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Abstract

How students learn to use diagrammatic representations
is an important topic in the design of effective
representations for problem solving or conceptual
learning, but few good models of their learning exist. In
this paper, we explore the learning process with an
experiment using AVOW diagrams as a representation
for solving problems in electric circuits. We find that the
participants decompose each circuit into a similar set of
groups when solving the problems. The natural question
is whether these groups are an artifact of the visual form
of the circuit, or indeed the result of prior learning. We
argue that the decompositions are a result of perceptual
chunking, and that they are (at least partly) a result of
learning. In support of this, we describe a computational
model of perceptual learning, CHREST+, and show that
it predicts the decomposition of problems evident in the
participants’ data.

Introduction

The role of effective representations in supporting or
enhancing the conceptual understanding of a student is
an important topic within educational psychology
(Cheng, 1999b; Larkin & Simon, 1987). However, in
spite of the educational interest in effective
representations, the manner in which students learn
with and about different representations is not well
understood. The traditional method of looking for
chunks, through timing information (e.g. Chase &
Simon, 1973), is hard to apply in problem-solving tasks,
as the timing information is associated with the
solution, and not directly linked to the problem. We
instead use a computational model to match the
solutions produced by students in a typical
diagrammatic reasoning task, and use the model’s learnt
associations between problem and solution states to
argue that students are using learnt perceptual chunks as
a guide to problem decomposition.

This paper describes an example diagrammatic
reasoning task, which involves using AVOW diagrams
to compute quantities within circuit diagrams. Based
on results from an experimental study, we provide some
samples of how students tackle a complex problem
within this domain, and observe that the problem is
decomposed in a consistent form across the students.
The natural question is whether these groupings are
based upon the students’ prior learning, or are merely

an artifact of the target’s visual form. We argue that
students do learn these groupings, and that their
learning process is explainable in terms of the
perceptual chunking theory. In support of this, we
trained the CHREST+ model, which is based on the
perceptual chunking theory, on the same sequence of
circuits as was provided to the human participants. We
show that CHREST+’s predicted decomposition of the
sample problem matches that used by the participants.

Computing Unknowns in Circuits

This paper explores how students learn to use
diagrammatic representations for problem solving. As
an example domain, we use the task of computing
unknown quantities in electric circuits using AVOW
(Amps Volts Ohms Watts) diagrams, which represent
circuits and the domain laws of electricity using
diagrams and constraints on their composition. AVOW
diagrams are described in Cheng (1998), and Figure 1
provides an example of how AVOW diagrams are
constructed and used for problem solving. Essentially,
each resistor in an electric circuit is represented as a
separate AVOW box. The dimensions of the box are
scaled to represent the quantities within a resistor:
current (I) is the width of the box, voltage (V) is the
height of the box, resistance (r) is the gradient of the
box’s diagonal, and power (P) is the box’s area. Note
that the relations between the box’s dimensions
encapsulate rules of electric circuits. Thus, the gradient
of the box’s diagonal is its height divided by its width,
which restates Ohm’s Law, r=V/Il. Similarly, the
box’s area is its height times its width, which restates
the Power Law, P = VL.

The battery has a voltage of 12V and
all three of the resistors have a
resistance of 1 ohm. What is the
current drawn from the battery?

Each of the AVOW boxes is a square,
because each resistor’s resistance is
1 ohm. The height of the total diagram is
scaled to represent 12V. Hence, the width
B C of the total diagram represents the
current, measured to be 8 amps.

12v

Figure 1 : A circuit problem and its AVOW diagram.



Composition of individual boxes is used to represent a
circuit of several resistors; the rules for composition
preserve the underlying physical laws of electric
circuits. In working with this representation, students
must first produce an AVOW diagram scaled according
to the provided quantities, and the constraints in the
diagram ensure that the laws of electricity are followed
during its composition. The final AVOW diagram will
thus provide information about all other quantities
within the circuit, enabling the student to simply
measure the appropriate dimension for any unknown
quantity. Various studies (Cheng, 1998, 1999a) have
shown that AVOW diagrams provide a more effective
representation than algebra for learning concepts about
electric circuits. An increasingly important element in
the design of effective educational material is a better
understanding of how humans learn with these
representations (Cheng, 1999b). The aim of this paper
is to find some indicator in the students’ solutions to
their underlying learning mechanisms. We achieve this
by showing that all participants use a similar
decomposition of the circuit problems.

