
UC Berkeley
Berkeley Scientific Journal

Title
How to Win: Optimizing Overcooked

Permalink
https://escholarship.org/uc/item/4sq3h354

Journal
Berkeley Scientific Journal, 24(2)

ISSN
1097-0967

Author
Nolan, Nick

Publication Date
2020

DOI
10.5070/BS3242049344

Copyright Information
Copyright 2020 by the author(s). All rights reserved unless otherwise indicated. Contact the
author(s) for any necessary permissions. Learn more at https://escholarship.org/terms

Undergraduate

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4sq3h354
https://escholarship.org/terms
https://escholarship.org
http://www.cdlib.org/

						 SPRING 2020 | Berkeley Scientific Journal 31

Overcooked—the sensational group
cooking video game—made its

smash appearance in 2016. The premise is
simple: prepare as many of the requested
meals as possible before the time runs out
by cooking meat, chopping vegetables, or
boiling soup; combining the ingredients;
and cleaning the plates you just put out for
consumption (Fig. 1). The innately chaotic
nature of the game unfurls in the floor plan:
some levels are coated with ice that make it
easy to slip off of the stage; others, a rotat-
ing center stage. When four people gather to
try flipping burgers, it becomes difficult to
navigate the unruly layouts while following
occasionally-complex cooking instructions
in time to satisfy the customer. Strategy is
crucial to fulfill orders quickly and proceed
to the next level.

Naturally, this idea prompts the ques-
tion: how can we develop the best strategy to
play Overcooked? How can we find the way

to make the greatest number of food items
in the time allotted for each level?

First and foremost, it seems the solution
to our quest may not lie in our own hands—
recent advances in computer science have
demonstrated that machine learning algo-
rithms have been able to outplay human
experts. Specifically, these methods have
bested human players on some of the first
games developed on the Atari 2600, a gam-
ing console from 1977.1,2

Machine learning is likely the way to go
to play the best game of Overcooked, then.

These Atari algorithms, developed in 2013
by DeepMind Technologies’ Volodymyr
Minh, were able to learn how to play a host
of Atari games, eventually exceeding the
highest scores of some of the most skilled
human players. To accomplish this task,
Minh utilized a class of machine learning
known as reinforcement learning, in which
the computer is a sort of “player,” learning
about the environment with which it in-
teracts. The “player” eventually encounters
good or bad rewards, and learns how to act
to maximize the good rewards it receives.

Figure 1: Gameplay footage of a standard level of Over-
cooked. The dropoff location, on the left, is where players
need to submit completed meal orders, in the top left. The
rest of the level is home to treadmills that move the player
around, and resources are spread far apart from each
other to make the level more challenging.

BY NICK NOLAN

How to Win: Optimizing Overcooked

32 Berkeley Scientific Journal | SPRING 2020

This amounts to a massive amount of trial-
and-error-type learning, and takes minutes
to simulate a single second’s worth of game-
play; the Atari system was slowed down by
multiple orders of magnitude, and it was
not until late 2014 when IBM’s Xiaoxiao
Guo developed a more efficient, real-time
algorithm that—while slightly less effec-
tive—was able to play live.3

We are met at a crossroads: we can ei-
ther develop an algorithm that takes a long

time and plays a slowed-down version of
the game, or we can prioritize an algorithm
that plays real-time, albeit possibly subopti-
mally. Here, we will focus on the former to
develop a “best” strategy, due to the gener-
ally messy nature of real-time strategy de-
velopment.

In order to properly tackle this prob-
lem, we must first consider our approach.
To procure the greatest number of meals in
a set time frame, we will make some sim-
plifying assumptions, and establish how we
will frame the data to be inputted into this
system:

The game board will be split into dis-
crete tiles in a grid over the entire board,
small enough that only one unit—either
player, plate, or other utility on the board—
can fit into each tile.

The board will be split into layers of the
above grid, corresponding to the distinct
types of entities on the board: one layer cor-
responding to tabletops; one for non-walk-

able hazards; one for each player; one for to-
matoes; and so on. For each of these items,
its corresponding grid copy will contain 1’s
in every position in which the item is con-
tained; every other position, will be filled in
with 0’s (Fig. 2).

One time step will be defined as the
amount of time it takes for a player to
move from one grid tile to any adjacent tile.

So, great. We’ve created a model for the
system which speaks to where everything is
on the board, and we’ve discretized the sys-
tem such that players have a finite number
of moves until the game is finished. How-
ever, the computer does not know what the
objective of Overcooked is—it has been pre-
programmed exclusively with knowledge of
how to move and use other moveable items.
So how can a computer choose the best or-
dering of actions, when it doesn’t even know
what it should be doing?	

Simple: it won’t. Not for a long time.
We have to start by making a guess of

Figure 2: Each game board can
be roughly modeled as a grid
of tiles; to format this for input
into our machine learning algo-
rithm, we simply need to break
the game down into its gridlike
structure. From here, all that’s
left is to create a new copy of
the grid for each type of tile,
and label each tile that has the
item with a “1,” and each that
doesn’t with a “0”.

