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Practice of Epidemiology
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In environmental epidemiology, measurements of exposure biomarkers often fall below the assay’s limit of

detection. Existing methods for handling this problem, including deletion, substitution, parametric regression,

and multiple imputation, can perform poorly if the proportion of “nondetects” is high or parametric models are mis-

specified. We propose an approach that treats the measured analyte as the modeled outcome, implying a role

reversal when the analyte is a putative cause of a health outcome. Following a scale reversal as well, our approach

uses Cox regression to model the analyte, with confounder adjustment. The method makes full use of quantifiable

analyte measures, while appropriately treating nondetects as censored. Under the proportional hazards assump-

tion, the hazard ratio for a binary health outcome is interpretable as an adjusted odds ratio: the odds for the outcome

at any particular analyte concentration divided by the odds given a lower concentration. Our approach is broadly

applicable to cohort studies, case-control studies (frequency matched or not), and cross-sectional studies con-

ducted to identify determinants of exposure. We illustrate the method with cross-sectional survey data to assess

sex as a determinant of 2,3,7,8-tetrachlorodibenzo-p-dioxin concentration and with prospective cohort data to as-

sess the association between 2,4,40-trichlorobiphenyl exposure and psychomotor development.

2,3,7,8-tetrachlorodibenzo-p-dioxin; 2,4,40-trichlorobiphenyl; hazard identification; limit of detection; National

Health and Nutrition Examination Survey; nondetects; proportional hazards

Abbreviations: LOD, limit of detection; NHANES, National Health andNutrition Examination Survey; PCB, polychlorinated biphenyl;

PCB-28, 2,4,40-trichlorobiphenyl; PDI, psychomotor development index; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

The increasing availability of informative exposure bio-
markers presents both opportunities and challenges for envi-
ronmental epidemiologists as we try to identify determinants
of exposure and assess the health effects of environmental
pollutants. Many exposure biomarkers have low concentra-
tions in serum, urine, or other biological matrices, with mea-
surements often falling below the assay’s limit of detection
(LOD), the lowest level at which a substance’s presence is
distinguishable from its absence (1). Here we propose a
new approach for managing these “nondetects,” verify its ap-
propriate confidence interval coverage under the null through
simulations, and illustrate its use through application to 2 data
examples.
Existingmethods for handling nondetects include discarding

them, replacing them, or multiply imputing them. The deletion

method is inefficient (2) and prone to bias; in our exam-
ple involving 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in
the National Health and Nutrition Examination Survey
(NHANES), the deletion approach would discard 82% of
the participants. Replacing nondetects with a specific value
such as LOD / 2 or LOD /

ffiffiffi

2
p

can produce bias and overly
narrow confidence intervals, as can model misspecification
in parametric substitution schemes based on conditional ex-
pectations; distribution-free substitution of the average de-
tectable value can perform poorly as well (2). Multiple
imputation methods can also produce bias and overly narrow
confidence intervals when the assumed parametric model is
misspecified, especially in applications with many measure-
ments below the LOD (3). In view of these difficulties, we
sought a confounder-adjusted approach that would avoid
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restrictive parametric assumptions while accommodating a
high proportion of nondetects.

Our method treats the biomarker as the outcome, which
sometimes implies switching the roles of exposure and out-
come. We use Cox regression (4) to model analyte concentra-
tion as a function of the health measure, while adjusting for
confounders. Without assuming a parametric concentration
distribution, Cox regression easily accommodates nondetects
by appropriately treating them as censored. We reverse the
analyte’s scale to transform the provided left-censored obser-
vations into more easily handled right-censored observations.
Although Cox’s proportional hazards model was developed
for censored event-time data, it can be applied to any variable
that is subject to (potentially heavy) censoring. In addition to
adjusting for confounders, the Cox model does not require
event times (or analyte concentrations in this setting) to fol-
low any particular parametric distribution.

