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IMPLEMENTING STAGES OF MOTION ANALYSIS IN NEURAL NETWORKS
Margaret E. Sereno

Psychology Department
Brown University

Abstract

A neursl mode! is proposed for human motion perception. The goel of the model is to
calculate the two-dimensional velocity of elements in an image. Unlike most eerlier approaches,
the present model is structured in accord with known neurophysiological deta. Three distinct
stages are proposed. At the first level, units are sensitive to the components of motion that are
perpendicular to the orientation of 8 moving contour. The second level integrates these initial
motion measurements to obtain transiational motion. The third level uses translational motion
messurements to compute general three-dimensional motion such as rotation and expansion. The
model shows a high level of performance in solving the measurement of two-dimensionsal
translational motion from local motion information. Most importantly, the present model uses
nervous system structure as a natural way to formulate constraints. The psychological
implications of staged motion processing are discussed.

Yisual motion perception serves many important functions, including the segregetion of
objects, the estimation of object motion, the control of eye movements, and the estimation of the
three-dimensional structure of objects & the environment. The operations responsible for the
perception of motion, however, are not well known.

As three-dimensional surfaces move in space, they project light onto the eye, forming 8
two-dimensional image of the world that changes with time. The visual system must reconstruct
8 three-dimensional world from this two-dimensional image. This reconstruction can be
accomplished by using information about the orgenization of movement in the changing image.
However , the motion of elements in the two-dimensional image (i.e., their speed and direction)
is not an inherent property of the image but must be inferred from the varying intensities of the
image. Thus, motion analysis is often considered a two-stage process (Hildreth, 1983).

The goal of the first stage is the measurement of two-dimensional motion of elements in an
image (i.e., extracting the velocity--speed end direction--of moving elements). To accomplish
this goal there must be initial motion detection and measurement by motion sensors, an
integration of the initial motion measurements to compute an instantaneous two-dimensional
velocity field (the so-called “sperture” problem), and the detection of motion discontinuities.
The second stage consists of an interpretation of the three-dimensional structure of surfaces
from two-dimensional motion.

| present 8 neural network model of part of the first stege of motion analysis (i.e., the
integration of initial, local measurements to compute a two-dimensional velocity field). The
mode] extracts the true two-dimensional motion of an entire pattern from smbiguous local
motion information available at the pattern’s component contours. In other words, it solves the
“"sperture problem” for rigid two-dimensional motion in the plane. Local motion detectors
provide ambiguous information because they only measure the component of motion
perpendicular to the orientation of a moving contour. A family of possible motions exists that can
give rise to the locally detected motion. The aperture problem, then, reduces to the assignment
of a unique velocity to an object given only local motion measurements ( See Figure 1).
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Figure 1

Hildreth (1983) has proposed & computational mode! for the measurement of
two-dimensional motion. In her model, local measurements are obtained from the image and are
then combined to compute a unique two-dimensional velocity field by applying constraints to
limit the solution. For example, the “smoothness constraint™ is based on the observation that
objects usually have smooth surfaces. This constraint is implemented by finding the velocity
field of least variation. The model works well on simple figures for planar and general
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three-dimensional motion (e.g., rotation and expansion).
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The basic motivation for formulating the present mode! is to build more structure into the
mode] to enable it to perform transformations on the input deta leading to 8 w2/gwe solution.
This is done by closely adhering to both neurophysiological and psychological data on motion
snalysis. The model is structured in accord with neurophysiological deta because | assume that
the nature of the hardwere profoundly affects how the problem is solved. The ultimate goel is to
integrate the neurophysiological and psychological information to form a more coherent theory
of motion perception.

