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Overcooked—the sensational group 
cooking video game—made its 

smash appearance in 2016. The premise is 
simple: prepare as many of the requested 
meals as possible before the time runs out 
by cooking meat, chopping vegetables, or 
boiling soup; combining the ingredients; 
and cleaning the plates you just put out for 
consumption (Fig. 1). The innately chaotic 
nature of the game unfurls in the floor plan: 
some levels are coated with ice that make it 
easy to slip off of the stage; others, a rotat-
ing center stage. When four people gather to 
try flipping burgers, it becomes difficult to 
navigate the unruly layouts while following 
occasionally-complex cooking instructions 
in time to satisfy the customer. Strategy is 
crucial to fulfill orders quickly and proceed 
to the next level.

Naturally, this idea prompts the ques-
tion: how can we develop the best strategy to 
play Overcooked? How can we find the way 

to make the greatest number of food items 
in the time allotted for each level?

First and foremost, it seems the solution 
to our quest may not lie in our own hands—
recent advances in computer science have 
demonstrated that machine learning algo-
rithms have been able to outplay human 
experts. Specifically, these methods have 
bested human players on some of the first 
games developed on the Atari 2600, a gam-
ing console from 1977.1,2

Machine learning is likely the way to go 
to play the best game of Overcooked, then. 

These Atari algorithms, developed in 2013 
by DeepMind Technologies’ Volodymyr 
Minh, were able to learn how to play a host 
of Atari games, eventually exceeding the 
highest scores of some of the most skilled 
human players. To accomplish this task, 
Minh utilized a class of machine learning 
known as reinforcement learning, in which 
the computer is a sort of “player,” learning 
about the environment with which it in-
teracts. The “player” eventually encounters 
good or bad rewards, and learns how to act 
to maximize the good rewards it receives. 

Figure 1: Gameplay footage of a standard level of Over-
cooked. The dropoff location, on the left, is where players 
need to submit completed meal orders, in the top left. The 
rest of the level is home to treadmills that move the player 
around, and resources are spread far apart from each 
other to make the level more challenging.
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This amounts to a massive amount of trial-
and-error-type learning, and takes minutes 
to simulate a single second’s worth of game-
play; the Atari system was slowed down by 
multiple orders of magnitude, and it was 
not until late 2014 when IBM’s Xiaoxiao 
Guo developed a more efficient, real-time 
algorithm that—while slightly less effec-
tive—was able to play live.3

We are met at a crossroads: we can ei-
ther develop an algorithm that takes a long 

time and plays a slowed-down version of 
the game, or we can prioritize an algorithm 
that plays real-time, albeit possibly subopti-
mally. Here, we will focus on the former to 
develop a “best” strategy, due to the gener-
ally messy nature of real-time strategy de-
velopment.

In order to properly tackle this prob-
lem, we must first consider our approach. 
To procure the greatest number of meals in 
a set time frame, we will make some sim-
plifying assumptions, and establish how we 
will frame the data to be inputted into this 
system: 

The game board will be split into dis-
crete tiles in a grid over the entire board, 
small enough that only one unit—either 
player, plate, or other utility on the board—
can fit into each tile.

The board will be split into layers of the 
above grid, corresponding to the distinct 
types of entities on the board: one layer cor-
responding to tabletops; one for non-walk-

able hazards; one for each player; one for to-
matoes; and so on. For each of these items, 
its corresponding grid copy will contain 1’s 
in every position in which the item is con-
tained; every other position, will be filled in 
with 0’s (Fig. 2).

One time step will be defined as the 
amount of time it takes for a player to 
move from one grid tile to any adjacent tile.

So, great. We’ve created a model for the 
system which speaks to where everything is 
on the board, and we’ve discretized the sys-
tem such that players have a finite number 
of moves until the game is finished. How-
ever, the computer does not know what the 
objective of Overcooked is—it has been pre-
programmed exclusively with knowledge of 
how to move and use other moveable items. 
So how can a computer choose the best or-
dering of actions, when it doesn’t even know 
what it should be doing?	

Simple: it won’t. Not for a long time.
We have to start by making a guess of 

Figure 2: Each game board can 
be roughly modeled as a grid 
of tiles; to format this for input 
into our machine learning algo-
rithm, we simply need to break 
the game down into its gridlike 
structure. From here, all that’s 
left is to create a new copy of 
the grid for each type of tile, 
and label each tile that has the 
item with a “1,” and each that 
doesn’t with a “0”.

“Naturally, this 
idea prompts the 

question: how can 
we develop the 

best strategy to play 
Overcooked?”
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this? In essence, it amounts to making ran-
dom or slightly-educated guesses of how 
valuable each state-action pairing is, testing 
these out, and updating them according to 
whether we found them to be as useful as 
we initially thought they would be. For ex-
ample, we might have initially thought that 
it would be very valuable to chop lettuce, 
but if our simulations reveal that there’s only 
one very uncommon dish on that level that 
requires lettuce, we can safely say that we 
overestimated the value of chopping lettuce, 
and update accordingly.

So, there we have it—under the model 
we have constructed, we will be able to play 
the optimal game of Overcooked.  It will 
take some time, but by playing several thou-
sands of simulations of a given level, a com-
puter will be able to roughly determine the 
values of each state-action pairing for the 
optimal policy. From here, we simply need 
to choose what Q-Learning believes to be 
the most valuable action for each state we’re 
in until the end of the game. 

This concludes our quest; from con-
structing our model, we have simulated sev-
eral thousand rounds of play, developed an 
approximation for the value of every move, 
and used these approximations to make the 
best strategy in Overcooked. Armed with 
that knowledge, replacing your own player 
with the optimal computer may even leave 
your teammates happier without you.
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how to proceed from each possible config-
uration of positions, called a state, and up-
dating our guesses as we proceed through 
simulations. Enter Q-Learning, an algo-
rithm proposed in 1989 which does precise-
ly this.4,5 More recent advances from 2002 by 
the University of York’s Spiros Kapetanakis 
expanded Q-Learning to work with multiple 
players, allowing for this approach to work 
with Overcooked.6

Q-Learning is a standard reinforcement 
learning algorithm which identifies and de-
termines the value, denoted with a Q, of ev-
ery action, a, at every possible state, x.  From 
here, we can determine the optimal action 
to take at any state, which is known as a poli-
cy. The value of each state-action pairing for 
a policy π is defined as follows:

By no means is this pleasant to look at, 
but the general takeaway here is as follows: 
the first term, ℜx(a), speaks to the reward 
obtained, purely from taking an action a 
at a state x.  For example, dropping a filled 
order down into the dropoff location would 
yield a large reward, while cutting carrots or 
cooking meat would not achieve the same 
reward.  This is not to say that these latter 
actions aren’t valuable, though—their value 
shines in the second term of the equation. 
This term—which is admittedly complex—
equals the potential of any given action to 
result in a downstream success. Note that 
this success is not guaranteed; each order 
that comes in is random, and so each action 
may be more or less successful based on the 
randomly generated requests. Regardless, 
this is how preparing food is useful—it sets 
up for future completed dishes to get even 
more points.

This is all splendid, but how do we use 

“To accomplish this 
task, Minh utilized 

a class of machine 
learning known 

as reinforcement 
learning.”