Role reversal of an exposure and its effect raises questions
about the use of directed acyclic graphs (5) to identify possi-
ble confounders for inclusion as covariates. However, the
roles of the analyte and the health measure are typically sym-
metrical (i.e., confounder selection is invariant to flipping the
direction of that causal arrow), so that the same confounders
will usually be appropriate to include as covariates. (The ap-
proach we propose would not be useful, however, for infer-
ence involving nonconfounder intermediates.)

This work was originally motivated by a study of xenobi-
otic exposures measured in NHANES from 1999 to 2004 (6).
One chemical measured was TCDD, and 82% of its concen-
trations were below the LOD. Using the same NHANES data
to assess associations between polychlorinated biphenyls
(PCBs) and antinuclear antibodies, Gallagher et al. (7) re-
stricted their logistic analyses to the last 2 years (2003–
2004), excluding thefirst 4years (1999–2002)because the less
sensitive assay used earlier had generated a high proportion
of nondetects. Our second example involves data on infant
development in relation to in utero 2,4,40-trichlorobiphenyl
(PCB-28) exposure, where a previous analysis omitted sev-
eral measured chemicals because too many values were
below the LOD (8). We wanted a method that could use all
of the available data. Furthermore, we wanted a method
that could be applied in a wide range of settings, including
case-control studies (with or without frequency matching),
randomized controlled trials, and cross-sectional studies,
and for which the health outcome could be dichotomous,
multilevel, or continuous.

We begin by describing the method and showing how the
Cox-based hazard ratio can be interpreted as an odds ratio.
We present results of simulations to assess confidence inter-
val coverage under the correct model and a null hypothesis
of no association, comparing coverage percentages for our
method with those for logistic regression and linear regres-
sion, based on both single impute substitution and multiple
imputation. We then illustrate the reverse-scale Cox method
by applying it to cross-sectional NHANES survey data to as-
sess sex as a determinant of TCDD concentration in the US
population. We also apply it to prospective cohort data exam-
ining the association between in utero PCB-28 exposure and
psychomotor development, where predictor and outcome
roles are reversed to accommodate nondetects. We conclude

with some remarks about the strengths and limitations of the
proposed method.

METHODS

Background

Survival methods are standard statistical tools typically
used for analyzing censored positive-valued data such as
event times. Most survival methods were originally devel-
oped to handle noninformatively right-censored outcomes,
known only to exceed a given limit. For example, the death
time for a patient in a prospective cohort study is right cen-
sored if the patient withdraws from the study or is still alive
when the study concludes; in either situation, we simply
know that the time to death exceeds the observed time on
study.

Reversing the outcome scale to analyze

left-censored data

Outcomes may also be left censored, known only to be less
than some lower limit. Such data can be analyzed with meth-
ods designed for right-censored data by reversing the out-
come scale (9). Specifically, and without loss of generality,
one can choose a constant, say M, that equals (or exceeds)
the largest observation, subtract all uncensored and left-
censored outcomes fromM, and treat those differences as un-
censored and right-censored outcomes, respectively. Other
than requiring that it equal or exceed all measured (or cen-
sored) values, the choice of M is arbitrary but will have no
practical consequence on nonparametric or semiparametric
inferences. This maneuver converts values that are left cen-
sored by the assay LOD to values that are right censored at
M − LOD. Note that LODs can vary across participants, as
occurs in our examples.

Following scale reversal, existing nonparametric methods
can estimate the outcome distribution (or at least its tail) for a
single group (9) or formally compare distributions for 2 or
more groups (10). Here, we extend these ideas to use Cox
regression (4) to adjust for confounders when assessing the
association between a health measure and a quantitative ex-
posure that is subject to substantial censoring.

