difference between primate and human anatomy must be 

respected: the current data support a temporal processing pathway that moves medial to lateral in 

human auditory cortex.  This characterization is supported by localization of complex auditory 

processes such as speech perception to the superior temporal gyrus and sulcus lateral to core and 

belt auditory cortex (Binder et al., 2000; Hickok & Poeppel, 2007; Price, 2010). 
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Appendix 

The rounded exponential or “RoEx” filter has been successfully used to model the 

response of peripheral auditory filters (Moore & Glasberg, 1983).  Its shape is given by the 

equation 

 

 

 

where g is the deviation from the filter center frequency (or, in our case, the center modulation 

frequency, CMF) divided by the CMF, p determines the passband of the filter, and r determines 

the point at which the passband gives way to the shallower tails of the filter.  This shape closely 

approximates the shape of our proportional surface area distributions.  In order to fit the RoEx 

function to a surface area distribution in a given AFM, proportional surface area measurements 

in each periodicity bin were normalized such that the bin with the largest proportional surface 

area was assigned a value of 1.  The distributions were thus expressed in terms of “gain” relative 

to the peak value of 1.  The periodicity (i.e., the AM rate of the stimulus) at the center of the 

peak bin was treated as the CMF, and values for g were thus determined by subtracting the CMF 

from each bin center (our AM stimulus values: 2, 4, 8, 16, 32, 64, 128, 256 Hz).  In one case, the 

CMF was forced to the center of three bins with gain values close to 1.  Values for p and r were 

determined by performing a nonlinear least squares fit of g on the gain values describing the 

surface area distribution.  Separate fits were performed to the left and right of the CMF such that 

p and r were estimated separately for each side of the RoEx filter.  Fits were carried out using the 

MATLAB curve-fitting toolbox with the ‘Trust-Region’ algorithm and lower bounds of [0, -5] 

€ 

W (g) = (1− r)(1+ pg)e− pg + r
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on p and r, respectively, upper bounds of [5, 50] on p and r, respectively, and starting points [3, 

0] on p and r, respectively.  In cases for which a negative value for r provided the best fit, values 

of W(g) were forced to a minimum of zero.  Additionally, fits were truncated at the first zero 

crossing (bins to the left or right of the CMF for which gain was less than 0.05).   In some cases, 

there were not sufficient degrees of freedom to estimate the r parameter and only a value for p 

was estimated.  If the CMF was located at an endpoint bin, parameters were estimated for only 

one side of the RoEx filter.  Fits with a total adjusted R2 less than 0.3 were discarded.  Once the 

full set of parameters was estimated, the function W(g) was specified computationally over the 

full range of g with a granularity of 0.01.  The function was then shifted by converting the vector 

of g values back to values of AM rate in Hz.  Bandwidth was calculated computationally as the 

full width (Hz) of the estimated RoEx equation at 3 dB down from the peak (from 0.707 on the 

left of the CMF to 0.707 on the right of the CMF, where the peak at the CMF is set to 1).  A 

value for the centroid (Hz) of each distribution was calculated computationally as the value at 

which the cumulative area under the curve W(g) reached 50% of its maximum. 
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CONCLUDING REMARKS 

 

 I will make no great efforts to provide a comprehensive link between the results from 

each of the preceding investigations.  The motivation for the research program as a whole and for 

each of the individual investigation has been given in the Introduction and Primers for each 

chapter, respectively.  In truth, the three approaches to understanding human speech processing 

adopted in the current work are largely unrelated at a detailed level.  They unite under the broad 

goal of describing the neural and computational mechanisms underlying speech perception and 

production, but the contributions to this description under each approach are rather unique.  As 

such, I will only return, briefly, to the objectives for each approach as outlined in the 

Introduction, so as to provide a report on overall progress. 

 

(1) Clarify what speech perception is by establishing what speech perception is not. 

Chapter 1, which was merely a synthesis of existing work, established (or reiterated, at least) that 

the motor system does not contribute meaningfully to speech perception.  As such, we can 

conclude that the objects of speech perception are not articulatory gestures (barring extreme 

interpretations of how articulatory gestures are perceived; if they are perceived by the auditory 

system, why quibble).  Chapter 2 provided a convincing explanation for motor system 

contributions to laboratory speech tasks – namely, activity in the speech motor system is 

modulated by top-down decision mechanisms in (unnatural) tasks in which an overt response 

must be generated.  Overall, I think this line of work can largely be left behind.  It is clear that 

speech perception is a sensory process and it will be most worthwhile to examine it as such. 
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(2) Establish how speech systems interface with signals from multiple sensory modalities. 

Chapters 3-5 approached this objective by examining audiovisual speech processing.  Chapter 3 

demonstrated that dynamic visual features corresponding to individual articulatory events are 

integrated with auditory speech signal to support perception.  This appeared to be done in a 

bottom-up fashion – the weight of each visual feature was determined by its salience and 

temporal separation from the auditory signal.  Chapter 4 identified potential neural mechanisms 

for both visual feature extraction and audiovisual speech integration in the superior temporal 

sulcus.  Chapter 5 suggested that visual speech, like auditory speech, functions to support motor 

control for speech production.  New neuroimaging evidence supported the existence of a visual-

to-motor integration pathway for speech.  I speculated that this pathway forms during 

development of productive speech capacities and remains functional into adulthood (to service 

vocal tract motor control).  Overall, there is much still to be done in the area of multisensory 

integration in speech.  In particular, the processing stage at which visual and auditory speech 

signals are combined and precisely where in the brain these signal converge on high-level speech 

sound representations are facts that remain elusive.  The precise organization and function of 

visual-to-motor speech integration networks remains to be specified.  Everything we know at this 

point is based on tasks involving repetition of (audio)visual speech, which is fairly unnatural.  

The contributions of sensorimotor integration networks for visual speech will need to be assessed 

using a larger variety of tasks. 
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(3) Establish the organization of central representations of auditory signals. 

 

This line of work is truly in its infancy.  We have only just developed techniques for high 

resolution mapping of cortical auditory representations.  The results of Chapter 6 provided some 

basic facts about the organization of central representations for one particular feature of sound – 

low frequency temporal modulations.  While these facts were informative, descriptions of the 

large-scale organization of the auditory cortical processing hierarchy were mostly speculative.   

Thus far, data have only been collected from a handful of subjects using one set of stimuli.  

Moreover, our state-of-the-art imaging techniques will soon be improved upon (i.e., with 

experience and fine-tuning).  The future for this approach to understanding human speech 

processing is bright and wide open. 

 

 

And that’s all. 

 