Observing the Problem Decomposition

A study on the use of AVOW diagrams was performed
with six participants (2 with A level physics, 4 without).
Each participant received basic instruction in the use of
AVOW diagrams, and was then asked to construct
appropriate AVOW diagrams for a sequence of electric
circuits.  Solution diagrams were entered on an
electronic sketchpad, which allows diagrams to be
constructed on screen using a mouse to place elements
such as lines, rectangles and parallel lines of various
thicknesses, as well as add textual labels. The computer
retains a record of each drawing action with detailed
timing information; note, the system provides no
support for constructing AVOW diagrams per se. After
an initial 15 minutes’ training session on AVOW
diagrams and in using the electronic sketchpad,
participants were presented with a graded sequence of
30 problems, ending with complex circuits of up to 12
resistors. After each circuit was attempted, the correct
AVOW diagram was shown to the participants. We
illustrate here how the participants performed on the
last of the ‘straight-forward’ circuits, illustrated in
Figure 2(a) with its target AVOW diagram in
Figure 2(b). (The remaining four circuits tested for
generalisation to more complex circuit types, such as
those requiring 3D layouts, and so are not included.)
Figure 4, at the end of this paper, illustrates in detail
the progress of three participants on the sample
problem. The graphs show the latency between each of
the drawing actions required to complete the solution.
Noticeable in these examples, and common to all the
participants, is the presence of peaks, which separate
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Figure 2 : The sample problem and its solution.

the sequence of actions into a number of stages. Such
peaks have also been shown to correlate with
meaningful decompositions in other forms of drawing
(e.g. Cheng, McFadzean & Copeland, 2001). The
figure also illustrates the parts of the AVOW diagram
completed during each stage. These stages represent
how the participant decomposed the solution.

From this first look at the graphs, we may conclude
that the participants are using similar decompositions.
These decompositions must be based on features of the
target circuit diagram, and the interesting question from
the perspective of effective representational design
concerns their origin: Are they mere artifacts of the
grouping of elements within the circuit, or are they the
result of prior training? It is difficult to answer this
question directly without some insight into the
knowledge which each participant brings to the sample
problem. In order to tackle this question, the next
section describes a computational model, CHREST+,
and shows how it can be used to predict the behavioural
characteristics found in the participants’ data.

CHREST+ : Learning Perceptual Chunks

The perceptual chunking theory for human memory has
had a long history within cognitive science, and forms
the theoretical basis of the EPAM/CHREST family of
computational models (for a review, see Gobet ef al., in
press). Chase and Simon (1973) first proposed how
perceptual chunking could be used in a model of
problem solving based on EPAM (Elementary
Perceiver and Memorizer) (Feigenbaum & Simon,
1984). The EPAM model assumes an input device (e.g.
a simulated eye), a short-term memory (STM) for
storing intermediate results, and a long-term memory
based around a discrimination network containing
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Long-term memory:
Discrimination network

Pictorial Short-Term Memory (STM)

Recognition

The simulated eye is passed over the target
stimulus, and the retrieved patterns are
sorted through the discrimination network.
Matching chunks are retrieved and placed
within STM.

Learning

New nodes are added to the network through a
process of discrimination. Illustrated at (a) and
(b), the new pattern has caused an additional test
link and node to be created. Familiarisation has
then filled in the node image with features from
the observed pattern. Equivalence links (the
dotted lines) are formed when CHREST+ has a
pointer to both a circuit chunk and an AVOW
chunk within its STM at the same time. Here,
the model has just learnt link (c).

Figure 3 : The CHREST+ model. The model includes a simulated eye and pen for interacting with the
external environment, a fixed capacity short-term memory, and a long-term memory.

chunks of information. However, EPAM itself was
only applied to certain perception and memory
phenomena, and not more complex problem-solving
domains, in part because of the simplified form of its
learning mechanisms. This limitation is corrected in the
CHREST (Chunk Hierarchy and REtrieval STructures)
model, which includes various extensions to EPAM
(Gobet, 1996; Gobet & Simon, 2000).

CHREST+ (Lane, Cheng & Gobet, 2000) has been
developed to investigate how a memory of perceptual
chunks can be used in problem solving with diagrams;
the model is illustrated in Figure 3. Like CHREST,
CHREST+ learns a discrimination network of
perceptual chunks by scanning circuit and AVOW
diagrams with its simulated eye. The network consists
of a collection of perceptual chunks, which are stored at
nodes in a network, interconnected by test links.
Patterns are used to retrieve chunks from the network
by sorting them, beginning from the root node, through
the network against the tests stored at the test links.
Once a pattern reaches a node, learning may occur: if
the pattern matches the chunk at the node, then more
information can be added from the pattern to the chunk
(familiarisation); if the pattern mismatches the chunk,
then a new test link is added based on the mismatching
features, and a new node is created (discrimination).
These processes are illustrated in Figure 3: at point (a),
a test link for a single resistor is used to distinguish the
collection of three resistors from the two in parallel; this
link is added during discrimination, and the contents of
the node added during familiarisation.