Cox regression analysis of left-censored data

For a given individual, let T be the true concentration of an
analyte, let Y be a health measure, and let Z be a vector of co-
variates. Define a censoring indicator, Δ = I(T > LOD), and a
concentration variable, C =max(T, LOD), where Δ is 1 if C
equals the true concentration (i.e., T is large enough to be
measured), and Δ is 0 if C equals the LOD (i.e., T is non-
detectable). Suppose we have a sample of N observations,
denoted {(ci, δi, yi, zi): i = 1, . . . , N}, where (ci, δi, yi, zi)
are the observed values of (C, Δ, Y, Z) for the ith individual
(i = 1, . . . , N). Choose M ≥ max(c1, . . . , cN) to be a fixed
constant that equals or exceeds the largest true concentration
(and the largest LOD), and define xi =M− ci (i = 1, . . . ,N)
to be the observed value of some hypothetical “reverse-scale”
concentration represented by X =M− C.

Accommodating Detection Limits via Cox Regression 1019

Am J Epidemiol. 2014;179(8):1018–1024



Because most event-time software is designed for right-
censored data, one can reverse the scale of left-censored
data and apply standard software to the transformed data.
Thus, one can use existing Cox regression software to
analyze the data {(xi, δi, yi, zi): i = 1, . . . , N}, treating each
xi as an outcome subject to right censoring, δi as a censor-
ing indicator, and yi and zi as covariates (i = 1, . . . ,N). Be-
cause 1 of our examples involves NHANES data obtained
from a multistage stratified cluster sample, we used the
SURVEYPHREG procedure in SAS, version 9.3, software
(SAS Institute, Inc., Cary, North Carolina), which incorpo-
rates information on sampling strata, clusters, and weights
to provide appropriate standard errors when analyzing com-
plex sample survey data. For our other example, we used the
PHREG procedure in SAS, which is appropriate for nonsur-
vey Cox analyses.
Cox regression assumes that hazards are proportional to a

baseline hazard; its parameters are log hazard ratios. A posi-
tive coefficient for Y implies that M− T tends to be smaller
for larger Y, and thus T tends to be larger. Let F(t) = Pr(T≤ t)
be the cumulative distribution function for true concentration
T, where t is a particular value of T, and let f(t) be its density
function. In contrast to the hazard function for T, given by f(t) /
[1− F(t)], the hazard function for reverse-scale concentration,
M− T, when rewritten in terms of T, is f(t) / F(t).
If Y is binary, the hazard ratio parameter is interpretable as

an odds ratio. When comparing people who are positive for
the binary health measure (Y = 1) with those who are negative
(Y = 0), the hazard ratio is [f1(t) / F1(t)] / [f0(t) / F0(t)], where
fy(t) and Fy(t) are the respective density and distribution func-
tions for persons with health measure Y = y (for y = 0,1). Re-
versing the conditional probabilities, this hazard ratio can be
rewritten as follows:

f1ðtÞ=F1ðtÞ
f0ðtÞ=F0ðtÞ

¼ limε!0 Prðt � T < t þ ε j Y ¼ 1Þ=PrðT � t j Y ¼ 1Þ
limε!0Prðt � T < t þ ε j Y ¼ 0Þ=PrðT � t j Y ¼ 0Þ

¼ PrðY ¼ 1 j T ¼ tÞ=PrðY ¼ 0 j T ¼ tÞ
PrðY ¼ 1 j T � tÞ=PrðY ¼ 0 j T � tÞ ; ð1Þ

which is the odds of the health outcome at concentration t
divided by the odds of the health outcome for the aggregate
of concentrations at or below t. Thus, the usual proportional
hazards assumption made in Cox regression corresponds to
an assumption that this odds ratio is the same across all values
of t (i.e., all concentrations). If Y is continuous, an analogous
argument applies, leading to an odds ratio for a 1-unit change
in Y.

SIMULATIONS

To assess the validity of our approach, we performed sim-
ulations to verify coverage for nominal 95% confidence inter-
vals under a correctly specified null model. In addition to the
Cox method, we evaluated several other methods across
a range of scenarios. We simulated data with observations
on a binary health outcome Y (e.g., case/control status), a

quantitative confounder Z, and a concentration T subject to
a high proportion of nondetects.