“Naturally, this
idea prompts the

question: how can
we develop the

best strategy to play
Overcooked?”

						 SPRING 2020 | Berkeley Scientific Journal 33

this? In essence, it amounts to making ran-
dom or slightly-educated guesses of how
valuable each state-action pairing is, testing
these out, and updating them according to
whether we found them to be as useful as
we initially thought they would be. For ex-
ample, we might have initially thought that
it would be very valuable to chop lettuce,
but if our simulations reveal that there’s only
one very uncommon dish on that level that
requires lettuce, we can safely say that we
overestimated the value of chopping lettuce,
and update accordingly.

So, there we have it—under the model
we have constructed, we will be able to play
the optimal game of Overcooked. It will
take some time, but by playing several thou-
sands of simulations of a given level, a com-
puter will be able to roughly determine the
values of each state-action pairing for the
optimal policy. From here, we simply need
to choose what Q-Learning believes to be
the most valuable action for each state we’re
in until the end of the game.

This concludes our quest; from con-
structing our model, we have simulated sev-
eral thousand rounds of play, developed an
approximation for the value of every move,
and used these approximations to make the
best strategy in Overcooked. Armed with
that knowledge, replacing your own player
with the optimal computer may even leave
your teammates happier without you.

REFERENCES

1.	 Mnih, V., Kavukcuoglu, K., Silver, D.,
Graves, A., Antonoglou, I., Wierstra,
D., & Riedmiller, M. (2013). Playing
Atari with deep reinforcement learning.
arXiv. https://arxiv.org/abs/1312.5602

2.	 Mnih, V., Kavukcuoglu, K., Silver, D.,
Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A.
K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H.,
Kumaran, D., Wierstra, D., Legg, S.,
& Hassabis, D. (2015). Human-level
control through deep reinforcement
learning. Nature, 518(7540), 529–533.
https://doi.org/10.1038/nature14236

3.	 Guo, X., Singh, S., Lee, H., Lewis, R. L.,
& Wang, X. (2014). Deep learning for
real-time Atari game play using offline
Monte-Carlo tree search planning. In
Ghahramani Z., Welling M., Cortes C.,

Lawrence N. D., & Weinberger, K.Q.,
(Eds.), Advances in Neural Information
Processing Systems: 27 (pp. 3338-3346).

4.	 Watkins, C. J. C. H. (1989). Learning
from delayed rewards. [Doctoral thesis,
King’s College]. ResearchGate.

5.	 Watkins, C. J. C. H., & Dayan, P.
(1992). Q-learning. Machine Learning,
8, 279-292. https://doi.org/10.1007/
BF00992698

6.	 Kapetanakis, S., & Kudenko, D. (2002).
Reinforcement learning of coordination
in cooperative multi-agent systems. In
Dechter, R., Kearns M. S., & Sutton, R.
S., (Eds), Eighteenth National Conference
on Artificial Intelligence, 2002, 326-331.
https://doi.org/10.5555/777092.777145

IMAGE REFERENCES

1.	 Banner: (2016). Characters from
Overcooked [jpg image]. IGN. https://
www.ign.com/wikis/best-of-2016-
awards/Best_Multiplayer.

2.	 Figure 1: (2018). Gameplay footage
of level in Overcooked 2 [jpg image].
Gamers of the World. http://
gamersoftheworld.com/overcooked-2-
review-a-great-second-course.

3.	 Figure 2: (2018). Gameplay footage
of level in Overcooked 2 [jpg image].
Steam. https://store.steampowered.
com/app/909720/Overcooked_2__
Surf_n_Turf.

how to proceed from each possible config-
uration of positions, called a state, and up-
dating our guesses as we proceed through
simulations. Enter Q-Learning, an algo-
rithm proposed in 1989 which does precise-
ly this.4,5 More recent advances from 2002 by
the University of York’s Spiros Kapetanakis
expanded Q-Learning to work with multiple
players, allowing for this approach to work
with Overcooked.6

Q-Learning is a standard reinforcement
learning algorithm which identifies and de-
termines the value, denoted with a Q, of ev-
ery action, a, at every possible state, x. From
here, we can determine the optimal action
to take at any state, which is known as a poli-
cy. The value of each state-action pairing for
a policy π is defined as follows:

By no means is this pleasant to look at,
but the general takeaway here is as follows:
the first term, ℜx(a), speaks to the reward
obtained, purely from taking an action a
at a state x. For example, dropping a filled
order down into the dropoff location would
yield a large reward, while cutting carrots or
cooking meat would not achieve the same
reward. This is not to say that these latter
actions aren’t valuable, though—their value
shines in the second term of the equation.
This term—which is admittedly complex—
equals the potential of any given action to
result in a downstream success. Note that
this success is not guaranteed; each order
that comes in is random, and so each action
may be more or less successful based on the
randomly generated requests. Regardless,
this is how preparing food is useful—it sets
up for future completed dishes to get even
more points.

This is all splendid, but how do we use

“To accomplish this
task, Minh utilized

a class of machine
learning known

as reinforcement
learning.”