The process of learning about circuit and AVOW
diagrams is illustrated in Figure 3. Because the circuit

and AVOW diagram representations do not overlap,
individual nodes within the network will represent
either an individual circuit diagram, or an individual
AVOW diagram. In consequence, if CHREST+ is to
generate AVOW diagrams when presented with a
circuit, it must also associate chunks about circuits with
chunks about AVOW diagrams. Accordingly,
CHREST+ includes an additional learning mechanism
for forming equivalence links; these are lateral links
(Gobet, 1996) connecting two chunks within the
discrimination network. An equivalence link is formed
when the model is presented with a circuit diagram and
its equivalent AVOW diagram. During the process of
recognising the two diagrams, separate chunks will be
placed into STM, one for the circuit diagram and one
for the AVOW diagram. An equivalence link is then
formed between the relevant two nodes in the network.
Figure 3 illustrates this process, with an equivalence
link formed at point (c). As can be seen, particular
problems (circuit diagrams) become associated with
information about their solution (equivalent AVOW
diagrams). Generating an AVOW diagram for a novel
circuit diagram then requires the model to locate chunks
(sub-networks) within the circuit diagram for which it
has an associated AVOW diagram; the AVOW
diagrams for these sub-networks may then be drawn,
and a further familiar sub-network located. The process
by which CHREST+ incorporates its retrieved AVOW
diagram into the evolving solution diagram is provided
by specific, handcoded routines — these are akin to the
basic training the participants received in AVOW
diagrams.



Predicting the Observed Decompositions

We trained CHREST+ using the same sequence of
circuits as the participants. By the time CHREST+
reaches the sample problem, it has learnt a
discrimination network of 72 chunks, 42 for circuit
diagrams and 30 for AVOW diagrams, with 11
equivalence links. When presented with the sample
problem, CHREST+ retrieves four separate chunks
whilst constructing its solution; these are illustrated in
Figure 2(c). Note that the assumption in CHREST+
that information is contained in encapsulated chunks
strongly predicts that problems will be decomposed as
familiar chunks. Also, because CHREST+’s chunks are
associated directly with equivalent AVOW diagrams,
we can observe the effect of its circuit decomposition in
the breakdown of the AVOW diagram’s construction
into stages. We now show how the decompositions can
be affected by learning, how the participants’ data
provide reliable decompositions, and how well the
participants’ data are matched by the model.

Decompositions are Due to Learning

The precise number and content of chunks used by
CHREST+ is governed by its experience with the
previously encountered problems. By providing
different sets of problems, CHREST+ extracts different
familiar chunks when decomposing the same sample
circuit diagram. For example, presenting the sample
problem after initial training on a circuit containing
only a single resistor leaves CHREST+ with little
choice but to decompose the problem into 9 distinct
resistors; a more extensive training sequence allows
CHREST+ to identify just 2 sub-circuits within the
sample circuit. With the training sequence used,
CHREST+ therefore makes a two-fold prediction: that
four chunks are identified in the circuit, and that their
form is as illustrated in Figure 2(c).

Specifying a Decomposition

Returning to the graphs of the participants’ drawing
actions shown in Figure 4, we can consider how the
decompositions provided by the peaks in the drawing
actions compare across participants, and also whether
they compare with the model’s predicted chunks.

The first participant, CP, in Figure 4(a) has clearly
begun from the right-hand side of the figure, then
worked out the central triplet of resistors. These stages
are preceded by longer pauses between the drawing
times (marked by asterisks), and their correspondence
to the chunks given by the model is clear: we highlight
the stages with vertical divisions, illustrating the current
state of the solution at the end of each stage. Similarly
with the second participant, SG, who instead begins
from the left-hand side; note also that SG requires
considerably more time than CP. Note the different
order in which the diagram is tackled, although the

Table 1 : The number of actions each participant
made when completing the sample problem, classified as
follows: NP —non-peaks; P —peaks; PC — pre-chunk;
SB — start+bounding box; L —1labels; E —error; Mi—
missed chunks; Y — totals.