Two idess about the basic operations involved in motion analysis emerge from the
psychological, psychophysical, neurophysiological, and mathematical work on motion. One is
that there are primitives of optic flow that are analyzed by Specialized neural mechanisms.
Work on the mathematics of optic flows demonstrates that any flow field can be decompased into a
linear vector combination of several basic types: translation, rotation, shear, and dilation
(Koenderink & Yan Doorn, 1976; Longuet-Higgins & Prazdny, 1980). Psychophysical deta
from adaptation studies have provided evidence for translation, rotation, and expansion sensitive
mechanisms (Regan & Beverly, 1978; Regan, 1986). Also, neurophysiological studies in
macaque visual cortex (area MST) demonstrate that neurons are sensitive to linear, rotational,
and dilational motion ( Seito et al., 1986).

The second ides fs that the integration of local one-dimensional motion measurements into
8 full two-dimensional velocity field occurs in several stages. Psychophysical studies
demonstrate that one-dimensional motion measurements are combined to compute
two-dimensional translational motion (Adelson & Movshon, 1982; Nekayama & Silverman,
1983). Neurophysiological date suggests that the computation of all types of motion in the
nervous System does not occur in a single step. A pervasive aspect of the cortical architecture of
sensory systems is the presence of multiple topographic representations or maps of sensory
surfaces projecting to each other. Several areas involved in motion analysis in the macaque
visual cortex include Areas Y1, MT, and MST. Area Y1 neurons are involved in the analysis of
component motion while some MT neuons respond to linear pattern motion (Movshon, Adelson,
Gizzi, & Newsome, 1985). As previously noted, 8 recent study of cells in a visual area (MST)
upstream to area MT has discovered neurons that respond selectively to translating, expanding,
contracting, and rotating patterns ( Saito et al., 1986).

As a first step, 8 model is constructed to solve the aperture problem for rigid motion in
the plane (i.e., translation). This is accomplished, first, by using some formal observations on
how to uniquely limit the solution and, second, by structuring the model in accord with
neurophysiological organization. It is then proposed that this two-dimensional translation
information is combined to compute other general motions.

Adelson and Movshon (1982) discuss a solution to unambiguously determine the
two-dimensional motion of a pattern given the motion of its local components (See Figure 2).
The dashed lines indicate the family of global pattern velocities which are consistent with the
locally measured component velocity vector. They note that when at least two nonparallel moving
contours belonging to the same pattern are compared, only one vector is common to both
one-dimensional families, and it describes the motion of the entire pattern. This vector is the
point in velocity space at which the two dashed lines intersect.
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Figure 2

This constraint was implemented in a model ( Sereno, 1986) that was structured in accord
with the following neurophysiological facts. Some neurons in striate cortex (Ares Y1) are
selective for orfentation, speed and direction of edges. However, they only respond to the
perpendiculsr component of motion. Area MT, an area involved in motion snalysis, receives 8
direct topographic profection from Y1, Is selective for the direction and speed of motion of a
stimulus while having little selectivity for spatial structure, and possesses larger receptive
fields, indicating spatial summation of its inputs. Moreover, 25% of MT neurons exhibit
“pattern” direction selectivity, that is, they are selective for the motion of the pattern asa
whole ( Movshon, Adelson, Gizzi, & Newsome, 1985).

A “Boltzmann Machine™ (Ackley, Hinton, & Sejnowski, 1985S) was constructed with an
input layer of units representing ¥ | and output layer of units representing area MT. Each unit
is selective for a specific speed and direction of motion ( See Figure 3). Specifically, layer V1
contains 32 units (8 directions, 2 speeds and 2 locations) while layer MT contains 24 units (8
directions, 3 speeds and | location). Y1 units respond only to the component of motion
perpendiculer to the orientation they are sensitive to; MT units respond to two-dimensional
motion.
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The formal solution described above was hardwired into the system by havingeach V1 unit
project to the family of pattern velocities in the output layer that could describe the true motion
underlying its response. With this predefined connectivity, when a number of differently
oriented line segments belonging to the same moving pattern are input to the system, a gradient
descent algorithm results in the system changing to a configuration in which the activity of the
output unit describing the pattern motion is selectively enhanced. Figure 4 presents an
example of a pattern of line segments moving across the two sets of input units (See Figure 4).
After 20,000 iterations, the output unit describing the pattern velocity is driven to an “on”
state 100% of the time. In addition, &8 motion illusion (the Split Herringbone Illusion) is
presented to the model. The slternating columns of lines actually move in opposite directions
while the perceived motion is perpendicular to these directions, consistent with an “intersection
of constraints” solution. After 20,000 iterations, the perceived direction is selectively
enhanced.