Design of simulations

In addition to our earlier notation, let R denote a
reverse-scale version of T. There are n1 cases (Y = 1), n0 con-
trols (Y = 0), and we set N = n0 + n1. We generated ln(Z) as
normally distributed with mean μ1 for cases (Y = 1), mean
μ0 for controls (Y = 0), and variance σ2 for both. Simulating
concentrations that have a proportional hazards relationship
with the confounder and case/control status on the reverse
concentration scale is tricky (see the Appendix for details).
In general, the concentration distribution involves a hazard
ratio and a baseline (i.e., covariate-free) distribution, where
the former depends on Z and Y but not R, and the latter de-
pends on R but not Z or Y. In our simulated data, the log haz-
ard ratio for R was a linear function of Y and Z. We used a
standard Weibull model, with scale parameter α and shape
parameter γ, for the baseline distribution of R.
We wanted to assess performance under a null model of no

association between exposure T (or equivalently R) and case/
control status Y, sowe set the coefficient of Y to 0.Without loss
of generality, we set μ0 = 0 and regulated the dependence of
Y on Z through μ1, and we set α = ln(2) to scale the baseline
concentration distribution. We set β = ln(2) to obtain a hazard
ratio of 2 for the effect of a 1-unit change in Z on R. We report
results for lightly (μ1 = 1, σ = 0.25) and heavily (μ1 = 0.5, σ =
1) skewed confounder distributions, the former being nearly
bell shaped, and for lightly (γ = 5) and heavily (γ = 1) skewed
baseline distributions.We studied the following 5 pairs of sam-
ple sizes: (n0, n1) = (100, 100), (100, 400), (400, 100), (400,
400), and (700, 700); and we imposed 3 fixed LODs to achieve
average censoring proportions of 50%, 70%, and 90%.
We simulated 10,000 data sets for each combination of

confounder distribution, baseline concentration distribution,
and case/control sample sizes, and we calculated the percent-
age of those simulated studies for which the 95% confidence
interval covered the true null value. For comparison, we also
calculated coverages for 2 substitution methods: 1 based on
logistic regression, with Y as the outcome and T and Z as
covariates, and 1 based on linear regression, with T as the out-
come and Y and Z as covariates. In both analyses, each non-
detectable value of T was replaced by LOD /

ffiffiffi

2
p

(11). We
also calculated coverages for 2 multiple imputation methods
based on the same logistic and linear models. Using the meth-
ods of Lubin et al. (12), we bootstrapped to estimate param-
eters under a lognormal model for T, and we generated 10
“fill-in” data sets (with imputed values for nondetects) for
each of the 10,000 simulated data sets.

Simulation results

Table 1 reports confidence interval coverages for these
5 methods in each of the 20 null scenarios with a censoring
proportion of 70%. The Cox method maintained the nominal
95% coverage in all scenarios. Linear regression often per-
formed poorly, with coverage as low as 44%when using sub-
stitution for a lightly skewed (i.e., nearly symmetrical)
covariate distribution and 56%when usingmultiple imputation

1020 Dinse et al.
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for a heavily skewed covariate distribution. Logistic regres-
sion fared better than linear regression but not as well as
Cox regression, with coverages ranging from 88% to 97%
when using substitution and from 78% to 100% when
using multiple imputation. In some scenarios, for both linear
regression and logistic regression, multiple imputation was
worse than single impute substitution. Only the Cox method
maintained the nominal 95% coverage in all 20 scenarios
with 50% censoring (Web Table 1 available at http://aje.
oxfordjournals.org/), and its coverages ranged from 94% to
96% when the censoring proportion rose to 90% (Web
Table 2).