Participant
CP DJ EF HA RH SG >
NP 19 17 7 16 8 8 75
P 5 5 4 7 3 5 29
PC 3 3 2 3 2 4 17
SB 2 1 1 1 1 6
L 2 3 5
E 1 1
Mi 1 1 1 2 5
overall stages are the same. Finally, the third
participant, EF, wused whole rectangles when

constructing the solution; these rectangles were laid out
in sequential fashion, beginning from the right-hand
side, and then top to bottom. However, from the pauses
evident in the times between drawing actions, we can
see that this sequence of boxes was divided into the
four stages corresponding to individual chunks. The
remaining three participants show a similar pattern, but
are not illustrated here.

Matching Observed Decompositions

We can now directly compare the stage-wise output of
the sample circuit’s AVOW diagram by CHREST+
with its solution by the participants. We quantify the
correspondence between CHREST+’s prediction and
the participants’ behaviour by counting how many of
CHREST+’s chunk boundaries correspond with the
participants’ peaks. For this analysis, a peak is a time
between drawing actions prominently larger than the
preceding and succeeding times: the peaks used are
highlighted in the figure with asterisks.

For example, the graph for CP shows five peaks.
The first and second peaks correspond to CP beginning
the problem and creating a bounding box for the entire
circuit, as illustrated in the diagram before the first
dividing line. Between the third and fourth peaks, CP
completes the part of the diagram which corresponds
with chunk 4 in CHREST+’s output, and hence we
count the third peak as a pre-chunk boundary.
Similarly, between the fourth and fifth peaks, chunks 2
and 3 are completed in the diagram. Note that there is
no peak corresponding to a retrieval of the 3" chunk,
against the model’s prediction. Finally, after the fifth
peak, CP completed chunk 1 and then added the labels
to all the AVOW boxes; the simplicity of this process is
reflected in the low times between these operations.

We therefore explain the five peaks as follows: the
first two are for the start and bounding box, and the
next three are pre-chunk boundaries. One chunk
boundary seems to have been missed.  Table 1
summarises the analysis for all six participants.



The analysis shows that nearly all of the peaks
correspond with stages in the drawing which we would
explain by the use of chunks. Note that, out of the 24
predicted chunks (6 participants and 4 predicted
chunks), 17 peaks were clearly identifiable chunk
boundaries, and there were only 5 missed chunks. This
leaves unaccounted 2 chunks, which were instead
created directly from the start, and thus are included
with the starting times of the participant: this analysis
therefore identifies 19 peaks in the participants’
behaviour which precede chunk boundaries out of 24
predicted chunks. These results demonstrate that
CHREST+ predicts the decomposition of problems
evident in the participants’ data, and so support our
claim about the role of learnt perceptual chunks in
problem decomposition.

Conclusion
This paper has used the perceptual chunking theory, as
implemented in CHREST+, to predict specific

perceptual chunks learnt from a given sequence of
instruction. We have presented results from a study of
six participants solving electric-circuit problems using
AVOW diagrams. The predictions from the model
have been shown to correlate with the stages in problem
solving evident in the participants’ performance.

To fully understand the participants’ problem
decomposition and learning pattern, we need to
consider more closely what is happening during the
peaks in their output timings. Looking at the
CHREST+ model, the participants’ peaks correspond to
the processes of pattern recognition and retrieval. In
addition, processes of planning along with some
lookahead must be going on. This lookahead and
planning probably explains the missed chunks in the
preceding analysis. At present, CHREST+ always
outputs its solution AVOW diagram as soon as it is
found. Through a small modification in its output
strategy, CHREST+ could instead retain more than one
chunk for solution, and output several together. This
would providle CHREST+ with the potential for
lookahead, making it a more plausible problem solver,
as well as capture the pattern of missed chunks.

The interesting result from this paper is that the
chunks used by learners within such domains may be
predicted using an established computational model.
Further work with this domain should aid in refining the
model and its predictions, and also extend it into other
domains. In particular, this use of perceptual chunks in
decomposing diagrams has already been shown to occur
more generally (Cheng, McFadzean & Copeland,
2001). In the longer-term, one of the important
applications for this research is likely to be the design
of effective computer-based learning environments
(Gobet & Wood, 1999).
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Figure 4 : The performance of three participants when solving the sample problem. The * indicates peaks used
in the analysis. Under the graphs, information is given on the specific drawing action performed, the stage
of the diagram just prior to the peaks, and the correspondence with the chunks predicted by CHREST+.