These results demonstrate that the intersection of constraints described above can be
realized in a two- layered neural network. The specific implementation makes a testable neural
prediction about how the first layer of neurons (area Y1) projects to the second layer of
neurons (MT) to transform the neural response from selectivity for one-dimensional motion to
selectivity for two-dimensional motion. The projection, consequently, produces MT units with a
wider range and higher cut-off of preferred speeds than Y1 units, a finding consistent with
existing neurophysiological data (Van Essen, 1985S). Another important aspect of the model is
that 1t predicts that two-dimensional motion measurements result from the integration of
one-dimensional motion measurements from nearby spatial locations.

Tosummarize, a positive aspect of the model is that it is neurally-based with the result
that 1t produces one solution to a given input. No post hoc assumptions or constraints are needed
to limit the solution. However, 8 major limitation of the model is limited to the discrete values
of speed and direction of movement to which the input units are sensitive. A neurally plausible
solution to this problem of representing intermediate values of speed and direction is to let the
information be carried by an ensemble code. This requires that individual units have continuous
valued activities. For example, a speed or direction that lies exactly in between the values of 2
units can be represented by activity in each unit that is 1/2 the maximum activity. Such 8
representation, however, cannot be implemented on a Boltzmann Machine because the units
cannot have continuous valued activity. However, it is not difficult to show that the intersection
of constraints illustrated in Figure 2 amounts to a solution of & set of linear equations and hence,
it can be solved with linear methods that permit continuous-valued output. Therefore, a second
model was constructed using a simple linear associator with error correction, such as that used
by Anderson ( 1983) (See Figure S).

In the simple linear associative model, the same neurophysiological assumptions hold,
except that learning can occur. This means that the connection weights are modifiable. The
matrix, A, of modifiable synaptic weights describes the projection of the input layer of neurons
to the output layer. The vectors f and g represent the activities across the input and output
layers, respectively. Learning occurs when pairs of these vectors, one pair per pattern, are
associated to form the connectivity matrix. To do this, two assumptions are made: The first
assumption is that a neuron’s activity results from the linear summation of its input. Thet is,
the activity of each neuron, in the second layer, is determined by the activity of its inputs
weighted by their connection strengths. Second, the matrix of connection strengths is
constructed according 1o the generalized Hebbian rule for connectivity modification which
asserts that synaptic strength is porportional to pre- and postsynaptic cell activity. This
learning rule is used with error correction in which the difference between the true association,
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Two assumptions of the linear associative model:

fi = vector of input layer neuron activities representing
component velocities for the ith pattern

g; = vector of output layer neuron activities representing
pattern velocities for the ith pattern
gi' = vector of output layer neuron activities that results when

a pattern, fi, is input to the system

1) Neurons take a linear summation of their input:
9 =A

2) Learning Rule: Synaptic strength is proportional to the
product of pre-synaptic and post-synaptic activities:

Error Correction Procedure:

AA=k (gi-g) T

AA is learned and added to the developing A connectivity

matrix:
A t+41 = At + AA

Figure §
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g, 8nd the actual association, g, is learned and added to the developing A connectivity matrix.

To teach the model, different patterns moving at different velocities are input to the
system. For each pattern, a vector, f, describing component velocities and a vector, g, describing
pattern velocities are associated using error correction.

After learning is completed, the matrix is tested. The output of each stored input is
computed. That is, each f is input to the system to get an output g'. The output g’ is then compered
to the true association g by taking the cosine between them. If the vectors are the same, the
cosine will equal 1. The system is then tested with nonassociated vector pairs to see how well the
system generalizes to new stimuli.