ILLUSTRATIVE EXAMPLES

Example 1: sex and TCDD exposure

Identifying determinants of environmental exposures is an
important public health problem. Understanding what pre-
dicts exposure can lead to strategies to reduce exposure,
and for causal models, provide causal background for select-
ing potential confounding variables. As 1 illustration of our
method, we investigated sex as a possible determinant of
TCDD exposure, using cross-sectional NHANES survey
data from 1999 to 2004. Serum TCDD concentrations were de-
termined by the Centers for Disease Control and Prevention,
using high-resolution gas chromatography/isotope-dilution
high-resolution mass spectrometry (13). Serum lipid concen-
trations were also determined, and total lipid concentration
was estimated by the Akins summation method (14). We

used TCDD concentrations expressed on a per-lipid basis
(pg/g lipid), as supplied through NHANES. These data are
anonymous and publicly available, and the National Insti-
tutes of Health Human Research Protection Program deemed
this study exempt from further ethical or institutional review
board review.

The original data set involved 7,433 participants who were
probability sampled with oversampling of certain age, race,
ethnicity, and income categories (15). Of these, the Centers
for Disease Control and Prevention assessed TCDD for
5,002. We excluded pregnant women and any participant
without information on sex or age, further reducing our sam-
ple size to 4,756. Within this subsample, 82% of the TCDD
concentrations were below the LOD. The medians were 3.5
(range, 0.8–42.7) for the measured TCDD concentrations
and 3.1 (range, 0.4–11.9) for the LODs.

We applied the proposed Cox method to these data, treating
lipid-adjusted TCDD concentration as the (heavily censored)
outcome and incorporating sex and age as covariates. For com-
parison, we also performed linear regression, with nondetects
replaced by LOD /

ffiffiffi

2
p

. Both analyses included a binary indi-
cator for sex (1 =male, 0 = female); a simple quantitative term
for age; and stratum, cluster, and weight variables to adjust for
the clustered probability sampling (using SAS procedures
SURVEYPHREG and SURVEYREG). We also performed
analyses that instead used a categorical variable or a spline
for age, and these analyses gave results very similar to our orig-
inal analysis. We did not performmultiple imputation because
of the lack of software able to impute “fill-in” data sets within
the context of a complex survey sample.

Table 1. Null Coverage Percentages for 95% Confidence Intervals by Shape of Covariate Distribution, Shape of

Baseline Concentration Distribution, and Sample Sizes (With 70% Censoring)

Level of Skewness Sample Size Coverage Percentage for Regression Methodsa

Covariate
Distribution

Concentration
Distribution

n0 n1
Reverse
Scale Cox

Linear with
Substitution

Logistic with
Substitution

Linear
with MI

Logistic
with MI

Light Light 100 100 95 86 97 95 100
100 400 95 70 96 95 100
400 100 95 89 96 96 99
400 400 95 64 95 95 99
700 700 95 44 95 94 99

Light Heavy 100 100 95 90 97 95 100
100 400 95 80 96 94 100
400 100 95 91 96 96 99
400 400 95 75 95 95 99
700 700 95 61 95 95 99

Heavy Light 100 100 95 92 94 92 95
100 400 95 91 94 88 93
400 100 95 91 91 92 92
400 400 95 84 93 79 90
700 700 95 75 93 67 85

Heavy Heavy 100 100 95 92 94 91 94
100 400 95 87 94 84 92
400 100 95 90 90 90 90
400 400 95 77 91 73 86
700 700 95 63 88 56 78

Abbreviations: LOD, limit of detection; MI, multiple imputation.
a Coverage percentages are based on 10,000 replicate data sets. The 5 methods are as follows: reverse-scale Cox

regression, linear regression with substitution of LOD /
ffiffiffi

2
p

for nondetects, logistic regression with substitution of

LOD /
ffiffiffi

2
p

for nondetects, linear regression with MI for nondetects, and logistic regression with MI for nondetects.

See the Simulations section and the Appendix for details.
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The Cox regression analysis showed both sex and age to be
important determinants of TCDD exposure (P < 0.0001),
with men having lower serum TCDD concentrations than
women (Figure 1) and with TCDD concentrations increasing
with age. On the reverse concentration scale, the estimated
Cox regression coefficient for men was −0.45, and the esti-
mated hazard ratio was exp(−0.45) = 0.64 (95% confidence
interval: 0.53, 0.76). In contrast, when linear regression
was used with substitution of LOD /

ffiffiffi

2
p

for each nondetect,
age remained a significant predictor (P < 0.0001), but sex did
not (P = 0.30).

Example 2: PCB exposure and neurodevelopment

To examine associations between in utero PCB exposures
and neurodevelopment, Park et al. (8) used cohort data from
mother-infant pairs residing in 2 districts of eastern Slovakia,
with births between 2002 and 2004. In utero PCB exposure
was estimated from concentrations measured in serum col-
lected from the mother at the time of her child’s birth. Fifteen
PCB congeners were measured on a wet weight basis (as ng/
mL) and then adjusted for serum lipids (as ng/g lipid) by the
Akins method (14). Infant neurodevelopment was assessed
using the Bayley Scales of Infant Development-II (16) at
16 months of age; our example focuses on results from
the Psychomotor Development Index (PDI), 1 of 2 indices
that comprise the Bayley Scales. To adjust for potential con-
founders when evaluating the association between individual

maternal PCB concentrations and infant PDI scores, we
included in our regression models district of residence
(Michalovce or Svidnik), infant sex, maternal Raven score
(a quantitative measure of nonverbal intelligence), and
HOME score (a quantitative measure of quality and quantity
of stimulation given to the infant at home). See the article by
Park et al. (8) for details about this study, which was approved
by the institutional review boards at the Slovak Medial Uni-
versity (Bratislava, Slovakia) and the University of California
at Davis (Davis, California).
Of the 15 PCB congeners evaluated in maternal sera, Park

et al. (8) included 6 in their linear regressions because those 6
“had most values above their LODs” and excluded the other 9
because of substantial censoring. Using 1 of the originally
omitted congeners, PCB-28, we illustrate our Cox approach
by assessing the association between maternal PCB-28 con-
centration and infant PDI score, adjusting for confounding.
Data on PDI scores and the 4 potential confounders were
available for 666 of the original 1,134 mother-infant pairs
in the birth cohort, and among these, 59% of the maternal
PCB-28 concentrations were below the LOD.
For comparison, we also performed 2 linear regressions,

where nondetects either were replaced by LOD /
ffiffiffi

2
p

or
were multiply imputed with bootstrapping and 10 “fill-in”
data sets, as described by Lubin et al. (12). Both linear re-
gression analyses used PDI score as the outcome, with
natural-log-transformed PCB-28 concentration as the expo-
sure of interest and with the same 4 potential confounders.
The Cox analysis strongly suggests that lower maternal
PCB-28 concentrations are associated with higher infant
PDI scores (P = 0.01), whereas the substitution (P = 0.13)
and multiple imputation (P = 0.12) analyses provide only
weak evidence for such an association. Infant PDI scores
ranged from 51 to 148, and the estimated Cox hazard ratio
was 0.88 (95% confidence interval: 0.79, 0.97) per 10-unit
change. Thus, for 2 infants whose PDI scores differed by
10 points, the odds ratio was 0.88 for the mother of the
higher-scoring child having a given PCB-28 concentration
versus all lower concentrations. As for the linear regression
analyses, the estimated changes in PDI score when doubling
the PCB-28 concentration were −0.53 (95% confidence in-
terval: −1.22, 0.15) with substitution and −0.47 (95% confi-
dence interval: −1.06, 0.13) with multiple imputation. Note
that the linear regression parameters have a different interpre-
tation than the Cox regression parameter.
Though our approach is most useful with a high proportion

of nondetects, we applied it to the 6 congeners investigated
by Park et al. (8) to confirm that it also performs well with
minimal censoring. The Cox method found significant asso-
ciations between PDI score and the same 2 congeners that had
been identified by Park et al. (8) using linear regression with
substitution, and the signs of the regression coefficients in the
Cox and linear models agreed.