One simulation will be described to illustrate the performance of the system. For this
simulation, direction sensitive units are placed every 15 degrees and have bandwidths of 90
degrees (peak response tapers off to 0, 45 degrees on either side of the peak direction). There
are 17 pesk directions (spanning 180 degrees) and 8 pesk speeds (spanning 30 degrees/sec).
Since each unit is sensitive to both a speed and a direction, @ totel of 136 units (136
speed/direction combinations) are available at each location. In this simulation, the system
learns on S0 patterns and is then tested on these SO patterns and on SO new patterns. The
patterns are composed of | to 3 line segments positioned at different angles relative to each
other. Some example patterns are shown in Figure 6 (See Figure 6). Each pattern is moved at a
different velocity.

Linear Associative Model

Example Patterns:

33

Figure 6
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After 15 associations per vector pair, the system reeches stable performence and is
tested. The mean cosine between the true association that the system lesrns, g, and the actual
association that the system produces, g', is equal to .98. This represents very good performance.
Moreover, the mesn cosine for the new, nonassociated vectors is equal to .97. This also
represents very good performance and demonstrates that the system is able to generalize quite
well to stimuli it has never seen before.

Toobtain a finer performance measure, a calculation was made to determine one value of
speed and one value of direction for each pattern. A weighted average was taken in which each
unit's preferred speed or direction was weighted by its activation level (See Figure 7). The
mean difference between the weighted average for the resl direction (g) and the reconstructed
direction (g') for old patterns was 3.0 degrees while the mean difference for new petterns was
4.2 degrees. The mean difference between weighted averages for real and reconstructed speeds
for old patterns was 1.1 degrees per second compared to 1.6 degrees per second for new
patterns.

weighted Average Calculation

pattern speed = I, (ri * Si) / 21 ri
pattern direction = Z;(rj*dj)/ Zjry

where i = unit number
r = activation level of unit
s = speed to which unit is most sensitive
d = direction to which unit is most sensitive

Figure 7

In sum, the model shows excellent performance for extracting two-dimensional
translational motion from one-dimensional motion information.

The present model is then extended 1o handle the two-dimensional projected velocity of
objects moving in depth (e.g., in rotating and expanding objects). Again, the mode! is constructed
taking into account the relevant neurophysiological data. Saito et al. (1986), for example,
describe three classes of directionally selective cells with large receptive fields (about 35
degrees compared 10 a8 mean of about 6 degrees for MT cells) in area MST, an area which receives
a direct projection from MT. One class of cells is sensitive to translation in the plane, a second
class (size-change cells) is selective for expanding or contracting patterns, and a final class
(rotation cells) is selective for rotating patterns (clockwise or counterclockwise) in the
frontoparallel plane, or rotating patterns in depth. A common feature of these neurons is that
they respond to appropriate patterns anywhere in their large receptive fields at the expense of
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being able to precisely signel information about location. Seito et al. (1986) argue thet these
cells are sensitive to "whole events™ of visual motion beceuse they integrate elemental motion
signals from MT cells.

These data sugoest that the visual system utilizes several distinct stages for motion
snalysis. In an analogous fashion, the present model takes the output of 8 second layer that
responds to two-dimentional lineer motion and feeds it into a third layer thet responds to motion
of rotation, dilation, or contraction.

The proposed model will be tested using complex motion (the combination of simpler
motions). Moreover, the mode! will be introduced to moving patterns which give rise to
illusory perception such as the rotating spiral illusion. In this illusion, & rotating spiral
appears to expand or contract. The three layers of the present model result in the extraction of
elemental motion which can then be combined in an ensemble code to compute the perceived
two-dimensional motion.

The obvious advantege of such a model is that it makes use of the structure of the nervous
system &s a natural way to constrain the model. Consequently, it can provide insight into the
sequential processes involved in motion analysis.
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