DISCUSSION

When used to relate exposure biomarker analytes to a
health outcome of interest, our method begins by reversing
the concentration scale and then applies Cox regression
with adjustment for potential confounders, that is, for factors

Figure 1. Differences in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
concentration by sex, National Health and Nutrition Examination Sur-
vey, 1999–2004. Separate reverse Kaplan-Meier curves (9, 19) esti-
mate the TCDD concentration distribution for men and women. At
each (x,y) point along a curve, the y-value is the estimated sex-specific
proportion of TCDDmeasurements below the TCDD concentration (in
pg/g lipid) represented by the x-value. TCDD concentrations below the
limit of detection were treated as left censored when constructing
these curves, which are not adjusted for age or the survey design.

1022 Dinse et al.
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that may be causal “ancestors” of both the analyte concentra-
tion and the health outcome. Directed acyclic graph methods
(5) can be used to identify those ancestors for inclusion in the
model. Our simulations show that the approach is valid even
with both confounding and extreme LOD censoring (i.e., a
high proportion of nondetects), provided the model is cor-
rectly specified, whereas alternative approaches can perform
poorly.

In our NHANES example, we were in fact testing whether
sex influences TCDD concentrations, so sex was the cause
and TCDD the outcome. In other applications, reversal of
the roles of exposure and outcome may be needed, and in
such settings the reverse-scale Cox method can be regarded
as simply assessing association.

Our method has some important limitations. As with any
complex model involving confounding covariates, misspeci-
fication of the model can invalidate inferences. The Cox anal-
ysis does not assume any parametric distributions, but it does
require that the hazard functions for different covariate values
be proportional across concentrations of the analyte under
study. This assumption would be important to check, partic-
ularly because we have not here assessed the method’s sensi-
tivity to violations of that assumption. Other strategies for
optimizing fit should be used, such as considering transfor-
mations for continuous confounders, though goodness of fit
can be challenging to evaluate under the Cox model (17).

A second potential limitation is that characterizing a
dose-response relationship may be difficult under the pro-
posed approach, especially in situations in which the roles
of the exposure and the outcome are reversed. Although es-
timation of a dose-response curve may be nearly impossible
when LOD censoring is extreme, the proposed method will
be useful for detecting risks from chemicals or metabolites
of biomarkers under investigation. For substances identified,
further testing could be done with a more sensitive assay to
study dose-response relationships.

Other limitations relate to censoring. Our method may not
be useful in a cohort study when the outcome of primary in-
terest is the time to an event (e.g., death), and the predictor of
interest is an exposure biomarker subject to a high proportion
of nondetects. The potential problem with such a setting
is that both the outcome and its predictor are subject to cen-
soring. Also, Cox analysis typically assumes censoring is
noninformative. In our application, censoring is inherently
noninformative because knowing that the analyte concentra-
tion falls below a particular LOD should not tell us more than
that about its actual value.

The proposedmethod has somenotable strengths.Unlike ap-
proaches that discard nondetects or analyze detect/nondetect
dichotomies, our method allows full use of the available data
for a quantitative exposure biomarker. Unlike approaches that
substitute specific values (e.g., LOD / 2 or LOD /

ffiffiffi

2
p

) for non-
detects, our method does not assume that unknown values are
known and thus should not experience the same biases (both
in estimation and testing) and underestimations of variability.

Application to matched case-control studies is also possi-
ble with the proposed method. If frequency matching has
been applied, the usual adjustments for the matching factors
must be included in the model. The adjusted odds ratio from
the Cox model can then be viewed as equivalent to one from

a prospective formulation, as a consequence of results by
Prentice and Pyke (18). On the other hand, if pair matching
has been performed on the basis of nonquantified factors
(e.g., with each case matched to a friend control or a sibling
control), then an analyte with a small number of known con-
centrations cannot be readily studied using our method. How-
ever, such a design presents an intractable and possibly
insurmountable challenge for other approaches, too. For ex-
ample, suppose 80% are nondetects. Even if analyte concen-
trations are independent within pairs, 64% of pairs would be
completely noninformative, and only 4% of pairs would have
2 measured concentrations to compare. Consequently, we
caution against such a design if the number of known analyte
concentrations is small.

In summary, a reverse-scale Cox model can be used to
assess a confounder-adjusted association between a health
outcome (or an exposure determinant) and an exposure bio-
marker whose concentrations often fall below its assay’s
LOD. The method fully uses quantifiable analyte measures,
appropriately treats nondetects as censored, avoids specific
parametric assumptions about the concentration distribution,
and enables adjustment for confounders.
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APPENDIX

Define a binary outcome Y, a quantitative confounder Z,
and a quantitative reverse-scale concentration R. We simu-
lated various null data under a proportional hazards model
for R, as assumed by the Cox method. True concentration
T, observed concentration C = max(T, LOD), and censoring
indicator Δ = I(T > LOD) can be obtained from R and the LOD.
The usual formulation of the proportional hazards model

(4, 17) implies

ln½Sðr j y; zÞ� ¼ expðϕyþ βzÞ � ln½Sðr j 0; 0Þ�; ðA1Þ

where S(r | y,z) = Pr(R > r | Y = y, Z = z) is the “survival” (or
upper-tail distribution) function for R given Y and Z, and
S(r | 0,0) is a baseline survival function that depends only
on R. Regression coefficients φ and β are log hazard ratios
that gauge the effect on R of Y and Z, respectively. We
used the following Weibull baseline survival function:

Sðr j 0; 0Þ ¼ expð�αrγÞ; ðA2Þ

where α is a scale parameter, and γ is a shape parameter.
We simulated “observed” data {(yi, zi, ci, δi): i = 1, . . . ,N}

for N persons indexed by i as follows. We assigned yi = 0 for
n0 persons and yi = 1 for n1 persons, whereN = n0 + n1. Given
yi, we sampled ln(zi) from a normal distribution with mean μ0
if yi = 0, mean μ1 if yi = 1, and variance σ2 for either value of
yi and then exponentiated to get zi. We set μ0 = 0 and con-
trolled the dependence of Z on Y through μ1; we chose
pairs (μ1 = 1, σ = 0.25) and (μ1 = 0.5, σ = 1) to produce lightly
and heavily skewed distributions for Z, respectively. Given yi
and zi, we generated ri using formulas A1 and A2. We set
φ = 0 to enforce the null hypothesis of no association between
Y and R (or equivalently T) and β = ln(2) to obtain a hazard
ratio of 2 for the effect of a 1-unit change in Z on R. With
respect to the baseline survival function, we set α = ln(2)
to yield a median of 1, and we chose shapes γ = 5 and γ = 1
to produce light and heavy skewness, respectively. We cre-
ated a reverse-scale limit of detection U by determining the
value that yields an average S(U | yi,zi), in large samples,
equal to the desired censoring rate. Then we defined V =
max(r1, . . . , rN) and LOD = V −U. Finally, we set (δi = 1,
ci = V− ri) if ri <U, and we set (δi = 0, ci = LOD) otherwise.
This procedure produced “observed” data of the form {(yi, zi,
ci, δi): i = 1, . . . , N} for the Cox analysis. The linear and lo-
gistic regression analyses, based on substitution or multiple
imputation, required data on T. If δi = 1, then T was uncen-
sored, and we set ti = ci in either case. If δi = 0, the substitution
approach set ti = LOD /

ffiffiffi

2
p

, and the imputation approach used
missing data methods to impute a value of ti from the estimated
distributions of the observed data (12).
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